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Image captioning
I Given an image, generate a natural language description

Figure taken from [Kiros et al., 2015]
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Encoder-decoder models for captioning
I State of the art based on encoder-decoder approach

[Kiros et al., 2014]
I Inspired from encoder-decoder models in machine translation,

see e.g. [Sutskever et al., 2014]

I Encoder transforms input to a internal representation

I Decoder maps internal representation to output
Figure taken from [Vinyals et al., 2015]
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Limitations
I Only discriminative training

I Pure-text corpus to better learn language?
I Image-only data to learn image parser?

I Limited to a fixed vocabulary
I How to generalize better from few examples?
I Character-level prediction?

I Single image parse into a vector representation
I Global image representation, how to get compositionality?
I How to offload visual content from memory state?

Figure taken from [Kiros et al., 2015]
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Leveraging locality and compositionality with attention

I Sequentially attend to different parts of the input

I Associate local image evidence with words in caption

I Also used in speech recognition and machine translation

I Which areas to consider?

I Which mechanism to exploit these areas?
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Baseline: “vanilla” captioning system

Figure taken from [Vinyals et al., 2015]
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Encoder

I CNN with VGG-16 architecture
[Simonyan and Zisserman, 2015]

I 16 layers with trainable weights, 138M parameters
I Penultimate layer of ImageNet pre-trained model

Figure taken from [Noh et al., 2015]
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Decoder
I GRU-based RNN [Chung et al., 2014]

I State initialized with CNN code
I Previous word used as input: “output feedback”

Figures taken from [Karpathy and Fei-Fei, 2015] and http://colah.github.io
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Baseline model: word prediction

I Baseline RNN is based on state-word interactions

p(wt |ht) ∝ exp
(
w>t W θwhht

)
(1)

I wt : 1-hot coding of word at time t
I W : contains word-embedding vectors in rows
I θwh: parameter matrix to score word-state combination
I Think: “a logistic discriminant word-classifier given state”

I Train: maximum-likelihood using ground-truth inputs for state
evolution (“teacher forced”)

I Test: Generate approximate maximum-likelihood sentences
with beam-search

8 / 24



Our “Areas of Attention” model

I Based on scoring state-word-region combinations
I Which region-word pair “stands out” given the current state?

p(wt , rt |ht) ∝ exp s(wt , rt , ht), (2)

s(wt , rt , ht) = w>t W θwhht + w>t W θwrR
>rt

+r>t Rθrhht + w>t W θw + r>t Rθr , (3)

I wt : 1-hot coding of word at time t
I W : contains word-embedding vectors in rows
I rt : 1-hot coding of region at time t
I R: contains region feature vectors in rows
I θwh, θwr , θrh: region-word-state interaction matrices
I θw , θr : region and word bias vectors
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Our “Areas of Attention” model

CNN
φ(I)

RNN
h

θrh θwh θwr p(w, r) w

v

I Predict words using p(wt |ht) =
∑

rt
p(wt , rt |ht)

I Use appearance of attended regions for state update

vt =
∑
rt

p(rt |ht)r>t R, (4)

ht+1 = GRU(ht , [w
>
t W v>t ]>). (5)
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And how about the regions?

I Our AoA model is agnostic to type of image region,
experimentally we compare three different region types

activation grid object proposals spatial transformer

I Activation grid: take positions of conv5 layer as regions,
descriptor is “column” of activations across feature channels

I Object proposals: using EdgeBox object proposals
[Zitnick and Dollár, 2014], average conv5 features over box

I Spatial transformer: predict region from each conv4 position,
compute conv5 features over warped 3× 3 area
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Spatial transformer regions
I Localization network regresses affine transformations for all

feature map positions
I Transformations are applied to the anchor boxes that are used

to locally re-sample the feature map, before convolution
I Reverts to “Activation grid” for identity transformation

Localization
Network

Anchor Box

Bilinear 
SamplingA

Activation Grid Activation Grid
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Microsoft Common Objects in Context (MSCOCO)
I 80k train, 40 development images, 5 sentences per image

1. A woman kneeling down next to a dog on a snow covered slope.

2. A boy and his dog are playing in the snow.

3. A snowboarder in a blue jacket and a black and brown dog.

4. Snowboarder sitting next to a dog in the snow.

5. A snowboarder sits in snow beside a dog.
13 / 24



Evaluation of model components

I Using activation grid as attention areas

Method B1 B4 Meteor CIDEr

Baseline: θwh 66.3 26.4 22.2 78.9

Ours: θwh, θwr 68.0 28.0 22.9 83.6

Ours: θwh, θwr , θrh 68.2 28.4 23.3 85.5

Ours: conditional feedback 68.3 28.7 23.7 86.8

Ours: full model 69.1 28.8 23.7 87.4

I Local word-region interaction improves

I Local region-state interaction improves

I Word-conditioning visual feedback, i.e. using p(rt |wt , ht)
instead of p(rt |ht), degrades w.r.t. full model
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Evaluation of attention areas
I Object proposals: top regions by “objectness”
I Grids + transformers: regular sampling
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Effect of CNN fine-tuning

I RNN training only: fixed pre-trained CNN

I CNN-RNN fine-tuning: second stage trains all

Method B1 B4 Meteor CIDEr

RNN training only

Baseline 66.3 26.4 22.2 78.9

Spatial transformers 70.2 30.2 24.2 91.1

CNN-RNN fine-tuning

Baseline 68.6 28.7 23.5 87.1

Spatial transformers 70.8 30.7 24.5 93.8
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Comparison of attention areas

I Width of regions given by p(rt |ht)
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Comparison of attention areas

18 / 24



Comparison of attention areas
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Comparison to the state of the art

I Competitive with state-of-the-art methods

I More data (80k+30k) improves performance

I Ensemble of training with different seeds expected to improve

Method B1 B4 Meteor CIDEr

Vinyals et al. [Vinyals et al., 2015] - 27.7 23.7 85.5

Xu et al. [Xu et al., 2015], soft 70.9 24.3 23.9 -

Xu et al. [Xu et al., 2015], hard 71.8 25.0 23.0 -

Yang et al. [Yang et al., 2016] - 29.0 23.7 88.6

Jin et al. [Jin et al., 2015] 69.7 28.2 23.5 83.8

Donahue et al. [Donahue et al., 2015] 71.1 30.0 24.2 89.6

Ranzato et al. [Ranzato et al., 2016] - 29.2 - -

Bengio et al. [Bengio et al., 2015] - 30.6 24.3 92.1

Areas of Attention (ours) 70.8 30.7 24.5 93.8

AoA, data augmentation 72.1 31.1 25.0 95.6
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More examples
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More examples
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More examples
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