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Introduction to DAG and their relationship with 
Probability Functions (Pearl)
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Introduction to DAG and their relationship with 
Probability Functions (Pearl)

Latent Dirichelt Allocation

U: is a Dirichlet or “clustering variable”


Z: is a “Topic”

W: is an observed “Word”


[Blei et al 2003]
Each “box” or template represents a set of i.i.d. 

random variables with the same distribution 3



Introduction to DAG and their relationship with 
Probability Functions (Pearl)

Latent Dirichelt Allocation

U: is a Dirichlet or “clustering variable”


Z: is a “Topic”

W: is an observed “Word”


[Blei et al 2003]
Each “box” or template represents a set of i.i.d. 

random variables with the same distribution

The greyed nodes, represent 
observations
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Introduction to DAG and their relationship with 
Probability Functions (Pearl)

 



Uj ∼ Dirichlet(α), α < 1
Zi,j ∼ Multinomial(Uj)
Wi,j ∼ Multinomial (γZi,j)

P(U, Z, W |α, γ) = Πj ∫ P(Uj |α) Πi ∑
Zi,j

P(Zi,j |Uj)P(Wi,j |Zi,j, γ) dUj

Then, we are looking for the posterior P(U, Z |W, α, γ) =
P(U, Z, W |α, γ)

P(W |α, γ)
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No analytical solution
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Relationship between a Directed Graphical Model and 
its Probability Law (Pearl and Paz 1985)

P(W1, …, WI, Z1, …, ZI, U1…, UJ, α, γ) = ΠjΠiP(Wi |Zi, γ)P(Zi |Uj)P(Uj |α)

GM = (V, E), P(V) = Πv∈VP(v |Pa(v)), Pa(v) = {v′ : v′ → v ∈ E}

In general, for a graphical model Graphical Model with vertices V and edges E
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Relationship between a Directed Graphical Model and 
its Probability Law (Pearl and Paz 1985)

Here, the report and the sound are independent, given 
that we know if there was an earthquake: 
They are conditionally independent

P(R, S |E) = P(R |E)P(S |E) iif I(R, S, E)
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Relationship between a Directed Graphical Model and 
its Probability Law (Pearl and Paz 1985)

P(W1, …, WI, Z1, …, ZI, U1…, UJ, α, γ) = ΠjΠiP(Wi |Zi, γ)P(Zi |Uj)P(Uj |α)

P(L |O) =
Πv∈VP(v |Pa(v))
ΠoP(o |Pa(o))

, GM = (V = L ∪ O, E), /∃l ∈ L : o → l ∈ E

However, our usual problem is: given observed variables O and latent variables L, to 
compute the posterior P(L |O)
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Relationship between a Directed Graphical Model and 
its Probability Law (Pearl and Paz 1985)

P(L |O) =
Πv∈VP(v |Pa(v))
ΠoP(o |Pa(o))

, GM = (V = L ∪ O, E), /∃l ∈ L : o → l ∈ E

P(L |O) =
P(L, O)

∫ P(L, O)dOIn the case of continuous variables this is 
8



No analytical solution, for the general case

Relationship between a Directed Graphical Model and 
its Probability Law (Pearl and Paz 1985)
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ΠoP(o |Pa(o))
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Relationship between a Directed Graphical Model and 
its Probability Law (Pearl and Paz 1985)

P(L |O) =
Πv∈VP(v |Pa(v))
ΠoP(o |Pa(o))

, GM = (V = L ∪ O, E), /∃l ∈ L : o → l ∈ E

Q(L) ≃ P(L |O) =
P(L, O)

∫ P(L, O)dOCan we approximate ?P(L |O)
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Approximations to Density Laws

• First try: MacLaurin  
problem: how to guarantee that   is a probability law?


• Second try: cumulant approximations (changing the random  by ) 

Q(L) = ∑ P(L = l |O) + P′ (L = l |O)(l − L) + …
Q(L)

L X

ϕ(t) = log 𝔼X∼Q(X)[exp(tX)] = ∑
n

κn
tn

n!
= κ1t + κ2

t2

2!
+ … = μt + σ2 t2

2!
+ …

Q(L) ≃ P(L |O) =
P(L, O)

∫ P(L, O)dOCan we approximate ?P(L |O)
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L X

ϕ(t) = log 𝔼X∼Q(X)[exp(tX)] = ∑
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κn
tn

n!
= κ1t + κ2

t2

2!
+ … = μt + σ2 t2

2!
+ …

Q(L) ≃ P(L |O) =
P(L, O)

∫ P(L, O)dOCan we approximate ?P(L |O)

• However, a probability law has either up to two moments, or an infinite number 
(Cramèr 1938) 
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Approximations to Density Laws

• Other options: Edgesworth, approximations which come from this identity

, 

 

 

however, they are not guaranteed to be probability laws for finite samples.

ϕ(t) = log 𝔼X[exp(itX)] = ∑
n

κn
(it)n

n!

ψ(t) = log 𝔼X[exp(itX)] = ∑
n

γn
(it)n

n!

̂ϕ(t) = ∑
n

(κn − γn)
(it)n

n!
+ log ψ(t)

Q(L) ≃ P(L |O) =
P(L, O)

∫ P(L, O)dOCan we approximate ?P(L |O)
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Approximations to Density Laws

• So? What do we do?


• We choose an approximate distribution  —replacing  by  and  
by  for notation— from a given family, with parameters . Then 
                      

so we need to define the right similarity measurement  to compare 
distributions. And in standard Variational Inference (VI),   is notation for 

Qθ(X) L X O
Z θ

Q* = Qθ* : θ* = arg min
θ

D(Qθ(X), P(X |Z))

D
Z O

Q(L) ≃ P(L |O) =
P(L, O)

∫ P(L, O)dOCan we approximate ?P(L |O)
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Approximations to Density Laws

• So? What do we do?


• We choose an approximate distribution  —replacing  by  and  
by  for notation— from a given family, with parameters . Then 
                      

so we need to define the right similarity measurement  to compare 
distributions. And in standard Variational Inference (VI),   is notation for 

Qθ(X) L X O
Z θ

Q* = Qθ* : θ* = arg min
θ

D(Qθ(X), P(X |Z))

D
Z O

Q(L) ≃ P(L |O) =
P(L, O)

∫ P(L, O)dOCan we approximate ?P(L |O)
This is what we call 

Variational Inference
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So Which  and  Should We Choose?D Q

Let’s start with “analytical” ideas:


• 


•What does it mean for two distributions to be close in the  sense?

•How easy is to obtain bounds and closed form solutions?


•  : This is called the Laplace approximation

•Even simpler , which boils down to 


D(Qθ(X), P(X |Z)) = ∫ (Qθ(x) − P(x |Z))2dx

L2

Qθ(X) : X ∼ 𝒩(μ, Σ), θ = (μ, Σ)
Σ = σ2Id Qμ(X) = ΠiQμi

(Xi)

Q* = Qθ* : θ* = arg min
θ

D(Qθ(X), P(X |Z))
 the latent variables and  the observations
X Z
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So Which  and  Should We Choose?D Q
Q* = Qθ* : θ* = arg min

θ
D(Qθ(X), P(X |Z))

More Information theoretic


• 


•The Kullback-Leibler divergence is based on information theory

•Known formulations for common cases


•Mean field 


DKL(Qθ(X), P(X |Z)) = 𝔼X∼Qθ [−log
P(X |Z)
Qθ(X) ] = − ∫ dQθ(x)log

P(x |Z)
Qθ(x)

Qθ=μ(X) = ΠiQμi
(Xi)

[Blei et al 2017]

 the latent variables and  the observations
X Z
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A Case for Mean Field KL-based VI
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So Which  and  Should We Choose?D Q

A second order information-theoretic model


• 


•  : This is called the Laplace approximation


DKL(Qθ(X), P(X |Z)) = 𝔼X∼Qθ [−log
P(X |Z)
Qθ(X) ] = − ∫ dQθ(x)log

P(x |Z)
Qθ(x)

Qθ(X) : X ∼ 𝒩(μ, Σ), θ = (μ, Σ)

Q* = Qθ* : θ* = arg min
θ

D(Qθ(X), P(X |Z))

 the latent variables and  the observations
X Z
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But Laplace is Better

17



So Which  and  Should We Choose?D Q

A second order information-theoretic model
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So Which  Should We Choose? Finding BoundsD




But our graphical model is more adapted to sample from  than from 
.


Then, can we find a way to efficiently minimise 

when, in general, we don’t know the probability of “evidence” ?

 
Let’s see in the next slide….

DKL(Qθ(X), P(X |Z)) = 𝔼X∼Qθ [−log
P(X |Z)
Qθ(X) ] = − ∫ dQθ(x)log

P(x |Z)
Qθ(x)

P(X, Z)
P(X |Z)

DKL (Qθ(X),
P(X, Z)

P(Z) )
P(Z)
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So Which  Should We Choose? Finding BoundsD



And we know that 




with  being the observed data (  before) and  our latent variables ( )


then, 





Hence, it is enough to maximise the Evidence Lower Bound (ELBO): 

DKL(Qθ(X), P(X |Z)) = 𝔼X∼Qθ [−log
P(X |Z)
Qθ(X) ] = − ∫ dQθ(x)log

P(x |Z)
Qθ(x)

log P(Z) = log∫ dxP(x, Z) = log∫
dQθ(x)P(x, Z)

Qθ(x)
= log 𝔼X∼Qθ [ P(X, Z)

Qθ(X) ]
Z O X L

P(Z) = log 𝔼X∼Qθ [ P(X, Z)
Qθ(X) ] ≥ EX∼Qθ [ P(X, Z)

Qθ(X) ] ≜ ℒ(θ)

min
θ

DKL(Qθ(X), P(X |Z)) = log P(Z) − max
θ

ℒ(θ)

ℒ(θ)
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So Which  and  Should We Choose?D Q
Q* = Qθ* : θ* = arg min

θ
D(Qθ(X), P(X |Z))

A simplified second order information-theoretic model


• 


•  : This is called the Laplace approximation


θ = arg max
θ

ℒ(θ) = 𝔼X∼Qθ [log
P(X, Z)
Qθ(X) ]

Qθ(X) : X ∼ 𝒩(μ, Σ), θ = (μ, Σ)

 the latent variables and  the observations
X Z
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But Laplace is Better (they use ELBO)
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More General Qθ
Q* = Qθ* : θ* = arg min

θ
D(Qθ(X), P(X |Z))

•Gaussian Processes: A measure over continuous functions 
where any discrete sample of the domain follows a 
Gaussian law.

 

•Support Transformations:  
P( f(x)) : ( f(x1), …, f(xN)) ∼ N(μx1,…,xN

, Σx1,…,xN
)

Qθ(X) ≜ ϕθ(X)
X ∼ 𝒩(μ, Σ), ϕθ a parametric mass-preserving diffeomorphism

 the latent variables and  the observations
X Z
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More General Qθ
Q* = Qθ* : θ* = arg min

θ
D(Qθ(X), P(X |Z))

• Support Transformations:  Qθ(X) ≜ Nμ,Σ(ϕθ(X)) Jϕθ
(X)

X ∼ 𝒩(μ, Σ), ϕθ a parametric mass-preserving diffeomorphism

 the latent variables and  the observations
X Z

ϕθ

ϕ−1
θ

ϕθ(X)X [Kucukelbir etal 17]24



More General Qθ
Q* = Qθ* : θ* = arg min

θ
D(Qθ(X), P(X |Z))

• Support Transformations:  Qθ(X) ≜ Nμ,Σ(ϕθ(X)) Jϕθ
(X)

ϕθ(X) ∼ 𝒩(μ, Σ), ϕθ a stochastic flow or learnable diffeomorphism

 the latent variables and  the observations
X Z

[Papamakarios etal 21]25



Current Problems in VI

• Scalability


• Amortization [Gershman et al 2014]


• Preservation of dependencies


• Auto-regressive models

Amortisation, reused probability in blue

[Stuhlmüller et al 14]


 et
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Other Modern Bayesian Techniques 
• Variational AutoEncoders


• Likelihood-free Inference
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θ = arg max
θ

ℒ(θ) = 𝔼X∼Qθ [log
P(X, Z)
Qθ(X) ]

P(Z |X) =
P(X |Z)P(Z)

P(X)

Likelihood Prior

Evidence

VAE : Z ∼ N(μ(X), Σ(X))


