
FeaStNet: Feature-Steered Graph

Convolutions for 3D Shape Analysis

Nitika Verma, Edmond Boyer, Jakob Verbeek
INRIA, Grenoble, France

Computer Vision and Pattern Recognition, 2018

ConvNets are everywhere for 2D images

Classification Detection

Retrieval Segmentation
[Krizhevsky et al., 2012, Farabet et al., 2013, Ren et al., 2015, Gordo et al., 2016]

1 / 31

Convolutional Neural Networks (CNNs)

[LeCun et al., 1989]

2 / 31

How to generalize ConvNets to graph-structured data?

I RGB over regular grid of pixels

I XYZ(+RGB) over irregular graph of vertices

3 / 31

Applications

3D shape data molecular graphs

knowledge graphs social network analysis
4 / 31

Problem: Shape correspondence

5 / 31

Problem: Shape correspondence

5 / 31

Representations for 3D shape data

Bronstein et al. 2016

6 / 31

Extrinsic vs. Intrinsic representations

Figure from [Boscaini et al., 2016]

7 / 31

Extrinsic representation: Voxel grids

I Occupancy grids on input and/or output

I Quantize space rather than shape, lots of empty space
I 3D convolutions over grid, limited scalability

I Sparse convolutions over input [Graham et al., 2018]
I Octtrees on input and/or output [Tatarchenko et al., 2017]

8 / 31

Extrinsic representation: Point clouds

I Avoid quantization, ignore (most) structure
I PointNet [Qi et al., 2017]

I Local per-point processing (1×1 convolution)
I Global max-pooling for global shape properties

I Kd-Networks [Klokov and Lempitsky, 2017]
I Propagate features across Kd-Tree over point cloud
I Share parameters over branches with same split direction

9 / 31

Extrinsic representation: Point clouds

I Avoid quantization, ignore (most) structure
I PointNet [Qi et al., 2017]

I Local per-point processing (1×1 convolution)
I Global max-pooling for global shape properties

I Kd-Networks [Klokov and Lempitsky, 2017]
I Propagate features across Kd-Tree over point cloud
I Share parameters over branches with same split direction

9 / 31

Intrinsic representation: Geodesics over 3D mesh data
I Local geodesic polar coordinates

[Masci et al., 2015, Boscaini et al., 2016]

u(x , y) = (ρ(x , y), θ(x , y))

I Extract patch from mesh by “flattening” and interpolation
I Apply filter to local patch, max-pool over patch orientation
I Trained filters, hand-crafted patch function

10 / 31

Intrinsic representation: Geodesics over 3D mesh data
I Local geodesic polar coordinates

[Masci et al., 2015, Boscaini et al., 2016]

u(x , y) = (ρ(x , y), θ(x , y))

I Extract patch from mesh by “flattening” and interpolation

I Apply filter to local patch, max-pool over patch orientation
I Trained filters, hand-crafted patch function

10 / 31

Intrinsic representation: Geodesics over 3D mesh data
I Local geodesic polar coordinates

[Masci et al., 2015, Boscaini et al., 2016]

u(x , y) = (ρ(x , y), θ(x , y))

I Extract patch from mesh by “flattening” and interpolation
I Apply filter to local patch, max-pool over patch orientation

I Trained filters, hand-crafted patch function

10 / 31

Intrinsic representation: Geodesics over 3D mesh data
I Local geodesic polar coordinates

[Masci et al., 2015, Boscaini et al., 2016]

u(x , y) = (ρ(x , y), θ(x , y))

I Extract patch from mesh by “flattening” and interpolation
I Apply filter to local patch, max-pool over patch orientation
I Trained filters, hand-crafted patch function

10 / 31

MoNet: Trainable patch function [Monti et al., 2017]

I Trainable Gaussian assignment to bin k of the patch

u(x , y) = (ρ(x , y), θ(x , y)) (1)

wk(u) = exp((u− µk)TΣ−1
k (u− µk)) (2)

I Trained filters, trained patch function,
hand-crafted features for patch function

Polar coordinates ρ, θ

11 / 31

FeaStNet: Feature-Steered Graph Convolutions

I Generic graph-convolutional network architecture

I No hand-crafted features to design graph-convolution

I Validation: 3D shape correspondence and part labeling

Template Texture transfer on test shapes

12 / 31

FeaStNet: Feature-Steered Graph Convolutions

I Generic graph-convolutional network architecture

I No hand-crafted features to design graph-convolution

I Validation: 3D shape correspondence and part labeling

Template Texture transfer on test shapes

12 / 31

FeaStNet: Feature-Steered Graph Convolutions

I Generic graph-convolutional network architecture

I No hand-crafted features to design graph-convolution

I Validation: 3D shape correspondence and part labeling

Template Texture transfer on test shapes

12 / 31

A brief recap of ConvNets

13 / 31

A brief recap of ConvNets

13 / 31

A brief recap of ConvNets

13 / 31

A brief recap of ConvNets

13 / 31

A brief recap of ConvNets

13 / 31

Reformulation of standard CNNs

yi = b +
M∑

m=1

Wmxj(m,i)

14 / 31

Reformulation of standard CNNs

yi = b +
M∑

m=1

Wmxj(m,i)

14 / 31

Reformulation of standard CNNs

yi = b +
M∑

m=1

Wmxj(m,i)

14 / 31

Reformulation of standard CNNs

yi = b +
M∑

m=1

Wmxj(m,i)

14 / 31

Reformulation of standard CNNs

yi = b +
M∑

m=1

Wmxj(m,i)

14 / 31

Reformulation of standard CNNs

yi = b +
M∑

m=1

Wmxj(m,i)

14 / 31

Graph convolutional approach in FeaStNet
I Varying number of neighbors, no intrinsic ordering
I No one-to-one mapping between neighbors and weights

I Weighted assignment of neighbors to weights

yi = b +
1

|Ni |

M∑
m=1

Wm

∑
j∈Ni

qijmxj

I Using ring-1 neighbors in practice, but can be different

15 / 31

Graph convolutional approach in FeaStNet
I Varying number of neighbors, no intrinsic ordering
I No one-to-one mapping between neighbors and weights

I Weighted assignment of neighbors to weights

yi = b +
1

|Ni |

M∑
m=1

Wm

∑
j∈Ni

qijmxj

I Using ring-1 neighbors in practice, but can be different

15 / 31

Graph convolutional approach in FeaStNet
I Varying number of neighbors, no intrinsic ordering
I No one-to-one mapping between neighbors and weights

I Weighted assignment of neighbors to weights

yi = b +
1

|Ni |

M∑
m=1

Wm

∑
j∈Ni

qijmxj

I Using ring-1 neighbors in practice, but can be different

15 / 31

Graph convolutional approach in FeaStNet
I Varying number of neighbors, no intrinsic ordering
I No one-to-one mapping between neighbors and weights

I Weighted assignment of neighbors to weights

yi = b +
1

|Ni |

M∑
m=1

Wm

∑
j∈Ni

qijmxj

I Using ring-1 neighbors in practice, but can be different

15 / 31

Graph convolutional approach in FeaStNet
I Varying number of neighbors, no intrinsic ordering
I No one-to-one mapping between neighbors and weights
I Weighted assignment of neighbors to weights

yi = b +
1

|Ni |

M∑
m=1

Wm

∑
j∈Ni

qijmxj

I Using ring-1 neighbors in practice, but can be different

15 / 31

Graph convolutional approach in FeaStNet
I Varying number of neighbors, no intrinsic ordering
I No one-to-one mapping between neighbors and weights
I Weighted assignment of neighbors to weights

yi = b +
1

|Ni |

M∑
m=1

Wm

∑
j∈Ni

qijmxj

I Using ring-1 neighbors in practice, but can be different

15 / 31

Feature-Steered assignment function
I Use features of previous layer to map neighbors to filters
I Can use arbitrary subnet, simplest case: 1-layer + softmax

qijm ∝ exp
(
u>mxi + v>m xj + cm

)
(3)

M∑
m=1

qijm = 1 (4)

I Total sum of weights independent of neighborhood size

1

|Ni |

M∑
m=1

∑
j∈Ni

qijm = 1

I Setting um = −vm in makes assignment translation invariant
in feature space

qijm ∝ exp
(
u>m(xj − xi) + cm

)

16 / 31

Feature-Steered assignment function
I Use features of previous layer to map neighbors to filters
I Can use arbitrary subnet, simplest case: 1-layer + softmax

qijm ∝ exp
(
u>mxi + v>m xj + cm

)
(3)

M∑
m=1

qijm = 1 (4)

I Total sum of weights independent of neighborhood size

1

|Ni |

M∑
m=1

∑
j∈Ni

qijm = 1

I Setting um = −vm in makes assignment translation invariant
in feature space

qijm ∝ exp
(
u>m(xj − xi) + cm

)

16 / 31

Feature-Steered assignment function
I Use features of previous layer to map neighbors to filters
I Can use arbitrary subnet, simplest case: 1-layer + softmax

qijm ∝ exp
(
u>mxi + v>m xj + cm

)
(3)

M∑
m=1

qijm = 1 (4)

I Total sum of weights independent of neighborhood size

1

|Ni |

M∑
m=1

∑
j∈Ni

qijm = 1

I Setting um = −vm in makes assignment translation invariant
in feature space

qijm ∝ exp
(
u>m(xj − xi) + cm

)

16 / 31

Feature-Steered assignment function
I Use features of previous layer to map neighbors to filters
I Can use arbitrary subnet, simplest case: 1-layer + softmax

qijm ∝ exp
(
u>mxi + v>m xj + cm

)
(3)

M∑
m=1

qijm = 1 (4)

I Total sum of weights independent of neighborhood size

1

|Ni |

M∑
m=1

∑
j∈Ni

qijm = 1

I Setting um = −vm in makes assignment translation invariant
in feature space

qijm ∝ exp
(
u>m(xj − xi) + cm

)
16 / 31

Analysis: nr. parameters and computational cost

I Number of parameters:

I For each weight matrix Wm, add vectors for assignment
function um, vm. Collect in new matrix [Wmumvm].

I Similar to two more output channels: from E to E + 2.

I Computational cost:

I As in CNN: Compute one big matrix-matrix product between
activations in previous layer (vertices × input dims) and weight
matrices (input dims × output dims × nr. of filters). Cost:
O(NMED).

I Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK)

I Computational cost increased from O(NMED) to
O(NME (D + K))

17 / 31

Analysis: nr. parameters and computational cost

I Number of parameters:
I For each weight matrix Wm, add vectors for assignment

function um, vm. Collect in new matrix [Wmumvm].

I Similar to two more output channels: from E to E + 2.

I Computational cost:

I As in CNN: Compute one big matrix-matrix product between
activations in previous layer (vertices × input dims) and weight
matrices (input dims × output dims × nr. of filters). Cost:
O(NMED).

I Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK)

I Computational cost increased from O(NMED) to
O(NME (D + K))

17 / 31

Analysis: nr. parameters and computational cost

I Number of parameters:
I For each weight matrix Wm, add vectors for assignment

function um, vm. Collect in new matrix [Wmumvm].
I Similar to two more output channels: from E to E + 2.

I Computational cost:

I As in CNN: Compute one big matrix-matrix product between
activations in previous layer (vertices × input dims) and weight
matrices (input dims × output dims × nr. of filters). Cost:
O(NMED).

I Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK)

I Computational cost increased from O(NMED) to
O(NME (D + K))

17 / 31

Analysis: nr. parameters and computational cost

I Number of parameters:
I For each weight matrix Wm, add vectors for assignment

function um, vm. Collect in new matrix [Wmumvm].
I Similar to two more output channels: from E to E + 2.

I Computational cost:

I As in CNN: Compute one big matrix-matrix product between
activations in previous layer (vertices × input dims) and weight
matrices (input dims × output dims × nr. of filters). Cost:
O(NMED).

I Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK)

I Computational cost increased from O(NMED) to
O(NME (D + K))

17 / 31

Analysis: nr. parameters and computational cost

I Number of parameters:
I For each weight matrix Wm, add vectors for assignment

function um, vm. Collect in new matrix [Wmumvm].
I Similar to two more output channels: from E to E + 2.

I Computational cost:
I As in CNN: Compute one big matrix-matrix product between

activations in previous layer (vertices × input dims) and weight
matrices (input dims × output dims × nr. of filters). Cost:
O(NMED).

I Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK)

I Computational cost increased from O(NMED) to
O(NME (D + K))

17 / 31

Analysis: nr. parameters and computational cost

I Number of parameters:
I For each weight matrix Wm, add vectors for assignment

function um, vm. Collect in new matrix [Wmumvm].
I Similar to two more output channels: from E to E + 2.

I Computational cost:
I As in CNN: Compute one big matrix-matrix product between

activations in previous layer (vertices × input dims) and weight
matrices (input dims × output dims × nr. of filters). Cost:
O(NMED).

I Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK)

I Computational cost increased from O(NMED) to
O(NME (D + K))

17 / 31

Analysis: nr. parameters and computational cost

I Number of parameters:
I For each weight matrix Wm, add vectors for assignment

function um, vm. Collect in new matrix [Wmumvm].
I Similar to two more output channels: from E to E + 2.

I Computational cost:
I As in CNN: Compute one big matrix-matrix product between

activations in previous layer (vertices × input dims) and weight
matrices (input dims × output dims × nr. of filters). Cost:
O(NMED).

I Aggregate projections of each neighbor on each filter, instead
of a single one: O(NMEK)

I Computational cost increased from O(NMED) to
O(NME (D + K))

17 / 31

Recovering standard CNNs

I Graph over the pixels in the image

I Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3×3 filters

I Number of weight matrices M given by filter size,
e.g. M = 9 for 3×3 filters

I Binary assignments of neighbors to weight matrices,
i.e. qijm ∈ {0, 1}, based on position of i w.r.t. j

I Can be implemented by translation invariant linear-softmax
assignment function

18 / 31

Recovering standard CNNs

I Graph over the pixels in the image

I Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3×3 filters

I Number of weight matrices M given by filter size,
e.g. M = 9 for 3×3 filters

I Binary assignments of neighbors to weight matrices,
i.e. qijm ∈ {0, 1}, based on position of i w.r.t. j

I Can be implemented by translation invariant linear-softmax
assignment function

18 / 31

Recovering standard CNNs

I Graph over the pixels in the image

I Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3×3 filters

I Number of weight matrices M given by filter size,
e.g. M = 9 for 3×3 filters

I Binary assignments of neighbors to weight matrices,
i.e. qijm ∈ {0, 1}, based on position of i w.r.t. j

I Can be implemented by translation invariant linear-softmax
assignment function

18 / 31

Recovering standard CNNs

I Graph over the pixels in the image

I Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3×3 filters

I Number of weight matrices M given by filter size,
e.g. M = 9 for 3×3 filters

I Binary assignments of neighbors to weight matrices,
i.e. qijm ∈ {0, 1}, based on position of i w.r.t. j

I Can be implemented by translation invariant linear-softmax
assignment function

18 / 31

Recovering standard CNNs

I Graph over the pixels in the image

I Edges: connect every pixel to ones needed by filter,
e.g. eight-connected neighborhood for 3×3 filters

I Number of weight matrices M given by filter size,
e.g. M = 9 for 3×3 filters

I Binary assignments of neighbors to weight matrices,
i.e. qijm ∈ {0, 1}, based on position of i w.r.t. j

I Can be implemented by translation invariant linear-softmax
assignment function

18 / 31

Experimental evaluation — Shape correspondence

I FAUST human shape dataset
I 100 meshes with 6,890 vertices each
I 10 shapes in 10 different poses: 80 train, 20 test

I Vertex descriptors
I SHOT: Signature of Histograms of Orientations [Tombari et al., 2010]

I XYZ: raw vertex coordinates
I Correspondence as dense labeling problem

I Like semantic segmentation, but with 6,890 classes

19 / 31

Experimental evaluation — Shape correspondence
I FAUST human shape dataset

I 100 meshes with 6,890 vertices each
I 10 shapes in 10 different poses: 80 train, 20 test

I Vertex descriptors
I SHOT: Signature of Histograms of Orientations [Tombari et al., 2010]

I XYZ: raw vertex coordinates
I Correspondence as dense labeling problem

I Like semantic segmentation, but with 6,890 classes

19 / 31

Experimental evaluation — Shape correspondence
I FAUST human shape dataset

I 100 meshes with 6,890 vertices each
I 10 shapes in 10 different poses: 80 train, 20 test

I Vertex descriptors
I SHOT: Signature of Histograms of Orientations [Tombari et al., 2010]

I XYZ: raw vertex coordinates

I Correspondence as dense labeling problem
I Like semantic segmentation, but with 6,890 classes

19 / 31

Experimental evaluation — Shape correspondence
I FAUST human shape dataset

I 100 meshes with 6,890 vertices each
I 10 shapes in 10 different poses: 80 train, 20 test

I Vertex descriptors
I SHOT: Signature of Histograms of Orientations [Tombari et al., 2010]

I XYZ: raw vertex coordinates
I Correspondence as dense labeling problem

I Like semantic segmentation, but with 6,890 classes

19 / 31

Shape correspondence: Architectures

I Single-scale architecture
I Lin16 + Conv32 + Conv64 + Conv128 + Lin256 + Lin6890

I Multi-scale architecture
I Graph sub-sampling [Dhillon et al., 2007]
I Max pooling, zero-pad up-sampling

20 / 31

Shape correspondence: Architectures

I Single-scale architecture
I Lin16 + Conv32 + Conv64 + Conv128 + Lin256 + Lin6890

I Multi-scale architecture
I Graph sub-sampling [Dhillon et al., 2007]
I Max pooling, zero-pad up-sampling

20 / 31

Results single-scale architecture

I Metric: Percentage of correct (exact) correspondences

Trans.-inv. yes no

XYZ 86% 28%

SHOT 63% 58%

I Translation invariance helps, in particular for XYZ coordinates

I Learning from XYZ better than hand-crafted SHOT

I Impact nr. of weight matrices, using XYZ

2 4 8 16 32 64
M (Number of weight matrices)

60

65

70

75

80

85

90

A
cc

ur
ac

y

21 / 31

Results single-scale architecture

I Metric: Percentage of correct (exact) correspondences

Trans.-inv. yes no

XYZ 86% 28%

SHOT 63% 58%

I Translation invariance helps, in particular for XYZ coordinates

I Learning from XYZ better than hand-crafted SHOT

I Impact nr. of weight matrices, using XYZ

2 4 8 16 32 64
M (Number of weight matrices)

60

65

70

75

80

85

90

A
cc

ur
ac

y

21 / 31

Results single-scale architecture

I Metric: Percentage of correct (exact) correspondences

Trans.-inv. yes no

XYZ 86% 28%

SHOT 63% 58%

I Translation invariance helps, in particular for XYZ coordinates

I Learning from XYZ better than hand-crafted SHOT

I Impact nr. of weight matrices, using XYZ

2 4 8 16 32 64
M (Number of weight matrices)

60

65

70

75

80

85

90

A
cc

ur
ac

y

21 / 31

Geodesic errors: SHOT vs. XYZ

I Geodesic distance between predicted and true correspondence

I Single-scale architecture in both cases

XYZ SHOT XYZ SHOT

22 / 31

Comparison to state of the art

I Metric: Percentage of correct (exact) correspondences

Method Input Accuracy

Logistic Regr., w/o refinement SHOT 39.9%

GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%

PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%

ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%

GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%

MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%

MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%

FeaStNet, w/ refinement XYZ 92.2%

FeaStNet, multi scale, w/o refinement XYZ 98.6%

FeaStNet, multi scale, w/ refinement XYZ 98.7%

FeaStNet, multi scale, w/o refinement SHOT 90.9%

I New state of the art result, with both XYZ and SHOT

I Relative reduction of 89% in error rate w.r.t. Monti et al.

23 / 31

Comparison to state of the art

I Metric: Percentage of correct (exact) correspondences

Method Input Accuracy

Logistic Regr., w/o refinement SHOT 39.9%

GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%

PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%

ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%

GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%

MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%

MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%

FeaStNet, w/ refinement XYZ 92.2%

FeaStNet, multi scale, w/o refinement XYZ 98.6%

FeaStNet, multi scale, w/ refinement XYZ 98.7%

FeaStNet, multi scale, w/o refinement SHOT 90.9%

I New state of the art result, with both XYZ and SHOT

I Relative reduction of 89% in error rate w.r.t. Monti et al.

23 / 31

Comparison to state of the art

I Metric: Percentage of correct (exact) correspondences

Method Input Accuracy

Logistic Regr., w/o refinement SHOT 39.9%

GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%

PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%

ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%

GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%

MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%

MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%

FeaStNet, w/ refinement XYZ 92.2%

FeaStNet, multi scale, w/o refinement XYZ 98.6%

FeaStNet, multi scale, w/ refinement XYZ 98.7%

FeaStNet, multi scale, w/o refinement SHOT 90.9%

I New state of the art result, with both XYZ and SHOT

I Relative reduction of 89% in error rate w.r.t. Monti et al.

23 / 31

Comparison to state of the art

I Metric: Percentage of correct (exact) correspondences

Method Input Accuracy

Logistic Regr., w/o refinement SHOT 39.9%

GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%

PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%

ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%

GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%

MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%

MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%

FeaStNet, w/ refinement XYZ 92.2%

FeaStNet, multi scale, w/o refinement XYZ 98.6%

FeaStNet, multi scale, w/ refinement XYZ 98.7%

FeaStNet, multi scale, w/o refinement SHOT 90.9%

I New state of the art result, with both XYZ and SHOT

I Relative reduction of 89% in error rate w.r.t. Monti et al.

23 / 31

Comparison to state of the art

I Metric: Percentage of correct (exact) correspondences

Method Input Accuracy

Logistic Regr., w/o refinement SHOT 39.9%

GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%

PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%

ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%

GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%

MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%

MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%

FeaStNet, w/ refinement XYZ 92.2%

FeaStNet, multi scale, w/o refinement XYZ 98.6%

FeaStNet, multi scale, w/ refinement XYZ 98.7%

FeaStNet, multi scale, w/o refinement SHOT 90.9%

I New state of the art result, with both XYZ and SHOT

I Relative reduction of 89% in error rate w.r.t. Monti et al.

23 / 31

Comparison to state of the art

I Metric: Percentage of correct (exact) correspondences

Method Input Accuracy

Logistic Regr., w/o refinement SHOT 39.9%

GCNN [Masci et al., 2015], w/o refinement SHOT 42.3%

PointNet [Qi et al., 2017], w/o refinement SHOT 49.7%

ACNN [Boscaini et al., 2016], w/ refinement SHOT 62.4%

GCNN [Masci et al., 2015], w/ refinement SHOT 65.4%

MoNet [Monti et al., 2017], w/o refinement SHOT 73.8%

MoNet [Monti et al., 2017], w/ refinement SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%

FeaStNet, w/ refinement XYZ 92.2%

FeaStNet, multi scale, w/o refinement XYZ 98.6%

FeaStNet, multi scale, w/ refinement XYZ 98.7%

FeaStNet, multi scale, w/o refinement SHOT 90.9%

I New state of the art result, with both XYZ and SHOT

I Relative reduction of 89% in error rate w.r.t. Monti et al.

23 / 31

Geodesic errors

I Metric: Percentage of correspondences within tolerance

I Dashed curves: without refinement

0 2 4 6 8 10

Geodesic error (cm)

0 1 2 3 4 5

·10−2

0.6

0.7

0.8

0.9

1

Geodesic error (% diameter)

%
co

rr
es
p
o
n
d
en

ce
s

GCNN
ACNN
MoNet
FeaStNet

I Without refinement: very few, relatively big errors

I With refinement: very few, very small errors

24 / 31

Geodesic errors

I Metric: Percentage of correspondences within tolerance

I Dashed curves: without refinement

0 2 4 6 8 10

Geodesic error (cm)

0 1 2 3 4 5

·10−2

0.6

0.7

0.8

0.9

1

Geodesic error (% diameter)

%
co

rr
es
p
o
n
d
en

ce
s

GCNN
ACNN
MoNet
FeaStNet

I Without refinement: very few, relatively big errors

I With refinement: very few, very small errors

24 / 31

Geodesic errors

I Metric: Percentage of correspondences within tolerance

I Dashed curves: without refinement

0 2 4 6 8 10

Geodesic error (cm)

0 1 2 3 4 5

·10−2

0.6

0.7

0.8

0.9

1

Geodesic error (% diameter)

%
co

rr
es
p
o
n
d
en

ce
s

GCNN
ACNN
MoNet
FeaStNet

I Without refinement: very few, relatively big errors

I With refinement: very few, very small errors

24 / 31

Shape correspondence: Geodesic errors

Single-scale Multi-scale + refinement

25 / 31

Shape correspondence: Geodesic errors

Single-scale Multi-scale + refinement

25 / 31

Shape correspondence: Geodesic errors

Single-scale Multi-scale + refinement

25 / 31

Shape correspondence: Geodesic errors

Single-scale Multi-scale + refinement

25 / 31

Shape correspondence: Geodesic errors

Single-scale Multi-scale + refinement

25 / 31

Shape correspondence: Noise robustness

I Gaussian noise on vertex coordinates,
proportional to average distance to neighbors

I Robust model when training with noisy shapes

0.1 0.2 0.3

26 / 31

Shape correspondence: Noise robustness

I Gaussian noise on vertex coordinates,
proportional to average distance to neighbors

I Robust model when training with noisy shapes

0.1 0.2 0.3

26 / 31

Shape correspondence: Noise robustness

I Gaussian noise on vertex coordinates,
proportional to average distance to neighbors

I Robust model when training with noisy shapes

0.1 0.2 0.3

26 / 31

Feature activations

I Left: 4 features on same shape

I Right: same feature on 4 shapes

27 / 31

ShapeNet Part labeling benchmark
I 16,881 hand-designed shapes from 16 object categories
I Labeled with 50 parts across all categories
I Metric: Mean intersection-over-union (mIoU)

I Nearest neighbor graph on point cloud, using k=16
I Single-scale architecture, with global max-pooling
I Descriptors: XYZ coordinates

28 / 31

ShapeNet Part labeling benchmark
I 16,881 hand-designed shapes from 16 object categories
I Labeled with 50 parts across all categories
I Metric: Mean intersection-over-union (mIoU)
I Nearest neighbor graph on point cloud, using k=16

I Single-scale architecture, with global max-pooling
I Descriptors: XYZ coordinates

28 / 31

ShapeNet Part labeling benchmark
I 16,881 hand-designed shapes from 16 object categories
I Labeled with 50 parts across all categories
I Metric: Mean intersection-over-union (mIoU)
I Nearest neighbor graph on point cloud, using k=16
I Single-scale architecture, with global max-pooling

I Descriptors: XYZ coordinates

28 / 31

ShapeNet Part labeling benchmark
I 16,881 hand-designed shapes from 16 object categories
I Labeled with 50 parts across all categories
I Metric: Mean intersection-over-union (mIoU)
I Nearest neighbor graph on point cloud, using k=16
I Single-scale architecture, with global max-pooling
I Descriptors: XYZ coordinates

28 / 31

Part labeling: Quantitative results

I Performance similar to methods designed for point-cloud data

overall aero car chair guitar knife lamp laptop motor pistol table

plane bike

Number of shapes 16,881 2690 898 3758 787 392 1547 451 202 283 5271

PointNet [Qi et al., 2017] 83.7 83.4 74.9 89.6 91.5 85.9 80.8 95.3 65.2 81.2 80.6

KdNet [Klokov and Lempitsky, 2017] 82.3 80.1 70.3 88.6 90.2 87.2 81.0 94.9 57.4 78.1 80.3

FeaStNet 81.5 79.3 71.7 87.5 90.0 80.1 78.7 94.7 62.4 78.3 79.6

29 / 31

Part labeling examples

I Test shapes with accurate labeling,
and one with worst labeling in category.

30 / 31

Conclusion

I Graph-convolutional architecture based on local filtering

I Learned features drive the graph convolutions

I State-of-the-art 3D shape correspondence from raw XYZ

I Comparable to previous work on point cloud labeling

I Perspectives
I Application to raw/real scanned 3D meshes
I Integrate global correspondence refinement
I Generalize across meshes/templates: local correspondences
I Modeling meshes in motion: (shape + pose) x time

31 / 31

Conclusion

I Graph-convolutional architecture based on local filtering

I Learned features drive the graph convolutions

I State-of-the-art 3D shape correspondence from raw XYZ

I Comparable to previous work on point cloud labeling

I Perspectives
I Application to raw/real scanned 3D meshes
I Integrate global correspondence refinement
I Generalize across meshes/templates: local correspondences
I Modeling meshes in motion: (shape + pose) x time

31 / 31

Conclusion

I Graph-convolutional architecture based on local filtering

I Learned features drive the graph convolutions

I State-of-the-art 3D shape correspondence from raw XYZ

I Comparable to previous work on point cloud labeling

I Perspectives
I Application to raw/real scanned 3D meshes
I Integrate global correspondence refinement
I Generalize across meshes/templates: local correspondences
I Modeling meshes in motion: (shape + pose) x time

31 / 31

FeaStNet: Feature-Steered Graph

Convolutions for 3D Shape Analysis

Nitika Verma, Edmond Boyer, Jakob Verbeek
INRIA, Grenoble, France

Computer Vision and Pattern Recognition, 2018

References I

[Boscaini et al., 2016] Boscaini, D., Masci, J., Rodolà, E., and Bronstein, M. (2016).
Learning shape correspondence with anisotropic convolutional neural networks.
In NIPS.

[Dhillon et al., 2007] Dhillon, I., Guan, Y., and Kulis, B. (2007).
Weighted graph cuts without eigenvectors: A multilevel approach.
PAMI, 29(11).

[Farabet et al., 2013] Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013).
Learning hierarchical features for scene labeling.
PAMI, 35(8):1915–1929.

[Gordo et al., 2016] Gordo, A., Almazan, J., Revaud, J., and Larlus, D. (2016).
Deep image retrieval: Learning global representations for image search.
In ECCV.

[Graham et al., 2018] Graham, B., Engelcke, M., and van der Maaten, L. (2018).
3d semantic segmentation with submanifold sparse convolutional networks.
In CVPR.

[Klokov and Lempitsky, 2017] Klokov, R. and Lempitsky, V. (2017).
Escape from cells: Deep kd-networks for the recognition of 3D point cloud models.
In ICCV.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. (2012).
Imagenet classification with deep convolutional neural networks.
In NIPS.

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jackel, L.
(1989).
Handwritten digit recognition with a back-propagation network.
In NIPS.

References II

[Masci et al., 2015] Masci, J., Boscaini, D., Bronstein, M., and Vandergheynst, P. (2015).
Geodesic convolutional neural networks on Riemannian manifolds.
In ICCV Workshops.

[Monti et al., 2017] Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., and Bronstein, M. (2017).
Geometric deep learning on graphs and manifolds using mixture model CNNs.
In CVPR.

[Qi et al., 2017] Qi, C., Su, H., Mo, K., and Guibas, L. (2017).
Pointnet: Deep learning on point sets for 3D classification and segmentation.
In CVPR.

[Ren et al., 2015] Ren, S., He, K., Girshick, R., and Sun, J. (2015).
Faster R-CNN: towards real-time object detection with region proposal networks.
In NIPS.

[Tatarchenko et al., 2017] Tatarchenko, M., Dosovitskiy, A., and Brox, T. (2017).
Octree generating networks: Efficient convolutional architectures for high-resolution 3D outputs.
In ICCV.

[Tombari et al., 2010] Tombari, F., Salti, S., and Stefano, L. D. (2010).
Unique signatures of histograms for local surface description.
In ECCV.

