Implementation of a conjugate gradient for solving a linear system Ax=b
when A is positive definite. In some cases, it is faster than the Matlab
function pcg
, especially when the library uses the Intel Math Kernel Library.
% % Usage: x =mexConjGrad(A,b,x0,tol,itermax) % % Name: mexConjGrad % % Description: Conjugate gradient algorithm, sometimes faster than the % equivalent Matlab function pcg. In order to solve Ax=b; % % Inputs: A: double square n x n matrix. HAS TO BE POSITIVE DEFINITE % b: double vector of length n. % x0: double vector of length n. (optional) initial guess. % tol: (optional) tolerance. % itermax: (optional) maximum number of iterations. % % Output: x: double vector of length n. % % Author: Julien Mairal, 2009 |
The following piece of code illustrates how to use this function.
A=randn(5000,500); A=A'*A; b=ones(500,1); x0=b; tol=1e-4; itermax=0.5*length(b); tic for ii = 1:20 x1 = mexConjGrad(A,b,x0,tol,itermax); end t=toc; fprintf('mex-file time: %fs\n',t); tic for ii = 1:20 x2 = pcg(A,b); end t=toc; fprintf('Matlab time: %fs\n',t); sum((x1(:)-x2(:)).^2) |
Apply a Bayer pattern to an input image
% % Usage: x =mexConjGrad(A,b,x0,tol,itermax) % % Name: mexConjGrad % % Description: Conjugate gradient algorithm, sometimes faster than the % equivalent Matlab function pcg. In order to solve Ax=b; % % Inputs: A: double square n x n matrix. HAS TO BE POSITIVE DEFINITE % b: double vector of length n. % x0: double vector of length n. (optional) initial guess. % tol: (optional) tolerance. % itermax: (optional) maximum number of iterations. % % Output: x: double vector of length n. % % Author: Julien Mairal, 2009 |
The following piece of code illustrates how to use this function.
A=randn(5000,500); A=A'*A; b=ones(500,1); x0=b; tol=1e-4; itermax=0.5*length(b); tic for ii = 1:20 x1 = mexConjGrad(A,b,x0,tol,itermax); end t=toc; fprintf('mex-file time: %fs\n',t); tic for ii = 1:20 x2 = pcg(A,b); end t=toc; fprintf('Matlab time: %fs\n',t); sum((x1(:)-x2(:)).^2) |
For an input sparse matrix A, this function returns AAT. For some reasons, when A has a lot more columns than rows, this function can be much faster than the equivalent Matlab command X*A'
.
% % Usage: AAt =mexCalcAAt(A); % % Name: mexCalcAAt % % Description: Compute efficiently AAt = A*A', when A is sparse % and has a lot more columns than rows. In some cases, it is % up to 20 times faster than the equivalent Matlab expression % AAt=A*A'; % % Inputs: A: double sparse m x n matrix % % Output: AAt: double m x m matrix % % Author: Julien Mairal, 2009 |
The following piece of code illustrates how to use this function.
A=sprand(200,200000,0.05); tic AAt=mexCalcAAt(A); t=toc; fprintf('mex-file time: %fs\n',t); tic AAt2=A*A'; t=toc; fprintf('matlab time: %fs\n',t); sum((AAt(:)-AAt2(:)).^2) |
For an input sparse matrix A and a matrix X, this function returns XAT. For some reasons, when A has a lot more columns than rows, this function can be much faster than the equivalent Matlab command X*A'
.
% % Usage: XAt =mexCalcXAt(X,A); % % Name: mexCalcXAt % % Description: Compute efficiently XAt = X*A', when A is sparse and has a % lot more columns than rows. In some cases, it is up to 20 times % faster than the equivalent Matlab expression XAt=X*A'; % % Inputs: X: double m x n matrix % A: double sparse p x n matrix % % Output: XAt: double m x p matrix % % Author: Julien Mairal, 2009 |
The following piece of code illustrates how to use this function.
X=randn(64,200000); A=sprand(200,200000,0.05); tic XAt=mexCalcXAt(X,A); t=toc; fprintf('mex-file time: %fs\n',t); tic XAt2=X*A'; t=toc; fprintf('mex-file time: %fs\n',t); sum((XAt(:)-XAt2(:)).^2) |
For two input matrices X and Y, this function returns XY.
% % Usage: Z =mexCalcXY(X,Y); % % Name: mexCalcXY % % Description: Compute Z=XY using the BLAS library used by SPAMS. % % Inputs: X: double m x n matrix % Y: double n x p matrix % % Output: Z: double m x p matrix % % Author: Julien Mairal, 2009 |
The following piece of code illustrates how to use this function.
X=randn(64,200); Y=randn(200,20000); tic XY=mexCalcXY(X,Y); t=toc; fprintf('mex-file time: %fs\n',t); tic XY2=X*Y; t=toc; fprintf('mex-file time: %fs\n',t); sum((XY(:)-XY2(:)).^2) |
For two input matrices X and Y, this function returns XYT.
% % Usage: Z =mexCalcXYt(X,Y); % % Name: mexCalcXYt % % Description: Compute Z=XY' using the BLAS library used by SPAMS. % % Inputs: X: double m x n matrix % Y: double p x n matrix % % Output: Z: double m x p matrix % % Author: Julien Mairal, 2009 |
The following piece of code illustrates how to use this function.
X=randn(64,200); Y=randn(200,20000)'; tic XYt=mexCalcXYt(X,Y); t=toc; fprintf('mex-file time: %fs\n',t); tic XYt2=X*Y'; t=toc; fprintf('matlab-file time: %fs\n',t); sum((XYt(:)-XYt2(:)).^2) |
For two input matrices X and Y, this function returns XTY.
% % Usage: Z =mexCalcXtY(X,Y); % % Name: mexCalcXtY % % Description: Compute Z=X'Y using the BLAS library used by SPAMS. % % Inputs: X: double n x m matrix % Y: double n x p matrix % % Output: Z: double m x p matrix % % Author: Julien Mairal, 2009 |
The following piece of code illustrates how to use this function.
X=randn(64,200)'; Y=randn(200,20000); tic XtY=mexCalcXtY(X,Y); t=toc; fprintf('mex-file time: %fs\n',t); tic XtY2=X'*Y; t=toc; fprintf('matlab-file time: %fs\n',t); sum((XtY(:)-XtY2(:)).^2) |
For an input symmetric matrices A in ℝn × n, this function returns A−1.
% % Usage: B =mexInvSym(A); % % Name: mexInvSym % % Description: returns the inverse of a symmetric matrix A % % Inputs: A: double n x n matrix % % Output: B: double n x n matrix % % Author: Julien Mairal, 2009 |
The following piece of code illustrates how to use this function.
A=rand(1000,1000); A=A'*A; tic B=mexInvSym(A); t=toc; fprintf('mex-file time: %fs\n',t); tic B2=inv(A); t=toc; fprintf('matlab-file time: %fs\n',t); sum((B(:)-B2(:)).^2) |
% % Usage: Y =mexNormalize(X); % % Name: mexNormalize % % Description: rescale the columns of X so that they have % unit l2-norm. % % Inputs: X: double m x n matrix % % Output: Y: double m x n matrix % % Author: Julien Mairal, 2010 |
The following piece of code illustrates how to use this function.
X=rand(100,1000); tic Y=mexNormalize(X); t=toc; |
% % Usage: Y =mexSort(X); % % Name: mexSort % % Description: sort the elements of X using quicksort % % Inputs: X: double vector of size n % % Output: Y: double vector of size n % % Author: Julien Mairal, 2010 |
The following piece of code illustrates how to use this function.
X=rand(1,300000); tic Y=mexSort(X); t=toc; toc tic Y2=sort(X,'ascend'); t=toc; toc sum((Y2(:)-Y(:)).^2) |
Print to the screen a matrix containing as columns image patches.
This function counts the number of paths in a DAG using dynamic programming.
% % Usage: num=mexCountPathsDAG(G); % % Name: mexCountPathsDAG % % Description: mexCountPathsDAG counts the number of paths % in a DAG. % % for a graph G with |V| nodes and |E| arcs, % G is a double sparse adjacency matrix of size |V|x|V|, % with |E| non-zero entries. % (see example in test_CountPathsDAG.m % % % Inputs: G: double sparse |V| x |V| matrix (full graph) % % Output: num: number of paths % % Author: Julien Mairal, 2012 |
The following piece of code illustrates how to use this function.
% graph corresponding to figure 1 in arXiv:1204.4539v1 fprintf('test mexCountPathsDAG\n'); % this graph is a DAG G=[0 0 0 0 0 0 0 0 0 0 0 0 0; 1 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 0 0 0 0 0 0 0 0 0 0 0; 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 1 0 0 0 0 0 0 0 0 0; 0 1 1 0 1 0 0 0 0 0 0 0 0; 0 1 0 0 1 0 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 0 0 0 0 0 0; 1 0 0 1 0 0 0 0 0 0 0 0 0; 1 0 0 0 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 0 0 0; 0 0 0 0 0 0 0 0 1 0 1 0 0; 0 0 0 0 1 0 0 0 1 0 0 1 0]; G=sparse(G); num=mexCountPathsDAG(G); fprintf('Num of paths: %d\n',num); |
One heuristic to remove cycles from a graph.
% % Usage: DAG=mexRemoveCycleGraph(G); % % Name: mexRemoveCycleGraph % % Description: mexRemoveCycleGraph heuristically removes % arcs along cycles in the graph G to obtain a DAG. % the arcs of G can have weights. The heuristic will % remove in priority arcs with the smallest weights. % % for a graph G with |V| nodes and |E| arcs, % G is a double sparse adjacency matrix of size |V|x|V|, % with |E| non-zero entries. The non-zero entries correspond % to the weights of the arcs. % % DAG is a also double sparse adjacency matrix of size |V|x|V|, % but the graph is acyclic. % % Note that another heuristic to obtain a DAG from a general % graph consists of ordering the vertices. % % Inputs: G: double sparse |V| x |V| matrix % % Output: DAG: double sparse |V| x |V| matrix % % Author: Julien Mairal, 2012 |
The following piece of code illustrates how to use this function.
fprintf('test mexRemoveCyclesGraph\n'); % this graph is not a DAG G=[0 0 0 0 0 0 0 0 0 0 0 0 0; 1 0 0 0.1 0 0 0 0.1 0 0 0 0 0; 1 1 0 0 0 0.1 0 0 0 0 0 0 0; 1 1 0 0 0 0 0 0 0 0 0 0.1 0; 0 0 0 1 0 0 0 0 0 0 0 0 0; 0 1 1 0 1 0 0 0 0 0 0 0 0; 0 1 0 0 1 0 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 0 0 0 0 0 0; 1 0 0 1 0 0 0 0 0 0 0 0 0; 1 0 0 0 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 0 0 0; 0 0 0 0 0 0 0 0 1 0 1 0 0; 0 0 0 0 1 0 0 0 1 0 0 1 0]; G=sparse(G); DAG=mexRemoveCyclesGraph(G); format compact; fprintf('Original graph:\n'); full(G) fprintf('New graph:\n'); full(DAG) |
Count the number of connected components of a subgraph from a graph.
% % Usage: num=mexCountConnexComponents(G,N); % % Name: mexCountConnexComponents % % Description: mexCountConnexComponents counts the number of connected % components of the subgraph of G corresponding to set of nodes % in N. In other words, the subgraph of G by removing from G all % the nodes which are not in N. % % for a graph G with |V| nodes and |E| arcs, % G is a double sparse adjacency matrix of size |V|x|V|, % with |E| non-zero entries. % (see example in test_CountConnexComponents.m) % N is a dense vector of size |V|. if N[i] is non-zero, % it means that the node i is selected. % % % Inputs: G: double sparse |V| x |V| matrix (full graph) % N: double full |V| vector. % % Output: num: number of connected components. % % Author: Julien Mairal, 2012 |
The following piece of code illustrates how to use this function.
% graph corresponding to figure 1 in arXiv:1204.4539v1 fprintf('test mexCountConnexComponents\n'); % this graph is a DAG G=[0 0 0 0 0 0 0 0 0 0 0 0 0; 1 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 0 0 0 0 0 0 0 0 0 0 0; 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 1 0 0 0 0 0 0 0 0 0; 0 1 1 0 1 0 0 0 0 0 0 0 0; 0 1 0 0 1 0 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 0 0 0 0 0 0; 1 0 0 1 0 0 0 0 0 0 0 0 0; 1 0 0 0 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 0 0 0; 0 0 0 0 0 0 0 0 1 0 1 0 0; 0 0 0 0 1 0 0 0 1 0 0 1 0]; G=sparse(G); nodes=[0 1 1 0 0 1 0 0 1 0 1 1 0]; num=mexCountConnexComponents(G,nodes); fprintf('Num of connected components: %d\n',num); % this graph is a not a DAG anymore. This function works % with general graphs. G=[0 0 0 0 0 0 0 0 0 0 0 0 0; 1 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 0 1 0 0 0 0 0 0 0 0 0; 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 1 0 0 0 0 0 0 0 0 0; 0 1 1 0 1 0 0 0 0 0 0 0 0; 0 1 0 0 1 0 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 0 0 0 0 0 0; 1 0 0 1 0 0 0 0 0 0 0 0 0; 1 0 0 0 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 0 0 0; 0 0 0 0 0 0 0 0 1 0 1 0 0; 0 0 0 0 1 0 0 0 1 0 0 1 0]; nodes=[0 1 1 0 0 1 0 0 1 0 1 1 0]; G=sparse(G); num=mexCountConnexComponents(G,nodes); fprintf('Num of connected components: %d\n',num); nodes=[0 1 1 1 0 1 0 0 1 0 1 1 0]; num=mexCountConnexComponents(G,nodes); fprintf('Num of connected components: %d\n',num); |
% % Usage: groups =mexGraphOfGroupStruct(gstruct) % % Name: mexGraphOfGroupStruct % % Description: converts a group structure into the graph structure % used by mexProximalGraph, mexFistaGraph or mexStructTrainDL % % Inputs: gstruct: the structure of groups as a cell array, one element per node % an element is itself a 4 elements cell array: % nodeid (>= 0), weight (double), array of vars associated to the node, % array of children (nodeis's) % Output: graph: struct (see documentation of mexProximalGraph) % % Author: Jean-Paul CHIEZE, 2012 |
% % Usage: gstruct =mexGroupStructOfString(s) % % Name: mexGroupStructOfString % % Description: decode a multi-line string describing "simply" the structure of groups % of variables needed by mexProximalGraph, mexProximalTree, mexFistaGraph, % mexFistaTree and mexStructTrainDL and builds the corresponding group structure. % Each line describes a group of variables as a node of a tree. % It has up to 4 fields separated by spaces: % node-id node-weight [variables-list] -> children-list % Let's define Ng = number of groups, and Nv = number of variables. % node-id must be in the range (0 - Ng-1), and there must be Ng nodes % weight is a float % variables-list : a space separated list of integers, maybe empty, % but '[' and '] must be present. Numbers in the range (0 - Nv-1) % children-list : a space separated list of node-id's % If the list is empty, '->' may be omitted. % The data must obey some rules : % - A group contains the variables of the corresponding node and of the whole subtree. % - Variables attached to a node are those that are not int the subtree. % - If the data destination is a Graph, there may be several independant trees, % and a varibale may appear in several trees. % If the destination is a Tree, there must be only one tree, the root node % must have id == 0 and each variable must appear only once. % % Inputs: s: the multi-lines string % % Output: groups: cell array, one element for each node % an element is itsel a 4 elements cell array: % nodeid (int >= 0), weight (double), array of vars of the node, % array of children (nodeid's) % % Author: Jean-Paul CHIEZE, 2012 |
% % Usage: gstruct =mexReadGroupStruct(file) % % Name: mexReadGroupStruct % % Description: reads a text file describing "simply" the structure of groups % of variables needed by mexProximalGraph, mexProximalTree, mexFistaGraph, % mexFistaTree and mexStructTrainDL and builds the corresponding group structure. % weight is a float % variables-list : a space separated list of integers, maybe empty, % but '[' and '] must be present. Numbers in the range (0 - Nv-1) % children-list : a space separated list of node-id's % If the list is empty, '->' may be omitted. % The data must obey some rules : % - A group contains the variables of the corresponding node and of the whole subtree. % - Variables attached to a node are those that are not int the subtree. % - If the data destination is a Graph, there may be several independant trees, % and a varibale may appear in several trees. % If the destination is a Tree, there must be only one tree, the root node % must have id == 0 and each variable must appear only once. % % Inputs: file: the file name % % Output: groups: cell array, one element for each node % an element is itsel a 4 elements cell array: % nodeid (int >= 0), weight (double), array of vars of the node, % array of children (nodeid's) % % Author: Jean-Paul CHIEZE, 2012 |
% % Usage: [permutations groups nbvars] =mexTreeOfGroupStruct(gstruct) % % Name: mexTreeOfGroupStruct % % Description: converts a group structure into the tree structure % used by mexProximalTree, mexFistaTree or mexStructTrainDL % % Inputs: gstruct: the structure of groups as a cell array, one element per node % an element is itself a 4 lements cell array: % nodeid (>= 0), weight (double), array of vars associated to the node, % array of children (nodeis's) % Output: permutations: permutation vector that must be applied to the result of the % programm using the tree. Empty if no permutation is needed. % tree: struct (see documentation of mexProximalTree) % nbvars : number of variables in the tree % % Author: Jean-Paul CHIEZE, 2012 |
% % Usage: gstruct =mexSimpleGroupTree(degrees) % % Name: mexSimpleGroupTree % % Description: makes a structure representing a tree given the % degree of each level. % % Inputs: degrees: int vector; degrees(i) is the number of children of each node at level i % % Output: group_struct: cell array, one element for each node % an element is itsel a 4 elements cell array : % nodeid (int >= 0), weight (double), array of vars attached to the node % (here equal to [nodeid]), array of children (nodeid's) % % Author: Jean-Paul CHIEZE, 2012 |