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PAC Learning

Goal (informal): Learn an accurate mapping h : X — ) based on
examples ((z1,91),.- -, (Tn,yn)) € (X x V)"
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PAC Learning

Goal (informal): Learn an accurate mapping h : X — ) based on
examples ((z1,91),.- -, (Tn,yn)) € (X x V)"

PAC learning: Given H C V¥, probably approximately solve

i P
min (w)ND[h(x)#y] ,

where D is unknown but the learner can sample (z,y) ~ D

Shalev-Shwartz (HU) DL oSL'l5  2/35



What should be H ?

pin | FinGe) ]

heH | (zy)~D

© Expressiveness
Larger H = smaller minimum
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What should be H ?
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heH | (z,y)~D

© Expressiveness
Larger H = smaller minimum

@ Sample complexity
How many samples are needed to be e-accurate?
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What should be H ?

pin | FinGe) ]

heH | (z,y)~D

© Expressiveness
Larger H = smaller minimum

@ Sample complexity
How many samples are needed to be e-accurate?

© Computational complexity
How much computational time is needed to be e-accurate ?

No Free Lunch: If H = J¥ then the sample complexity is Q(|X]).

Prior Knowledge:
We must choose smaller H based on prior knowledge on D
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Prior Knowledge

@ SVM and AdaBoost learn a halfspace on top of features, and most of
the practical work is on finding good features

@ Very strong prior knowledge
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Weaker prior knowledge

@ Let Hyp be all functions from {0,1}? — {0, 1} that can be
implemented by a Turing machine using at most 7" operations.

Shalev-Shwartz (HU) DL OSL'15  5/35



Weaker prior knowledge

@ Let Hyp be all functions from {0,1}? — {0, 1} that can be
implemented by a Turing machine using at most 7" operations.

@ Very expressive class

Shalev-Shwartz (HU) DL OSL'15  5/35



Weaker prior knowledge

@ Let Hyp be all functions from {0,1}? — {0, 1} that can be
implemented by a Turing machine using at most 7" operations.

@ Very expressive class

@ Sample complexity ?

Shalev-Shwartz (HU) DL OSL'15  5/35



Weaker prior knowledge

@ Let Hyp be all functions from {0,1}? — {0, 1} that can be
implemented by a Turing machine using at most 7" operations.

@ Very expressive class

@ Sample complexity ?

e Hr is contained in the class of neural networks of depth O(T') and
size O(T?)
@ The sample complexity of this class is O(T?)
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The ultimate hypothesis class

SVM: use prior
knowledge
to  construct
expert ¢(z) and learn deep neural
system (w, #(z)) networks
}
less prior knowledge /
more data
[ No Free Lunch ]
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Neural Networks

@ A single neuron with activation function 0 : R —» R

u () o((v,x)

HOOOG
<
w

e E.g., o is a sigmoidal function /

N
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Neural Networks

@ A multilayer neural network of depth 3 and size 6

Input Hidden Hidden Output
layer layer layer layer
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Neural networks were popular in the 70’s and 80's

Then, suppressed by SVM and Adaboost on the 90's

In 2006, several deep architectures with unsupervised pre-training
have been proposed

In 2012, Krizhevsky, Sutskever, and Hinton significantly improved
state-of-the-art without unsupervised pre-training

Since 2012, state-of-the-art in vision, speech, and more
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Computational Complexity of Deep Learning

@ By fixing an architecture of a network (underlying graph and
activation functions), each network is parameterized by a weight
vector w € R?, so our goal is to learn the vector w
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Computational Complexity of Deep Learning
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Computational Complexity of Deep Learning

@ By fixing an architecture of a network (underlying graph and
activation functions), each network is parameterized by a weight
vector w € R?, so our goal is to learn the vector w

@ Empirical Risk Minimization (ERM):

Sample S = ((z1,91),- -, (Tn,yn)) ~ D™ and approximately solve

1 n
min — £i(w
weRd n; l( )
@ Realizable sample: Jw* s.t. Vi, hy«(x;) = y;

@ Blum and Rivest 1992: Distinguishing between realizable and
unrealizable S is NP hard even for depth 2 networks with 3 hidden
neurons (reduction to k coloring)

Hence, solving the ERM problem is NP hard even under realizability
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Computational Complexity of Deep Learning

The argument of Pitt and Valiant (1988)

If it is NP-hard to distinguish realizable from un-realizable samples, then
properly learning H is hard (unless RP=NP)
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Computational Complexity of Deep Learning

The argument of Pitt and Valiant (1988)

If it is NP-hard to distinguish realizable from un-realizable samples, then
properly learning H is hard (unless RP=NP)

Proof: Run the learning algorithm on the empirical distribution over the
sample to get h € H with empirical error < 1/n:

o If Vi, h(z;) = y;, return “realizable”

@ Otherwise, return “unrealizable”
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Improper Learning

Original
search space

o Allow the learner to output h & H
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Improper Learning

Original
search space

o Allow the learner to output h & H

@ The argument of Pitt and Valiant fails because the algorithm may
return consistent h even though S is unrealizable by H

@ Is deep learning still hard in the improper model ?
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o Generated examples in R'%Y and passed them through a random
depth-2 network that contains 60 hidden neurons with the RelLU
activation function.

o Tried to fit a new network to this data with over-specification factors
of 1,2,4,8

MSE
\]
T

L L
0 02 04 06 038 1

#iterations A10°
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How to show hardness of improper learning?

@ The argument of Pitt and Valiant fails for improper learning because
improper algorithms might perform well on unrealizable samples
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@ The argument of Pitt and Valiant fails for improper learning because
improper algorithms might perform well on unrealizable samples

Key Observation

o If a learning algorithm is computationally efficient its output must
come from a class of “small” VC dimension

@ Hence, it cannot perform well on “very random” samples

Shalev-Shwartz (HU) DL OoSL'15 14 /35



How to show hardness of improper learning?

@ The argument of Pitt and Valiant fails for improper learning because
improper algorithms might perform well on unrealizable samples

Key Observation

o If a learning algorithm is computationally efficient its output must
come from a class of “small” VC dimension

@ Hence, it cannot perform well on “very random” samples

Using the above observation we conclude:

Hardness of distinguishing realizable form “random” samples implies
hardness of improper learning of H J
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Deep Learning is Hard

Using the new technique and under a natural hardness assumption we can
show:

@ It is hard to improperly learn intersections of w(1) halfspaces

@ It is hard to improperly learn depth > 2 networks with w(1) neurons,
with the threshold or ReLU or sigmoid activation functions
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Theory-Practice Gap

@ In theory: it is hard to train even depth 2 networks

@ In practice: Networks of depth 2 — 20 are trained successfully
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Theory-Practice Gap

@ In theory: it is hard to train even depth 2 networks

@ In practice: Networks of depth 2 — 20 are trained successfully

How to circumvent hardness?
@ Change the problem ...
@ Add more assumptions

@ Depart from worst-case analysis
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Change the activation function

@ Simpler non-linearity — replace sigmoidal activation function by the
square function o(a) = a?

@ Network implements polynomials, where the depth correlative to
degree

@ Is this class still very expressive 7
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Change the activation function

@ Simpler non-linearity — replace sigmoidal activation function by the
square function o(a) = a?

@ Network implements polynomials, where the depth correlative to
degree

@ Is this class still very expressive 7

Expressiveness of polynomial networks

Recall the definition of H7 (functions that can be implemented by T
operations of a turing machine). Then, Hp is contained in the class of
polynomial networks of depth O(T log(T')) and size O(T?log?(T))
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Computational Complexity of Polynomial Networks

@ Proper learning is still hard even for depth 2
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Computational Complexity of Polynomial Networks

@ Proper learning is still hard even for depth 2
@ But, for constant depth, improper learning works

o Replace original class with a linear classifier over all degree 2d¢pth—1
monomials

@ Size of the network is very large. Can we do better?
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Forward Greedy Selection for Polynomial Networks

Consider depth 2 polynomial networks
Let S be the Euclidean sphere of R¢

Observation: Two layer polynomial networks equivalent to mappings
from S to R with sparse support

Apply forward greedy selection for learning the sparse mapping

Main caveat: at each greedy iteration we need to find v that
approximately solve

argmax |V, R(w)|
vES

Luckily, this is an eigenvalue problem

V,Rw)=v" | E ¢ Z wy (u, )y | 2z’ | v

(2.9) u€supp(w)
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Back to Sigmoidal (and ReLU) Networks

o Let M, 1sig be the class of sigmoidal networks with depth ¢, size n,
and bound L on the /; norm of the input weights of each neuron

o Let H;, poly be defined similarly for polynomial networks
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Back to Sigmoidal (and ReLU) Networks

o Let M, 1sig be the class of sigmoidal networks with depth ¢, size n,
and bound L on the /; norm of the input weights of each neuron

o Let H;, poly be defined similarly for polynomial networks

Ve, Ht,n,L,sig Ce %tlog(L(t—loge)),nL(t—loge),poly
v

Corollary
o Constant depth sigmoidal networks with L = O(1) are efficiently
learnable !
@ It is hard to learn polynomial networks of depth Q(log(d)) and size

Q(d) |
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Back to the Theory-Practice Gap

@ In theory:
e Hard to train depth 2 networks
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Back to the Theory-Practice Gap

@ In theory:

e Hard to train depth 2 networks
e Easy to train constant depth networks with constant bound on the

weights

@ In practice:

e Provably correct algorithms are not practical ...
o Networks of depth 2 — 20 are trained successfully with SGD (and

strong GPU and a lot of patient)

How to circumvent hardness?
@ Change the problem ...
@ Add more assumptions

@ Depart from worst-case analysis
When does SGD work 7 Can we make it better ?
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SGD for Deep Learning

o Advantages:

e Works well in practice
o Per iteration cost independent of n

Shalev-Shwartz (HU) DL OSL'15 22 /35



SGD for Deep Learning

o Advantages:

e Works well in practice
o Per iteration cost independent of n

o Disadvantage: slow convergence

10°

10

objective

-2
070701 02 03 04 05 06 07 08 09 1 LI 12 13 14 1

# of backpropagation 107
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How to improve SGD convergence rate?

@ Variance Reduction
e SAG, SDCA, SVRG
e Same per iteration cost as SGD
... but converges exponentially faster
o Designed for convex problems
... but can be adapted to deep learning
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How to improve SGD convergence rate?

@ Variance Reduction
e SAG, SDCA, SVRG
e Same per iteration cost as SGD

... but converges exponentially faster
o Designed for convex problems

... but can be adapted to deep learning

@ SelfieBoost:
e AdaBoost, with SGD as weak learner, converges exponentially faster
than vanilla SGD
e But yields an ensemble of networks — very expensive at prediction time

e A new boosting algorithm that boost the performance of the same
network

o Faster convergence under some “SGD success’ assumption
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Deep Networks are Non-Convex

@ A 2-dim slice of a network with hidden layers {10, 10, 10,10}, on MNIST,
with the clamped RelLU activation function and logistic loss.

@ The slice is defined by finding a global minimum (using SGD) and creating
two random permutations of the first hidden layer.
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But Deep Networks Seem Convex Near a Miminum

@ Now the slice is based on 2 random points at distance 1 around a global
minimum

1072

Shalev-Shwartz (HU) DL OSL'15 25 /35



SDCA for Deep Learning

1< A
min  P(w) := ﬁz(bz(w) + §||w||2
i=1

weRY

@ SDCA is motivated by duality, which is meaningless for non-convex
functions, but yields an algorithm we can run without duality:

”Dual” update: az(t) = agt_l) —nAn (qui(w(t—l)) + az(t_l)>

1 _
”Primal dual” relationship: wt D = — Za(t b
An P

Primal update: w® = w1 — n (Vqﬁi(w(t_l)) + ozgt_l))

o Converges rate (for convex and smooth): (n + 1) log (1)

Shalev-Shwartz (HU) DL OSL'15 26 /35



SDCA is SGD

@ Recall that SDCA primal update rule is

w® = 4t _ (qul( ) + oz(t 1))

v(®)

and that w1 = Aln ey (t—1).
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SDCA is SGD

@ Recall that SDCA primal update rule is

w®) = =1 _ (V@( Dy a(t 1))

v(®)

and that w(t=) = L3 o al b,

o Observe: v(®) is unblased estimate of the gradient:

B O] = L3 (Vo) + o)

=1
= VP(w* D) = XD 4 AV
= VP(wY)
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SDCA is SGD, but better

o The update step of both SGD and SDCA is w(® = w1 — yu(*)
where
® {ng)i(w(t_l)) + 2w for SGD

oM

| Ve (w D) + agt_l) for SDCA
In both cases E[v®)|w(*~1] = VP(w®)
What about the variance?

For SGD, even if w1 = w™, the variance of v(® is still constant

For SDCA, it can be shown that the variance of v® goes to zero as
w1 — *
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How to improve SGD?

10°

2
10 ) 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15
# of backpropagation 107

Why SGD is slow at the end?
@ High variance, even close to the optimum
@ Rare mistakes: Suppose all but 1% of the examples are correctly
classified. SGD will now waste 99% of its time on examples that are
already correct by the model
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SelfieBoost Motivation

@ For simplicity, consider a binary classification problem in the realizable
case

@ For a fixed ¢y (not too small), few SGD iterations find an ¢p-accurate
solution

@ However, for a small ¢, SGD requires many iterations

@ Smells like we need to use boosting ....
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First idea: learn an ensemble using AdaBoost

e Fix €p (say 0.05), and assume SGD can find a solution with error < €
quite fast
Lets apply AdaBoost with the SGD learner as a weak learner:
o At iteration t, we sub-sample a training set based on a distribution D;
over [n]
o We feed the sub-sample to a SGD learner and gets a weak classifier h;
e Update Dy based on the predictions of h;
e The output of AdaBoost is an ensemble with prediction Zthl ahy ()

@ The celebrated Freund & Schapire theorem states that if
T = O(log(1/€)) then the error of the ensemble classifier is at most €

@ Observe that each boosting iteration involves calling SGD on a
relatively small data, and updating the distribution on the entire big
data. The latter step can be performed in parallel

Disadvantage of learning an ensemble: at prediction time, we need to
apply many networks
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Boosting the Same Network

@ Can we obtain “boosting-like" convergence, while learning a single
network?
The SelfieBoost Algorithm:
@ Start with an initial network f;
@ At iteration t, define weights over the n examples according to
@ Sub-sample a training set S ~ D
@ Use SGD for approximately solving the problem

foon ~ argmin 3 (i) — g(20) + 5 3 (o(ar) — fila:))?

9 es ieS
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Analysis of the SelfieBoost Algorithm

@ Lemma: At each iteration, with high probability over the choice of .5,
there exists a network g with objective value of at most —1/4
@ Theorem: If at each iteration, the SGD algorithm finds a solution
with objective value of at most —p, then after
log(1/€)

p

SelfieBoost iterations the error of f; will be at most €

@ To summarize: we have obtained log(1/€) convergence assuming that
the SGD algorithm can solve each sub-problem to a fixed accuracy
(which seems to hold in practice)
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SelfieBoost vs. SGD

@ On MNIST dataset, depth 5 network

10° T T T T T T T T T T T T T T

error

—d4 | | | | | | | | |
10 0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15

# of backpropagation -107

Shalev-Shwartz (HU) DL

OSL'15

34 /35



Why deep networks: Deep networks are the ultimate hypothesis class
from the statistical perspective

Why not: Deep networks are a horrible class from the computational
point of view

@ This work: Deep networks with bounded depth and #; norm are not
hard to learn

Provably correct theoretical algorithms are in general not practical.
Why SGD works 777

How can we make it better ?
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