
MVA - Discrete Inference and Learning
Lecture 6

-
Classical Learning

Yuliya Tarabalka
Inria Sophia Antipolis-Méditerranée - TITANE team

Université Côte d’Azur - France

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 1 / 131

Introduction

Overview

1. Classification based on Features
Decision Boundary
Linear Decision Boundary
Non-linear Decision Boundary

2. Feature extraction
3. Machine Learning Methods

Support Vector Machine (SVM)
Multi-Layer Perceptron (MLP)
Random Forest (RF)

x1
1 A x +b1

1
1 1

1

A x +b1
2

1 1
2

A x +b1
3

1 1
3

x1
2

x1
3

A x +b2
1

2 2
1

A x +b2
2

2 2
2

y2
1

y2
2

x
1

x
2

θ
1

θ
2

θ
12

θ
7

θ
3

θ
8

θ
5

θ
10

θ
4

θ
6

θ
9

θ
11

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 2 / 131

Classification based on Features

Overview

1. Classification based on Features
Decision Boundary
Linear Decision Boundary
Non-linear Decision Boundary

2. Feature extraction
3. Machine Learning Methods

Support Vector Machine (SVM)
Multi-Layer Perceptron (MLP)
Random Forest (RF)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 3 / 131

Classification based on Features

Classical Learning

Features extract very basic, low
level information

We want very high level
information (e.g. class of
objects)

Classical Learning: Learn the
mapping between low level
features and high level
information

Feature
Extraction/Pooling

x1
1 A x +b1

1
1 1

1

A x +b1
2

1 1
2

A x +b1
3

1 1
3

x1
2

x1
3

A x +b2
1

2 2
1

A x +b2
2

2 2
2

y2
1

y2
2

MLP

RF

SVM

Disneyland

Area 51

Universal Studios

70%

50%

30%

10%

Result/
Classification

Input

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 4 / 131

Classification based on Features

Classical Learning

Machine Learning is a huge
(growing) field

Many different approaches for
modeling/parametrizing this
mapping!

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 5 / 131

Classification based on Features

Methods

Choice of method not always rational

Different pros/cons

Speed, memory, scalability of training data, ease of implementation,
ease of hyper parameter tuning, ...

First intuitive understanding of the problems, then identifying
methods

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 6 / 131

Classification based on Features Decision Boundary

Decision based on features

Toy example

Task: Classify fruits into either bananas or apples

Extracted Feature Vector

Hue (yellow to red)

Elongation (max extend over
min extend)

image by Darkone licensed under CC BY SA 2.0

image by Abhijit Tembhekar licensed under CC BY 2.0

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 7 / 131

https://commons.wikimedia.org/wiki/File:Bananen_Frucht.jpg
https://commons.wikimedia.org/wiki/User:Darkone
https://commons.wikimedia.org/wiki/Apples#/media/File:Red_Apple.jpg
http://www.flickr.com/people/24340456@N03

Classification based on Features Decision Boundary

Some training data

Feature space is just 2D

Datapoints can be plotted as a
scatter plot

Can we “learn”, which part of
the feature space is
bananas/apples?

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 8 / 131

Classification based on Features Decision Boundary

Some training data

Feature space is just 2D

Datapoints can be plotted as a
scatter plot

Can we “learn”, which part of
the feature space is
bananas/apples?

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 8 / 131

Classification based on Features Decision Boundary

Decision boundary

(Very) simple idea: Split the
feature space into two half
spaces

Hue

E
lo

n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 9 / 131

Classification based on Features Decision Boundary

Decision boundary

(Very) simple idea: Split the
feature space into two half
spaces

During application, classify data
based on this decision boundary

Hue

E
lo

n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 10 / 131

Classification based on Features Decision Boundary

Decision boundary

(Very) simple idea: Split the
feature space into two half
spaces

During application, classify data
based on this decision boundary

Hue

E
lo

n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
!

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 11 / 131

Classification based on Features Linear Decision Boundary

Perceptron

Perceptron

y = sign(wTx + b) (1)

y ∈ {−1, 1}: Predicted class

x ∈ R2: Feature vector

w ∈ R2: “Weight vector”
(needs to be learned)

b ∈ R: “Bias” (needs to be
learned)

-b/|w|

w

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 12 / 131

Classification based on Features Linear Decision Boundary

Linear Separability

What if no such line exists?

Quite often, problem not linearly
separable

Needs non-linear decision
boundary

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 13 / 131

Classification based on Features Non-linear Decision Boundary

Non-linear Decision Boundary

Decision boundaries of more
complex ML techniques usually
non-linear

Regions need not be connected

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 14 / 131

Classification based on Features Non-linear Decision Boundary

kNN

Very simple idea:
k-Nearest-Neighbors for
classification

For a sample find the k (e.g. 5)
closest data points in the
training dataset

Look at the labels of those
neighbors

Fast lookup through
trees/approximate methods

Needs to keep all training data
around

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 15 / 131

Classification based on Features Non-linear Decision Boundary

kNN

Very simple idea:
k-Nearest-Neighbors for
classification

For a sample find the k (e.g. 5)
closest data points in the
training dataset

Look at the labels of those
neighbors

Fast lookup through
trees/approximate methods

Needs to keep all training data
around

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 15 / 131

Classification based on Features Non-linear Decision Boundary

kNN

Very simple idea:
k-Nearest-Neighbors for
classification

For a sample find the k (e.g. 5)
closest data points in the
training dataset

Look at the labels of those
neighbors

Fast lookup through
trees/approximate methods

Needs to keep all training data
around

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 15 / 131

Classification based on Features Non-linear Decision Boundary

kNN

Very simple idea:
k-Nearest-Neighbors for
classification

For a sample find the k (e.g. 5)
closest data points in the
training dataset

Look at the labels of those
neighbors

Fast lookup through
trees/approximate methods

Needs to keep all training data
around

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 15 / 131

Classification based on Features Non-linear Decision Boundary

kNN Example - Simple

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 16 / 131

Classification based on Features Non-linear Decision Boundary

kNN Example - Simple - kNN K=1

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 17 / 131

Classification based on Features Non-linear Decision Boundary

kNN Example - Simple - kNN K=5

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 18 / 131

Classification based on Features Non-linear Decision Boundary

kNN Example - Simple - kNN K=25

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 19 / 131

Classification based on Features Non-linear Decision Boundary

kNN Example - Hard

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 20 / 131

Classification based on Features Non-linear Decision Boundary

kNN Example - Hard - kNN K=1

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 21 / 131

Classification based on Features Non-linear Decision Boundary

kNN Example - Hard - kNN K=5

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 22 / 131

Classification based on Features Non-linear Decision Boundary

kNN Example - Hard - kNN K=25

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 23 / 131

Classification based on Features Non-linear Decision Boundary

kNN Example

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 24 / 131

Classification based on Features Non-linear Decision Boundary

Model Complexity vs Overfitting

With sufficient model
complexity, it is often easy to
get ZERO training error

Generalization is what matters!

Test on data not used during
training

Disjoint train and test set
Non-overlapping samples if
spatial features are used
Semi-manual parameter
tuning (grid-search, etc.)
needs third independent data
set

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 25 / 131

Feature extraction

Why do we need feature extraction?

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 26 / 131

Feature extraction

Motivation

Main motivation: get out most of the data

For classification task: find a space
where samples from different classes
are well separable

Objectives:

Reduce computational load of the classifier

Increase data consistency

Incorporate different sources of information into a feature vector:
spectral, spatial, multisource, ...

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 27 / 131

Feature extraction

Motivation - Curse of dimensionality

Too few features do not allow to discriminate between classes

In the color image, both trees and a truck are green

As the dimensionality of the feature space increases, the classifier’s
performance increases until the optimal number of features is reached

Further increasing the dimensionality without increasing the number
of training samples yields a performance decrease

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 28 / 131

Feature extraction

Motivation - Curse of dimensionality

As the dimensionality increases:

The volume of the hypersphere tends to zero

A larger percentage of the training data resides in the corners of the
feature space

Distance measures start losing their effectiveness

Gaussian likelihoods become flat and heavy tailed distributions

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 29 / 131

Feature extraction

How to reduce data dimensions?

Principal component analysis

Convert a set of observations of possibly correlated variables into a set of
values of linearly uncorrelated variables, called principal components

Discriminant analysis

Find the best set of vectors which best separates the patterns

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 30 / 131

Feature extraction

Principal component analysis

Goal: represent data is a space that best describes the variation in a
sum-squared error sense

Projection onto eigenvectors that correspond to the first few largest
eigenvalues of the covariance matrix

d-dimensional data are represented in a lower-dimensional space

Reduces the space and time complexities

Intuitive introduction: http:

//www.youtube.com/watch?v=BfTMmoDFXyE&feature=related

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 31 / 131

http://www.youtube.com/watch?v=BfTMmoDFXyE&feature=related
http://www.youtube.com/watch?v=BfTMmoDFXyE&feature=related

Feature extraction

Principal component analysis

Step 1: Get some data

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 32 / 131

Feature extraction

Principal component analysis

Step 2: Subtract the mean

From each of the data dimensions (from x- and y -dimension)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 33 / 131

Feature extraction

Principal component analysis

Step 3: Calculate the covariance matrix

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 34 / 131

Feature extraction

Principal component analysis

Step 4: Calculate the unit eigenvectors and eigenvalues of the
covariance matrix

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 35 / 131

Feature extraction

Principal component analysis

The 1st eigenvector (principle component) shows how data in two
dimensions are related along the eigenvector line

The 2nd eigenvector shows that all the points are off to the side of
the main line by some amount

Eigenvectors are lines that characterize the data

The next steps: transforming the data so that it is expressed in terms
of these lines

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 36 / 131

Feature extraction

Principal component analysis

Step 5: Choose components and form a feature vector

Order eigenvectors by eigenvalues

This gives the components in order of significance
You can decide to ignore the components of lesser significance ⇒ final
data will have less dimensions (p < d)

Form a feature vector (matrix of vectors):

FeatureVector = (eig1 eig2 eig3)

For our example, two feature vectors are possible:

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 37 / 131

Feature extraction

Principal component analysis

Step 6: Derive the new dataset:

FinalData = FeatureVectorT × RowDataAdjust

where RowDataAdjust is the mean-adjusted data transposed

It will give us the original data solely in terms of the vectors we chose

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 38 / 131

Feature extraction

Principal component analysis

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 39 / 131

Feature extraction

Principal component analysis (PCA)

If only one eigenvector was kept,
the transformed data will have
only one dimension

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 40 / 131

Feature extraction

Example of PCA for hyperspectral image analysis

Principal component analysis in the spectral space

Principal components (PCs) 1-3 contain 97% of information from
original 103 channels

Color image PC1 PC2 PC3 PC4

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 41 / 131

Feature extraction

Principal component analysis

Projection onto eigenvectors that correspond to the first few largest
eigenvalues of the covariance matrix

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 42 / 131

Feature extraction

Discriminant analysis

PCA seeks directions that are efficient for representation
Unsupervised technique

Discriminant analysis seeks directions that are efficient for
discrimination

Supervised technique

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 43 / 131

Feature extraction

Discriminant analysis

Projection onto directions that can best separate data of different
classes

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 44 / 131

Feature extraction

Discriminant analysis

Theory of Fisher linear discriminant: http://www.csd.uwo.ca/

~olga/Courses//CS434a_541a//Lecture8.pdf

Project on line in the direction v which maximizes:

Main drawback: in most real-life cases, projection to even the best
line results in unseparable projected samples

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 45 / 131

http://www.csd.uwo.ca/~olga/Courses//CS434a_541a//Lecture8.pdf
http://www.csd.uwo.ca/~olga/Courses//CS434a_541a//Lecture8.pdf

Machine Learning Methods

Models

1. Classification based on Features
Decision Boundary
Linear Decision Boundary
Non-linear Decision Boundary

2. Feature extraction
3. Machine Learning Methods

Support Vector Machine (SVM)
Multi-Layer Perceptron (MLP)
Random Forest (RF)

x1
1 A x +b1

1
1 1

1

A x +b1
2

1 1
2

A x +b1
3

1 1
3

x1
2

x1
3

A x +b2
1

2 2
1

A x +b2
2

2 2
2

y2
1

y2
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 46 / 131

Machine Learning Methods Support Vector Machine (SVM)

Models

1. Classification based on Features
Decision Boundary
Linear Decision Boundary
Non-linear Decision Boundary

2. Feature extraction
3. Machine Learning Methods

Support Vector Machine (SVM)
Multi-Layer Perceptron (MLP)
Random Forest (RF)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 47 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

Reconsider the perceptron:

Perceptron

y = sign(wTx + b) (2)

x
1

x
2

x
1

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 48 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

Reconsider the perceptron:

Perceptron

y = sign(wTx + b) (2)

x
1

x
2

x
1H

1

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 49 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

Reconsider the perceptron:

Perceptron

y = sign(wTx + b) (2)

x
1

x
2

x
1H

1

H
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 50 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

Reconsider the perceptron:

Perceptron

y = sign(wTx + b) (2)

x
1

x
2

x
1H

1

H
2

H
3

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 51 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

Reconsider the perceptron:

Perceptron

y = sign(wTx + b) (2)

x
1

x
2

x
1H

1

H
2

H
3

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 52 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

Reconsider the perceptron:

Perceptron

y = sign(wTx + b) (2)

x
1

x
2

x
1H

1

H
2

H
3

H
4

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 53 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

Reconsider the perceptron:

Perceptron

y = sign(wTx + b) (2)

Don’t just pick any decision
boundary

Pick the one with the maximal
margin

Perceptron of maximal stability

x
1

x
2

x
1H

1

H
2

H
3

H
4

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 54 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

Reconsider the perceptron:

Perceptron

y = sign(wTx + b) (2)

Don’t just pick any decision
boundary

Pick the one with the maximal
margin

Perceptron of maximal stability

x
1

x
2

x
1H

1

H
2

H
3

H
4

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 55 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

Maximal margin equivalent to:
Minimize ||w ||2
subject to ŷi (w

Txi − b) ≥ 1

x
1

x
2

x
1H

1

H
2

H
3

H
4

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 56 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

Maximal margin equivalent to:
Minimize ||w||2
subject to ŷi (w

Txi − b) ≥ 1

Allow small errors (soft margin):
Minimize λ||w ||2 + 1

n

∑n
i=1 ξi

subject to ŷi (w
Txi − b) ≥ 1− ξi

(ξi ≥ 0)

x
1

x
2

x
1H

ξ
i

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 57 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

The Lagrangian dual gives:
Maximize

n∑
i=1

αi−
1

2

n∑
i=1

n∑
j=1

ŷiαi (xi ·xj)ŷjαj

subject to
∑n

i=1 αi ŷi = 0

Support vectors: xi if αi 6= 0

Classification: sign(wTx + b)
with w =

∑n
i=1 αi ŷixi

x
1

x
2

x
1H

ξ
i

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 58 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

The Lagrangian dual gives:
Maximize

n∑
i=1

αi−
1

2

n∑
i=1

n∑
j=1

ŷiαi (xi ·xj)ŷjαj

subject to
∑n

i=1 αi ŷi = 0

Support vectors: xi if αi 6= 0

Classification: sign(wTx + b)
with w =

∑n
i=1 αi ŷixi

What if xi not linear separable
at all?

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 59 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

The Lagrangian dual gives:
Maximize

n∑
i=1

αi−
1

2

n∑
i=1

n∑
j=1

ŷiαi (xi ·xj)ŷjαj

subject to
∑n

i=1 αi ŷi = 0

Support vectors: xi if αi 6= 0

Classification: sign(wTx + b)
with w =

∑n
i=1 αi ŷixi

What if xi not linear separable
at all?
→ Compute new features x 7→ φ(x)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 60 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

The Lagrangian dual gives:
Maximize

n∑
i=1

αi−
1

2

n∑
i=1

n∑
j=1

ŷiαi (φ(xi) · φ(xj))ŷjαj

subject to
∑n

i=1 αi ŷi = 0

Support vectors: xi if αi 6= 0

Classification: sign(wTφ(x) + b)
with w =

∑n
i=1 αi ŷiφ(xi)

What if xi not linear separable
at all?
→ Compute new features x 7→ φ(x)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 61 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM

The Lagrangian dual gives:
Maximize

n∑
i=1

αi−
1

2

n∑
i=1

n∑
j=1

ŷiαik(xi , xj)ŷjαj

subject to
∑n

i=1 αi ŷi = 0

Support vectors: xi if αi 6= 0

Classification:
sign(

∑n
i=1 αi ŷik(xi , x) + b)

What if xi not linear separable
at all?
→ Compute new features x 7→ φ(x)

Use k(xi , xj) = φ(xi) · φ(xj)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 62 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM Kernels

Multiple kernels exist

Linear k(xi , xj) = xi · xj
Polynomial k(xi , xj) = (xi · xj)d
RBF k(xi , xj) = exp(−γ||xi − xj)||2
Hyperbolic tangent k(xi , xj) = tanh(κ · xi · xj + c)

Linear kernel very fast and easy to train, but very simple

RBF kernel very powerful and most often used

Kernel can (should) be adapted to task and data
→ e.g. complex-valued kernels are possible [Moser and Serpico, 2014]

k(z, s) = <
[
exp

(
− 1

2σ2

∑d
r=1(zr − s∗r)2

)]
Kernels for different features can be fused into one common kernel

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 63 / 131

Machine Learning Methods Support Vector Machine (SVM)

SVM Conclusion

Kernels can be designed to different purposes

Hyperparameter tuning not easy
→ Usually grid search with cross validation

Slow for large amounts of data
→ Potentially results in many support vectors and thus scalar
products during prediction

(Usually) all data needs to be considered at once
→ No “streaming” of data

Designed for binary tasks
→ Extension to multi-class problems usually decreases performance
and increases computational load

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 64 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Models

1. Classification based on Features
Decision Boundary
Linear Decision Boundary
Non-linear Decision Boundary

2. Feature extraction
3. Machine Learning Methods

Support Vector Machine (SVM)
Multi-Layer Perceptron (MLP)
Random Forest (RF)

x1
1 A x +b1

1
1 1

1

A x +b1
2

1 1
2

A x +b1
3

1 1
3

x1
2

x1
3

A x +b2
1

2 2
1

A x +b2
2

2 2
2

y2
1

y2
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 65 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron

Feed forward neural network

Neural networks “inspired by
biology”

But work quite differently

Core idea: concatenate multiple
simple mappings to get one
powerful mapping

Multiple simple steps more
powerful than one complex step

Keep everything (mostly)
differentiable

Train by doing gradient descend
on classification error

x1
1 A x +b1

1
1 1

1

A x +b1
2

1 1
2

A x +b1
3

1 1
3

x1
2

x1
3

A1
1,1

A1
1,2

A1
1,3

b1
1

b1
2

b1
3

A x +b2
1

2 2
1

A x +b2
2

2 2
2

b2
1

b2
2

y2
1

y2
2

A2
1,1

A2
1,2

A2
1,3

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 66 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Building Blocks

Standard Layers:

Fully connected layer with...

... activation function

Special Layers (selection):

Dropout (for regularization)

Normalization (Improves training)

Softmax (Produces nice classification output)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 67 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Building Blocks

Standard Layers:

Fully connected layer with...

... activation function

Special Layers (selection):

Dropout (for regularization)

Normalization (Improves training)

Softmax (Produces nice classification output)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 67 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Fully Connected Layer

xn+1 = yn = f (An · xn + bn) (3)

xn: Layer input

yn = xn+1: Layer output

An: Weights

bn: Bias

f (·): Activation function

A x +bn
1

n n
1

A x +bn
2

n n
2

A x +bn
3

n n
3

An
1,1

An
1,2

An
1,3

bn
1

bn
2

bn
3

xn+1
1

xn+1
2

xn+1
3

xn
1

xn
2

xn
3

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 68 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Activation Functions

yn = f (An · xn + bn) (4)

Assume f (x) = x

Layer can assume any linear function (plus offset)

Stacked layers can’t improve that

Activation function must be non-linear

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 69 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Activation Functions

yn = f (An · xn + bn) (4)

Assume f (x) = x

Layer can assume any linear function (plus offset)

Stacked layers can’t improve that

Activation function must be non-linear

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 69 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Activation Functions

Typical choices:

ReLU

f (xi)i = max(xi , 0) (5)

Sigmoid / Logistic

f (xi)i =
1

1 + e−xi
(6)

TanH

f (xi)i = tanh(xi) =
exi − e−xi

exi + e−xi
(7)

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

relu

sigmoid

tanh

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 70 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Activation Functions

Typical choices:

ReLU

f (xi)i = max(xi , 0) (8)

ReLU (and variations of it)
today the most common choice

Better for deep networks

Derivative of activation
function = 1 (in positive
direction)
No saturation (in positive
direction)
Gradients propagate better

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

relu

sigmoid

tanh

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 71 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Training

How to find correct model parameters θ?

weight values
bias values
sometimes aux parameters

Setup/define energy function objective E (θ)

Derive analytic gradients ∂E(θ)
∂θ

Perform gradient descent ∆θ = −λ · ∂E(θ)
∂θ

Usually slightly more sophisticated, more later

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 72 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Training

How to find correct model parameters θ?

weight values
bias values
sometimes aux parameters

Setup/define energy function objective E (θ)

Derive analytic gradients ∂E(θ)
∂θ

Perform gradient descent ∆θ = −λ · ∂E(θ)
∂θ

Usually slightly more sophisticated, more later

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 72 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Training Objective

Empirical Risk Minimization (over N training samples)

E (θ) =
N∑
α

e(yL(xα︸︷︷︸
Training sample

,θ),

Known/Desired value/label of xα︷︸︸︷
ŷα) (9)

with, e.g.,:

e(ya, yb) =
∣∣∣ya − yb

∣∣∣2 (10)

Though bad for classification, see softmax layer later.

Energy function defines training loss

Gradient descent will try to minimize this

Usually not convex (as network not convex)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 73 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Backpropagation

How to compute ∂E(θ)
∂θ ?

MLP is concatenation of “simple” functions
yL(. . . y2(y1(x1,θ1),θ2), . . .θL)

Exploit chain rule

∂E (θ)

∂θ1
=
∂E (θ)

∂yL
· . . . · ∂y

3

∂y2︸︷︷︸
per layer output derivative

·∂y
2

∂y1
·

per layer parameter derivative︷︸︸︷
∂y1

∂θ1
(11)

Gradient computation happens in two passes:
Forward pass:

Feeds training data through network
Computes all yn and training loss

Backward pass:
Feeds error gradient backward through network
Computes all ∂E(θ)

∂yn and ∂E(θ)
∂θn

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 74 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Backpropagation

How to compute ∂E(θ)
∂θ ?

MLP is concatenation of “simple” functions
yL(. . . y2(y1(x1,θ1),θ2), . . .θL)

Exploit chain rule

∂E (θ)

∂θ1
=
∂E (θ)

∂yL
· . . . · ∂y

3

∂y2︸︷︷︸
per layer output derivative

·∂y
2

∂y1
·

per layer parameter derivative︷︸︸︷
∂y1

∂θ1
(11)

Gradient computation happens in two passes:
Forward pass:

Feeds training data through network
Computes all yn and training loss

Backward pass:
Feeds error gradient backward through network
Computes all ∂E(θ)

∂yn and ∂E(θ)
∂θn

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 74 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Backpropagation

How to compute ∂E(θ)
∂θ ?

MLP is concatenation of “simple” functions
yL(. . . y2(y1(x1,θ1),θ2), . . .θL)

Exploit chain rule

∂E (θ)

∂θ1
=
∂E (θ)

∂yL
· . . . · ∂y

3

∂y2︸︷︷︸
per layer output derivative

·∂y
2

∂y1
·

per layer parameter derivative︷︸︸︷
∂y1

∂θ1
(11)

Gradient computation happens in two passes:
Forward pass:

Feeds training data through network
Computes all yn and training loss

Backward pass:
Feeds error gradient backward through network
Computes all ∂E(θ)

∂yn and ∂E(θ)
∂θn

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 74 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Stochastic Gradient Descent

Exact gradient usually not needed or wanted

Just empirical average over N samples anyways

Stochastic Gradient Descent: Split into batches of M < N samples
and update weights after every batch

∆θ = −λ · ∂Ê (θ)

∂θ
=

∂

∂θ

M∑
α

e(yL(xα,θ), ŷα) (12)

Usually small batch sizes (eg. around 128) sufficient
Stepsize limited by curvature of energy function, not by precision of
gradient
Computation time increases with O(M), precision of gradient only with
O(
√
M)

Large batch sizes lead to sharp minimizers that don’t generalize
Further reading: [Keskar et al., 2016]

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 75 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Parameter Update Rule

∆θ = −λ · ∂Ê(θ)
∂θ most simple update rule

Momentum

Accumulate “momentum” over time
Pick up speed in the valley direction, average out noise

Adam [Kingma and Ba, 2014]/Adagrad/Adadelta [Zeiler, 2012]

Normalize based on average gradient variance in the past

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 76 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Parameter Initialization

How to initialize θ?

Random Gaussian

Xavier (and some variants) [Glorot and Bengio, 2010]

Draw weights randomly
Choose variance per layer depending on input/output size
Balance variance to keep signal/gradient variance constant

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 77 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Special Layers

Softmax

Normalization

Dropout

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 78 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Softmax

f (xi)i =
exp(xi)∑
j exp(xj)

(13)

Special (last) layer/activation
for classification

Creates vector that sums to one
(read probabilities), one element
per class

Usually together with a specific
optimization objective:
Cross-entropy loss

Comparing the predicted
probability mass distribution
to the ground truth one

A x +bn
1

n n
1

A x +bn
2

n n
2

A x +bn
3

n n
3

An
1,1

An
1,2

An
1,3

bn
1

bn
2

bn
3

xn
1

xn
2

xn
3

S
o
ftm

a
x

Urban

Field

Forest

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 79 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Dropout

[Srivastava et al., 2014]

During training, randomly disable neurons with probability p

During application, scale output with 1− p

Prevents co-adaptation

Fosters redundancy throughout the network

Reduces overfitting and improves generalization

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 80 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Normalization

Normalization can be important for learning

Neither signal (forward) nor gradients (backward) must
explode/shrink in magnitude

Input Normalization

Normalize input to have zero mean and unit stddev

Local Response Normalization (LRN) [Krizhevsky et al., 2012]

Special layer placed at strategic locations
Let strong activations inhibit activations of other neurons in same layer
Normalizes the otherwise unbounded output of ReLU

Batch Normalization [Ioffe and Szegedy, 2015]

Special layer placed at strategic locations
Normalize mean and variance of activations across training batch (or
accumulate running averages)
After learning, becomes fixed scale & offset

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 81 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Normalization

Normalization can be important for learning

Neither signal (forward) nor gradients (backward) must
explode/shrink in magnitude

Input Normalization

Normalize input to have zero mean and unit stddev

Local Response Normalization (LRN) [Krizhevsky et al., 2012]

Special layer placed at strategic locations
Let strong activations inhibit activations of other neurons in same layer
Normalizes the otherwise unbounded output of ReLU

Batch Normalization [Ioffe and Szegedy, 2015]

Special layer placed at strategic locations
Normalize mean and variance of activations across training batch (or
accumulate running averages)
After learning, becomes fixed scale & offset

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 81 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Normalization

Normalization can be important for learning

Neither signal (forward) nor gradients (backward) must
explode/shrink in magnitude

Input Normalization

Normalize input to have zero mean and unit stddev

Local Response Normalization (LRN) [Krizhevsky et al., 2012]

Special layer placed at strategic locations
Let strong activations inhibit activations of other neurons in same layer
Normalizes the otherwise unbounded output of ReLU

Batch Normalization [Ioffe and Szegedy, 2015]

Special layer placed at strategic locations
Normalize mean and variance of activations across training batch (or
accumulate running averages)
After learning, becomes fixed scale & offset

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 81 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Normalization

Normalization can be important for learning

Neither signal (forward) nor gradients (backward) must
explode/shrink in magnitude

Input Normalization

Normalize input to have zero mean and unit stddev

Local Response Normalization (LRN) [Krizhevsky et al., 2012]

Special layer placed at strategic locations
Let strong activations inhibit activations of other neurons in same layer
Normalizes the otherwise unbounded output of ReLU

Batch Normalization [Ioffe and Szegedy, 2015]

Special layer placed at strategic locations
Normalize mean and variance of activations across training batch (or
accumulate running averages)
After learning, becomes fixed scale & offset

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 81 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Handling Overfitting

Dropout

Weight regularization

Penalize large weight values
e.g., add λ · |θ|2 to optimization objective
Soft limit on model complexity

Data Augmentation

Randomly modify training data
Based on what kind of invariances you want to have

Resistance to noise: add noise
Resistance to brightness/contrast/hue changes: Change those
Translation/Rotation (ex. for images)
Can also be applied to data before extracting features!

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 82 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Handling Overfitting

Dropout

Weight regularization

Penalize large weight values
e.g., add λ · |θ|2 to optimization objective
Soft limit on model complexity

Data Augmentation

Randomly modify training data
Based on what kind of invariances you want to have

Resistance to noise: add noise
Resistance to brightness/contrast/hue changes: Change those
Translation/Rotation (ex. for images)
Can also be applied to data before extracting features!

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 82 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Handling Overfitting

Dropout

Weight regularization

Penalize large weight values
e.g., add λ · |θ|2 to optimization objective
Soft limit on model complexity

Data Augmentation

Randomly modify training data
Based on what kind of invariances you want to have

Resistance to noise: add noise
Resistance to brightness/contrast/hue changes: Change those
Translation/Rotation (ex. for images)
Can also be applied to data before extracting features!

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 82 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Increasing Depth

Recent trend goes towards deeper networks

Networks more powerful, but ...

... more difficult to train

Gradients collapse/explode/diffuse through the layers

This is the book to read: Deep Learning [Goodfellow et al., 2016]

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 83 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Complex-valued MLPs

MLPs provide a functional mapping f : X → Y
f needs to be differentiable (due to backprop)

Usually X ≡ Rd (or RN×M)

But: (e.g.) PolSAR images are CN×M

One solution: Compute real-valued features, then use standard MLP
→ Advantage: Usage of common MLPs and their extensions
→ Disadvantage: Dependency on feature extraction

Second solution: Use complex-valued MLP
→ Advantage: No dependency on feature extraction
→ Disadvantage: Math slightly more complicated

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 84 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Complex-valued MLPs

Gradient in R

f : R→ R, x 7→ f (x)

∂f

∂x
= f ′(x)

Gradient in C

f : C→ C, z 7→ f (z)

∂f

∂z
=

1

2

(
∂f

∂<z
− i

∂f

∂=z

)
∂f

∂z∗
=

1

2

(
∂f

∂<z
+ i

∂f

∂=z

)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 85 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Complex-valued MLPs

Activation in R

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

relu

sigmoid

tanh

Analytical and bounded
→ e.g. tanh, logistic function

(ReLU as exception)

Activation in C

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

const

Analytical and bounded?
→ only constant functions

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 86 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Complex-valued MLPs

Activation in R

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

relu

sigmoid

tanh

Analytical and bounded
→ e.g. tanh, logistic function

Activation in C

Analytical or bounded
→ e.g. tanh

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 87 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Complex-valued MLPs

Activation in R

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

relu

sigmoid

tanh

Analytical and bounded
→ e.g. tanh, logistic function

Activation in C

Analytical or bounded
→ e.g. split-tanh

f (z) = tanh(<(z)) + i tanh(=(z))

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 88 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

Complex-valued MLPs

PolSAR Data:
CN×M×3×3

Input: Local patches,
each pixel a Hermitan
matrix (local covariance
matrix of complex-valued
scattering vector)

Activation of few neurons
in first layer is shown.

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 89 / 131

Machine Learning Methods Multi-Layer Perceptron (MLP)

MLP Conclusion

Architecture design a bit of an art

Though some tips/tricks exist

Can ingest a lot of training data

Training/Application not fast

With modern tricks (ReLU, normalization, ...) scale surprisingly well

Up to very complex networks
Trained on lots of data

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 90 / 131

Machine Learning Methods Random Forest (RF)

Models

1. Classification based on Features
Decision Boundary
Linear Decision Boundary
Non-linear Decision Boundary

2. Feature extraction
3. Machine Learning Methods

Support Vector Machine (SVM)
Multi-Layer Perceptron (MLP)
Random Forest (RF)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 91 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Data samples x
Pixel information, image
patch, feature vector, etc.
Often x ∈ Rn

Classification:
⇒ Estimate class label

Training data: Values of target
variable given e.g. class label

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 92 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Task: Given training data,
estimate label of query sample

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 93 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Task: Given training data,
estimate label of query sample

kNN/Parzen Window:

Compute distance to all
samples

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 94 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Task: Given training data,
estimate label of query sample

kNN/Parzen Window:

Compute distance to all
samples
Select samples within window
of given size (Parzen)

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 95 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Task: Given training data,
estimate label of query sample

kNN/Parzen Window:

Compute distance to all
samples
Select samples within window
of given size (Parzen)
Use these samples to estimate
target variable, e.g. class label

Problem: Computationally
expensive (exhaustive search)

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 96 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 97 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 98 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 99 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells
Given a query, find relevant
cells

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 100 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells
Given a query, find relevant
cells

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 101 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells
Given a query, find relevant
cells
Perform exhaustive search in
these cells ONLY

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 102 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells
Given a query, find relevant
cells
Perform exhaustive search in
these cells ONLY

Exact search: Leads to
equivalent results

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 103 / 131

Machine Learning Methods Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells
Given a query, find relevant
cells
Perform exhaustive search in
these cells ONLY

Exact search: Leads to
equivalent results

Approximation: Use samples
within query cell directly

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 104 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 105 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction

x
1

x
2

θ
2

θ
1

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 106 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
→ Simple threshold operation
→ Different threshold
definitions (e.g. equi-sized cells,
threshold as data median) lead
to different search tree variants
(e.g. quad-tree, k-D tree).

x
1

x
2

θ
2

x1<θ1∧x2<θ2 x1>θ1∧x2<θ2

x1>θ1∧x2>θ2x1<θ1∧x2>θ2

θ
1

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 107 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
→ Simple threshold operation

Decision stump:

t(x) =

{
0 if x1 < θ1

1 otherwise.

x1<θ1 ?

1 0

x
1

x
2

θ
1

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 108 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
→ Simple threshold operation

Decision stump:

t(x) =

{
0 if x1 < θ1

1 otherwise.

x1<θ1 ?

x2<θ2? x2<θ2?

1 0

1 0 1 0

x
1

x
2

θ
1

θ
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 109 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
→ Simple threshold operation

Decision stump:

t(x) =

{
0 if x1 < θ1

1 otherwise.

x1<θ1 ?

x2<θ2? x2<θ3?

1 0

1 0 1 0

x
1

x
2

θ
1

θ
2

θ
3

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 110 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
→ Simple threshold operation

Decision stump:

t(x) =

{
0 if x1 < θ1

1 otherwise.

When to stop? Minimal
resolution reached, purity, ...

How to select split points?
Randomly, optimized selection

x
1

x
2

θ
1

θ
2

θ
3

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 111 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

θ
3

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

θ
3

θ
4

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

θ
3

θ
5

θ
4

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

θ
3

θ
5

θ
4

θ
6

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

θ
7

θ
3

θ
5

θ
4

θ
6

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

θ
7

θ
3

θ
8

θ
5

θ
4

θ
6

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

θ
7

θ
3

θ
8

θ
5

θ
4

θ
6

θ
9

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

θ
7

θ
3

θ
8

θ
5

θ
10

θ
4

θ
6

θ
9

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

θ
7

θ
3

θ
8

θ
5

θ
10

θ
4

θ
6

θ
9

θ
11

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

x
1

x
2

θ
1

θ
2

θ
12

θ
7

θ
3

θ
8

θ
5

θ
10

θ
4

θ
6

θ
9

θ
11

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 112 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Local estimate of the target
variable (e.g. class posterior) is
assigned to cells

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 113 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Local estimate of the target
variable (e.g. class posterior) is
assigned to cells

Results in highly non-linear, even
non-connected (but piece-wise
constant) decision boundaries

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 114 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Other node tests are possible:

Axis-aligned:

t(x) =

{
0 if x1 < θ1

1 otherwise.

t(x) =

{
0 if θ1 < x1 < θ2

1 otherwise.

x
1

x
2

θ
1

x
1

x
2

θ
2

θ
1

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 115 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Other node tests are possible:

Axis-aligned

Linear:
x̃ = [x, 1] ∈ Rd+1, ψ ∈ Rd+1

t(x) =

{
0 if ψT x̃ < θ1

1 otherwise.

t(x) =

{
0 if θ1 < ψT x̃ < θ2

1 otherwise.

x
1

x
2

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 116 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Other node tests are possible:

Axis-aligned

Linear

Conic section:

x̃ = [x, 1] ∈ Rd+1, ψ ∈ R(d+1)×(d+1)

t(x) =

{
0 if x̃Tψx̃ < θ1

1 otherwise.

t(x) =

{
0 if θ1 < x̃Tψx̃ < θ2

1 otherwise.

x
1

x
2

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 117 / 131

Machine Learning Methods Random Forest (RF)

From Search Trees to (Random) Decision Trees

Other node tests are possible:

Axis-aligned

Linear

Conic section

Other data spaces than Rd

PolSAR: C3,C3×3

Image patches: Rn×n

Non-scalar features, e.g.
histograms, cardinal features
such as pre-classification
...

Spoiler alert
Part 3: ML and Images

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 118 / 131

Machine Learning Methods Random Forest (RF)

From (Random) Decision Trees to Random Forests

Advantages

Can deal with very heterogeneous data
→ Different, data-specific types of node tests

Not prone to the curse of dimensionality
→ Each node only works on a very limited set of dimensions

Very efficient
→ Each sample passes maximal H nodes (H = maximal height)

Easy to implement
→ Binary trees are one of the most basic data structures

Easy to interprete
→ Path through tree is a connected set of decision rules

Well understood
→ Theoretical and practical implications of design decisions have
been researched for more than 4 decades

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 119 / 131

Machine Learning Methods Random Forest (RF)

From (Random) Decision Trees to Random Forests

Disadvantages

Optimized by greedy algorithms
→ A chain of individually optimal decisions, might not lead to an
overall optimum

The optimal solution (i.e. decision boundary) might not be part of
the model class (e.g. piece-wise linear and axis-aligned functions)

Prone to overfitting

Model capacity depends on amount of data
→ Few samples lead to small trees: Only few questions can be asked.
→ Many samples (might) lead to very high trees: Long processing
times, large memory footprint.

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 120 / 131

Machine Learning Methods Random Forest (RF)

From (Random) Decision Trees to Random Forests

Disadvantages

Optimized by greedy algorithms
→ A chain of individually optimal decisions, might not lead to an
overall optimum

The optimal solution (i.e. decision boundary) might not be part of
the model class (e.g. piece-wise linear and axis-aligned functions)

Prone to overfitting

Model capacity depends on amount of data
→ Few samples lead to small trees: Only few questions can be asked.
→ Many samples (might) lead to very high trees: Long processing
times, large memory footprint.

How to
→ keep (most) of the advantages

→ getting rid of (most) disadvantages?

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 121 / 131

Machine Learning Methods Random Forest (RF)

From (Random) Decision Trees to Random Forests

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 122 / 131

Machine Learning Methods Random Forest (RF)

From (Random) Decision Trees to Random Forests

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 123 / 131

Machine Learning Methods Random Forest (RF)

From (Random) Decision Trees to Random Forests

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 124 / 131

Machine Learning Methods Random Forest (RF)

From (Random) Decision Trees to Random Forests

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 125 / 131

Machine Learning Methods Random Forest (RF)

Random Forests

Many (suboptimal) baselearners, i.e. decision trees

Fusion of the individual output

Minimization of the risk to use wrong model

Extension of the model space

Decreased dependence on initialization

One name to rule them all

Bagged Decision Trees
Randomized Trees
Decision Forests
ERT, PERT, Rotation Forests, Hough Forests, Semantic Texton
Forests, ...

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 126 / 131

Machine Learning Methods Random Forest (RF)

Random Forests - Randomization through node tests

Before: t(x) =

{
0 if x1 < θ1

1 otherwise.
Now: More general

→ Concatenation of several functions with different tasks

tτ : D→ {0, 1} τ ∈ T ≡ Parameter set

tτ = ξ ◦ ψ ◦ φ
φ : D→ Rn ≡ Implicit feature extraction

e.g. x ∈ Rn : φ : Rn → R2, x 7→ (xi , xj)
T

ψ : Rn → R ≡ Feature fusion

e.g. φ(x) ∈ R2 : ψ : R2 → R, φ(x) 7→ [ψi , ψj] · φ(x)

ξ : R→ {0, 1} ≡ Child node assignment

e.g. thresholding

Decision trees perform exhaustive search for optimal parameters τ in T
Random Forests use random subset T̃ (Note: |T̃| = 1 possible)

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 127 / 131

Machine Learning Methods Random Forest (RF)

Random Forests - Randomization through Bagging

Given: Training set D ⊂ D with |D| = N samples.
Bagging (Bootstrap aggregating):
1. Randomly sample M data sets Dm with replacement (|Dm| = N).
2. Train M models where m-th model has only access to m-th dataset.
3. Average all models.

Meta learning technique

Works if small change in input data leads to large model variation

Reduces variance (of final model), avoids overfitting.

Leads to diverse decision trees, even if all other parameters are fixed

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 128 / 131

Machine Learning Methods Random Forest (RF)

Random Forests - Key questions

What kind of node tests?
→ For images, for other data spaces than Rn

How to select node tests?
→ How to measure good tests?

What kind of target variables?
→ More than a single class label?

How to limit model capacity (tree height, tree number)?
→ The more the better? What about overfitting?

How to fuse tree decisions?
→ Whom to trust?

How to interprete results?
→ Tree properties and visualization.

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 129 / 131

Machine Learning Methods Random Forest (RF)

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia,
Italy, May 13-15, 2010, pages 249–256.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. (2016).
On large-batch training for deep learning: Generalization gap and sharp minima. CoRR,
abs/1609.04836.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc.

Moser, G. and Serpico, S. B. (2014). Kernel-based classification in complex-valued
feature spaces for polarimetric sar data. In 2014 IEEE Geoscience and Remote Sensing
Symposium, pages 1257–1260.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701.

I

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 130 / 131

http://www.deeplearningbook.org

Machine Learning Methods Random Forest (RF)

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia,
Italy, May 13-15, 2010, pages 249–256.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. (2016).
On large-batch training for deep learning: Generalization gap and sharp minima. CoRR,
abs/1609.04836.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc.

Moser, G. and Serpico, S. B. (2014). Kernel-based classification in complex-valued
feature spaces for polarimetric sar data. In 2014 IEEE Geoscience and Remote Sensing
Symposium, pages 1257–1260.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701.

II

Y. Tarabalka Lecture 6: Classical Learning 27 Nov 2017 131 / 131

http://www.deeplearningbook.org

	Classification based on Features
	Decision Boundary
	Linear Decision Boundary
	Non-linear Decision Boundary

	Feature extraction
	Machine Learning Methods
	Support Vector Machine (SVM)
	Multi-Layer Perceptron (MLP)
	Random Forest (RF)

