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1 Model

Let y ∈ IRD denote a data vector x ∈ IRd denote the vector of principal component
coordinates, we let

p(x) = N (x; 0, I) , (1)

p(y|x) = N
(
y;C>x, σ2I

)
, (2)

where C is a d×D matrix with the projection vectors from the principal component coor-
dinates to the data coordinates. The conditional on x given y is then given by

p(x|y) = N (x;µ,Σ) , (3)

µ = σ−2ΣCy, (4)
Σ−1 = I + σ−2CC>. (5)

When only a subset of the coordinates of y is observed, we replace C above with the Co

which has only the columns corresponding to the observed values, and similar for y which
is replaced by the observed part yo.

Our goal is now to find the parameters C and σ that maximize the likelihood of some
observed data: vectors y that are fully or partially observed. To do so, we use an EM
algorithm that estimates in the E-step the missing values: the vectors x and the missing
parts of the y which we denote by yh. In the M-step we fix these estimates, and maximize
the expected joint log-likelihood of x and y.

For simplicity we assume that the distribution over x and yh factors so that we write a
lower-bound on the data log-likelihood as

log p(yo) ≥ log p(yo)−D(q(x)q(yh)‖p(x,yh|yo)) (6)
= H(q(x) + H(q(yh)) + IEq[log p(x) + log p(y|x)] (7)

We will now maximize this bound, in the E-step with respect to the distributions q, and in
the M-step with respect to the parameters.

2 E-step

From the above we find the optimal distributions q as

q(yh) ∝ exp
∫

q(x) log p(zh|x) = N
(
yh;C>h x̄, σ2I

)
, (8)

q(x) ∝ p(x|yo) exp
∫

q(yh) log p(yh|x) = N
(
x;σ−2ΣCȳ,Σ

)
, (9)



where ȳ is the mean of q(yh) for the missing values and yo for the observed part, and x̄ is
the mean of q(x).

3 M-step

The expectation in Eq. (7), summed over N data, can be expanded as

N∑
n=1

IEqn [log p(xn) + log p(yn|xn)] = (10)

−ND

2
log σ2 − 1

2σ2

(∑
n

‖ȳn − C>x̄n‖2 − Tr{C>ΣC}

)
− Dh

2σ2
σ2

old (11)

−1
2

∑
n

‖x̄n‖2 − N

2
Tr{Σ} (12)

where Dh denotes the total number of missing values, and σold is the current value of σ that
was used in the E-step to compute the q.

Maximizing this over C and σ we get

C =
(
NΣ + X̄X̄>)−1

X̄Ȳ >, (13)

σ2 =
1

ND

(
NTr{C>ΣC}+

∑
n

‖ȳn − C>x̄n‖+ Dhσ2
old

)
, (14)

where X̄ and Ȳ denote matrices that collect all x̄ and ȳ as columns.

4 Objective function

Given the expansion of Eq. (7) above, we only need the expression for the entropy of a
Gaussian to calculate the EM bound of Eq. (7). It is well known that the entropy for a
Gaussian with covariance matrix Σ, for fixed dimensionality, is given up to an additive
constant by

H =
1
2

log |Σ|. (15)

Combining this with the equations for the parameters found in the M-step, we have that
after performing the M-step the bound is calculated as:

log p(yo) ≥ −ND

2
(
1 + log σ2

)
− N

2
(Tr{Σ} − log |Σ|)− 1

2

∑
n

‖xn‖2 +
Dh

2
log σ2

old.

See [1] for the Gaussian identities used in this derivation.

References
[1] S. Roweis. Gausian identities. Online notes, see http://www.cs.toronto.edu/∼roweis/notes.html.


