Graphical Models and Variational Inference

Demian Wassermann, Inria
Graphical Models: Discrete Inference and Learning

Introduction to DAG and their relationship with Probability Functions (Pearl)

BURGLARY?

[Kong et al 2019]

Introduction to DAG and their relationship with Probability Functions (Pearl)

U : is a Dirichlet or "clustering variable" Z : is a "Topic"
W : is an observed "Word" [Blei et al 2003]

[^0]| "Arts" | "Budgets" | "Children" | "Education" |
| :--- | :--- | :--- | :--- |
| NEW | MILLION | CHILDREN | SCHOOL |
| FILM | TAX | WOMEN | STUDENTS |
| SHOW | PROGRAM | PEOPLE | SCHOOLS |
| MUSIC | BUDGET | CHILD | EDUCATION |
| MOVIE | BILLION | YEARS | TEACHERS |
| PLAY | FEDERAL | FAMILIES | HIGH |
| MUSICAL | YEAR | WORK | PUBLIC |
| BEST | SPENDING | PARENTS | TEACHER |
| ACTOR | NEW | SAYS | BENNETT |
| FIRST | STATE | FAMILY | MANIGAT |
| YORK | PLAN | WELFARE | NAMPHY |
| OPERA | MONEY | MEN | STATE |
| THEATER | PROGRAMS | PERCENT | PRESIDENT |
| ACTRESS | GOVERNMENT | CARE | ELEMENTARY |
| LOVE | CONGRESS | LIFE | HAITI |

Introduction to DAG and their relationship with Probability Functions (Pearl)

U : is a Dirichlet or "clustering variable" Z : is a "Topic"
W: is an observed "Word" [Blei et al 2003]

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

[^1]Each "box" or template represents a set of i.i.d. random variables with the same distribution

Introduction to DAG and their relationship with Probability Functions (Pearl)

$$
\begin{aligned}
& U_{j} \sim \operatorname{Dirichlett}(\alpha), \alpha<1 \\
& Z_{i, j} \sim \operatorname{Multinomial}\left(U_{j}\right) \subset \\
& W_{i, j} \sim \operatorname{Multinomial}\left(\gamma_{Z_{i, j}}\right)
\end{aligned}
$$

Then, we are looking for the posterior $P(U, Z \mid \widehat{W}, \alpha, \gamma)=\frac{P(U, Z, W \mid \underline{\alpha, \gamma})}{P(W \mid \alpha, \gamma)}$

$$
P(U, Z, W \mid \alpha, \gamma)=\Pi_{j} \int_{4} P\left(U_{j} \mid \alpha\right)\left(\prod_{Z_{i, j}} P\left(Z_{i, j} \mid U_{j}\right) P\left(W_{i, j} \mid Z_{i, j} \gamma\right) d d U_{j}\right)
$$

Introduction to DAG and their relationship with Probability Functions (Pearl)

$$
\begin{aligned}
& U_{j} \sim \operatorname{Dirichlet}(\alpha), \alpha<1 \\
& Z_{i, j} \sim \operatorname{Multinomial}\left(U_{j}\right) \\
& W_{i, j} \sim \operatorname{Multinomial}\left(\gamma_{Z_{i, j}}\right)
\end{aligned}
$$

Solu

Then, we are looking for the posterior $P(U, Z \mid W, \alpha, \gamma)=\frac{P(U, Z, W \mid \alpha, \gamma)}{P(W \mid \alpha, \gamma)}$

$$
P(U, Z, W \mid \alpha, \gamma)=\Pi_{j} \int P\left(U_{j} \mid \alpha\right)\left(\Pi_{i} \sum_{Z_{i, j}} P\left(Z_{i, j} \mid U_{j}\right) P\left(W_{i, j} \mid Z_{i, j}, \gamma\right)\right) d U_{j}
$$

Introduction to DAG and their relationship with Probability Functions (Pearl)

$$
\begin{aligned}
& U_{j} \sim \operatorname{Dirichlet}(\alpha), \alpha<1 \\
& Z_{i, j} \sim \operatorname{Multinomial}\left(U_{j}\right) \\
& W_{i, j} \sim \operatorname{Multinomial}\left(\gamma_{Z_{i, j}}\right)
\end{aligned}
$$

Then, we are looking for the posterior $P(U, Z \mid W, \alpha, \gamma)=\frac{P(U, Z, W \mid \alpha, \gamma)}{P(W \mid \alpha, \gamma)}$

$$
\begin{array}{l}\text { No analytical solution } \\ P(U, Z, W \mid \alpha, \gamma)=\Pi_{j} \int P\left(U_{j} \mid \alpha\right)\left(\Pi_{i} \sum_{Z_{i, j}} P\left(Z_{i, j} \mid U_{j}\right) P\left(W_{i, j} \mid Z_{i, j}, \gamma\right)\right) d U_{j}\end{array}
$$

Relationship between a Directed Graphical Model and its Probability Law (Pearl and Paz 1985)

In general, for a graphical model Graphical Model with vertices V and edges E

$$
G M=(V, E), P(V)=\Pi_{v \in V} P(v \mid P a(v)), P a(v)=\left\{v^{\prime}: v^{\prime} \rightarrow(v \in E\}\right.
$$

Relationship between a Directed Graphical Model and its Probability Law (Pearl and Paz 1985)

Relationship between a Directed Graphical Model and its Probability Law (Pearl and Paz 1985)

-P($\left.W_{1}, \ldots, W_{l}, Z_{1}, \ldots, Z_{l}, U_{1} \ldots, U_{J}, \alpha, \gamma\right)=\Pi_{j} \Pi_{i} P\left(W_{i} \mid Z_{i}, \gamma\right) P\left(Z_{i} \mid U_{j}\right) P\left(U_{j} \mid \alpha\right)$
However, our usual problem is: given observed variables O and latent variables L , to

$$
\begin{aligned}
& \text { compute the posterior } P(L \mid O) \\
& P(L \mid O)=\frac{\Pi_{v \in V} P(\underline{\nu} \mid P a(v))}{\Pi_{o} P(O \mid P a(o))}, G M=(V=L \cup O, E), \nexists l \in L: o \rightarrow l \in E
\end{aligned}
$$

Relationship between a Directed Graphical Model and its Probability Law (Pearl and Paz 1985)

$$
P(L \mid O)=\frac{\Pi_{v \in V} P(v \mid P a(v))}{\Pi_{o} P(o \mid P a(o))}, G M=(V=L \cup O, E), \nexists l \in L: o \rightarrow l \in E
$$

In the case of continuous variables this is

$$
\begin{equation*}
P(L \mid O)=\frac{P(L, O)}{\int P(L, O) d O}= \tag{Li}
\end{equation*}
$$

Relationship between a Directed Graphical Model and its Probability Law (Pearl and Paz 1985)

$$
P(L \mid O)=\frac{\prod_{v \in V} P(v \mid P a(v))}{\prod_{o} P(o \mid P a(o))}, G M=(V=L \cup O, E), \nexists l \in L: o \rightarrow l \in E
$$

In the case of continuous variables this is

$$
P(L \mid O)=\frac{P(L, O)}{\int P(L, O) d O}
$$

Relationship between a Directed Graphical Model and its Probability Law (Pearl and Paz 1985)

$$
P(L \mid O)=\frac{\prod_{v \in V} P(v \mid P a(v))}{\Pi_{o} P(o \mid P a(b))}, G M=(V=L \cup O, E), \nexists l \in L: o \rightarrow l \in E
$$

Can we approximate $P(L \mid O)$?

$$
Q(L) \simeq P(L \mid O)=\frac{P(L, O)}{\int P(L, O) d O}
$$

Approximations to Density Laws

Can we approximate $P(L \mid O)$?

$$
Q(L) \simeq P(L \mid O)=\frac{P(L, O)}{\int P(L, O) d O}
$$

- First try: MacLaurin $Q(L)=\sum P(L=l \mid O)+P^{\prime}(L=l \mid O)(l-L)+\ldots$ problem: how to guarantee that $Q(L)$ is a probability law?
- Second try: cumulant approximations (changing the random L by X)

$$
\left.\phi(t)=\log \mathbb{E}_{X \sim Q(X)}[\exp (t X)]=\sum_{n} \kappa_{n} \frac{t^{n}}{n!}=\kappa_{1} t\right)+\kappa_{2} \frac{t^{2}}{2!}+\ldots=\mu t+\sigma^{2} \frac{t^{2}}{2!}+\ldots
$$

Approximations to Density Laws

Can we approximate $P(L \mid O) ? \quad Q(L) \simeq P(L \mid O)=\frac{P(L, O)}{\int P(L, O) d O}$

- First try: MacLaurin $Q(L)=\sum P(L=l \mid O)+P^{\prime}(L=l \mid O)(l-L)+\ldots$ problem: how to guarantee that $Q(L)$ is a probability law?
- Second try: cumulant approximations (changing the random L by X)

$$
\phi(t)=\log \mathbb{E}_{X \sim Q(X)}[\exp (t X)]=\sum_{n} \kappa_{n} \frac{t^{n}}{n!}=\kappa_{1} t+\kappa_{2} \frac{t^{2}}{2!}+\ldots=\mu t+\sigma^{2} \frac{t^{2}}{2!}+\ldots
$$

- However, a probability law has either up to two moments, or an infinite number (Cramèr 1938)

Approximations to Density Laws

Can we approximate $P(L \mid O)$?

$$
Q(L) \simeq P(L \mid O)=\frac{P(L, O)}{\int P(L, O) d O}
$$

- Other options: Edgesworth, approximations which come from this identity

$$
\phi(t)=\log \mathbb{E}_{X}[\exp (i t X)]=\sum_{n} \kappa_{n} \frac{(i t)^{n}}{n!},
$$

$$
\psi(t)=\log \mathbb{E}_{X}[\exp (i t X)]=\sum_{n}^{n} \gamma_{n} \frac{(i t)^{n}}{n!}
$$

$$
\hat{\phi}(t)=\sum_{n}\left(\kappa_{n}-\gamma_{n}\right) \frac{(i t)^{n}}{n!}+\log \psi(t)
$$

however, they are not guaranteed to be probability laws for finite samples.

Approximations to Density Laws

Can we approximate $P(L \mid O)$?

$$
Q(L) \simeq P(L \mid O)=\frac{P(L, O)}{\int P(L, O) d O}
$$

- So? What do we do?
- We choose an approximate distribution $Q_{\theta}(X)$-replacing L by X and O by Z for notation - from a given family, with parameters θ. Then

$$
Q^{*}=Q_{\theta^{*}}: \theta^{*}=\arg \min _{\theta} D\left(Q_{\theta}(X), P(X \mid Z)\right)
$$

so we need to define the right similarity measurement D to compare distributions. And in standard Variational Inference $(\mathrm{VI}), \mathrm{Z}$ is notation for O

Approximations to Den aws

Can we approximate $P(L \mid O)$?

$$
Q(L) \simeq P(L \mid O)
$$

- So? What do we do?
- We choose an approximate distribution $Q_{\theta}(X)$-replacing L by X an by Z for notation - from a given family, with parameters θ. Then

$$
Q^{*}=Q_{\theta^{*}}: \theta^{*}=\arg \min _{\theta} D\left(Q_{\theta}(X), P(X \mid Z)\right)
$$

so we need to define the right similarity measurement D to compare distributions. And in standard Variational Inference (VI), Z is notation for O

So Which D and Q Should We Choose? $Q^{*}=Q_{\theta^{*}}: \theta^{*}=\arg \min D\left(Q_{\theta}(X), P(X \mid Z)\right)$ θ

X the latent variables and Z the observations
Let's start with "analytical" ideas:
$. D\left(Q_{\theta}(X), P(X \mid Z)\right)=\int\left(Q_{\theta}(x)-P(x \mid Z)\right)^{2} d x$
-What does it mean for two distributions to be close in the L_{2} sense?
-How easy is to obtain bounds and closed form solutions?
$\cdot Q_{\theta}(X): X \sim \mathcal{N}(\mu, \Sigma), \theta=(\mu, \Sigma):$ This is called the Laplace approximation

- Even simpler $\Sigma=\sigma^{2}$ Id, which boils down to $Q_{\mu}(X)=\Pi_{i} Q_{\mu_{i}}\left(X_{i}\right)$

So Which D and Q Should We Choose?
 $$
Q^{*}=Q_{\theta^{*}}: \theta^{*}=\arg \min D\left(Q_{\theta}(X), P(X \mid Z)\right)
$$

X the latent variables and Z the observations
More Information theoretic
$D_{K L}\left(Q_{\theta}(X), P(X \mid Z)\right)=\mathbb{E}_{X \sim Q_{\theta}}\left[-\log \frac{P(X \mid Z)}{Q_{\theta}(X)}\right]=-\int d Q_{\theta}(x) \log \frac{P(x \mid Z)}{Q_{\theta}(x)}$
-The Kullback-Leibler divergence is based on information theory
-Known formulations for common cases
-Mean field $Q_{\theta=\mu}(X)=\Pi_{i} Q_{\mu_{i}}\left(X_{i}\right)$

A Case for Mean Field KL-based VI

Mean Field Theory for Sigmoid Belief Networks

Lawrence K. Saul

Tommi Jaakkola
Michael I. Jordan
Center for Biological and Computational Learning
Massachusetts Institute of Technology
79 Amherst Street, E10-243
Cambridge, MA 02139

LKSAUL@psyche.mit.EdU TOMMI@psyche.mit.ED JORDAN@PSYCHE.MIT.EDU

Abstract

We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability dis tribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition-the classification of handwritten digits.

Figure 7: Binary images of handwritten digits: two and five.

So Which D and Q Should We Choose?
 $Q^{*}=Q_{\theta^{*}}: \theta^{*}=\arg \min _{\theta} D\left(Q_{\theta}(X), P(X \mid Z)\right)$

X the latent variables and Z the observations

A second order information-theoretic model
$D_{K L}\left(Q_{\theta}(X), P(X \mid Z)\right)=\mathbb{E}_{X \sim Q_{\theta}}\left[-\log \frac{P(X \mid Z)}{Q_{\theta}(X)}\right]=-\int d Q_{\theta}(x) \log \frac{P(x \mid Z)}{Q_{\theta}(x)}$

- $Q_{\theta}(X): X \sim \mathcal{N}(\mu, \Sigma), \theta=(\mu, \Sigma):$ This is called the Laplace approximation

But Laplace is Better
 Submitted 00/00; Published 00/00

Variational Inference in Nonconjugate Models

Chong Wang

Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA, 15213, USA

David M. Blei
Department of Computer Science
Princeton University
Princeton, NJ, 08540, USA

CHONGW@CS.CMU.EDU

Draw coefficients $\theta \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)$
2. For each data point n and its covariates t_{n}, draw its class label from

$$
z_{n} \mid \theta, t_{n} \sim \operatorname{Bernoulli}\left(\sigma\left(\theta^{\top} t_{n}\right)^{z_{n, 1}} \sigma\left(-\theta^{\top} t_{n}\right)^{z_{n, 2}}\right)
$$

	Yeast		Scene	
	Accuracy	Log Likelihood	Accuracy	Log Likelihood
Jaakkola and Jordan (1996)	79.7%	-0.678	87.4%	-0.670
Laplace inference	$\mathbf{8 0 . 1 \%}$	$\mathbf{- 0 . 4 4 9}$	$\mathbf{8 9 . 4 \%}$	$\mathbf{- 0 . 2 5 9}$

So Which D and Q Should We Choose? $Q^{*}=Q_{\theta^{*}}: \theta^{*}=\arg \min _{\theta} D\left(Q_{\theta}(X), P(X \mid Z)\right)$

X the latent variables and Z the observations
A second order information-theoretic model
$D_{K L}\left(Q_{\theta}(X), P(X \mid Z)\right)=\mathbb{E}_{X \sim Q_{\theta}}\left[-\log \frac{P(X \mid Z)}{Q_{\theta}(X)}\right]=-\int d Q_{\theta}(x) \log \frac{P(x \mid Z)}{Q_{\theta}(x)}$

- $Q_{\theta}(X): X \sim \mathcal{N}(\mu, \Sigma), \theta=(\mu, \Sigma):$ This is called the Laplace approximation

So Which D Should We Choose? Finding Bounds

$D_{K L}\left(Q_{\theta}(X), P(X \mid Z)\right)=\mathbb{E}_{X \sim Q_{\theta}}\left[-\log \frac{P(X \mid Z)}{Q_{\theta}(X)}\right]=-\int d Q_{\theta}(x) \log \frac{P(x \mid Z)}{Q_{\theta}(x)}$
But our graphical model is more adapted to sample from $P(X, Z)$ than from $P(X \mid Z)$.

Then, can we find a way to efficiently minimise $D_{K L}\left(Q_{\theta}(X), \frac{P(X, Z)}{P(Z))}\right)$ when, in general, we don't know the probability of "evidence" $P(Z)$?

Let's see in the next slide....

So Which D Should We Choose? Finding Bounds

$D_{K L}\left(Q_{\theta}(X), P(X \mid Z)\right)=\mathbb{E}_{X \sim Q_{\theta}}\left[-\log \frac{P(X \mid Z)}{Q_{\theta}(X)}\right]=-\int d Q_{\theta}(x) \log \frac{P(x \mid Z)}{Q_{\theta}(x)}$
And we know that
$\log P(Z)=\log \int d x P(x, Z)=\log \int \frac{d Q_{\theta}(x) P(x, Z)}{Q_{\theta}(x)}=\log \mathbb{E}_{X \sim Q_{\theta}}\left[\frac{P(X, Z)}{Q_{\theta}(X)}\right]$
with Z being the observed data (O before) and X our latent variables (L)
then, $P(Z)=\log \mathbb{E}_{X \sim Q_{\theta}}\left[\frac{P(X, Z)}{Q_{\theta}(X)}\right] \geq E_{X \sim Q_{\theta}}\left[\frac{P(X, Z)}{Q_{\theta}(X)}\right] \triangleq \mathscr{L}(\theta)$
$\min _{\theta} D_{K L}\left(Q_{\theta}(X), P(X \mid Z)\right)=\log P(Z)-\max _{\theta} \mathscr{L}(\theta)$
Hence, it is enough to maximise the Evidence Lower Bound (ELBO): $\mathscr{L}(\theta)$

So Which D and Q Should We Choose?
 $Q^{*}=Q_{\theta^{*}}: \theta^{*}=\arg \min _{\theta} D\left(Q_{\theta}(X), P(X \mid Z)\right)$

X the latent variables and Z the observations

A simplified second order information-theoretic model
$\theta=\arg \max _{\theta} \mathscr{L}(\theta)=\mathbb{E}_{X \sim Q_{\theta}}\left[\log \frac{P(X, Z)}{Q_{\theta}(X)}\right]$

- $Q_{\theta}(X): X \sim \mathcal{N}(\mu, \Sigma), \theta=(\mu, \Sigma)$: This is called the Laplace approximation

But Laplace is Better (they use ELBO)

Variational Inference in Nonconjugate Models

Chong Wang

Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA, 15213, USA

David M. Ble

Department of Computer Science
Princeton University
Princeton, NJ, 08540, USA

CHONGW@ CS.CMU.EDU

BLEI@CS.PRINCETON.EDU

1. Draw coefficients $\theta \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)$.
2. For each data point n and its covariates t_{n}, draw its class label from

$$
z_{n} \mid \theta, t_{n} \sim \operatorname{Bernoulli}\left(\sigma\left(\theta^{\top} t_{n}\right)^{z_{n, 1}} \sigma\left(-\theta^{\top} t_{n}\right)^{z_{n, 2}}\right)
$$

	Yeast		Scene	
	Accuracy	Log Likelihood	Accuracy	Log Likelihood
Jaakkola and Jordan (1996)	79.7%	-0.678	87.4%	-0.670
Laplace inference	$\mathbf{8 0 . 1 \%}$	$\mathbf{- 0 . 4 4 9}$	$\mathbf{8 9 . 4 \%}$	$\mathbf{- 0 . 2 5 9}$

More General Q_{θ}

$Q^{*}=Q_{\theta^{*}}: \theta^{*}=\arg \min _{\theta} D\left(Q_{\theta}(X), P(X \mid Z)\right)$
X the latent variables and Z the observations
-Gaussian Processes: A measure over continuous functions where any discrete sample of the domain follows a Gaussian law.
$P(f(x)):\left(f\left(x_{1}\right), \ldots, f\left(x_{N}\right)\right) \sim N\left(\mu_{x_{1}, \ldots, x_{N}}, \Sigma_{x_{1}, \ldots, x_{N}}\right)$
-Support Transformations: $Q_{\theta}(X) \triangleq \phi_{\theta}(X)$
$X \sim \mathcal{N}(\mu, \Sigma), \phi_{\theta}$ a parametric mass-preserving diffeomorphism

More General Q_{θ} $Q^{*}=Q_{\theta^{*}}: \theta^{*}=\arg \min _{\theta} D\left(Q_{\theta}(X), P(X \mid Z)\right)$

X the latent variables and Z the observations
. Support Transformations: $Q_{\theta}(X) \triangleq N_{\mu, \Sigma}\left(\phi_{\theta}(X)\right)\left|J_{\phi_{\theta}}(X)\right|$ $X \sim \mathcal{N}(\mu, \Sigma), \phi_{\theta}$ a parametric mass-preserving diffeomorphism

[Kucukelbir etal 17]

$$
\begin{gathered}
\text { More General } Q_{Q^{*}=Q_{\theta^{*}}: \theta^{*}=\arg \min D\left(Q_{\theta}(X), P(X \mid Z)\right)}
\end{gathered}
$$

X the latent variables and Z the observations
. Support Transformations: $Q_{\theta}(X) \triangleq N_{\mu, \Sigma}\left(\phi_{\theta}(X)\right)\left|J_{\phi_{\theta}}(X)\right|$ $\phi_{\theta}(X) \sim \mathcal{N}(\mu, \Sigma), \phi_{\theta}$ a stochastic flow or learnable diffeomorphism

Current Problems in VI

- Scalability
Query 1: $P(B \mid C)=P(C \mid B) P(B) / P(C)$
Query 2: $P(A \mid C)=\sum_{B} P(A \mid B) P(B \mid C)$
- Amortization [Gershman et al 2014]

Amortisation, reused probability in blue

- Preservation of dependencies
- Auto-regressive models

Figure 1: A Bayesian network modeling brightness constancy in visual perception, a possible inver factorization, and two of the local joint distributions that determine the inverse conditionals.

Other Modern Bayesian Techniques

- Variational AutoEncoders
- Likelihood-free Inference

$$
\begin{aligned}
& \theta=\arg \max _{\theta} \mathscr{L}(\theta)=\mathbb{E}_{X \sim Q_{\theta}}\left[\log \frac{P(X, Z)}{Q_{\theta}(X)}\right] \quad V A E: Z \sim N(\mu(X), \Sigma(X)) \\
& \text { Likelihood } \\
& \text { Prior } \\
& P(Z \mid X)=\frac{P(X \mid Z) P(Z)}{P(X)} \\
& \text { Evidence }
\end{aligned}
$$

[^0]: The William Randolph Hearst Foundation will give $\$ 1.25$ million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be $\$ 200,000$ for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $\$ 400,000$ each. The Juilliard School, where music and the performing arts are taught, will get $\$ 250,000$. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $\$ 100,000$ donation, too.

[^1]: The William Randolph Hearst Foundation will give $\$ 1.25$ million to Lincoln Center, Metropoli\tan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be $\$ 200,000$ for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $\$ 400,000$ each. The Juilliard School, where music and the performing arts are taught, will get $\$ 250,000$. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

