
A soft nearest-neighbor framework for continual semi-supervised learning:
Supplementary Materials

A. Implementation details

Although our model shares most of the hyper-parameters
across different datasets, there are few differences, in values
chosen empirically, to adapt to different scenarios. NNCSL,
as well as PAWS [1] and CSL for ablation study, are trained
with 250 epochs per task for CIFAR-10 and CIFAR-100,
and 100 epochs for ImageNet-100. For CIFAR-10, the
learning rate is initialized as 0.08, warmed up to 0.4, and
reduced to 0.032 with the cosine scheduler. For CIFAR-
100, a similar variation of learning rate is set from 0.08 to
1.2 to 0.032, and for ImageNet-100, it is 0.3 to 1.2 to 0.064.
The color distortion ratio is set to 1 for ImageNet-100 and
0.5 for CIFAR-10 and CIFAR-100. The size of the mini-
batch for labeled data is set to 5 for CIFAR-10 and 3 for
CIFAR-100 and ImageNet-100. The size of the mini-batch
for unlabeled data is set to 256 for CIFAR-10 and CIFAR-
100 and 64 for ImageNet-100. These hyper-parameters are
mostly based on the suggested default values of PAWS,
and we empirically update them after testing with a mod-
erate set of values variant around the default ones, based on
the validation performance. However, We do not perform
hyper-parameter tuning on ImageNet-100: we first adopt
the hyper-parameters for ImageNet from PAWS and update
them with the same changes we apply on CIFAR-100.

For the continual learning setting, we initialize a unified
linear evaluation head where the number of outputs is the
total number of classes in the dataset. When a class is not
yet seen by the model, the corresponding output is masked.
To retain a copy of the previously trained model, we use the
deepcopy method from the copy package1

The copied model is in evaluation mode when training
the current model on the new classes.

We have included our source code as part of the sup-
plementary material. All the implementation details can be
found in the options files, for instance, random seeds, and
labeled samples on each dataset. We plan to open-source
our code upon acceptance of this submission.

1https://docs.python.org/3/library/copy.html

Method Dataset
Data Augmentation

Weak Strong

CCIC C10 72.8 69.4
CCIC C100 12.0 9.9

Table 1: Comparison of different data augmentation strate-
gies for CCIC on CIFAR-10 (denoted as C10 in the table)
and CIFAR-100 (denoted as C100 in the table).

Method Replay strategy Average Accuracy

NNCSL Labeled 76.7
NNCSL Labeled & Unlabeled 82.1
ORDisCo Labeled & GR 65.9

Table 2: Comparison of different strategies for the replay
buffer with 5-task CIFAR-10, using 3% of labeled data to
match the setting of [6].

B. Comparison of data augmentation

We note that the data augmentation of our proposed
framework is not the same as the one used in CCIC [2].
CCIC utilizes random cropping and horizontal flipping
(which we refer to as weak DA), whereas our proposed CSL
and NNCSL include color distortion as an additional oper-
ation for data augmentation (referred to as strong DA). To
verify the impact of this additional augmentation strategy,
we include color distortion in the data augmentation process
of CCIC and re-train it from scratch on CIFAR-10 (C10 in
the table) with 5 tasks, 5% labeled data and buffer size 5120,
and also on CIFAR-100 (C100 in the table) with 10 tasks,
0.8% labeled data and buffer size 5120. The results are re-
ported in Tab. 1. CCIC does not benefit from color distor-
tion on both datasets. We believe this is because CCIC does
not have the multiple-view consistency to be robust with re-
spect to strong data augmentation. Consequently, we chose
to report results using CCIC’s original (and more effective)
data augmentation.



Buffer size 0 8 16 50 500 5120

NNCSL 19.7 37.7 53.2 69.2 73.2 73.7

Table 3: CIFAR-10 average accuracy wrt memory buffer
sizes with 5 tasks, 0.8% of labeled data.

C. Replay strategies

ORDisCo [6] utilizes a generative replay (GR) strategy
to replay unlabeled data. Given that the generative model
brings a memory overhead that is not negligible, it is rea-
sonable to equip our method with a memory buffer for unla-
beled data for a fair comparison. Specifically, we use 5000
samples, which is equivalent to the size of the generative
model of ORDisCo. Tab. 2 shows that having access to the
previously seen unlabeled data can indeed improve the per-
formance of our method, and our NNCSL performs better
with a simple memory buffer than ORDisCo with a sophisti-
cated generative-replay strategy. This experiment confirms
the ability of our method to exploit unlabeled data.

D. Ablation study of the memory buffer

We present the ablation study of the memory buffer in
a table, as shown in Tab. 3, for better readability. The use
of a memory buffer is a common practice in CL and most
replay-based methods would fail if the buffer is removed.
For instance, we observe a drastic decrease in performance
(19.7% vs. 73.2%) when no replay buffer is allowed. In
addition, increasing the memory buffer leads to improve-
ments in performance with a certain upper bound. The per-
formance plateaus when the memory buffer is larger than
500 (500 vs. 5000) because the buffer size is larger than the
total number of labeled data in this case (i.e., 400 labeled
samples).

E. Ambiguity of two-stage methods in CL

We show in Fig. 1 how two-stage methods (pre-training
and then fine-tuning) can be adapted to a CL setting. For
instance, after training on Task 1, one has to choose the
model to be utilized in the subsequent tasks. The left path
reuses the pre-trained model. It ensures the generalizability
for learning each new task but results in additional memory
overhead, as the fine-tuned model has to be saved for test-
ing. In contrast, the right path reuses the fine-tuned model,
which leads to a unified model for all tasks. However, the
overfitting caused by the small labeled set is detrimental to
the generalizability of the model. We explicitly show such
loss in Fig.1 by associating the size of the fine-tuned model
with its generalizability. On the right path, the fine-tuned
model is shrinking due to the overfitting issue.

Time

T1

Fine-
tune Predict

T2 T2

T3 T3

Task 1

Task 2

Task 3

Pretrained
model

Fine-tuned
model

T1 Test data
for Task 1

Fine-tune 

Representation
learning

Predict

Predict Predict

Predict

Figure 1: The ambiguity of two-stage methods in CL. On
the right path, the shrinking size of the fine-tuned model
after each task shows the loss of generalizability.

F. Training analysis on ImageNet-100
It is interesting to see that PAWS diverges in this setting,

as is shown in the Tab. 3 of the main paper. Our analysis
reveals that the vanilla MEM loss strongly impacts repre-
sentation learning on unlabeled data and makes the learning
procedure highly unstable, as shown in Fig. 2. Although
we do not observe the same collapse of PAWS on CIFAR-
10 or CIFAR-100, recall that in Fig. 6 of the main pa-
per, the training accuracy of unlabeled data for PAWS is
strongly constrained on CIFAR-10. This means the repre-
sentation learning of PAWS is already vulnerable. As im-
ages of ImageNet-100 have a much larger resolution than
that of CIFAR-10, learning a robust feature from the input
of ImageNet-100 is significantly more difficult. In such a
complex case, the model easily diverges but can hardly re-
cover, we suspect that it is because the gradient is very noisy
(due to the negative impact of MEM loss) and small (due to
the partial supervision and indirect use of labeled data). To
verify this assumption, we observe that adding the linear
head slightly alleviates the divergence. However, it cannot
prevent the collapse from happening. This means that the
MEM loss is the main cause of the collapse and is indeed
detrimental to representation learning.

Nevertheless, we believe it may be possible to resolve
this collapse without changing the framework, i.e., PAWS.
For example, one can conduct careful, extensive hyper-
parameter tuning to find an optimal set of parameters that
can stabilize the learning. However, it is not realistic given
the scale of the dataset. Hence, we did not conduct such
experiments.

G. Impact of λNND

In Tab. 4, we report the performance of our NNCSL with
respect to different values of λNND on CIFAR-100, with 5
tasks, 1% of labeled data and buffer size 5120. λNND con-
trols the importance of the distillation branch with respect
to the PAWS loss. The higher the value, the stronger con-
straint the model receives to retain the previous knowledge.
λNND = 0 means no distillation, which reduces the model
back to CSL. We can clearly see that distillation helps the



0 250 500 750 1000
Epoch

0

20

40

Va
lid

at
io

n 
Ac

cu
ra

cy

(a) Validation accuracy of PAWS

0 250 500 750 1000
Epoch

0

20

40

Tr
ai

ni
ng

 A
cc

ur
ac

y

(b) Training accuracy for unlabeled data of PAWS

Figure 2: Learning curve of PAWS on ImageNet-100.

λNND 0 0.01 0.1 0.2 1

NNCSL 29.0 30.2 31.8 33.6 30.5

Table 4: Average Accuracy with different values of λNND.
These experiments are conducted on CIFAR-100 with 5
tasks, 1% of labeled data and buffer size 5120.

model perform better (e.g., λNND = 0 vs. λNND = 0.2)
and too much regularization from distillation can constraint
the model from learning new knowledge (e.g., λNND = 0.2
vs. λNND = 1).

H. Forward and backward transfer analysis
Forward transfer (FWT) and backward transfer (BWT)

are commonly used in continual learning literature [3, 4].
The former measures the capacity of the model to gener-
alize to future tasks, whereas the latter shows the capacity
of the model to retain the previously acquired knowledge.
Specifically, they are defined as follows. Let T again be
the total number of tasks for the continual learning stages,
we therefore can divide the test set into T segments, each
one representing one task. After each task t, the model is
evaluated with respect to all T test sets. Consequently, we
obtain a matrix R ∈ RT×T , where the element Ri,j is the
test performance on task j with the model on task i. We

use classification accuracy as our evaluation metrics. In ad-
dition, we define the random estimation as rj , which repre-
sents the test performance on task j using a model with only
random initialization. We can define the FWT and BWT as:

FWT =
1

T − 1

(
T∑

i=2

Ri−1,i − ri

)
. (1)

BWT =
1

T − 1

(
T−1∑
i=1

RT,i −Ri,i

)
. (2)

Similarly, we can define the average accuracy (ACC) as:

ACC =
1

T

(
T∑

i=1

RT,i

)
. (3)

It should be noticed that computing the backward transfer
for the first task or the forward transfer for the last task have
little utility and are excluded from Eq. 1 and Eq. 2.

We report the results in Tab. 5 a comparison of our pro-
posed components. Note that PAWS diverges in this setting,
leading to a low FWT. Instead, PAWS is better than CSL and
NNCSL if we look at BWT alone. It is simply because RT,i

and Ri,i are all low after the divergence, having not much
room for the model to forget. That is, a model cannot forget
if it does not learn anything first. This observation confirms
the limitation of BWT, as it only shows a relative difference
with respect to its own performance, i.e., Eq. 2. Thus, BWT
is more suitable to be an additional indicator when the aver-
age accuracy of the two methods is close to each other, e.g.,
NNCSL vs. CSL. Comparing NNCSL and CSL, we no-
tice that the NND helps slightly improve the BWT. What is
more interesting is that NND significantly improves FWT.
We believe it is because NND stabilizes the representation
learning, allowing the model to generalize better to future
tasks.

We also notice that the absolute value of BWT is high
for both NNCSL and CSL. We suggest that it is because
the first task suffers the most from forgetting, as it is trained
with a simple task and without any regularization of distilla-
tion, but it goes through all continual stages. To verify this
assumption, we compute the BWT without the first task:
−11.3 for NNCSL and −9.23 for CSL, which are signifi-
cantly improved from the BWT scores in Tab. 5.

I. Visualization of the features
We use t-SNE [5] to project the learned features into a

lower-dimensional space and visualize them to qualitatively
verify the effectiveness of our proposed method. We apply
t-SNE on the deep features hu = h(zu) of unlabeled data
and color them in the visualization with their ground-truth
label. Ideally, if the features are well learned, one can see



Method FWT ↑ BWT ↑
PAWS 1.1 -13.7
CSL 26.8 -18.25

NNCSL 31.7 -17.15

Table 5: Forward transfer (FWT) and backward transfer
(BWT) of PAWS, CSL and NNCSL in 20-task ImageNet-
100.

Figure 3: T-SNE visualization of deep features of 10 classes
of CIFAR-10, these experiments are conducted with 5 tasks.
Left: features from NNCSL after training on task 5, Right:
features from PAWS after training on task 5. Data points
are colored by their corresponding classes. A clear class
boundary after several tasks shows a robust representation
along the continual learning stages.

Figure 4: T-SNE visualization of deep features of the first 2
classes of CIFAR-10, these experiments are conducted with
5 tasks. Left: features from NNCSL after training on task
1, Middle: features from NNCSL after training on task 5,
Right: features from PAWS after training on task 5. Data
points are colored by their corresponding classes. It is clear
that PAWS suffers from a blurry class boundary after several
continual learning stages.

different clusters representing different classes in the visual-
ization. Specifically, we choose 5-task CIFAR-10 to ensure
a distinguishable class boundary.

The result is shown in Fig. 3. The figure on the left shows
the features of all 10 classes after task 5, using NNCSL.
Recall that CIFAR-10 is divided into 5 tasks. We can see
a clear separation of different classes in the visualization.
Fig. 3 Right shows the features of the same 10 classes af-
ter task 5 using PAWS. We can clearly see that the vanilla
MEM loss of PAWS causes a blurry class boundary as it
tried to scatter over all classes with partially available unla-

beled data.
To have a more detailed view on the feature space, we

select the first two classes as examples and visualize them
at different training stages using different methods. Fig. 4
confirms that PAWS leads to a blurry boundary and is prone
to severe forgetting due to this effect.

References
[1] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bo-

janowski, Armand Joulin, Nicolas Ballas, and Michael Rab-
bat. Semi-supervised learning of visual features by non-
parametrically predicting view assignments with support sam-
ples. In ICCV, 2021. 1

[2] Matteo Boschini, Pietro Buzzega, Lorenzo Bonicelli, Angelo
Porrello, and Simone Calderara. Continual semi-supervised
learning through contrastive interpolation consistency. Pattern
Recognition Letters, 162:9–14, 2022. 1

[3] David Lopez-Paz and Marc-Aurelio Ranzato. Gradient
episodic memory for continual learning. In NeurIPS, 2017.
3

[4] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl,
and Christoph H. Lampert. iCaRL: Incremental classifier and
representation learning. In CVPR, 2017. 3

[5] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008. 3

[6] Liyuan Wang, Kuo Yang, Chongxuan Li, Lanqing Hong,
Zhenguo Li, and Jun Zhu. Ordisco: Effective and efficient
usage of incremental unlabeled data for semi-supervised con-
tinual learning. In CVPR, 2021. 1, 2


