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Abstract

Current state-of-the art approaches to action recognition emphasize learning Con-
vNets on large amounts of training data, using 3D convolutions to process the temporal
dimension. This approach is expensive in terms of memory usage and constitutes a major
performance bottleneck of existing approaches. Further, video input data points typically
include irrelevant information, along with useful features, which limits the level of de-
tail that networks can process, regardless of the quality of the original video. Hence,
models that can focus computational resources on relevant training signal are desirable.
To address this problem, we rely on network-specific saliency outputs to drive an atten-
tion model that provides tighter crops around relevant video regions. We experimentally
validate this approach and show how this strategy improves performance for the action
recognition task.

1 Introduction
The arrival of diverse, large-scale datasets [1, 7, 9, 19] has paved the way for the success
of large 3D CNN architectures [1, 34] for video-based action recognition. These architec-
tures operate on batches of consecutive video frames and are characterized by extensive 3D
convolutions over space and time.

The inputs to these computationally-heavy models have a large temporal dimension and,
to constrain the already large number of parameters to reasonable limits, the spatial extent is
relatively limited. This means the original video has to be downscaled, which causes some
of the finer details to be lost. Consequently the loss of the details may negatively affect
fine-grained recognition abilities of the network. Additionally, the annotations for videos in
aforementioned datasets simply indicate that an action is happening at some point of time,
without spatial localization. Under such conditions, one cannot fully exploit the receptive
field of the network, as irrelevant information will inevitably be included along with useful
video features.

We propose a general method that alleviates this problem of detail degradation and helps
to further adapt the model to the video recognition task. First, a measure of saliency is
defined to compare relative “importance” of video regions to solving the task. The measure
of saliency is then used to extract focused representations in a weakly-supervised way, which
are processed by an extended network to improve recognition performance.
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(a) Frame at the input of the network (b) Input refined by the attention procedure

Figure 1: Example of attention on Charades action recognition dataset. a) Saliency scores
(displayed as a heatmap) are localized around the object, a box maximizing the saliency
measure within is selected. b) The network is provided with the relevant crop of the video,
and can process it at a higher resolution.

Consider the example shown in Figure 1(a). Here the actions occurring are “Washing
something with a towel” and “Tidying up a table” and the important regions of the image are
the table, the towel and the person interacting with them. The relevant part of the video oc-
cupies only a small region of the input frame, while a large fraction of the frame is occupied
by the background and is of lesser relevance to recognizing the action.

We utilize a saliency measure to source focused inputs from the original video data,
which contain a more relevant portion of the video, as shown in Figure 1(b). The input
dimensionality of the model remains fixed, but the tighter crop around the salient region
allows the network to compute more expressive statistics of the relevant portion of the video
and analyze it in finer detail.

In this paper we present a framework to leverage the focused attention, and show how
providing the model with an additional focused view of the inputs allows it to better adapt
to the wide variety of possible videos. Specifically, we obtain network-driven saliency es-
timations by back-propagating through a pretrained network. This allows us to define an
attention procedure, through which we find the video region that encloses the most salient
area. With the help of this attention procedure we extract these salient regions, and provide
them to the network as an additional modality. This effective use of attention allows us to
improve action recognition performance.

2 Related Work
Action Recognition: Video action recognition has evolved considerably since the intro-
duction of deep networks. Starting from the highly successful two-stream networks [22],
a selection of approaches emerged that focuses on bringing together spatial and temporal
information. Some of them model feature evolution with RNNs [12, 38], others try to find a
robust technique for sampling the video frames [13, 31, 32, 42].

The temporal aspect of video recognition is more directly captured by 3D convolutional
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networks [28, 29]. Recently, the I3D family of deep networks [1] has managed to model
long-range temporal dependencies by employing extensive 3D convolutions. These networks
have achieved superior performance compared to previous attempts.

Our approach is generally applicable to any CNN. We utilize it in conjunction with the
I3D model in this paper.

Attention for video recognition: This problem has been pursued in various forms —
reinforcement learning for sampling frames [37], guided pooling of temporal [5, 14] and
spatial [17] features.

Self-attention approaches, initially described for language modeling [30], have proven
especially useful. A drop-in extension to I3D via non-local pooling [34] performs self-
attention within the spatiotemporal space of the CNN input. Video action transformers [6]
modify this approach to consider only the relationships between human regions and rest of
the input volume. In the same spirit, Sun et al. study pairwise interactions between 1× 1
convolutional features [27]. Long-term feature banks [36] consider the temporal aspect by
accumulating temporal features and applying attention pooling between accumulated and in-
dividual frame features. Self-attention has also been utilized to model long-term interactions
between memory states of a 3D LSTM [35].

An important difference between the methods described above and our approach is the
way inputs are treated. Contemporary approaches focus on discovering relationships be-
tween video features while staying within the bounds of an input RGB volume. In contrast,
we follow the attention cues to the original videos, and provide more informative inputs.
Essentially, we provide a different perspective on how attention can be utilized.

Processing videos in different modalities: Videos are commonly processed by CNNs
in different modalities. Originally, optical flow has been used almost universally as an addi-
tional stream [22], then pose features have been considered for this purpose [2, 43]. Recently
SlowFast has looked at RGB features via two branches at different temporal speeds [4].

We consider “focused” inputs as a similar yet distinct modality of the input data, as they
provide additional information about finer details to the network.

Saliency/unsupervised methods: A lot of work has been done on understanding CNN
behavior and visual explanation for decisions they make. Erhan et al. [3] seek to visualize
filters by maximizing activations. Simonyan et al. [24] acquire image-specific saliency maps
via a single back-propagation pass and use them to obtain segmentation masks. Guided back-
propagation further improves the quality of saliency maps [25, 39]. Zhou et al. [41]generate
class activation maps to identify discriminative image regions, while GradCAM [16] extends
this technique to provide high-quality visualization with strong localization capabilities.

While we are not aiming to produce class maps, the unifying idea of utilizing the network
itself to produce saliency is at the core of our approach. We leverage the gradients to identify
the salient regions in the video in a network-specific way.

Saliency methods have also been used to guide recognition. Sudhakaran et al. [26] em-
ploy Imagenet-pretrained network to obtain CAM maps [41], which are then sed to rescale
video features, in a form of soft spatial attention. In contrast, we use task-specific saliency
and hard attention.

Hard Attention: In the work of Jaderberg et al. [10], spatial transformers act as a dif-
ferentiable attention mechanism that aid image classification, their network learns to crop
patches from the input image. Concurrently to our work, Katharopoulos et al. [11] utilize
learnable attention to efficiently sample informative patches from high-resolution images,
thus reducing computation time and memory footprint.

Citation
Citation
{Tran, Bourdev, Fergus, Torresani, and Paluri} 2015

Citation
Citation
{Varol, Laptev, and Schmid} 2018

Citation
Citation
{Carreira and Zisserman} 2017

Citation
Citation
{Yeung, Russakovsky, Mori, and Fei-Fei} 2016

Citation
Citation
{Girdhar and Ramanan} 2017

Citation
Citation
{Long, Gan, deprotect unhbox voidb@x penalty @M  {}Melo, Wu, Liu, and Wen} 2018

Citation
Citation
{Sharma, Kiros, and Salakhutdinov} 2016

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Wang, Girshick, Gupta, and He} 2018{}

Citation
Citation
{Girdhar, Carreira, Doersch, and Zisserman} 2018

Citation
Citation
{Sun, Shrivastava, Vondrick, Murphy, Sukthankar, and Schmid} 2018

Citation
Citation
{Wu, Feichtenhofer, Fan, He, Krähenbühl, and Girshick} 2019

Citation
Citation
{Wang, Jiang, Yang, Li, Long, and {Fei-Fei}} 2019

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Choutas, Weinzaepfel, Revaud, and Schmid} 2018

Citation
Citation
{Zolfaghari, Oliveira, Sedaghat, and Brox} 2017

Citation
Citation
{Feichtenhofer, Fan, Malik, and He} 2018

Citation
Citation
{Erhan, Bengio, Courville, and Vincent} 2009

Citation
Citation
{Simonyan, Vedaldi, and Zisserman} 2013

Citation
Citation
{Springenberg, Dosovitskiy, Brox, and Riedmiller} 2015

Citation
Citation
{Zeiler and Fergus} 2014

Citation
Citation
{Zhou, Khosla, Lapedriza, Oliva, and Torralba} 2016

Citation
Citation
{Selvaraju, Cogswell, Das, Vedantam, Parikh, and Batra} 2017

Citation
Citation
{Sudhakaran and Lanz} 2018

Citation
Citation
{Zhou, Khosla, Lapedriza, Oliva, and Torralba} 2016

Citation
Citation
{Jaderberg, Simonyan, Zisserman, and Kavukcuoglu} 2015

Citation
Citation
{Katharopoulos and Fleuret} 2019



4 SYDOROV, ALAHARI, SCHMID: FOCUSED ATTENTION FOR ACTION RECOGNITION

3 Focusing attention

3.1 Motivation

The state-of-the-art approach to the problem of action recognition in videos is to process the
video with a complex CNN based model to answer the question of whether a certain action
is present in it. We define a video as an RGB volume of dimension T ×H×W ×3, where T
is the temporal dimension, H and W are height and width of the frames respectively. When
solving an action recognition task, we assume that the video contains certain spatiotemporal
regions, which can be leveraged to recognize the action occurring in it. In other word, this
RGB video contains some relevant sub-regions and some portion of irrelevant background
data.

Current state-of-the-art models assume fixed size inputs. These CNN networks are also
heavy, with a big receptive field in the temporal dimension T , which implies that the spa-
tial dimensions H and W are limited due to the memory constraints. For example, I3D as
described in [1, 4, 36] has inputs of size 224×224 only.

Fitting the video into these dimensions involves scaling and cropping operations, during
which some of the finer details are inevitably lost. A common tactic used both in video and
image recognition [1, 23] is to crop the center region from the input. This accounts for the
common bias of recorded media to contain the concept of interest in the center, but is in
the essence a heuristic operation — there is no guarantee that important features are in fact
contained in the center. Interestingly, a lot of recent video action datasets focus on close-up
[7, 15] or egocentric [21] videos, both settings in which this problem is less likely to occur.

We state that an attention operation will be helpful for the purpose of extracting useful
data from the video inputs and fully exploiting the receptive field of the network. Moreover,
we think that an attention operation should be tied to the network itself, instead of depending
on externally sourced cues like human gaze data or additional object detectors.

3.2 Saliency based attention

To be able to discern relevant regions versus background we need to define an “importance”
or “saliency” metric. “Saliency” has multiple connotations and in general terms can be
thought of as a measure of where would a person or a model “look” to make a decision
regarding the input.

Let us consider an input space RT×H×W×3
+ of RGB videos. An action recognition saliency

over video V may be defined as a function S(V ) : RT×H×W×3
+ → RT×H×W

+ , which assigns
high values to regions which are important for making a prediction and low values to others.
With this spatiotemporal saliency metric we can measure the relative importance of each re-
gion. A saliency function should necessarily be dependent on the network parameters. The
choice of saliency function will be discussed in section 4.1.

Processing a video with a CNN involves preprocessing steps to make it compatible with
the CNN architecture. The video is transformed with a heuristic spatial transform:

Vin = F(V,θ) : RT×H×W×3→ RT×Hin×Win×3, (1)

which commonly consists of individual crop and resize transforms, and where θ defines the
parameters of these transforms. The parameters of these transforms do not take the contents
into account and to address this we propose to employ a saliency based attention transform
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A to obtain an input, focused on “important” regions:

V s
in = A(V,S(V )), (2)

which produces a video volume V s
in ∈RT×Hin×Win×3, similar to the Vin obtained with heuristic

operation (1), but prioritizes maximization of saliency score within.
We have described a general approach so far, which boils down to the usage of network-

dependent attention for the purpose of providing a CNN with focused inputs. To define the
approach precisely, we must choose a saliency function S and an attention transform A. In
the next section, we present these details.

4 Attention for Action Recognition

4.1 Saliency function
We aim to efficiently locate regions important for action recognition in a class-independent
way. Accordingly, we obtain saliency by taking a derivative with respect to the inputs. The
technique consists in essence of a single back-propagation pass through the network, which
allows for on-the-fly extraction of focused inputs during training. It was originally employed
in a class-specific way, to visualize a network’s notion of object class [24].

The choice of the function being back-propagated is important — we experiment with
using the loss function. The intuition for utilizing the loss function as a guidance is the
following: loss minimization is the way of training networks to extract useful signal from
the video, hence regions that affect the loss function the most contribute to the network
predictions the most.

We train our model with binary cross-entropy loss per-class:

LCE(yn, ŷn) = yn log ŷn +(1− yn) log(1− ŷn), (3)

where yn ∈ {0,1} are ground truth labels and ŷn ∈ [0,1] are class predictions. It is then
possible to obtain saliency during training by back-propagating LCE. The downside of min-
imizing the training loss is that it requires knowledge of the ground truth labels yn, which
are not available for the evaluation step. To account for this limitation, we choose to obtain
saliency predictions by back-propagating the negative entropy over class predictions:

LE(ŷn) = ŷn log ŷn. (4)

In trained networks, low entropy of class outputs can be thought of as a mode, where the
network is certain of the prediction being made. In accordance with the definition of saliency
as a decision making mechanism, it would make sense to use LE to guide the saliency. We
find that after pretraining, saliency maps obtained with both LE and LCE are similar, thus we
can use LE as a proxy for LCE.

After propagating the cross-entropy/entropy back towards the video, we obtain the Jaco-
bian J ∈RT×Hin×Win×3 of the same output dimensionality as the RGB input. To get a positive
per-pixel saliency magnitude we apply the L2-norm at each pixel location as follows:

sti j = ‖(Jti j1,Jti j2,Jti j3)‖, (5)

where Jti jc are indexed values of a Jacobian, thus obtaining S(Vin) = s, s ∈ RT×Hin×Win
+ .
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4.2 Attention function

We obtain our saliency measure directly from the network, i.e., we compute it with respect
to and of the same dimensionality as the network inputs Vin. We assume that saliency is an
inherent property of the video itself and is preserved by the operation F . This assumption
allows us to reason about the quantity S(V ) by observing S(Vin) .

We search a volume of dimension T × Bh × Bw that maximizes the sum of saliency
scores inside. Concretely we first reduce the temporal dimensions via max-pooling si j =
maxt=1...T (sti j). Next, we select a fixed size bounding box B = (Bt ,Bl ,Bh,Bw), by finding
Bt ,Bl as follows:

Bt ,Bl = argmaxBt ,Bl

Bt+Bh

∑
i=Bt

Bl+Bw

∑
i=Bl

si j, (6)

where Bt ,Bl are the coordinates of the top left corner and Bh,Bw are the height and the width
of the box respectively. The coordinates of the box are fixed across all time steps T .

We utilize the parameters θ of the original transformation F to obtain box coordinates
Bo = (Bo

t ,B
o
l ,B

o
h,B

o
w) with respect to the original video V and consider that Bo would also

capture the maximum saliency in S(V ), if we had access to it directly. We crop the vol-
ume enclosed by Bo from the original video and scale it to Hin×Win. During the training
phase, additional data augmentation functions can be applied (e.g., random crops, left-right
flip, photometric adjustments). When accessing original video we reapply these augmenta-
tions. This procedure allows for efficient extraction of focused regions during training and
evaluation stages.

4.3 Processing Vin and V s
in inputs

The attention operation as described above provides a different, if similar, facet of the input
video to the model. Even assuming that the saliency measure we obtain is perfect, there is
always a possibility that some context information is lost. Additionally, if the video crop Vin
is already a perfect representation then there is little need to apply a transformation. Another
important issue is that the model has been trained by only applying the heuristic F and if we
were to change the spatial transformation without further adjustments, the newly introduced
domain shift might hurt the performance.

In lieu of these considerations, we think it is reasonable to keep both the original trans-
formed data and the focused inputs and process them together. This can be thought of as
another take on the approach of processing the video stream in different input modalities,
which is a reasonable concept, when applied to video understanding [4, 40].

When training the full model, we first train the network with the usual transform F
until convergence, we call the result a Base model. We explore two ways of processing the
inputs together: temporal concatenation and late fusion, which allows us to use the same
architecture for both modalities.

Temporal concatenation: we extend the input by concatenating the original input Vin and
the focused region V s

in along the temporal axis. This step is possible because the modalities
of the inputs are similar. We finetune the Base model on temporally extended inputs.

Late fusion: we process the two modalities Vin and V s
in via separate networks, both ini-

tialized from Base, and aggregate the output scores via mean-pooling. When finetuning, we
keep the branch that processes the original input Vin fixed.
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In other words, once the network training procedure reaches the performance limit, de-
termined by the provided data, we allow further performance increase by accounting for
important regions via extended inputs.

5 Experiments

We utilize a standard 3D CNN architecture [33], where the base model is ResNet50 [8],
inflated into a network with 3D convolutions in an I3D [1] fashion.

5.1 Data and setup

For our experiments we use the Charades dataset [19], containing 9 848 videos across 157
action classes. In each video, a person can perform one or more actions. We evaluate the
video classification task, which involves recognizing all the actions in blea video, without
temporal localization. We train and evaluate on the publicly available subset of Charades
following standard protocol [33, 36]. RGB frames are extracted at the rate of 8FPS.

5.2 Network Details

We use a model finetuned from Kinetics to test our method. We call it Charades-Base.
Kinetics-Base: As the base model we utilize ResNet50-I3D [18], which is publicly avail-

able along with the source code and pretrained weights. This model has been trained on Ki-
netics from scratch for 300 epochs. It achieves 64.01% (83.70%) top-1 (top-5) accuracy on
the Kinetics validation set. The base network accepts inputs Tin ×Hin×Win×3, representing
Tin RGB frames, where Hin =Win = 224. At the last layer of the network, the logit outputs
are of dimension Tout×Nclass. For Tin = 64, the corresponding Tout = 7.

Charades-Base: We adopt the Kinetics base model for Charades and introduce a different
loss function. Specifically, a cross-entropy loss (LCE) over network predictions Ŷ is used,
to accommodate for the multilabel nature of the Charades dataset. In the last layer of the
network we accordingly replace the softmax operation with a sigmoid. The Charades dataset
has temporal annotations Yframe for every video frame along with per-video labels Yvideo —
we incorporate this by minimizing a sum of two loss components:

• Video loss: LCE(Yvideo,M(Ŷ )), where M : Tout×Nclass→ Nclass is a mean-pooling op-
eration across the temporal dimension of the network outputs.

• Frame loss: LCE(Yframe,U(Ŷ )), where U : Tout×Nclass → Tin×Nclass is a bilinear in-
terpolation operation that upsamples the logit outputs to match the input temporal
dimension.

5.3 Implementation

Saliency. We explore several bounding box sizes for the Charades validation set and find
that for our network with expected spatial inputs Hin = Win = 224, Bh,Bw = 128 performs
the best. These zoomed-in boxes enclose roughly 30% of the original area.
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Training. First, we finetune the baseline model from Kinetics to the Charades dataset with-
out using focused inputs. We then apply the proposed approach to further improve the recog-
nition performance.

Charades-Base: We initialize the model with Kinetics-Base weights. We cover temporal
extents Tin of 16, 32 and 64. We use mini-batch SGD with momentum set to 0.9 and batch
sizes are set accordingly to 20, 16, 12 for Tin = 16,32,64 respectively. Training lasts for 50
epochs, with an initial learning rate 0.375 that is decreased by a factor of 10 at epochs 15
and 40.

Multi-modality models: From the Charades-Base model we tune several attention and
ablation models for additional 25 epochs, in both temporal concatenation and late fusion
versions. The initial learning rate is 0.02, the batch size is 8, and the learning rate is dropped
by a factor of 10 at epoch 15. We finetune BN layers, small batch size notwithstanding. At
Tin = 64 GPU memory requirements for late fusion and temporal concatenation are 24GB
and 32GB respectively. We thus train late fusion models on 2 Titan X GPUs and temporal
concatenation models on 2 Tesla P100s.

The Repeat model is tuned from Charades-Base, but no attention step is executed, in-
stead the Vin inputs are repeated in the temporal dimension. The Random crop and Center
crop experiments perform attention step without utilizing saliency, i.e., during training a ran-
dom or a centered Bh×Bw cuboid respectively is cropped from the input volume. When
training Attention models, a choice of saliency function can be made at both training and
evaluation stages. To denote this choice, we utilize a two-index notation L, where the first
index corresponds to the saliency function used during training, the second to the function
used during evaluation. We train LE / E, LCE / CE and LCE / E Attention models. We emphasize
that the LCE / CE experiment only serves as a reference for what attention guided by training
loss can achieve, since utilizing LCE during evaluation involves accessing ground truth data.

During training, a left-right flip is applied with p = 0.5, while the transform F amounts
to resizing the video to 256×256 and randomly cropping a 224×224 cuboid.

Evaluation. During evaluation, F is composed of resizing the video to 256×256 and then
obtaining a 224× 224 center crop. At test time we sample 10 clips per video and combine
the predictions using max pooling, following prior work [33, 36].

6 Results
In this section we experimentally evaluate the models on the Charades action recognition
task. We show that our baseline model performs on par with the state-of-the art. Most
importantly, we show that, when trained on videos augmented by focused attention, the
performance of the model improves over the baseline. Finally, we perform several ablation
studies.

6.1 Baseline model
In Table 1 we show the performance of our Charades-Base baseline at different temporal
extents Tin as well as other approaches. We include neural network approaches that were
state-of-the-art for Charades before appearance of I3D [20, 33, 42] and show that I3D out-
performs them. Next, we consider a baseline I3D network from a recent publication [33]
and demonstrate our network performing at the same level, despite being pretrained on only
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Method Model Pretraining mAP
2-Stream [20] VGG16 ImageNet 18.6
Asyn-TF [33] VGG16 ImageNet 22.4
Multiscale TRN [42] Inception ImageNet 25.2
I3D baseline (Tin = 32) [33] ResNet50-I3D ImageNet+Kinetics 31.8
Ours (Tin = 16) ResNet50-I3D Kinetics 27.8
Ours (Tin = 32) ResNet50-I3D Kinetics 30.3
Ours (Tin = 64) ResNet50-I3D Kinetics 31.6

Table 1: Baseline performance. We show the mean Average Precision (mAP%).

Kinetics dataset. Recent works utilizing attention report higher performance on this task,
but employ long-range temporal techniques such as spatiotemporal graphical models [33] or
memory banks [36].

6.2 Attention

Method Temp. concat. Late fusion
Charades-Base 31.6 31.6
Repeat 31.7 31.6
Random crop 31.4 30.6
Center crop 31.6 31.0
Attention LCE / CE 33.2 32.9
Attention LCE / CE (upscaled) 33.2 32.7
Attention LCE / E 33.2 33.0
Attention LCE / E (upscaled) 33.1 32.8
Attention LE / E 33.3 33.1

Table 2: Our performance at Tin = 64, mAP%

In Table 2 we present the experimental results of the proposed attention approach. Charades-
Base and Repeat are the two baseline experiments, where Charades-Base corresponds to the
baseline performance of the model without using additional modality and Repeat allows us
to reason about the stacked model performance in the absence of the attention transform A.

We see that Random crop and Center crop strategies do not provide any useful signal
to the network, in fact randomly cropping the volume results in a lower performance. This
indicates that the attention transform A should be guided by a reasonable, input-dependent
saliency function.

The Attention models LCE / CE, LE / E and LCE / E outperform the baselines and allow us to
confirm the usefulness of the saliency-guided attention step. We see that LCE and LE salien-
cies are very similar, as evidenced by a very small difference in performances of LCE / CE,
LE / E and LCE / E.

We also perform ablation studies “LCE / CE (upscaled)” and “LCE / E (upscaled)”, for which
we do not query the original video for the higher resolution inputs and instead simply upscale
the focused video. These experiments show lower performance than LCE / CE and LCE / E,
proving that querying the original video is important.
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7 Conclusion
In this paper we introduce a new approach to leverage attention for action recognition. In-
stead of being constrained within the bounds of input data dimensionality, we take a step
further and leverage the original video data. We demonstrate that the preprocessing steps
of a video action pipeline have a notable effect on the quality of results. Consequently, we
allow the network-dependent saliency measure to guide the preprocessing operation to select
regions of the data that are more useful for the recognition task. Crucially, these regions can
be processed in higher detail, allowing to access additional information, which is not used
by conventional attention approaches.
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