
10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc
DOI 10.1007/s10618-005-0033-3

Accelerated EM-based clustering of large data sets 1

Jakob J. Verbeek · Jan R. J. Nunnink · Nikos Vlassis 2

Received: 29 July 2004 / Accepted: 14 November 2005 3

C© Springer Science + Business Media, LLC 2006 4

Abstract Motivated by the poor performance (linear complexity) of the EM algorithm 5

in clustering large data sets, and inspired by the successful accelerated versions of related 6

algorithms like k-means, we derive an accelerated variant of the EM algorithm for Gaussian 7

mixtures that: (1) offers speedups that are at least linear in the number of data points, (2) 8

ensures convergence by strictly increasing a lower bound on the data log-likelihood in each 9

learning step, and (3) allows ample freedom in the design of other accelerated variants. 10

We also derive a similar accelerated algorithm for greedy mixture learning, where very 11

satisfactory results are obtained. The core idea is to define a lower bound on the data log- 12

likelihood based on a grouping of data points. The bound is maximized by computing in 13

turn (i) optimal assignments of groups of data points to the mixture components, and (ii) 14

optimal re-estimation of the model parameters based on average sufficient statistics computed 15

over groups of data points. The proposed method naturally generalizes to mixtures of other 16

members of the exponential family. Experimental results show the potential of the proposed 17

method over other state-of-the-art acceleration techniques. 18

Keywords Gaussian mixtures . EM algorithm . Free energy . kd-trees . Large data sets 19

1. Introduction 20

Mixture models provide a rigorous framework for density estimation and clustering, with 21

many applications in machine learning and data mining (McLachlan and Peel, 2000). The 22

J. J. Verbeek (�) · J. R. J. Nunnink · N. Vlassis
Informatics Institute, Faculty of Science, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
e-mail: j.j.verbeek@uva.nl

J. R. J. Nunnink
e-mail: j.r.j.nunnink@uva.nl

N. Vlassis
e-mail: n.vlassis@uva.nl

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

EM algorithm (Dempster et al., 1977) and the k-means algorithm (Gersho and Gray, 1992) are23

among the most popular learning algorithms for mixture models. However, both algorithms24

scale rather poorly for large data sets: each update step requires a complete sweep over all25

data points, which limits their applicability for large data sets.26

Several authors (Omohundro, 1989; Moore, 1999; Moore and Pelleg, 1999; Kanungo27

et al., 2002) have proposed speedups of these algorithms in which the data are first grouped28

and statistics of these groups are cached, and then learning iterates only through these29

statistics instead of the data themselves. In k-means this can be done in an exact way by30

using geometrical reasoning and a recursive partitioning scheme that allows groups of data31

to be assigned in bulk to specific components (Moore and Pelleg, 1999; Kanungo et al.,32

2002). However, in EM the assignment of data points to components is soft, therefore such33

speedup schemes necessarily involve an approximation (Moore, 1999).34

In this paper we propose a variant of the EM algorithm for Gaussian mixtures that offers35

similar speedups without compromising stability. As in Moore (1999), we first partition the36

data and cache some statistics in each partition cell. A generalized view of the EM algorithm37

(Neal and Hinton, 1998) can be used to compute optimal assignments of cells to mixture38

components (E-step), which are further used to update the mixture parameters (M-step).39

Both steps have cost that is independent of the size of the data set, and is linear in the number40

of partition cells. We derive an accelerated EM algorithm that strictly increases in each step a41

lower bound on the data log-likelihood—independent of the chosen partitioning—ensuring42

convergence.43

To our knowledge, the proposed EM algorithm is the first provably convergent EM clus-44

tering algorithm for large data sets. An important feature of our algorithm is that it allows45

arbitrary data partitioning schemes, without compromising convergence, where related tech-46

niques rely on the use of fine partitions and lack convergence guarantees.47

In the following, we first briefly review in Section 2 the framework of Gaussian mixtures48

and the EM algorithm, in Section 3 we describe the main idea of our accelerated EM49

algorithm, and in Section 4 we discuss several data partitioning schedules. In Section 5 we50

show how the same principle can be applied to the ‘greedy’ learning of Gaussian mixtures. We51

compare with similar work in Section 6, and in Section 7 we show comparative experimental52

results. We conclude and discuss possible future work in Section 8.53

2. Gaussian mixtures and the EM algorithm54

A k-component Gaussian mixture for a random vector x in IRd is defined as the convex55

combination
56

p(x) =
k∑

s=1

p(x |s)p(s) (1)

of k Gaussian densities p(x |s) which are in turn defined as57

p(x |s) = (2π)−d/2|Cs |−1/2 exp[−(x − ms)�C−1
s (x − ms)/2], (2)

each parameterized by its mean ms and covariance matrix Cs . The components of the58

mixture are indexed by the random variable s that takes values from 1 to k, and p(s) defines59

a discrete prior distribution over the components. Given a set {x1, . . . , xn} of independent60

and identically distributed samples from p(x), the learning task is to estimate the parameter61

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

vector θ = {p(s), ms, Cs}k
s=1 of the k components that maximizes the log-likelihood function 62

L(θ) = ∑n
i=1 log p(xi ; θ). Throughout we assume that the likelihood function is bounded 63

from above (e.g., by placing lower bounds on the eigenvalues of the components covariance 64

matrices)in which case the maximum likelihood estimate is known to exist (Lindsay, 1983). 65

Maximization of the data log-likelihood L(θ) can be carried out by the EM algorithm 66

(Dempster et al., 1977). In this work we consider a generalization of EM in which we 67

iteratively maximize a lower bound of the data log-likelihood (Neal and Hinton, 1998). 68

In our case, this bound F(θ, Q) is a function of the current mixture parameters θ and a 69

factorized distribution Q = ∏n
i=1 qi (s), where each qi (s) corresponds to a data point xi and 70

defines an arbitrary discrete distribution over s. For a particular realization of s we will refer 71

to qi (s) as the ‘responsibility’ of component s for the point xi . This lower bound, analogous 72

to the (negative) free energy in statistical physics, can be expressed by the following two 73

equivalent decompositions:
74

F(θ, Q) =
n∑

i=1

[log p(xi ; θ) − D(qi (s)‖p(s|xi ; θ))] (3)
75

=
n∑

i=1

k∑

s=1

qi (s)[log p(xi , s; θ) − log qi (s)], (4)

where D(·||·) denotes Kullback-Leibler divergence between two distributions, and p(s|xi) is 76

the Bayes posterior over components of a data point xi . The dependence of p on θ will be 77

throughout assumed, and we will often omit θ . 78

Since the Kullback-Leibler divergence between two distributions is nonnegative, the 79

decomposition (3) defines indeed a lower bound on the log-likelihood. Moreover, the closer 80

the responsibilities qi (s) are to the posteriors p(s|xi), the tighter the bound. In the classical 81

derivation of EM (Dempster et al., 1977), each E-step of the algorithm sets qi (s) = p(s|xi) 82

in which case, and for the current value θ t of the parameter vector, holds F(θ t , Q) = L(θ t). 83

However, as pointed out in Neal and Hinton (1998), other (suboptimal) responsibilities 84

qi (s) can also be used in the E-step of the algorithm, provided that F increases (or at least 85

does not decrease).1 This also leads to a convergent algorithm that increases in each step a 86

lower bound on the data log-likelihood L. Moreover, it can be shown that (local) maxima of 87

F are also (local) maxima of L. 88

For particular values of the responsibilities qi (s), we can solve for the unknown parameters 89

of the mixture by using (4). It is easy to see that maximizing F for the unknown parameters 90

of a component s yields the following solutions: 91

p(s) =
∑

i qi (s)

n
, (5) 92

ms =
∑

i qi (s)xi

np(s)
, (6)

93

Cs =
∑

i qi (s)xi x�
i

np(s)
− msm�

s , (7)

where the sums run over all data points (i = 1, . . . , n), which is costly for large n. 94

1 This is why we use the more general term ‘responsibility’ for the distributions q rather than e.g. ‘cluster
posterior probability’.

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

3. Locally shared responsibilities95

As mentioned above, in the E-step of the EM algorithm we are allowed to assign any96

responsibilities qi (s) to the data as long as this increases F . The key idea in our algorithm is97

to assign equal responsibilities to groups of data points that are nearby in the input space. In98

this manner, we do not need to optimize over n distributions qi but only over one distribution99

per group of data points. It turns out that for this optimization only a few averaged sufficient100

statistics need to be available per group of data points.101

Consider a partition P of the data space into a collection of non-overlapping cells102

{A1, . . . , Am}, such that each point in the data set belongs to a single cell.2 To all points in a103

cell A ∈ P we assign the same distribution qA(s) which we can compute in an optimal way104

as we show next. Note from (4) that the objective function F can be written as a sum of local105

parts F = ∑
A∈P FA, one per cell. If we impose qi (s) = qA(s) for all data points xi ∈ A,106

then the part of F corresponding to a cell A reads107

FA = n A

k∑

s=1

qA(s)

⎡

⎣log
p(s)

qA(s)
+ 1

n A

∑

xi ∈A

log p(xi |s)

⎤

⎦ , (8)

where n A denotes the number of points in A. If we set the derivatives of FA w.r.t. qA(s) to108

zero we find the optimal distribution qA(s) that (globally) maximizes FA:109

qA(s) ∝ p(s) exp〈log p(x |s)〉A, (9)

where 〈·〉A denotes average over all points in A. Such an optimal distribution can be sepa-110

rately computed for each cell A ∈ P , and only requires computing the average joint log-111

likelihood of the points in A.112

3.1. Speedup using cached statistics113

We now show that it is possible to efficiently compute (i) the optimal qA(s) for each cell A114

in the E-step and (ii) the new values of the unknown mixture parameters in the M-step, if115

some statistics of the points in each cell A are cached in advance. The averaging operation116

in (9) can be written (we ignore the additive constant − d
2 log(2π) which translates into a117

multiplicative constant in (9)118

〈log p(x |s)〉A = −1

2

[
log |Cs | + m�

s C−1
s ms + 〈

x�C−1
s x

〉
A

− 2m�
s C−1

s 〈x〉A
]

= −1

2

[
log |Cs | + m�

s C−1
s ms + Trace

{
C−1

s 〈xx�〉A
} − 2m�

s C−1
s 〈x〉A

]
,

(10)

from which we see that the mean 〈x〉A and the average outer product 〈xx�〉A of the points119

in A are averaged sufficient statistics for computing the optimal responsibilities qA(s) in (9).120

The same statistics can also be used for updating the mixture parameters θ . If we set the121

2 As we discuss in Section 6, our approach straightforwardly generalizes to the case of overlapping cells.

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

derivatives of F w.r.t. θ to zero we obtain the update equations 122

p(s) =
∑

A n AqA(s)

n
, (11)

123

ms =
∑

A n AqA(s)〈x〉A

np(s)
, (12)

124

Cs =
∑

A n AqA(s)〈xx�〉A

np(s)
− msm�

s , (13)

in direct analogy to the update Eqs. (5)–(7), with the advantage that the linear complexity in 125

the number of data points has been replaced by a linear complexity in the number of cells of 126

the partition. 127

Note that the proposed EM algorithm interacts with the data only through the cached 128

statistics of groups of data. Moreover, whatever partition we choose, our algorithm strictly 129

increases in each step a lower bound on the data log-likelihood. In the limit, if we partition all 130

data points into separate cells, the algorithm is guaranteed to converge to a (local) maximum 131

of the data log-likelihood. In effect, our accelerated EM algorithm is a ‘maximization- 132

maximization’ or ‘coordinate ascent’ algorithm: both E- and M-steps involve a maximization 133

of the free energy F (over Q and θ respectively). 134

Finally, note that the result presented here for Gaussian mixtures generally applies to 135

mixtures of members of the exponential family. This general applicability of the result 136

follows from the facts that for members of the exponential family (i) the expected log- 137

likelihood over a cell of data is given by a linear function of the average sufficient statistics 138

of the cell, and (ii) the maximum likelihood parameter is uniquely determined by the averaged 139

sufficient statistics. 140

3.2. Further speedup using diagonal covariance matrices 141

If the covariance matrices are constrained to be diagonal, the amount of sufficient statistics 142

and computation drops considerably since correlations between variables do not need to be 143

estimated. Rather than caching the average outer products 〈xx�〉, in this case we only need 144

to cache the diagonal of this matrix, a vector denoted by 〈x2〉. Analogously we write m2
s 145

for the diagonal of msm�
s . Obviously, 〈x2〉 and m2

s can be computed without forming the 146

matrices 〈xx�〉 and msm�
s . 147

In the M-step only the update for the covariance matrix changes; we now set the di- 148

agonal of the covariance matrix to the diagonal of the update (13), which can be written 149

as
∑

A n AqA(s)〈x2〉A/(np(s)) − m2
s . Also in the computation of the average log-likelihood 150

〈log p(x |s)〉 for a cell, computational savings are obtained. Notably, the trace term can be 151

replaced by the inner product of 〈x2〉A and the diagonal of the inverse covariance matrix.3 152

Concluding, by constraining the covariance matrices to be diagonal the amount of com- 153

putation needed in both the E-step and the M-step (as well as the space needed to store 154

the mixture parameters and the averaged sufficient statistics) becomes linear in the data 155

dimensionality rather than quadratic when using full covariance matrices. This saving is 156

important when fitting Gaussian mixtures to data in a high dimensional spaces, as is e.g. 157

the case when employing Generative Topographic Mapping (Bishop et al., 1998) for data 158

3 The inverse covariance matrix is found in linear time since it is diagonal.

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

visualization. It isapplication dependent whether the independence assumption between the159

variables within each cluster, as implemented by restricting the covariance matrices to be160

diagonal, is realistic. In some applications it may be worthwhile to settle for a more restrictive161

model with diagonal covariance matrices so as to obtain computational savings and reduced162

storage requirements.163

4. Choosing a partition164

The analysis presented in the previous sections applies to any partition, as long as averaged165

sufficient statistics of the data have been stored in the corresponding cells. As we showed166

above, for any partition we obtain a convergent algorithm that strictly increases in each step167

a lower bound on the data log-likelihood. Moreover, by refining a given partition, the energy168

F cannot decrease, and in the limit (when each data point is in a separate cell) the normal169

EM algorithm is obtained, and after the E-step F = L. Clearly, various trade-offs can be170

made between the computational cost and the approximation quality.171

A convenient structure for storing statistics in a way that permits the use of different172

partitions in the course of the algorithm is a kd-tree (Bentley, 1975; Moore, 1999). This is173

a binary tree in which the root contains all data points, and each node is recursively split174

by a hyperplane that cuts through the data points contained in the node. Typically, axis-175

aligned hyperplanes are used for splitting nodes. In our experiments we used hyperplanes176

that cut along the bisector of the first principal component of the points in the node, leading177

to irregularly shaped cells (Sproull, 1991). Hyperplanes based on the principal component178

allow the kd-tree to capture the clustered data structure at a higher level in the tree. Note that179

the usual performance deterioration of kd-trees in high dimensional spaces does not apply180

here directly, since they are not used for search in this work. As in Moore (1999), we store181

in each node of the kd-tree the average sufficient statistics of all data points under this node.182

Building the kd-tree and storing statistics in its nodes has cost O(n log n), but this needs to183

be done only once at the beginning of the algorithm.184

The outer nodes of a given expansion of the kd-tree form a partition P of the data set.185

Further expanding the tree means refining a current partition. In our implementations, as186

heuristic to guide the tree expansion, we employ a best-first search strategy in which we187

expand the node that leads to maximal increase in F . Note that computing the change in F188

involves only a node and its children so it can be done in time linear in the number of outer189

nodes.190

We also need a criterion when to stop expanding the tree, and one could use, among others,191

bounds on the variation of the data posteriors inside a node like in Moore (1999), a bound192

on the size of the partition (number of outer nodes at any step), or sampled approximations193

of the difference between log-likelihood and F . Another possibility, which we adopted in194

our experiments, is to control the tree expansion based on the performance of the algorithm,195

that is, we refine a partition only if this (significantly) improves the value of F .196

Below we show in pseudocode the proposed accelerated EM algorithm as described in197

Section 3, together with the partition schedule outlined above. Input is a d-dimensional data198

set of n points xi , and output is a Gaussian mixture with k components and parameters199

{p(s), ms, Cs}k
s=1.200

1. Build a kd-tree on the data set {xi }, and store in each node A the required data statistics201

〈x〉A and 〈xx�〉A of the points x that are contained in A. The complexity of this step is202

O(n log n).203

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

2. Choose an initial configuration of the mixture using k components (several initialization 204

techniques from the literature can be used, e.g., random or using k-means). Choose an 205

initial partition P0 of the data by expanding the tree to some depth (in our experiments 206

we used depth 2). 207

3. E-step: For each cell A in the current partition Pt (that is: each node in the fringe of the 208

expanded tree) compute qA(s) for each component s of the mixture using (9) and (10). 209

Note that this step requires only the averaged sufficient statistics already cached in the 210

tree, and has complexity O(k|Pt |) where |Pt | the size of the current fringe (typically 211

|Pt | � n). 212

4. M-step: For each mixture component k update its parameters using (11)–(13). Set Fold = 213

F , and compute the new energy F from (8). Note that this step also uses the average 214

sufficient statistics of the data in each cell, and has also complexity O(k|Pt |). 215

5. If | F
Fold

− 1| < 1e-5 then set Ft = F , else go back to step 3. 216

6. Expand one-level-down a single node on the fringe of the tree to create the new partition 217

Pt+1: among all nodes in Pt choose the node that leads to maximal increase of Ft . This 218

step has complexity O(k|Pt |). 219

7. If | Ft
Ft−1

− 1| < 1e-5 then stop, else set t = t + 1 and go back to step 3. 220

5. Greedy mixture learning 221

A recent approach to mixture learning involves building a mixture in a ‘greedy’ manner (Li 222

and Barron, 2000; Sand and Moore, 2000; Vlassis and Likas, 2002; Verbeek et al., 2003)). The 223

idea is to start with a single component (which is trivial to find), and then alternate between 224

adding a new component to the mixture and updating the complete mixture. In particular, 225

given a k-component Gaussian mixture pk(x) that has converged, the greedy method seeks a 226

new component φ(x) with mean mφ and covariance Cφ , and a mixing weight a ∈ (0, 1) that 227

maximizes the log-likelihood Lk+1 = ∑n
i=1 log pk+1(xi) of the two- component mixture 228

pk+1(x) = (1 − a)pk(x) + aφ(x ; mφ, Cφ), (14)

where pk(x) is kept fixed. The advantages of greedy mixture learning are: (1) initializing 229

the mixture is trivial, (2) local maxima of L are easier to escape, and (3) model selection 230

becomes more manageable. Relations of such greedy methods to other machine learning 231

techniques like boosting can be found in Zhang (2002). The greedy approach is somewhat 232

similar to a deterministic annealing (Rose, 1998) approach where components are ‘added’ 233

at phase transitions. However, only the greedy approach is guaranteed to iteratively increase 234

the data log-likelihood under the mixture. 235

In Verbeek et al. (2003), the search for a good component to add to pk(x) involves first split- 236

ting the data according to their ‘nearest’ (with highest posterior) component, then randomly 237

generating a number of candidate components from the points in each subset, and finally 238

maximizing Lk+1 using only the data from the corresponding subset. The same principle can 239

also be applied in the case of pre-partitioned data sets. In particular, in component allocation 240

we divide all cells A ∈ P into k disjoint subsets Ps (s = 1, . . . k) according to their ‘near- 241

est’ (with highest responsibility) component: Ps = {A ∈ P : s = arg maxs ′ qA(s ′)}. Then 242

we generate a component φ(x ; mφ, Cφ) from the data contained in a random subset of cells 243

S ⊂ Ps as
244

mφ = 1

nS

∑

A∈S
n A〈x〉A, Cφ = 1

nS

∑

A∈S
n A〈xx�〉A − mm�, (15)

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

where nS is the total number of points in S. (Note that both mφ and Cφ can be calculated245

without requiring the data points themselves). Subsequently we update (a, mφ, Cφ) in (14)246

by maximizing a lower bound of Lk+1 using only the cells in Ps . (Cells outside Ps will not247

contribute significantly to the bound). Let rA be the responsibility of the new component248

φ(x ; mφ, Cφ) for any cell A ∈ Ps , and 1 − rA the responsibility of the old mixture pk . The249

free energy (8) for cell A under the two-component mixture (14) then reads250

F k+1
A = n ArA

[
log

a

rA
+ 〈log φ(x)〉A

]
+ n A(1 − rA)

[
log

1 − a

1 − rA
+ 〈log pk(x)〉A

]
. (16)

Since F k
A is a lower bound on

∑
x∈A log pk(x) which we have already computed from (8),251

we can replace the latter in (16) to get the bound252

F k+1
A ≥ n ArA

[
log

a

rA
+ 〈log φ(x)〉A

]
+ n A(1 − rA)

[
log

1 − a

1 − rA
+ F k

A

n A

]
. (17)

In the E-step we compute the optimal rA for each cell A ∈ Ps by setting the derivative of253

(17) w.r.t. rA to zero. This gives:254

rA = a exp〈log φ(x)〉A

(1 − a) exp
(
F k

A/n A
) + a exp〈log φ(x)〉A

, (18)

where 〈log φ(x)〉A can be computed fast using (10). Similarly, in the M-step we maximize255

F k+1
P = ∑

A∈P F k+1
A using the rA found in (18). As in Verbeek et al. (2003), we set the256

responsibility of the new component for all cells outside Ps to zero, in which case it is not257

difficult to see that we get the following update equations:258

a =
∑

A∈Ps
n ArA

n
, (19)

259

mφ =
∑

A∈Ps
n ArA〈x〉A

na
, (20)

260

Cφ =
∑

A∈Ps
n ArA〈xx�〉A

na
− mφm�

φ . (21)

Note that the sums run over cells in Ps ⊂ P . We refer to Nunnink (2003) for more details.261

6. Related work262

The idea of using a kd-tree structure for accelerating the EM algorithm for learning mixtures263

from large data sets was first proposed in Moore (1999). In that work in each EM step264

every node in the kd-tree is assigned responsibility distribution equal to the Bayes posterior265

of the centroid of the data points stored in the node, i.e., qA = p(s|〈x〉A), cf. (9). If there266

is little variation in the posteriors within a node, which is achieved by having relatively267

fine partitions, the approximation qA = p(s|〈x〉A) will only slightly affect the update in the268

M-step and therefore this will probably increase the data log-likelihood. However, this is not269

guaranteed. Also, in Moore (1999) a different tree expansion is computed in each EM step,270

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

while as stopping criterion for tree expansion bounds are used on the variation of theposterior 271

probabilities of the data inside a node of the kd-tree (a nontrivial operation that in principle 272

requires solving a quadratic programming problem). 273

The main advantage of our method compared to Moore (1999) is that our algorithm strictly 274

increases in each step a lower bound of the data log-likelihood by computing the optimal 275

responsibility distribution for each node, thus ensuring stability. Moreover, this optimal 276

distribution is independent of the size, shape, or other properties of the node, allowing us 277

to use even rough partitions. As mentioned above and as demonstrated in theexperiments 278

below, by gradually refining the partition while running the algorithm we can get close to 279

the optima of the log-likelihood in relatively few steps. 280

Our approach to compute optimal shared responsibilities may also be used in other related 281

accelerated EM algorithms to furnish them with a guarantee to iteratively improve the free- 282

energy bound on the data log-likelihood. In Bradley et al. (1998) an algorithm is proposed 283

that learns the mixture while reading data from disk. During learning some data records 284

are stored in memory while other groups of data records are only stored by their average 285

sufficient statistics, which frees memory space for new records to be readfrom disk. In 286

Bradley et al. (1998) a group A of data points are associated to the mixture components by 287

computing p(s|〈x〉A), as in Moore (1999). 288

In McCallum et al. (2000) an approach more similar to that presented here was introduced. 289

The main difference with the method proposed here is that in the former the data is divided 290

in overlapping subsets. The data within each subset contributes to the update of one fixed 291

mixture component associated with that subset, and to the other components only in the 292

form of the expected value of the data points in the subset, similar to Moore’s suboptimal 293

responsibilities. Our approach of computing optimal shared posteriors can be straightfor- 294

wardly extended to a collection P of overlapping subsets ofdata points as follows.4 For each 295

data point xi and subset A we introduce an association variable βi A, such that
∑

A βi A = 1, 296

and βi A = 0 if xi is not in subset A. For example, the βi A could be set uniform over all 297

subsets A to which xi belongs. We can now define a slightly modified lower bound on the 298

datalog-likelihood:
299

F ′ =
n∑

i=1

[
log p(xi) −

∑

A∈P
βi AD(qA(s)‖p(s|xi))

]
(22)

300

=
∑

A∈P

[
n∑

i=1

βi A

]
H(qA) +

k∑

s=1

qA(s)

[
n∑

i=1

βi A log p(xi , s)

]
. (23)

The derivations of optimal assignments and parameter re-estimation equations are com- 301

pletely analogous to those presented in Section 3.5 302

A different way to speedup the EM algorithm for mixture learning from large data sets 303

was proposed in Thiesson et al. (2001). The authors propose to divide the data set into several 304

random disjoint subsets of (about) equal size and then to process the data per subset. For 305

each subset, first for all points xi in the subset the optimal responsibilities qi (s) are computed 306

as the posteriors p(s|xi) (E-step), then the parameter estimates are updated by taking into 307

account the newly computed posteriors for the data in the current subset. In this manner, when 308

4 We only require that each data point is contained in at least one subset.
5 In principle it is also possible, and straightforward, to optimize over the association variables βi A .

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

computing the responsibilities for the next subset, we already take into account information309

from the previous subset through the updated parameter estimates. However, the reported310

speedups that were obtained by this approach are modest; the authors do not report speedups311

greater than 2.3 (i.e. the time needed until convergence for the standard EM algorithm is312

2.3 times greater than the time required by their accelerated algorithm). in the experiments313

below, we report similar findings.314

An approach based on random projections to learn Gaussian mixtures in high dimensional315

spaces is presented in Dasgupta (1999). To alleviate the large sample requirements for316

accurate parameter estimation in high dimensional spaces, the data is first randomly projected317

to a low dimensional linear subspace. The data are clustered in the low dimensional space, and318

then the result is used to find the mixture in the high dimensional space. Although a thorough319

theoretical analysis is presented, in comparison to our method the above approach does not320

directly resolve the computational burden associated with a large number of datapoints, and321

moreover the approach is limited to learning of Gaussian mixtures.322

7. Experiments323

We carried out synthetic experiments to evaluate the proposed accelerated EM algorithm324

for learning a k-component Gaussian mixture, using both the non-greedy and the greedy325

variant. We compare against the standard EM algorithm, the greedy EM algorithm proposed326

in Verbeek et al. (2003), and the accelerated EM algorithms described in Moore (1999) and327

Thiesson et al. (2001).328

In our experiments we used synthetic data sets sampled from a randomly chosen k-329

component Gaussian mixture in d dimensions with a component separation6 of c. For each330

data set we built a kd-tree and stored in its nodes the data statistics as explained above.331

7.1. EM vs. accelerated EM332

In the first experiment we compared the accelerated EM algorithm described in Section 3333

and Section 4 with the standard EM algorithm. The training set consisted of 10,000 points334

drawn from a 10-component 3-separated Gaussian mixture in two dimensions, and we also335

sampled a test set of 1000 points from the same mixture. We evaluate the algorithms based336

on the log-likelihood the learned mixture assigns to the test set in order to measure the ability337

to identify the generating mixture rather than the training data drawn from that mixture. We338

applied both algorithms to a mixture initialized with k-means.339

We started the accelerated EM algorithm with an initial expansion of the tree to depth340

two. We kept this partition fixed and ran the algorithm until convergence. Convergence was341

measured in terms of relative increase in F (we used threshold 10−5). We then refined the342

partition by expanding the node of the tree that led to maximal increase in F . Then we ran343

the algorithm again until convergence, refined the partition by expanding best-first a single344

node of the tree, and so on. We terminated the algorithm if F hardly improved between345

two successive partitions. Note that refining a particular partition and computing the new346

responsibilities can be viewed as applying an E-step which justifies the use of the relative347

improvement of F as a convergence measure.348

6 Following Dasgupta (1999), a Gaussian mixture is c separated if for each pair (i, j) of component densities
‖mi − m j ‖ ≥ c

√
d max{λmax(Ci), λmax(C j)}, where λmax(C) denotes the maximum eigenvalue of C.

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

In Fig. 1 we show the speedup and the (negative) log-likelihood obtained by the two 349

algorithms vs. the true log-likelihood of the test set, averaged over 20 trials. Speed was 350

measured using the total number of basic floating point operations needed for convergence. 351

With respect to run-time, the results show that: (1) the speedup of the accelerated EM 352

compared to the standard EM is at least linear in the number of data points, as expected 353

from the analysis, (2) the number of dimensions and components have a negative effect on 354

the speedup, and (3) the amount of separation has a positive effect. The lower speedup in 355

high dimensions can be ascribed to the use of a kd-tree, while many components or smaller 356

separation lead to more diverse responsibilities, thus making coarse partitions perform worse. 357

In general the accelerated EM requires more iterations to converge than the standard EM, 358

but it is still faster than the latter since the iterations themselves are executed much faster. 359

With respect to solution quality, we note that both the standard EM and its accelerated 360

counterpart reach solutions that are on the average suboptimal with respect to the true 361

model. This is due to the k-means initialization. However, the relative difference in log- 362

likelihood between the standard EM and our algorithm is small, even for mixtures with many 363

components or high dimensionality. 364

7.2. Greedy EM vs. accelerated greedy EM 365

In a second experiment we compared the greedy EM algorithm described in Verbeek et al. 366

(2003) with its ‘accelerated greedy’ counterpart of Section 5. We started the accelerated 367

greedy EM algorithm with a partition of size four and expanded the tree one node at a time, 368

best first, as in the first experiment. We used a default data set of 10,000 points and a test set 369

of 500 points drawn from a 5-component 2-separated mixture in two dimensions. In Fig. 2 370

we show the results averaged over 20 trials. The accelerated greedy algorithm is always 371

faster, with a speedup that is linear in the size of the data set. Moreover, thisspeedup comes 372

almost ‘for free’: the log-likelihoods of both algorithms are practically equal to that of the 373

generating mixture. 374

7.3. Incremental EM vs. accelerated EM 375

In this experiment we compared our accelerated EM algorithm with the incremental algorithm 376

of Thiesson et al. (2001). The training set was sampled from a 10-component 3-separated 377

Gaussian mixture density in two dimensions. Both algorithms were initialized using k-means. 378

The accelerated algorithm was used as described above. After testing multiple block sizes, 379

we found that using the incremental algorithm the largest speedup was obtained for a block 380

size of 1/25 of the total data set size. 381

The goal of this experiment was to point out the main difference between the two algo- 382

rithms in relation to speedup and performance. The measure used to point out the difference 383

in speed is the comparison between the total time which the two algorithms need to conver- 384

gence and the time the standard EM algorithm needs to converge. The measure to depict the 385

quality of both algorithms is the log-likelihood of a test set under the learned mixtures. In 386

Fig. 3, we show the obtained speedups and the negative log-likelihoods. 387

The difference in speedup is clear and can be explained by an obvious difference between 388

the algorithms. The incremental algorithm randomly divides the data set in equally sized 389

blocks, and performs partial EM-steps on each block iteratively. Each partial EM-step takes 390

far less time than performing one full EM-step on the entire data set. The final speedup 391

produced byThiesson is a result of the fact that the sum of the time needed to perform 392

all partial EM-steps is smaller than the time needed to perform a single EM-step on the 393

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

Fig. 1 Mixture learning with the standard EM vs. the accelerated EM. The graphs show the speedup factor and
the bar charts show the negative log-likelihood: generating mixture (black), standard EM (light), accelerated
EM (dark)

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

Fig. 2 Greedy mixture learning vs. the accelerated greedy EM. The graphs show the speedup factor and
the bar charts show the negative log-likelihood: generating mixture (black), greedy EM (light), accelerated
greedy EM (dark)

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

Fig. 3 Accelerated EM vs. incremental EM. The graph shows the speedup factor: accelerated EM (dotted
line) and incremental EM (solid line). The bar chart shows the negative log-likelihood: generating mixture
(mid grey), standard EM (black), incremental EM (light grey) and accelerated EM (dark grey)

entire data set. Optimal speedup is obtained by finding the optimal trade-off between doing394

partialEM-steps on small blocks and doing partial EM-steps on a small amount of blocks.395

But as the algorithm still performs these partial EM-steps using all the data-points in a single396

block, it eventually, after having processed each block, performs EM on all data points in397

the data set. Therefore, the time complexity is still linear with respect to the amount of data398

points, as it is with normal EM.399

With respect to the solution quality, the performance of the incremental EM algorithm is400

comparable to that of the standard EM algorithm as it does take all data points into account401

just as the standard EM algorithm does. The relative difference in log-likelihood between402

the incremental EM and our algorithm is small.403

7.4. Very fast EM vs. accelerated EM404

In this experiment we compared the accelerated EM algorithm with the ‘Very fast EM’405

algorithm proposed in Moore (1999). A training set of 100.000 data points was sampled406

from a 3-component 2-separated Gaussian mixture. Both algorithms were initialized using407

k-means. The initial binary trees were constructed by doing a full expansion until depth 6,408

thus resulting in a total tree-size of 127 nodes. The goal of this experiment was to point409

out the main difference between the two algorithms in relation to how they expanded the410

kd-tree.411

With Moore’s algorithm, expansion is done from the root node downwards. The criterion412

to expand a node is based on finding for each component s the minimum and maximum of413

p(x |s) that can be attained within the bounding box of the node. The node is expanded if there414

is a component s for which the difference between the minimum and the maximum of p(x |s)415

within the bounding box is bigger than a certain threshold τ , times the prior probability of416

that component. The higher τ is set, the smaller the expansion of the tree.417

Finding the minimum and maximum of p(x |s) in the bounding box can be formulated418

as finding the minimum and maximum of (x − ms)�Cs(x − ms) such that x is within the419

bounding box of the node. The minimum and maximum can thus be found by solving420

a quadratic program. To make our comparison independent of the computationally costly421

operation of solving the quadratic program we did not compare the algorithms directly in422

terms of running time. Instead, we used the amount of expansion of the tree as a performance423

measure. The expansion is a good performance measure as it depicts the amount of nodes424

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

Fig. 4 Accelerated EM vs. very fast EM (t = 0.5). Left panel shows the percentage of tree-expansion, right
panel shows the cumulative expansions of nodes as a percentage of the tree size. Results for very fast EM are
in black, those for accelerated EM in grey

taken into account inevery EM step, so a cumulative plot of the amount of expanded leaf 425

nodes is a proper representation of the quantity of operations performed before convergence.7 426

No significant difference in the log-likelihood assigned to the test was found between the 427

mixtures learned using the two different algorithms. However, the amount of nodes that were 428

expanded before convergence, and thus the required amount of computation, is considerably 429

larger for Moore’s algorithm. This is explained by the fact that Moore’s algorithm expands in 430

each EM step the tree from the root down until it finds nodes that fail to meet the expansion 431

criterion. Therefore the cumulative amount of expansion operations is much larger as can be 432

seen in Fig. 4. We conclude from these results that even without the additive computational 433

cost of solving the quadratic programs, the amount of computation required by the very fast 434

EM algorithm is much larger than the amount required by our algorithm. 435

8. Conclusions and future work 436

We presented an accelerated EM algorithm that can be used to speed up large data set 437

applications of EM to learning mixtures of Gaussians. Our algorithm strictly maximizes in 438

each learning step a lower bound on data log-likelihood, and that bound becomes tighter if 439

we use finer partitions. The algorithm finds mixture configurations near local optima of the 440

log-likelihood surface which are comparable with those found by the standard EM algorithm, 441

but considerably faster. 442

Moreover, we have a convergent algorithm that maximizes a lower bound on data log- 443

likelihood regardless of the particular partition of the data. This allows us to use rough 444

partitions where the true posteriors differ heavily in each part, which might be needed when 445

working on large data sets and only limited computational resources are available. In practice, 446

we can start the algorithm with a rough partition for which the EM iterations are performed 447

very fast, refine the partition when the algorithm converges, run EM again, and so on, thus 448

balancing the computational cost with the quality of the solution. 449

Comparing our work with Moore (1999), we conclude that with less computational effort 450

we can use the optimal shared responsibilities instead of the posterior at the node centroid. 451

Furthermore, we obtained a provably convergent algorithm and have the freedom to use 452

7 Recall that both algorithms have a running time that is linear in the number of nodes that is processed in
each step.

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

arbitrary partitions of the data. Comparing with Verbeek et al. (2003), it appears that without453

compromising quality we can achieve speedups in greedy mixture learning that are at least454

linear in the number of data points.455

In the experiments reported on in this paper we used kd-trees to find a hierarchical456

partitioning of the data set. For high-dimensional data, other tree structures (such as ball-457

trees (Omohundro, 1989) and anchor hierarchies (Moore, 2000)) have been reported to yield458

greater speedups of nearest neighbor queries and related tasks in high-dimensional data sets.459

More research is needed to determine the most efficient data structures to be used within460

our acceleration scheme. Advantages and disadvantages of overlapping vs. non-overlapping461

partition schemes need to be identified as well. Similarly, there might be more efficient462

strategies to refine the partitions in the course of the EM algorithm.463

Finally, it would be interesting to see how the proposed framework performs on other464

mixture models like, for instance, the Generative Topographic Mapping (Bishop et al., 1998)465

or in supervised mixture modelling (Titsias and Likas, 2001). As future work we would466

like to consider the application of the proposed framework to the learning of non-Gaussian467

mixtures, e.g. mixtures for discrete data, using AD-trees and related techniques (Moore and468

Lee, 1998).469

Acknowledgments We would like to thank the reviewers for their useful comments which helped to improve470

this manuscript. We are indebted to Tijn Schmits for part of the experimental work. JJV is supported by the471

Technology Foundation STW (project AIF 4997) applied science division of NWO and the technology472

program of the Dutch Ministry of Economic Affairs.473

References474

Bentley JL (1975) Multidimensional binary search trees used for associative searching. Comm ACM475

18(9):509–517476

Bishop CM, Svensén M, Williams CKI (1998) GTM: The generative topographic mapping. Neur Comput477

10:215–234478

Bradley PS, Fayyad UM, Reina CA (1998) Scaling EM (expectation maximization) clustering to large479

databases. Technical Report MSR-TR-98-35, Microsoft Research480

Dasgupta S (1999) Learning mixtures of Gaussians. In: Proceedings of the IEEE Symposium on Foundations481

of Computer Science, vol. 40. IEEE Computer Society Press, Los Alamitos, CA, USA, pp 634–644482

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm.483

J Royal Stat Soc Ser B (Methodological) 39(1):1–38484

Gersho A, Gray RM (1992) Vector quantization and signal compression. Kluwer Academic Publishers, Boston485

Kanungo T, Mount DM, Netanyahu N, Piatko C, Silverman R, Wu AY (2002) An efficient k-means clustering486

algorithm: Analysis and implementation. Trans Patt Anal Mach Intell 24:881–892487

Li JQ, Barron AR (2000) Mixture density estimation. In: Solla SA, Leen TK, Müller K-R (eds) Advances in488

neural information processing systems, vol. 12. MIT Press, Cambridge, MA, USA, pp 279–285489

Lindsay BG (1983) The geometry of mixture likelihoods: A general theory. Ann Stat 11(1):86–94490

McCallum A, Nigam K, Ungar L (2000) Efficient clustering of high-dimensional data sets with application to491

reference matching. In: Ramakrishnan R, Stolfo S (eds) Proceedings of the ACM SIGKDD international492

conference on knowledge discovery and data mining, vol. 6. ACM Press, New-York, NY, USA493

McLachlan GJ, Peel D (2000) Finite mixture models. John Wiley & Sons494

Moore A (1999) Very fast EM-based mixture model clustering using multiresolution kd-trees. In: Kearns495

MJ, Solla SA, Cohn DA (eds) Advances in Neural information processing systems, vol. 11. MIT Press,496

Cambridge, MA, USA, pp 543–549497

Moore A, Pelleg D (1999) Accelerating exact k-means algorithms with geometric reasoning. In: Proc 5th Int498

Conf Knowledge Discovery and Data Mining, pp 277–281499

Moore AW (2000) The anchors hierarchy: Using the triangle inequality to survive high-dimensional data.500

In: Boutilier C, Goldszmidt M (eds) Proceedings of the Annual conference on uncertainty in artificial501

intelligence, vol. 16. Morgan Kaufmann, San Mateo, CA, USA, pp 397–405502

Moore AW, Lee MS (1998) Cached sufficient statistics for efficient machine learning with large data sets. J503

Arti Intell Res 8:67–91504

Springer

10618_2005_33 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) April 25, 2006 12:8

UNCORRECTED
PROOF

Data Min Knowl Disc

Neal RM, Hinton GE (1998) A view of the EM algorithm that justifies incremental, sparse, and other variants. 505

In: Jordan MI (eds) Learning in graphical models. Kluwer, Boston, MA, USA, pp 355–368 506

Nunnink JRJ (2003) Large scale Gaussian mixture modelling using a greedy expectation- 507

maximisation algorithm. Master’s thesis, Informatics Institute, University of Amsterdam. 508

www.science.uva.nl/research/ias/alumni/m.sc.theses 509

Omohundro SM (1989) Five balltree construction algorithms. Technical Report TR-89-063, International 510

Computer Science Institute, Berkeley 511

Rose K (1998) Deterministic annealing for clustering, compression, classification, regression and related 512

optimization proble ms. IEEE Trans Inform The 86(11):2210–2239 513

Sand P, Moore AW (2001) Repairing faulty mixture models using density estimation. In: Brodley CE, 514

Danyluk AP (eds) Proceedings of the international conference on machine learning, vol. 18. Morgan 515

Kaufmann, San Mateo, CA, USA, pp 457–464 516

Sproull RF (1991) Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6:579–589 517

Thiesson B, Meek C, Heckerman D (2001). Accelerating EM for large databases. Mach Learn 45(3):279–299 518

Titsias M, Likas A (2001) Shared kernel models for class conditional density estimation. IEEE Trans Neur 519

Netw 12(5):987–997 520

Verbeek JJ, Vlassis N, Kröse BJA (2003) Efficient greedy learning of Gaussian mixture models. Neur Comput 521

15(2):469–485 522

Vlassis N, Likas A (2002) A greedy EM algorithm for Gaussian mixture learning. Neur Proc Lett 15(1):77–87 523

Zhang T (2002) A general greedy approximation algorithm with applications. In: Dietterich TG, Becker S, 524

Ghahramani Z (eds) Advances in neural information processing systems, vol. 14. MIT Press, Cambridge, 525

MA, USA 526

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

