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Unsupervised refinement of color and stroke features for text
binarization

Anand Mishra⋆, Karteek Alahari⋆⋆, C. V. Jawahar⋆⋆⋆

Abstract. Color and strokes are the salient features of
text regions in an image. In this work, we use both these
features as cues, and introduce a novel energy function
to formulate the text binarization problem. The mini-
mum of this energy function corresponds to the optimal
binarization. We minimize the energy function with an
iterative graph cut based algorithm. Our model is robust
to variations in foreground and background as we learn
Gaussian mixture models for color and strokes in each it-
eration of the graph cut. We show results on word images
from the challenging ICDAR 2003/2011, born-digital im-
age and street view text datasets, as well as full scene
images containing text from ICDAR 2013 datasets, and
compare our performance with state-of-the-art methods.
Our approach shows significant improvements in perfor-
mance under a variety of performance measures com-
monly used to assess text binarization schemes. In ad-
dition, our method adapts to diverse document images,
like text in videos, handwritten text images.

1 Introduction

Binarization is one of the key preprocessing steps in
many document image analysis systems [1, 2]. The per-
formance of subsequent steps like character segmentation
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Fig. 1. Sample images we consider in this work. Due to large
variations in foreground and background colors, most of the
popular binarization techniques in the literature tend to fail
on such images (as shown in Section 7).

and recognition is highly dependent on the success of bi-
narization. Document image binarization has been an
active area of research for many years [3–9]. It, however,
is not a solved problem in light of the challenges posed by
text in video sequences, born-digital (web and email) im-
ages, old historic manuscripts and natural scenes where
the state-of-the-art recognition performance is still poor.
In this context of a variety of imaging systems, design-
ing a powerful text binarization algorithm can be con-
sidered a major step towards robust text understanding.
Recent interest of the community by organizing binariza-
tion contests like DIBCO [10], H-DIBCO [11,12] at ma-
jor international document image analysis conferences
further highlights its importance.

In this work, we focus on binarization of natural scene
text images. These images contain numerous degrada-
tions which are not usually present in machine-printed
ones, e.g., uneven lighting, blur, complex background,
and perspective distortion. A few sample images from
the popular datasets we use are shown in Fig. 1. Our
proposed method is targeted to such cases, and also to
historical handwritten document images.

Our method is inspired by the success of interac-
tive graph cut [13] and GrabCut [14] algorithms for
foreground-background segmentation of natural scenes.
We formulate the binarization problem in an energy min-
imization framework, where text is foreground and any-
thing else is background, and define a novel energy (cost)
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function such that the quality of the binarization is in-
versely related to the energy value. We minimize this
energy function to find the optimal binarization using
an iterative graph cut scheme. The graph cut method
needs to be initialized with foreground and background
seeds. To make the binarization fully automatic, we ini-
tialize the seeds by obtaining character-like strokes. At
each iteration of graph cut, the seeds and the binariza-
tion are refined. This makes it more powerful than a one-
shot graph cut algorithm. Moreover, we use two cues to
distinguish text regions from background: (i) color, and
(ii) stroke width. We model foreground and background
colors, as well as stroke widths in a Gaussian mixture
Markov random field framework [15], to make the bi-
narization robust to variations in foreground and back-
ground.

The contributions of this work are threefold: firstly,
we propose a principled framework for the text bina-
rization problem, which is initialized with character-like
strokes in an unsupervised manner. The use of color
and stroke width features together in an optimization
framework for text binarization is an important factor
in our work. Secondly, we present a comprehensive eval-
uation of the proposed binarization method on multiple
text datasets. We evaluate the performance using vari-
ous measures, such as pixel-level and atom-level scores,
recognition accuracy, and compare it with the state-of-
the-art methods [5,9,16–21] as well as the top-performing
methods in the ICDAR robust reading competition [22].
To our knowledge, text binarization methods have not
been evaluated in such a rigorous setting in the past,
and are restricted to only a few hundred images or one
category of document images (e.g., handwritten docu-
ments or scene text).

In contrast, we evaluate on more than 2000 images
including scene text, video text, born-digital and hand-
written text images. Additionally, we also perform qual-
itative analysis on 6000 images containing video text of
several Indian scripts. Interestingly, the performance of
existing binarization methods varies widely across the
datasets, whereas our results are consistently compelling.
In fact, our binarization improves the recognition results
of an open source OCR [23] by more than 10% on various
public benchmarks. Thirdly, we show the utility of our
method in binarizing degraded historical documents. On
a benchmark dataset of handwritten images, our method
achieves comparable performance to the H-DIBCO 2012
competition winner and a state-of-the-art method [5],
which is specifically tuned for handwritten images. The
code for our method and the performance measures we
use is available on our project website [24].

The remainder of the paper is organized as follows.
We discuss related work in Section 2. In Section 3, the
binarization task is formulated as a labeling problem,
where we define the energy function such that its mini-
mum corresponds to the target binary image. This sec-
tion also briefly introduces the graph cut method. Sec-
tion 4 explains the terms of the cost function in detail. In
Section 5, we discuss our automatic GMM initialization
strategy. Section 6 gives details of the datasets, evalua-
tion protocols, and performance measures used in this

work. Experimental settings, results, discussions, and
comparisons with various classical as well as modern bi-
narization techniques are provided in Section 7, followed
by a summary in Section 8.

2 Related Work

Early methods for text binarization were mostly de-
signed for clean, scanned documents. In the context of
images taken from street scenes, video sequences and his-
torical handwritten documents, binarization poses many
additional challenges. A few recent approaches aimed to
address them for scene text binarization [9,25,26], hand-
written text binarization [4,5] and degraded printed text
binarization [27]. In this section we review such literature
as well as other works related to binarization (specifically
text binarization), and argue for the need for better tech-
niques.

We group text binarization approaches into three
broad categories: (i) classical binarization, (ii) energy
minimization based methods, and (iii) others.

Classical binarization methods. They can be
further categorized into: global (e.g., Otsu [17], Kit-
tler [16]) and local (e.g., Sauvola [20], Niblack [19])
approaches. Global approaches compute a binarization
threshold based on global statistics of the image such
as intra-class variance of text and background regions,
whereas local approaches compute the threshold from
local statistics of the image such as mean and variance
of pixel intensities in patches. The reader is encouraged
to refer to [3] for more details of these methods.
Although most of these methods perform satisfactorily
for many cases, they suffer from problems like: (i)
manual tuning of parameters, (ii) high sensitivity to
the choice of parameters, and (iii) failure to handle
images with uneven lighting, noisy background, similar
foreground-background colors.

Energy minimization based methods. Sev-
eral methods have been proposed for text bina-
rization problems in this paradigm over the last
decade [5, 8, 9, 21, 28–32]. Here, the binarization task is
posed as an optimization problem, typically modeled
using Markov random fields (MRFs). In [21], Wolf and
Doermann applied simulated annealing to minimize the
resulting cost function. The method proposed in [28],
authors first classified a document into text, near text
and background regions, and then performed a graph
cut to produce the binary image. An MRF based
binarization for camera-captured document images was
proposed in [29], where a thresholding based technique
is used to produce an initial binary image which is
refined with a graph cut scheme. The energy function
in [29] also uses stroke width as cues, and achieves good
performance on printed document images. However, it
needs an accurate estimation of stroke width, which is
not always trivial in the datasets we use (see Fig. 2).
Following a similar pipeline of thresholding followed
by labeling with a conditional random field (CRF)
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model, Zhang et al. [30] and Pan et al. [31] proposed
text extraction methods. These methods however rely
on the performance of the thresholding step. Also,
being a supervised method, they require large training
data with pixel-level annotations for learning a text
vs non-text classifier. Hebert et al. [32] proposed a
scheme where six classical binarization approaches are
combined in a CRF framework. Unlike these methods
[29–32], our framework does not require thresholding
as a first step and proceeds with stroke as well as
color initializations which are refined iteratively in an
unsupervised manner.

Howe [4] used the Laplacian of image intensity in
the energy term for document binarization, and later
improved it with a method for automatic parameter
selection in [5]. These approaches were designed for
handwritten images, and fail to cope up with variations
in scene text images, e.g., large changes in stroke width
and foreground-background colors within a single image.
Adopting a similar framework, Milyaev et al. [9] have
proposed a scene text binarization technique, where
they obtain an initial estimate of binarization with [19],
and then use Laplacian of image intensity to compute
the unary term of the energy function.

Other methods. Binarization has also been for-
mulated as a text extraction problem [18, 33–36].
Gatos et al. [33] presented a method with four steps: de-
noising with a low-pass Wiener filter, rough estimation
of text and background, using the estimates to compute
local thresholds, and post-processing to eliminate noise
and preserve strokes. Epshtein et al. [36] presented a
novel operator called the stroke width transform. It
computes the stroke width at every pixel of the input
image. A set of heuristics were then applied for text
extraction. Kasar et al. [18] proposed a method which
extracts text based on candidate bounding boxes in
a Canny edge image. Ezaki et al. [34] applied Otsu
binarization [17] on different image channels, and then
used morphological operators as post processing. Feild
and Learned-Miller [37] proposed a bilateral regression
based binarization method. This method uses color
clustering as a starting point to fit a regression model,
and generates multiple hypotheses of text regions. His-
togram of gradient features [38] computed for English
characters are then used to prune these hypotheses.
Tian et al. [39] proposed a binarization technique which
computes MSER [40] on different color channels to
obtain many connected components, and then prune
them based on text vs non-text classifier to produce the
binarization output. Most of these approaches are either
supervised methods requiring large labeled training
data, or use multiple heuristics which can not be easily
generalized to the diverse datasets we use.

In contrast to the binarization techniques in litera-
ture, we propose a method which models color as well
as stroke width distributions of foreground (text) and
background (non-text) using Gaussian mixture models,
and perform inference using an iterative graph cut algo-
rithm to obtain clean binary images. We evaluate pub-
licly available implementations of many existing meth-

(a) (b)

Fig. 2. (a) A scene text image from ICDAR 2013 dataset [22],
and (b) part of a handwritten document image taken from
H-DIBCO 2012 [11]. We note that stroke width within text
is not always constant, and varies smoothly.

ods on multiple benchmarks, and compare with them in
Section 7.

This paper is an extension of our initial work [8]
which appeared at ICDAR 2011, with the following ad-
ditions: (i) we initialize candidate text regions using
character-like strokes, and refine them in an iterative
scheme, instead of relying on a heuristically-designed
auto-seeding method, (ii) we incorporate a novel stroke
based term in the original color based energy function,
and compute its relative importance with respect to color
based terms automatically, and (iii) we perform exten-
sive experiments on several recent benchmarks, includ-
ing handwritten image datasets H-DIBCO 2012/2014,
video texts, born-digital images, and ICDAR 2011/2013
datasets.

3 Iterative Graph Cut based Binarization

We formulate the binarization problem in a labeling
framework as follows. The binary output of a text image
containing n pixels can be expressed as a vector of ran-
dom variables X = {X1, X2, ..., Xn}, where each random
variable Xi takes a label xi ∈ {0, 1} based on whether
it is text (foreground) or non-text (background). Most
of the heuristic-based algorithms take the decision of as-
signing label 0 or 1 to xi based on the pixel value at
that location, or local statistics computed in a neighbor-
hood. In contrast, we formulate the problem in a more
principled framework where we represent image pixels as
nodes in a conditional random field (CRF) and associate
a unary and pairwise cost for labeling pixels. We then
solve the problem by minimizing a linear combination of
two energy functions Ec and Es given by:

Eall(x,θ, z) = w1Ec(x,θc, zc) + w2Es(x,θs, zs), (1)

such that its minimum corresponds to the target binary
image. Here x = {x1, x2, ..., xn} is the set of labels of all
the pixels. The model parameters θc and θs are learned
from the foreground/background color and stroke width
distributions respectively. The vector zc contains the
color values of all the pixels in RGB color space, and
the vector zs contains pixel intensity and stroke width
at every pixel.1 The weights w1 and w2 are automati-
cally computed from the text image. To this end, we use

1 Other color spaces such as CMYK or HSV can also be
used.
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two image properties, edge density (ρ1) and stroke width
consistency (ρ2). They are defined as the fraction of edge
pixels and standard deviation of stroke widths in the im-
age respectively. We observe that stroke cues are more
reliable when we have sufficient edge pixels (i.e., edge
density ρ1 is high), and when the standard deviation of
stroke widths is low (i.e., stroke width consistency ρ2 is
low). Based on this, we compute the relative weights (ŵ1,
ŵ2) between color and stroke terms as follows: ŵ2 = ρ1

ρ2

,

ŵ1 = |1−ŵ2|. We then normalize these weights to obtain
w1 and w2 as follows:

w1 =
ŵ1

ŵ1 + ŵ2
, (2)

w2 =
ŵ2

ŵ1 + ŵ2
, (3)

giving more weight to the stroke width based term when
the extracted strokes are more reliable, and vice-versa.

For simplicity, we will denote θc and θs as θ and zc,
and zs as z from now. It should be noted that the for-
mulation of stroke width based term Es and color based
term Ec are analogous. Hence, we will only show the for-
mulation of color based energy term in the subsequent
text. It is expressed as:

E(x,θ, z) =
∑

i

Ei(xi,θ, zi) +
∑

(i,j)∈N

Eij(xi, xj , zi, zj),

(4)

where, N denotes the neighborhood system defined in
the CRF, and Ei and Eij correspond to data and
smoothness terms respectively. The data term Ei mea-
sures the degree of agreement of the inferred label xi to
the observed image data zi. The smoothness term mea-
sures the cost of assigning labels xi, xj to adjacent pixels,
essentially imposing spatial smoothness. The unary term
is given by:

Ei(xi,θ, zi) = −log p(xi|zi), (5)

where p(xi|zi) is the likelihood of pixel i taking label xi.
The smoothness term is the standard Potts model [13]:

Eij(xi, xj , zi, zj) = λ
[xi 6= xj ]

dist(i, j)
exp

(

β(zi − zj)
2
)

, (6)

where the scalar parameter λ controls the degree of
smoothness, dist(i, j) is the Euclidean distance between
neighboring pixels i and j. The smoothness term im-
poses the cost only for those adjacent pixels which have
different labels, i.e., [xi 6= xj ]. The constant β allows
discontinuity-preserving smoothing, and is given by: β =
1/2E[(zi − zj)

2], where E[a] is expected value of a [14].
The problem of binarization is now to find the global

minima of the energy function Eall, i.e.,

x∗ = argmin
x

Eall(x,θ, z). (7)

The global minima of this energy function can be effi-
ciently computed by graph cut [41] as it satisfies the cri-
teria of submodularity [42]. To this end, a weighted graph
G = (V,E) is formed where each vertex corresponds to
an image pixel, and edges link adjacent pixels. Two ad-
ditional vertices source (s) and sink (t) are added to the
graph. All the other vertices are connected to them with
weighted edges. The weights of all the edges are defined
in such a way that every cut of the graph is equivalent
to some label assignment to nodes. Here, a cut of the
graph G is a partition of the set of vertices V into two
disjoint sets S and T , and the cost of the cut is defined
as the sum of the weights of edges going from vertices
belonging to the set S to T [42, 43]. The minimum cut
of such a graph corresponds to the global minima of the
energy function, which can be computed efficiently [41].

In [13], θ corresponds to the parameters of the im-
age foreground and background histograms. These his-
tograms are constructed directly from the foreground
and background seeds obtained with user interaction.
However, the foreground/background distribution in the
challenging cases we target (see images in Fig. 1) can-
not be captured effectively by such histograms. Instead,
we represent each pixel color (and stroke width) with a
Gaussian mixture model (GMM). In this regard, we are
inspired by the success of GrabCut [14] for object seg-
mentation. The foreground and background GMMs in
GrabCut are initialized by user interaction. We avoid any
user interaction by initializing GMMs with character-like
strokes obtained using a method described in Section 5.

4 Color and Stroke Width Potentials

The color of each pixel is generated from one of the 2c
GMMs [44] (c each for foreground and background) with
a mean µ and a covariance Σ.2 In other words, each
foreground color pixel is generated from the following
distribution:

p(zi|xi,θ, ki) = N (z,θ;µ(xi, ki), Σ(xi, ki)), (8)

where N denotes a Gaussian distribution, xi ∈ {0, 1}
and ki ∈ {1, ..., c}. To model the foreground color using
this distribution, an additional vector k = {k1, k2, ..., kn}
is introduced where each ki takes one of the c GMM com-
ponents. Similarly, background color is modeled from one
of the c GMM components. Further, the overall likeli-
hood can be assumed to be independent of the pixel
position, and thus expressed as:

p(z|x,θ,k) =
∏

i

p(zi|xi,θ, ki), (9)

=
∏

i

πi
√

|Σi|
exp

(

−z̃i
TΣ−1

i z̃i
2

)

, (10)

where πi = π(xi, ki) is Gaussian mixture weighting co-
efficient, Σi = Σ(xi, ki) and z̃i = (zi −µ(xi, ki)). Due to

2 The stroke-based term is computed similarly with stroke
width and intensity of each pixel generated from one of the
2c GMMs.
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Fig. 3. Overview of the proposed method. Given an input image containing text, we first obtain character-like strokes using
the method described in Section 5. GMMs for foreground (text) and background (non-text) are learnt from these initial seeds.
We learn two types of GMMs: one using RGB color values and another using stroke width and intensity values. Unary and
pairwise costs are computed for every pixel, and are appropriately weighted (see Section 3). An s-t graph is constructed with
these costs. The min cut of this graph produces an initial binary image, which is used to refine the seeds, and the GMMs. The
GMM refinement and graph cut steps are repeated a few times to obtain the final binary image. (Best viewed in pdf.)

the introduction of GMMs the data term in (4) becomes
dependent on its assignment to a GMM component, and
is given by:

Ei(xi, ki,θ, zi) = − log p(zi|xi,θ, ki). (11)

In order to make the energy function robust to low
contrast color images we introduce a novel term into
the smoothness function which measures the “edginess”
of pixels as:

Eij(xi, xj , zi, zj) = λ1

∑

(i,j)∈N

Zij + λ2

∑

(i,j)∈N

Gij , (12)

where, Zij = [xi 6= xj ] exp(−βc||zi − zj ||
2) and

Gij = [xi 6= xj ] exp(−βg||gi − gj ||
2). Here gi denotes the

magnitude of gradient (edginess) at pixel i. Two neigh-
boring pixels with similar edginess values are more likely
to belong to the same class with this constraint. The con-
stants λ1 and λ2 determine the relative strength of the
color and edginess difference terms with respect to the
unary term, and are fixed to 25 empirically. The param-
eters βc and βg are automatically computed from the
image as follows:

βc =
1

ξ

∑

(i,j)∈N

(zi − zj)
2, (13)

βg =
1

ξ

∑

(i,j)∈N

(gi − gj)
2, (14)

where ξ = 2(4wh − 3w − 3h + 2) is the total number
of edges in the 8-neighborhood system N with w and h
denoting the width and the height of the image respec-
tively.

In summary, both the color and stroke width of
foreground and background regions are modeled as
GMMs. To initialize these GMMs, we obtain character-
like strokes from the given image as described in the
following section.

(a) (b)

Fig. 4. (a) Input image. (b) Character-like strokes obtained
using the method presented in Section 5. Darker regions in
(b) represent parts with lower stroke width.

5 GMM Initialization

Initializing GMMs can play a crucial role as it is hard to
recover from a poor random initialization. In this work
we propose to obtain initial seeds from character-like
strokes. The idea of obtaining character-like strokes
is similar in spirit to the work of Epshtein et al. [36].
However, unlike [36], our method is robust to incorrect
strokes as we refine the initializations iteratively by
learning new color and stroke GMMs in each iteration.
Alternative techniques can also be used for initializa-
tion, such as other binarization techniques [5, 17, 21]. In
Section 7.1 we investigate these alternatives empirically.

Obtaining character-like strokes. We begin by
extracting an edge image with the Canny edge operator,
and then find character-like strokes with the following
two-step approach.

We first automatically detect the polarity of the im-
age (see Section 7). If the average gray pixel value in the
vertical strip at the center of an image is greater than
the average value in the boundary region, we assign a
polarity of one (i.e., light text on dark background), oth-
erwise we assign a polarity of zero (i.e., dark text on light
background). In the case of images with polarity one, we
subtract 180◦ from the original gradient orientation.

We then detect the strokes in the second step. Let u
be an edge pixel with gradient orientation θ. For every
such edge pixel u in the image, we trace a line segment
along the gradient orientation θ until we find an edge
pixel v, whose gradient orientation is (180◦ − θ) ± 5◦,
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Algorithm 1 Overall procedure of the proposed binarization scheme.

procedure

Input: Color or grayscale image
Output: Binary image
Initialize:

1. Number of GMM components: 2c for color and 2c for stroke GMMs.
2. maxIT : maximum number of iterations.
3. Seeds and GMMs (Section 5).
4. iteration← 1
CRF optimization:

while iteration ≤ maxIT do

5. Learn color and stroke GMMs from seeds (Section 5)
6. Compute color (Ec) and stroke (Es) based terms (Sections 3 & 4)
7. Construct s-t graph representing the energy (Sections 3 & 4)
8. Perform s-t mincut
9. Refine seeds (Section 5)
10. iteration← iteration+ 1.

end while

end procedure

i.e., the opposite direction approximately. We mark pix-
els u and v as traversed, and the line segment uv as a
character-like stroke. We repeat this process for all the
non-traversed edge pixels, and mark all the correspond-
ing line segments as character-like strokes.

We use these character-like strokes as initial fore-
ground seeds. Pixels with no strokes are used as back-
ground seeds. Fig. 4 shows an example image and the
corresponding character-like strokes obtained with the
method described. We initialize two types of GMMs: one
with color values, and other with stroke width and pixel
intensity values, for both foreground and background,
from these initial seeds. Note that unlike our previous
work [8], (i) we do not use any heuristics to discard
some of the strokes, and instead refine this candidate
set of strokes over iterations, (ii) background seeds do
not need to be explicitly computed, rather, pixels with
no strokes are initialized as potential background.

Once the GMMs are initialized, we compute unary
and pairwise terms from (11) and (12) for both color
and stroke based terms. With the terms in the energy
function (1) now defined, iterative graph cut based in-
ference is performed to minimize (1). At each iteration,
the initializations are refined, new GMMs are learned
from them, and the relative weights between color and
stroke terms are recomputed. This makes the algorithm
adapt to variations in foreground and background. The
overview of our proposed method is illustrated in Fig. 3
and Algorithm 1.

6 Datasets and Performance Measures

To conduct a comprehensive evaluation of the pro-
posed binarization method, we use four scene text, a
born-digital text, a video text and two handwritten
image datasets. These are summarized in Table 1. In
this section, we briefly describe the datasets and their
available annotations.

ICDAR cropped word datasets. ICDAR 2003

and ICDAR 2011 robust reading datasets were origi-
nally introduced for tasks like text localization, cropped
word recognition, and scene character recognition.
We use the cropped words from these datasets for
evaluating binarization performance. The test sets of
these two datasets contain 1110 and 1189 word images
respectively [45, 46, 50, 51]. Pixel-level annotations for
both these datasets are provided by Kumar et al. [52].
Note that pixel-level annotations are available only for
716 images of ICDAR 2011 dataset. We show pixel-level
and atom-level results for only these annotated images
for this dataset, and refer this subset as ICDAR 2011-S.
However, we show recognition results on all the 1189
images of ICDAR 2011.

The ICDAR 2003 dataset also contains a training set
of 1157 word images. Pixel-level annotations for these
images are provided by [53]. We use 578 word images
from this set chosen randomly to validate our choice of
parameters (see Section 7.1). We refer to this subset as
our validation set for all our experiments.

ICDAR 2013 full scene image dataset. It is
composed of outdoor and indoor scene images con-
taining text. There are 233 images in all, with their
corresponding ground truth pixel-level text annota-
tions [22].

ICDAR born-digital image dataset (BDI)
2011. Images are often used in emails or websites to
embed textual information. These images are known
as born-digital text images. As noted in ICDAR 2011
competitions [47], born-digital images: (i) are inher-
ently low-resolution, (ii) often suffer from compression
artefacts and severe anti-aliasing. Thus, a method
designed for scene text images may not work for these.
Considering this, a dataset known as ICDAR born-
digital image (BDI) was introduced as part of ICDAR
2011 competitions. It contains 916 word images, and
their corresponding pixel-level annotations provided by
Kumar et al. [52].
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Table 1. Datasets used in our experiments.

Dataset No. of images Type Available annotations

ICDAR 2003 word [45] 1110 Scene text Pixel, text

ICDAR 2011 word [46] 1189 Scene text Pixel, text

ICDAR 2013 scene text [22] 233 Scene text Pixel, text

ICDAR BDI 2011 [47] 916 Born-digital Pixel, text

Street view text [48] 647 Scene text Pixel, text

CVSI 2015 [49] 6000 Video text -

H-DIBCO 2012 [11] 14 Handwritten Pixel

H-DIBCO 2014 [12] 10 Handwritten Pixel

Street view text. The street view text (SVT)
dataset contains images harvested from Google Street
View. As noted in [48], most of the images come from
business signage and exhibit a high degree of variability
in appearance and resolution. We show binarization
results on the cropped words of SVT-word, which con-
tains 647 word images, and evaluate it with pixel-level
annotations available publicly [52].

Video script identification dataset (CVSI).
The CVSI dataset is composed of images from news
videos of various Indian languages. It contains 6000 text
images from ten scripts, namely English, Hindi, Bengali,
Oriya, Gujarati, Punjabi, Kannada, Tamil, Telugu
and Arabic, commonly used in India. This dataset
was originally introduced for script identification [49],
and does not include pixel level annotations. We use it
solely for qualitative evaluation of binarization methods.

H-DIBCO 2012/2014. Although our binariza-
tion scheme is designed for scene text images, it can
also be applied for handwritten images. To demonstrate
this we test our method on the H-DIBCO 2012 [11]
and 2014 [12] datasets. They contain 14 and 10 de-
graded handwritten images respectively, with their
corresponding ground truth pixel-level annotations.

6.1 Performance Measures

Although binarization is a highly researched problem,
the task of evaluating the performance of proposed so-
lutions has received less attention [54]. Due to the lack
of well-defined performance measures or ground truth,
some of the previous works perform only a qualitative
evaluation [55, 56]. This subjective evaluation only pro-
vide a partial view of performance. A few others measure
binarization accuracy in terms of OCR performance [57].
While improving text recognition performance can be
considered as an end goal of binarization, relying on
OCR systems which depend on many factors, e.g., char-
acter classification, statistical language models, and not
just the quality of text binarization, is not ideal. Thus,
OCR-level evaluation can only be considered as an indi-

rect performance measure for rating binarization meth-
ods [54].

A well-established practice in document image bina-
rization competitions at ICDAR is to evaluate binariza-
tion at the pixel level [10]. This evaluation is more pre-
cise than the previous two measures, but has a few draw-
backs: (i) pixel-level ground truth for large scale datasets
is difficult to acquire, (ii) defining pixel accurate ground
truth can be subjective due to aliasing and blur, (iii) a
small error in ground truth can alter the ranking of bi-
narization performance significantly as studied in [58].
To address these issues, Clavelli et al. [54] proposed a
measure for text binarization based on an atom-level as-
sessment. An atom is defined as the minimum unit of
text segmentation which can be recognized on its own.
This performance measure does not require pixel accu-
rate ground truth, and measures various characteristics
of binarization methods such as producing broken text,
merging characters.

In order to provide a comprehensive analysis, we
evaluate binarization methods on these three measures,
i.e, pixel-level, atom-level, and recognition (OCR)
accuracy.3

Pixel-level evaluation. Given a ground truth
image annotated at the pixel-level and the result of a
binarization method, each pixel in the output image is
classified as one of the following: (i) true positive if it
is a text pixel in both the output and the ground truth
image, (ii) false positive if it is a background pixel in the
output image but a text pixel in the ground truth, (iii)
false negative if it is a text pixel in the output image
but background pixel in the ground truth, or (iv) true
negative if it is background pixel in both the output
and the ground truth images. With these in hand we
compute precision, recall and f-score for every image,
and then report mean values of these measures over
all the images in the dataset to compare binarization
methods.

Atom-level evaluation. Each connected compo-
nent in the binary output image is classified as one

3 Source code for all the performance measures used in this
work is available on our project website [24].
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of the six categories [54], using following two criteria.
(i) The connected component and the skeleton4 of the
ground truth have at least θmin pixels in common. (ii)
If the connected component comprises pixels that do
not overlap with text-area in the ground truth, their
number should not exceed θmax. The threshold θmin

is chosen as 90% of the total pixels in the skeleton,
and the threshold θmax is either half of the maximum
thickness of connected components in the image or five,
whichever is lower, as suggested by Clavelli et al. [54].
Each connected component in the output image is
classified into one of the following categories.

– whole (w). If the connected component overlaps with
one skeleton of the ground truth, and both criteria
are satisfied.

– background (b). If the connected component does not
overlap with any of the skeletons of the ground truth.

– fraction (f). If the connected component overlaps
with one skeletons of the ground truth, and only cri-
teria (ii) is satisfied.

– multiple (m). If the connected component overlaps
with many skeletons of the ground truth, and only
criteria (i) is satisfied.

– fraction and multiple (fm). If the connected com-
ponent overlaps with many skeletons of the ground
truth, and only criteria (ii) is satisfied.

– mixed (mi). If the connected component overlaps
with many skeletons of the ground truth, and nei-
ther criteria (i) nor criteria (ii) is satisfied.

The number of connected components in the above
categories is normalized by the number of ground truth
connected components for every image to obtain scores
(denoted by w, b, f , m, fm, mi). Then the mean val-
ues of these scores over the entire dataset can be used
to compare binarization methods. Higher values (maxi-
mum = 1) for w, whereas lower values (minimum = 0)
for all the other categories are desired. Further, to rep-
resent atom-level performance with a single measure, we
compute:

atom-score =
1

1
w
+ b+ f +m+ fm+mi

. (15)

The atom-score is computed for each image, and the
mean over all the images in the dataset is reported. The
desired mean atom-score for a binarization method is 1,
denoting an ideal binarization output.

OCR-level evaluation. We use two well-known
off-the-shelf OCRs: Tesseract [23] and ABBYY fine
Reader 8.0 [60]. Tesseract is an open source OCR
whereas ABBYY fine Reader 8.0 is a commercial OCR
product. We report word recognition accuracy which
is defined as the number of correctly recognized words
normalized by the total number of words in the dataset.
Following the ICDAR competition protocols [61], we
do not perform any edit distance based correction with

4 Skeleton, also known as morphological skeleton, is a me-
dial axis representation of a binary image computed with
morphological operators [59].

Fig. 5. The pixel-level f-score on the subset of ICDAR 2003
training images, used as validation set, at each iteration of
graph cut.

lexicons, and report case-sensitive word recognition
accuracy.

7 Experimental Analysis

Given a color or grayscale image containing text, our goal
is to binarize it such that the pixels corresponding to text
and non-text are assigned labels 0 and 1 respectively. In
this section, we perform a comprehensive evaluation of
the proposed binarization scheme on the datasets pre-
sented in Section 6. We compare our method with clas-
sical as well as modern top-performing text binarization
approaches with all the performance measures defined in
Section 6.1.

7.1 Implementation details

We use publicly available implementations of sev-
eral binarization techniques for comparison. Global
thresholding methods Otsu [17] and Kittler [16] are
parameter-independent. For local thresholding methods
Niblack [19] and Sauvola [20], we choose the parameters
by cross-validating on the ICDAR validation set. For
more recent methods like [5,9,18,37] we use the original
implementations provided by the authors.5 For the
methods proposed in [5, 9, 37], we use the parameter
settings suggested by the corresponding authors. The
method in [18] is originally designed for full scene
images, and uses heuristics on candidate character
bounding boxes. We modify these heuristics, i.e., the
maximum allowed height for a character candidate
bounding box is changed from 80% of image height to
99% of image height, thereby adapting the method for
cropped word images.

Polarity check. Most of the binarization meth-
ods in the literature produce white text on black
background for images with light text on dark back-
ground. Since ground truth typically contains black text
on white ground, we perform an automatic polarity

5 We thank the authors for providing the implementation
of their methods.
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Fig. 6. Illustration of binarization results with different num-
ber of iterations of graph cut. Here, we show the original im-
age and the results with 1, 3, 5 and 8 iterations (from left to
right).

check before evaluating the method as follows. If the
average gray pixel value of the middle part of a given
word image is greater than the average gray pixel
value of boundary, then we assign reverse polarity, i.e.,
light text on dark background, to it, and invert the
corresponding output image before comparing it with
the ground truth. Note that our method produces black
text on white background irrespective of the polarity
of the word image, and hence does not require this
inversion.

It should be noted that handwritten images are al-
ways assumed as dark text on light background. Fur-
ther, we delay the polarity check till the end for full
scene images, and obtain the binary images correspond-
ing to both the polarities, i.e., the original image as well
as the image where 180◦ is subtracted from the original
gradient orientations. We compute standard deviation
of stroke width in both these binary images, and choose
the one with lower standard deviation as the final binary
image.

We now provide empirical evidence for the choice of
parameters, such as, number of iterations, the GMM
initialization method, the number of GMMs and weights
λ1 and λ2 in our method.

Number of iterations. We refine the initial strokes
and color cues obtained by our unsupervised automatic
initialization scheme. This is performed using iterative
graph cuts. To illustrate the refinement of these two cues
over iterations, we studied the pixel-level f-score on the
validation set. This result is shown in Fig. 5. We observe
that the pixel-level f-score improves with iterations till
the seventh, and then remains unchanged. We also show
qualitative results over iterations of graph cut in Fig. 6.
We note that the iterative refinement using graph cut
helps in improving the pixel-level performance. Based
on this study, we fix number of iterations to 8 in all our
experiments.

GMM initialization. We initialize GMMs by
character-like strokes (see Section 5). However, these
GMMs can also be initialized using any binarization
method. To study its impact, we performed the following
experiment. We initialize foreground and background
GMMs from three of the best-performing binarization
methods in literature: Otsu [17], Wolf [21] and Howe [5],
and study the word recognition performance on the
validation set. We also studied the effect of user-assisted
initialization of foreground and background GMMs. We
refer to this as manual initialization (MI). In Fig. 7 we

Fig. 7. Impact of GMM initialization techniques. We show
the word recognition accuracy of Tesseract on the ICDAR
2003 validation set. Here, lighter (gray) bars show recognition
results after applying binarization techniques [5, 17, 21], and
darker (red) bars show recognition results of the proposed
iterative graph cut based method, with the corresponding
binarization techniques used as initialization for GMMs. We
also show recognition results when initialization is performed
from character-like strokes (char-like strokes) and manually
(MI).

show the word recognition performance of Tesseract on
the validation set in two settings: (i) when the above
binarization techniques are used, and the binary images
are fed to the OCR (lighter gray bars), (ii) when these
methods are used for GMM initialization, followed by
our iterative graph cut based scheme for binarization,
and then the output images are fed to the OCR (darker
red bars). We observe that our binarization method im-
proves the word recognition performance irrespective of
the initialization used. This is primarily due to the fact
that our method iteratively refines the initial seeds by
using color and stroke cues, improves the binarization,
and subsequently the recognition performance. Further,
the variant of our method using manual initialization
achieves a high recognition performance on this dataset.
This shows that the proposed technique can also prove
handy for user-assisted binarization as in [62,63].

Other parameters. We estimate the parameters
of our method, i.e., number of color and stroke GMMs
(c), and the relative weights between color and edginess
terms (λ1 and λ2), using grid search on the validation
set, and fix them for all our experiments. We vary
the number of color and stroke GMMs from 5 to 20
in steps of 5, and compute the validation accuracy
(pixel-level f-score). We observe only a small change (±
0.02) in f-score for different numbers of color and stroke
GMM. We fix the number of color and stroke GMMs as
5 in all our experiments. We use a similar strategy for
choosing λ1 and λ2, and vary these two parameters from
5 to 50 in steps of 5. We compute the pixel-level f-score
on the validation set for all these pairs, and choose the
one with the best performance, which results in 25 for
both λ1 and λ2.

Our method is implemented in C++, and it takes
about 0.8s on a cropped word image of size 60 × 180
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Table 2. Pixel-level binarization performance. We compare methods on mean precision, recall and f-score values. Here “Ours
(color)”, “Ours (stroke)” and “Ours (color+stroke)” refer to the proposed iterative graph cut, where only the color, only
the stroke, and the color+stroke terms are used respectively. “Ours (MI)” refers to our method with manual initialization of
GMMs, and serves as an upper bound.

Method
ICDAR 2003 ICDAR 2011-S Street View Text

precision recall f-score precision recall f -score precision recall f-score

Otsu [17] 0.86 0.90 0.87 0.87 0.91 0.88 0.64 0.83 0.70

Kittler [16] 0.75 0.89 0.78 0.79 0.89 0.80 0.55 0.81 0.62

Niblack [19] 0.68 0.87 0.74 0.75 0.86 0.79 0.52 0.78 0.60

Sauvola [20] 0.65 0.83 0.67 0.73 0.81 0.71 0.52 0.76 0.57

Wolf [21] 0.81 0.91 0.84 0.83 0.90 0.85 0.58 0.81 0.66

Kasar [18] 0.72 0.64 0.65 0.65 0.47 0.52 0.70 0.71 0.69

Milyaev [9] 0.71 0.69 0.63 0.72 0.73 0.65 0.52 0.66 0.51

Howe [5] 0.76 0.84 0.76 0.76 0.87 0.78 0.62 0.77 0.64

Bilateral [37] 0.84 0.85 0.83 0.89 0.87 0.87 0.64 0.79 0.68

Ours (color) 0.82 0.90 0.85 0.86 0.90 0.87 0.62 0.84 0.70

Ours (stroke) 0.78 0.83 0.79 0.80 0.83 0.80 0.63 0.72 0.65

Ours (color+stroke) 0.82 0.91 0.86 0.86 0.91 0.88 0.64 0.82 0.71

Ours (MI) 0.92 0.95 0.93 0.96 0.98 0.97 0.87 0.95 0.90

Table 3. Atom-level evaluation. We show the fractions of connected components classified as whole, background,mixed, fraction,
and multiple categories as well as the atom-score. Here “Ours (color)”, “Ours (stroke)” and “Ours (color+stroke)” refer to the
proposed iterative graph cut, where only the color, only the stroke, and the color+stroke terms are used respectively. “Ours
(MI)” refers to our method with manual initialization of GMMs, and serves as an upper bound.

Method
ICDAR 2003 ICDAR 2011-S Street View Text
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Otsu [17] 0.69 2.97 0.06 0.24 0.02 0.59 0.73 1.94 0.04 0.21 0.03 0.63 0.42 0.75 0.08 0.10 0.06 0.34

Niblack [19] 0.50 14.70 0.17 0.74 0.02 0.23 0.57 14.77 0.12 0.85 0.02 0.31 0.35 6.19 0.15 0.20 0.03 0.16

Sauvola [20] 0.37 4.72 0.16 0.44 0.01 0.25 0.44 5.07 0.11 0.63 0.02 0.31 0.26 2.93 0.11 0.33 0.02 0.17

Kittler [16] 0.59 1.34 0.07 0.19 0.04 0.45 0.65 1.05 0.04 0.16 0.04 0.52 0.30 0.59 0.09 0.12 0.05 0.23

Wolf [21] 0.67 3.77 0.08 0.32 0.02 0.56 0.68 1.97 0.06 0.22 0.03 0.58 0.37 1.05 0.12 0.12 0.06 0.28

Kasar [18] 0.51 1.65 0.06 0.34 0.01 0.43 0.38 1.59 0.07 0.33 0.00 0.31 0.49 3.19 0.08 0.26 0.03 0.41

Milyaev [9] 0.36 2.44 0.11 0.37 0.02 0.30 0.37 1.04 0.11 0.30 0.03 0.30 0.27 4.87 0.09 0.18 0.03 0.24

Howe [5] 0.52 0.34 0.11 0.18 0.02 0.46 0.55 0.26 0.10 0.11 0.03 0.50 0.38 13.38 0.09 0.12 0.04 0.32

Bilateral [37] 0.62 2.21 0.08 0.38 0.02 0.52 0.69 2.40 0.04 0.34 0.02 0.60 0.40 5.35 0.09 0.21 0.04 0.31

Ours (color) 0.67 0.58 0.06 0.17 0.03 0.60 0.71 0.38 0.03 0.17 0.03 0.65 0.41 0.75 0.08 0.08 0.07 0.34

Ours (stroke) 0.52 2.75 0.09 0.58 0.01 0.55 0.54 1.95 0.08 0.65 0.01 0.59 0.37 0.69 0.14 0.38 0.02 0.28

Ours (color+stroke) 0.68 0.49 0.06 0.15 0.03 0.62 0.74 0.50 0.04 0.13 0.03 0.67 0.40 0.33 0.08 0.07 0.07 0.34

Ours (MI) 0.77 0.20 0.02 0.13 0.03 0.72 0.86 0.26 0.01 0.09 0.02 0.80 0.64 0.17 0.03 0.09 0.07 0.60

pixels to produce the final result on a system with 2 GB
RAM and Intel R© CoreTM-2 Duo CPU with 2.93 GHz
processor system.

7.2 Quantitative Evaluation

Pixel-level evaluation. We show these results in
Table 2 as mean precision, recall and f-score on three



Mishra et al.: Unsupervised refinement of color and stroke features for text binarization 11

datasets. Values of these performance measures vary
from 0 to 1, and a high value is desired for a good
binarization method. We observe that our approach
with color only and color+stroke based terms achieves
reasonably high f-score on all the datasets. The classical
method [17] performs better at pixel-level than many
other works, and is comparable to ours on the ICDAR
2003 dataset, and poorer on the other two datasets.

Atom-level evaluation. Recall that in this eval-
uation each connected component in the output image
is classified as one of the following categories: whole,
background, fraction, multiple, mixed or fraction-
multiple (see Section 6.1). Evaluation according to these
categories is shown in Table 3. We do not show fraction-
multiple scores as they are insignificant for all the
binarization techniques. Further, we also evaluate
binarization methods based on the atom-score. An ideal
binarization method should achieve 1 for the atom-score
and the whole category, whereas 0 for all other cate-
gories. Note that these measures are considered more
reliable than pixel-level measures [9, 54].

We observe that our method with color only and
color+stroke based terms achieve the best atom-scores.
On ICDAR 2003 and ICDAR 2011 datasets, our method
is ranked first based on the atom-score, and improves by
3% and 4% respectively with respect to the next best
method [17]. On SVT our method is ranked second.
Other recent methods [5, 9, 37] perform well on a few
selected images, but fall short in comparison, when
tested on multiple datasets.

OCR-level evaluation. OCR results on the IC-
DAR 2003 and 2011 datasets are summarized in
Table 4. We observe that our method improves the
performance of OCRs by more than 10% on both these
datasets. For example, on the ICDAR 2003 dataset,
Tesseract [23] achieves word recognition accuracy of
47.93% without any binarization, whereas when our
binarization is applied on these images prior to recogni-
tion, the accuracy improves to 56.14%. Our binarization
method improves the OCR performance over Otsu by
about 5%. Note that all these results are based on
case-sensitive evaluation, and we do not perform any
edit distance based corrections. It should also be noted
that the aim of this work is to obtain clean binary
images, and evaluate binarization methods on this
performance measure. Hence, we dropped recent word
recognition methods which bypass binarization [64–67],
in this comparison.

7.3 Qualitative Evaluation

We compare our proposed approach with other binariza-
tion methods in Fig. 8. Sample images with uneven light-
ing, hardly distinguishable foreground/background col-
ors, noisy foreground colors, are shown in this figure.
We observe that our approach produces clearly read-
able binary images with less noise compared to [9, 37].
The global thresholding method [17] performs reason-

Table 4. Word recognition accuracy (in %): open vocabulary
setting. Results shown here are case sensitive, and without
minimum edit distance based correction. * No binarization
implies that color images are used directly to obtain the cor-
responding OCR result.

Method
ICDAR 2003 ICDAR 2011

Tesseract ABBYY Tesseract ABBYY

No binarization* 47.93 46.51 47.94 46.00

Otsu [17] 51.71 49.10 55.92 53.99

Kittler [16] 44.55 43.25 48.84 48.61

Sauvola [20] 19.73 17.60 26.24 26.32

Niblack [19] 15.59 14.45 22.20 21.27

Kasar [18] 33.78 32.75 12.95 12.11

Wolf [21] 46.52 44.90 50.04 48.78

Milyaev [9] 22.70 21.87 22.07 22.54

Howe [5] 42.88 41.50 43.99 41.04

Bilateral [37] 50.99 47.35 45.16 43.06

Ours (color) 52.25 49.81 59.97 55.00

Ours (stroke) 47.93 46.00 55.75 54.60

Ours (color+stroke) 56.14 52.97 62.57 58.11

ably well on some examples, but fails unpredictably in
cases of high variations in text intensities (e.g., rows 2-3,
7-10). Our method is successful even in such cases and
produces clean binary images.

7.4 Results on other types of text images

We also evaluate our binarization method on other types
of text images, such as, text in videos, born-digital, hand-
written text, and full scene images containing text.

For text in videos, we qualitatively evaluate binariza-
tion methods on the CVSI dataset [49]. A selection of
our results on this dataset are shown in Fig. 9. Despite
low-resolution, the performance of our method is encour-
aging on this dataset. Since our method uses generic text
features like color and stroke, which are independent of
language, it generalizes to multiple languages as shown
in the figure.

We report results on the BDI dataset in Table 5. Our
method performs reasonably well, but is inferior to [17]
as it suffers from oversmoothing due in part to the ex-
tremely low resolution of images in this dataset. This
limitation is discussed further in Section 8.

We evaluate on handwritten images of H-DIBCO
2012 [11] and H-DIBCO 2014 [12], and compare the re-
sults with other methods for this task. Quantitative re-
sults on these datasets are summarized in Table 8. We
observe that our proposed method outperforms modern
and classical binarization methods, and is comparable
to the H-DIBCO 2012 competition winner [5]. On H-
DIBCO 2014, our method is marginally inferior to the
winning method. Moreover, we achieve noticeable im-
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Image Otsu [17] Wolf [21] Kasar [18] Milyaev [9] Bilateral [37] Howe [5] Ours

Fig. 8. Comparison of binarization results. From left to right: input image, Otsu [17], Wolf and Doerman [21], Kasar et al. [18],
Milyaev et al. [9], bilateral regression [37], Howe [5] and our method (Ours), which uses color and stroke cues. Other classical
techniques [16,19,20] show poor performance on these images.

Fig. 9. Results on the CVSI dataset. We show results on images (left to right) with Devanagari, Telugu, Oriya and Gujarati
scripts. Since our method does not use any language-specific information, it is applicable to this dataset, containing English,
Arabic, and eight Indian scripts.

provement by adding the stroke-based term on these
datasets, highlighting their importance for handwritten
images. We show qualitative results for a couple of ex-
amples in Fig. 10. We observe that despite color bleeding
and high variations in pixel intensities and strokes, our
method produces a clean binary result. The significance
of stroke based term is also highlighted for these exam-
ples.

Binarization of natural scene images containing text
is a challenging problem. It was considered as one of
the challenges in the ICDAR 2013 competitions [22].
Our original work [8] was designed for cropped word im-
ages. We now modify our automatic seeding strategy (cf.
Section 5) to suit full scene images as well. We evalu-

ate our method on ICDAR 2013, and compare it with
the top-performing methods from the competition for
the text segmentation task, as shown in Table 6. We
compare with the winner method, as well as the first
three runner-ups of the competition. Our method with
color and stroke terms performs well on this dataset, and
stands third in this competition, being marginally infe-
rior to the winner, and comparable to the first runner-up
method.

7.5 Comparison with other energy formulations

Energy functions for the binarization task can also
be formulated with connected components (CC) or
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Table 5. Results on the BDI dataset.

Method precision recall f-score

Otsu [17] 0.77 0.92 0.83

Kittler [16] 0.57 0.88 0.63

Sauvola [20] 0.54 0.94 0.75

Niblack [19] 0.59 0.94 0.71

Kasar [18] 0.55 0.65 0.58

Milyaev [9] 0.48 0.68 0.61

Howe [5] 0.43 0.93 0.52

Bilateral [37] 0.75 0.86 0.79

Ours (color) 0.67 0.88 0.74

Ours (stroke) 0.65 0.80 0.72

Ours (color + stroke) 0.70 0.90 0.80

Table 6. Results on the ICDAR 2013 text segmentation
challenge. We compare our method with the top-performing
methods in the competition [22].

Method precision recall f-score

The winner (USTB-FuSTAR) 87.21 78.84 82.81

1st runner-up (I2R-NUS) 87.95 73.88 80.31

2nd runner-up (I2R-NUS-FAR) 82.56 73.67 77.86

3rd runner-up (OCTYMIST) 81.82 70.42 75.69

Ours (color) 77.65 71.82 74.89

Ours (stroke) 72.33 68.23 70.45

Ours (color + stroke) 81.00 77.72 79.89

maximally stable extremal regions (MSER) as nodes in
the corresponding graph.

Connected component labeling with CRF.
We first obtain connected components by thresholding
the scene text image using Niblack binarization [19] with
the parameter setting in [31]. We then learn an SVM on
the ICDAR 2003 training set to classify each component
as text or non-text region. Each connected component
is represented by its normalized width, normalized
height, aspect ratio, shape difference, occupy ratio,
compactness, contour gradient and average run-length
as in [31]. We then define an energy function composed
of a unary term for every CC (computed from the
SVM text/non-text classification score), and a pairwise
term between two neighboring CCs (truncated sum
of squares of the following features: centroid distance,
color difference, scale ratio and shape difference). Once
the energy function is formulated, we construct a graph
representing it, and perform graph cut to label the CCs.

MSER labeling with CRF. We replace the first step
of the method described for connected components with
MSER, thus defining a graph on MSER nodes, and pose
the task as an MSER labeling problem.

Table 7. Comparison with variants, where connected compo-
nents (CC) and MSER are labeled directly with CRF, instead
of labeling our binary segments.

Method precision recall f-score

CC labeling 0.73 0.63 0.65

MSER labeling 0.76 0.82 0.79

Ours (color+stroke) 0.82 0.91 0.86

Table 8. Pixel-level f-score on handwritten images from H-
DIBCO 2012 and H-DIBCO 2014.

Method H-DIBCO 2012 H-DIBCO 2014

Otsu [17] 0.75 0.89

Kittler [16] 0.71 0.73

Sauvola [20] 0.14 0.18

Niblack [19] 0.19 0.25

Kasar [18] 0.74 0.78

Wolf [21] 0.78 0.82

Milyaev [9] 0.84 0.92

H-DIBCO 2012 winner [5] 0.89 0.96

H-DIBCO 2014 winner - 0.97

Ours (Color) 0.84 0.91

Ours (Stroke) 0.78 0.85

Ours (Color+Stroke) 0.90 0.95

Comparison of our method (color+stroke) with these
two approaches is shown in Table 7 on the ICDAR 2003
test set. We observe that our method outperforms these
two variants whose performance relies extensively on the
initialization used. Moreover, extending these two ap-
proaches to diverse datasets, such as, handwritten text,
text in videos, is not trivial, due to their demand of large
pixel-level annotated training sets. On the contrary, our
method assigns binary labels to pixels in an unsupervised
manner, without the need for such expensive annotation.

8 Summary

In this work we proposed a novel binarization technique,
and evaluated it on state-of-the-art datasets. Many
existing methods have restricted their focus to small
datasets containing only a few images [5, 8, 9, 37].
They show impressive performance on them, but this
does not necessarily generalize to the large and varied
datasets we consider in this paper. Our method per-
forms consistently well on all the datasets, as we do
not make assumptions specific to images. We compare
recognition results on public ICDAR benchmarks,
where the utility of our work is even more evident.
The proposed method integrated with an open source
OCR [23] outperforms other binarization techniques
(see Table 4). Additionally, on a dataset of video text
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(a) Input image (b) Our result: only color (c) Our result: color+stroke

Fig. 10. Results on sample images from the H-DIBCO 2012 dataset. (a) Input image, and results of our binarization technique:
(b) with only color based term, (c) with color and stroke based terms. We observe that the color+stroke based term shows
significant improvement over the color only term.

images of multiple scripts, our results are promising, and
on two benchmark datasets of handwritten images we
achieve results comparable to the state of the art [5,12].

Comparison with other energy minimization
based methods. Some other binarization techniques
in the literature are based on an energy minimization
framework [5, 9, 21, 28, 29]. Our method falls in this cat-
egory, but differs significantly in the energy formulation
and the minimization technique used. We compare our
method empirically with [5, 9, 21] in Tables 2, 3 and 4.
Two other energy minimization based methods [28, 29]
were dropped for experimental comparison as their
implementation was not available when this paper was
written. Our method outperforms these approaches.
The robustness of our method can be attributed to the
proposed iterative graph cut based algorithm, which
minimizes an energy function composed of color and
stroke based terms.

There have been attempts to solve the natural image
segmentation problem using unsupervised iterative
graph cut based methods. Jahangiri and Heesch [68]
have proposed a method for high contrast natural image
segmentation using active contours for initializing the
foreground region. In [69,70] authors use clustering tech-
niques to initialize foreground regions. Our method falls
in this category of unsupervised image segmentation,
but differs significantly from these approaches in the
initialization scheme, and uses text specific information,
i.e., character-like strokes, to initialize the foreground
regions.

Further improvements. Oversmoothing is one
of the limitations of our method, and is pronounced in
the case of low resolution images where inter-character
gaps and holes within characters like ‘o’, ‘a’ are only
a few pixels, i.e., three to four pixels. Such limitations
can be handled with techniques like cooperative graph
cuts [71]. Further, a noisy automatic initialization may
be hard to recover from. Improved initialization or

image enhancement techniques can be investigated in
future work.
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