On the Computational Complexity of Deep Learning

Shai Shalev-Shwartz

School of CS and Engineering,
The Hebrew University of Jerusalem
"Optimization and Statistical Learning",
Les Houches, January 2014

Based on joint work with: Roi Livni and Ohad Shamir, Amit Daniely and Nati Linial, Tong Zhang

PAC Learning

Goal (informal): Learn an accurate mapping $h: \mathcal{X} \rightarrow \mathcal{Y}$ based on examples $\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in(\mathcal{X} \times \mathcal{Y})^{n}$

PAC Learning

Goal (informal): Learn an accurate mapping $h: \mathcal{X} \rightarrow \mathcal{Y}$ based on examples $\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in(\mathcal{X} \times \mathcal{Y})^{n}$

PAC learning: Given $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$, probably approximately solve

$$
\min _{h \in \mathcal{H}}[\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]]
$$

where \mathcal{D} is unknown but the learner can sample $(x, y) \sim \mathcal{D}$

What should be \mathcal{H} ?

$$
\min _{h \in \mathcal{H}}\left[\mathbb{P}_{(x, y) \sim \mathcal{D}}[h(x) \neq y]\right]
$$

(1) Expressiveness

Larger $\mathcal{H} \Rightarrow$ smaller minimum

What should be \mathcal{H} ?

$$
\min _{h \in \mathcal{H}}[\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]]
$$

(1) Expressiveness

Larger $\mathcal{H} \Rightarrow$ smaller minimum
(3) Sample complexity How many samples are needed to be ϵ-accurate?

What should be \mathcal{H} ?

$$
\min _{h \in \mathcal{H}}[\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]]
$$

(1) Expressiveness

Larger $\mathcal{H} \Rightarrow$ smaller minimum
(2) Sample complexity How many samples are needed to be ϵ-accurate?
(3) Computational complexity How much computational time is needed to be ϵ-accurate ?

What should be \mathcal{H} ?

$$
\min _{h \in \mathcal{H}}[\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]]
$$

(1) Expressiveness

Larger $\mathcal{H} \Rightarrow$ smaller minimum
(3) Sample complexity How many samples are needed to be ϵ-accurate?

- Computational complexity How much computational time is needed to be ϵ-accurate ?

No Free Lunch: If $\mathcal{H}=\mathcal{Y}^{\mathcal{X}}$ then the sample complexity is $\Omega(|\mathcal{X}|)$.

What should be \mathcal{H} ?

$$
\min _{h \in \mathcal{H}}[\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]]
$$

(1) Expressiveness

Larger $\mathcal{H} \Rightarrow$ smaller minimum
(3) Sample complexity

How many samples are needed to be ϵ-accurate?

- Computational complexity How much computational time is needed to be ϵ-accurate ?

No Free Lunch: If $\mathcal{H}=\mathcal{Y}^{\mathcal{X}}$ then the sample complexity is $\Omega(|\mathcal{X}|)$.
Prior Knowledge:
We must choose smaller \mathcal{H} based on prior knowledge on \mathcal{D}

Prior Knowledge

- SVM and AdaBoost learn a halfspace on top of features, and most of the practical work is on finding good features
- Very strong prior knowledge

Weaker prior knowledge

- Let \mathcal{H}_{T} be all functions from $\{0,1\}^{p} \rightarrow\{0,1\}$ that can be implemented by a Turing machine using at most T operations.

Weaker prior knowledge

- Let \mathcal{H}_{T} be all functions from $\{0,1\}^{p} \rightarrow\{0,1\}$ that can be implemented by a Turing machine using at most T operations.
- Very expressive class

Weaker prior knowledge

- Let \mathcal{H}_{T} be all functions from $\{0,1\}^{p} \rightarrow\{0,1\}$ that can be implemented by a Turing machine using at most T operations.
- Very expressive class
- Sample complexity ?

Weaker prior knowledge

- Let \mathcal{H}_{T} be all functions from $\{0,1\}^{p} \rightarrow\{0,1\}$ that can be implemented by a Turing machine using at most T operations.
- Very expressive class
- Sample complexity ?

Theorem

- \mathcal{H}_{T} is contained in the class of neural networks of depth $O(T)$ and size $O\left(T^{2}\right)$
- The sample complexity of this class is $O\left(T^{2}\right)$

The ultimate hypothesis class

Neural Networks

- A single neuron with activation function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$

- E.g., σ is a sigmoidal function

Neural Networks

- A multilayer neural network of depth 3 and size 6

Brief history

- Neural networks were popular in the 70's and 80's
- Then, suppressed by SVM and Adaboost on the 90's
- In 2006, several deep architectures with unsupervised pre-training have been proposed
- In 2012, Krizhevsky, Sutskever, and Hinton significantly improved state-of-the-art without unsupervised pre-training
- Since 2012, state-of-the-art in vision, speech, and more

Computational Complexity of Deep Learning

- By fixing an architecture of a network (underlying graph and activation functions), each network is parameterized by a weight vector $w \in \mathbb{R}^{d}$, so our goal is to learn the vector w

Computational Complexity of Deep Learning

- By fixing an architecture of a network (underlying graph and activation functions), each network is parameterized by a weight vector $w \in \mathbb{R}^{d}$, so our goal is to learn the vector w
- Empirical Risk Minimization (ERM): Sample $S=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \sim \mathcal{D}^{n}$ and approximately solve

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)
$$

Computational Complexity of Deep Learning

- By fixing an architecture of a network (underlying graph and activation functions), each network is parameterized by a weight vector $w \in \mathbb{R}^{d}$, so our goal is to learn the vector w
- Empirical Risk Minimization (ERM): Sample $S=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \sim \mathcal{D}^{n}$ and approximately solve

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)
$$

- Realizable sample: $\exists w^{*}$ s.t. $\forall i, h_{w^{*}}\left(x_{i}\right)=y_{i}$

Computational Complexity of Deep Learning

- By fixing an architecture of a network (underlying graph and activation functions), each network is parameterized by a weight vector $w \in \mathbb{R}^{d}$, so our goal is to learn the vector w
- Empirical Risk Minimization (ERM):

Sample $S=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \sim \mathcal{D}^{n}$ and approximately solve

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)
$$

- Realizable sample: $\exists w^{*}$ s.t. $\forall i, h_{w^{*}}\left(x_{i}\right)=y_{i}$
- Blum and Rivest 1992: Distinguishing between realizable and unrealizable S is NP hard even for depth 2 networks with 3 hidden neurons (reduction to k coloring)
Hence, solving the ERM problem is NP hard even under realizability

Computational Complexity of Deep Learning

The argument of Pitt and Valiant (1988)

If it is NP-hard to distinguish realizable from un-realizable samples, then properly learning \mathcal{H} is hard (unless $\mathrm{RP}=\mathrm{NP}$)

Computational Complexity of Deep Learning

The argument of Pitt and Valiant (1988)

If it is NP-hard to distinguish realizable from un-realizable samples, then properly learning \mathcal{H} is hard (unless $\mathrm{RP}=\mathrm{NP}$)

Proof: Run the learning algorithm on the empirical distribution over the sample to get $h \in \mathcal{H}$ with empirical error $<1 / n$:

- If $\forall i, h\left(x_{i}\right)=y_{i}$, return "realizable"
- Otherwise, return "unrealizable"

Improper Learning

- Allow the learner to output $h \notin \mathcal{H}$

Improper Learning

- Allow the learner to output $h \notin \mathcal{H}$
- The argument of Pitt and Valiant fails because the algorithm may return consistent h even though S is unrealizable by \mathcal{H}

Improper Learning

- Allow the learner to output $h \notin \mathcal{H}$
- The argument of Pitt and Valiant fails because the algorithm may return consistent h even though S is unrealizable by \mathcal{H}
- Is deep learning still hard in the improper model ?

Hope ...

- Generated examples in \mathbb{R}^{150} and passed them through a random depth- 2 network that contains 60 hidden neurons with the ReLU activation function.
- Tried to fit a new network to this data with over-specification factors of $1,2,4,8$

How to show hardness of improper learning?

- The argument of Pitt and Valiant fails for improper learning because improper algorithms might perform well on unrealizable samples

How to show hardness of improper learning?

- The argument of Pitt and Valiant fails for improper learning because improper algorithms might perform well on unrealizable samples

Key Observation

- If a learning algorithm is computationally efficient its output must come from a class of "small" VC dimension
- Hence, it cannot perform well on "very random" samples

How to show hardness of improper learning?

- The argument of Pitt and Valiant fails for improper learning because improper algorithms might perform well on unrealizable samples

Key Observation

- If a learning algorithm is computationally efficient its output must come from a class of "small" VC dimension
- Hence, it cannot perform well on "very random" samples

Using the above observation we conclude:
Hardness of distinguishing realizable form "random" samples implies hardness of improper learning of \mathcal{H}

Deep Learning is Hard

Using the new technique and under a natural hardness assumption we can show:

- It is hard to improperly learn intersections of $\omega(1)$ halfspaces
- It is hard to improperly learn depth ≥ 2 networks with $\omega(1)$ neurons, with the threshold or ReLU or sigmoid activation functions

Theory-Practice Gap

- In theory: it is hard to train even depth 2 networks
- In practice: Networks of depth 2-20 are trained successfully

Theory-Practice Gap

- In theory: it is hard to train even depth 2 networks
- In practice: Networks of depth $2-20$ are trained successfully

How to circumvent hardness?

- Change the problem ...

Theory-Practice Gap

- In theory: it is hard to train even depth 2 networks
- In practice: Networks of depth $2-20$ are trained successfully

How to circumvent hardness?

- Change the problem ...
- Add more assumptions

Theory-Practice Gap

- In theory: it is hard to train even depth 2 networks
- In practice: Networks of depth $2-20$ are trained successfully

How to circumvent hardness?

- Change the problem ...
- Add more assumptions
- Depart from worst-case analysis

Change the activation function

- Simpler non-linearity - replace sigmoidal activation function by the square function $\sigma(a)=a^{2}$
- Network implements polynomials, where the depth correlative to degree
- Is this class still very expressive ?

Change the activation function

- Simpler non-linearity - replace sigmoidal activation function by the square function $\sigma(a)=a^{2}$
- Network implements polynomials, where the depth correlative to degree
- Is this class still very expressive ?

Expressiveness of polynomial networks

Recall the definition of \mathcal{H}_{T} (functions that can be implemented by T operations of a turing machine). Then, \mathcal{H}_{T} is contained in the class of polynomial networks of depth $O(T \log (T))$ and size $O\left(T^{2} \log ^{2}(T)\right)$

Computational Complexity of Polynomial Networks

- Proper learning is still hard even for depth 2

Computational Complexity of Polynomial Networks

- Proper learning is still hard even for depth 2
- But, for constant depth, improper learning works

Computational Complexity of Polynomial Networks

- Proper learning is still hard even for depth 2
- But, for constant depth, improper learning works
- Replace original class with a linear classifier over all degree $2^{\text {depth-1 }}$ monomials

Computational Complexity of Polynomial Networks

- Proper learning is still hard even for depth 2
- But, for constant depth, improper learning works
- Replace original class with a linear classifier over all degree $2^{\text {depth-1 }}$ monomials
- Size of the network is very large. Can we do better?

Forward Greedy Selection for Polynomial Networks

- Consider depth 2 polynomial networks
- Let \mathcal{S} be the Euclidean sphere of \mathbb{R}^{d}
- Observation: Two layer polynomial networks equivalent to mappings from \mathcal{S} to \mathbb{R} with sparse support
- Apply forward greedy selection for learning the sparse mapping
- Main caveat: at each greedy iteration we need to find v that approximately solve

$$
\underset{v \in \mathcal{S}}{\operatorname{argmax}}\left|\nabla_{v} R(w)\right|
$$

- Luckily, this is an eigenvalue problem

$$
\nabla_{v} R(w)=v^{\top}\left(\underset{(x, y)}{\mathbb{E}} \ell^{\prime}\left(\sum_{u \in \operatorname{supp}(w)} w_{u}\langle u, x\rangle^{2}, y\right) x x^{\top}\right) v
$$

Back to Sigmoidal (and ReLU) Networks

- Let $\mathcal{H}_{t, n, L, \text { sig }}$ be the class of sigmoidal networks with depth t, size n, and bound L on the ℓ_{1} norm of the input weights of each neuron
- Let $\mathcal{H}_{t, n, \text { poly }}$ be defined similarly for polynomial networks

Back to Sigmoidal (and ReLU) Networks

- Let $\mathcal{H}_{t, n, L, \text { sig }}$ be the class of sigmoidal networks with depth t, size n, and bound L on the ℓ_{1} norm of the input weights of each neuron
- Let $\mathcal{H}_{t, n, \text { poly }}$ be defined similarly for polynomial networks

Theorem

$$
\forall \epsilon, \quad \mathcal{H}_{t, n, L, s i g} \quad \subset_{\epsilon} \quad \mathcal{H}_{t \log (L(t-\log \epsilon)), n L(t-\log \epsilon), \text { poly }}
$$

Back to Sigmoidal (and ReLU) Networks

- Let $\mathcal{H}_{t, n, L, \text { sig }}$ be the class of sigmoidal networks with depth t, size n, and bound L on the ℓ_{1} norm of the input weights of each neuron
- Let $\mathcal{H}_{t, n, \text { poly }}$ be defined similarly for polynomial networks

Theorem

$$
\forall \epsilon, \quad \mathcal{H}_{t, n, L, s i g} \quad \subset_{\epsilon} \quad \mathcal{H}_{t \log (L(t-\log \epsilon)), n L(t-\log \epsilon), \text { poly }}
$$

Corollary

- Constant depth sigmoidal networks with $L=O(1)$ are efficiently learnable!

Back to Sigmoidal (and ReLU) Networks

- Let $\mathcal{H}_{t, n, L, \text { sig }}$ be the class of sigmoidal networks with depth t, size n, and bound L on the ℓ_{1} norm of the input weights of each neuron
- Let $\mathcal{H}_{t, n, \text { poly }}$ be defined similarly for polynomial networks

Theorem

$$
\forall \epsilon, \quad \mathcal{H}_{t, n, L, s i g} \quad \subset_{\epsilon} \quad \mathcal{H}_{t \log (L(t-\log \epsilon)), n L(t-\log \epsilon), \text { poly }}
$$

Corollary

- Constant depth sigmoidal networks with $L=O(1)$ are efficiently learnable!
- It is hard to learn polynomial networks of depth $\Omega(\log (d))$ and size $\Omega(d)$

Back to the Theory-Practice Gap

- In theory:
- Hard to train depth 2 networks

Back to the Theory-Practice Gap

- In theory:
- Hard to train depth 2 networks
- Easy to train constant depth networks with constant bound on the weights

Back to the Theory-Practice Gap

- In theory:
- Hard to train depth 2 networks
- Easy to train constant depth networks with constant bound on the weights
- In practice:
- Provably correct algorithms are not practical ...

Back to the Theory-Practice Gap

- In theory:
- Hard to train depth 2 networks
- Easy to train constant depth networks with constant bound on the weights
- In practice:
- Provably correct algorithms are not practical ...
- Networks of depth 2 - 20 are trained successfully with SGD (and strong GPU and a lot of patient)

Back to the Theory-Practice Gap

- In theory:
- Hard to train depth 2 networks
- Easy to train constant depth networks with constant bound on the weights
- In practice:
- Provably correct algorithms are not practical ...
- Networks of depth $2-20$ are trained successfully with SGD (and strong GPU and a lot of patient)

How to circumvent hardness?

- Change the problem ...
- Add more assumptions
- Depart from worst-case analysis

When does SGD work ? Can we make it better ?

SGD for Deep Learning

- Advantages:
- Works well in practice
- Per iteration cost independent of n

SGD for Deep Learning

- Advantages:
- Works well in practice
- Per iteration cost independent of n
- Disadvantage: slow convergence

How to improve SGD convergence rate?

(1) Variance Reduction

- SAG, SDCA, SVRG
- Same per iteration cost as SGD
... but converges exponentially faster
- Designed for convex problems
... but can be adapted to deep learning

How to improve SGD convergence rate?

(1) Variance Reduction

- SAG, SDCA, SVRG
- Same per iteration cost as SGD
... but converges exponentially faster
- Designed for convex problems
... but can be adapted to deep learning
(2) SelfieBoost:
- AdaBoost, with SGD as weak learner, converges exponentially faster than vanilla SGD
- But yields an ensemble of networks - very expensive at prediction time
- A new boosting algorithm that boost the performance of the same network
- Faster convergence under some "SGD success" assumption

Deep Networks are Non-Convex

- A 2-dim slice of a network with hidden layers $\{10,10,10,10\}$, on MNIST, with the clamped ReLU activation function and logistic loss.
- The slice is defined by finding a global minimum (using SGD) and creating two random permutations of the first hidden layer.

But Deep Networks Seem Convex Near a Miminum

- Now the slice is based on 2 random points at distance 1 around a global minimum

SDCA for Deep Learning

$$
\min _{w \in \mathbb{R}^{d}} P(w):=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}(w)+\frac{\lambda}{2}\|w\|^{2}
$$

- SDCA is motivated by duality, which is meaningless for non-convex functions, but yields an algorithm we can run without duality:
"Dual" update: $\quad \alpha_{i}^{(t)}=\alpha_{i}^{(t-1)}-\eta \lambda n\left(\nabla \phi_{i}\left(w^{(t-1)}\right)+\alpha_{i}^{(t-1)}\right)$
"Primal dual" relationship: $\quad w^{(t-1)}=\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i}^{(t-1)}$
Primal update: $\quad w^{(t)}=w^{(t-1)}-\eta\left(\nabla \phi_{i}\left(w^{(t-1)}\right)+\alpha_{i}^{(t-1)}\right)$
- Converges rate (for convex and smooth): $\left(n+\frac{1}{\lambda}\right) \log \left(\frac{1}{\epsilon}\right)$

SDCA is SGD

- Recall that SDCA primal update rule is

$$
w^{(t)}=w^{(t-1)}-\eta \underbrace{\left(\nabla \phi_{i}\left(w^{(t-1)}\right)+\alpha_{i}^{(t-1)}\right)}_{v^{(t)}}
$$

and that $w^{(t-1)}=\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i}^{(t-1)}$.

SDCA is SGD

- Recall that SDCA primal update rule is

$$
w^{(t)}=w^{(t-1)}-\eta \underbrace{\left(\nabla \phi_{i}\left(w^{(t-1)}\right)+\alpha_{i}^{(t-1)}\right)}_{v^{(t)}}
$$

and that $w^{(t-1)}=\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i}^{(t-1)}$.

- Observe: $v^{(t)}$ is unbiased estimate of the gradient:

$$
\begin{aligned}
\mathbb{E}\left[v^{(t)} \mid w^{(t-1)}\right] & =\frac{1}{n} \sum_{i=1}^{n}\left(\nabla \phi_{i}\left(w^{(t-1)}\right)+\alpha_{i}^{(t-1)}\right) \\
& =\nabla P\left(w^{(t-1)}\right)-\lambda w^{(t-1)}+\lambda w^{(t-1)} \\
& =\nabla P\left(w^{(t-1)}\right)
\end{aligned}
$$

SDCA is SGD, but better

- The update step of both SGD and SDCA is $w^{(t)}=w^{(t-1)}-\eta v^{(t)}$ where

$$
v^{(t)}= \begin{cases}\nabla \phi_{i}\left(w^{(t-1)}\right)+\lambda w^{(t-1)} & \text { for SGD } \\ \nabla \phi_{i}\left(w^{(t-1)}\right)+\alpha_{i}^{(t-1)} & \text { for SDCA }\end{cases}
$$

- In both cases $\mathbb{E}\left[v^{(t)} \mid w^{(t-1)}\right]=\nabla P\left(w^{(t)}\right)$
- What about the variance?
- For SGD, even if $w^{(t-1)}=w^{*}$, the variance of $v^{(t)}$ is still constant
- For SDCA, it can be shown that the variance of $v^{(t)}$ goes to zero as $w^{(t-1)} \rightarrow w^{*}$

How to improve SGD?

Why SGD is slow at the end?

- High variance, even close to the optimum
- Rare mistakes: Suppose all but 1% of the examples are correctly classified. SGD will now waste 99% of its time on examples that are already correct by the model

SelfieBoost Motivation

- For simplicity, consider a binary classification problem in the realizable case
- For a fixed ϵ_{0} (not too small), few SGD iterations find an ϵ_{0}-accurate solution
- However, for a small ϵ, SGD requires many iterations
- Smells like we need to use boosting

First idea: learn an ensemble using AdaBoost

- Fix ϵ_{0} (say 0.05), and assume SGD can find a solution with error $<\epsilon_{0}$ quite fast
- Lets apply AdaBoost with the SGD learner as a weak learner:
- At iteration t, we sub-sample a training set based on a distribution D_{t} over [n]
- We feed the sub-sample to a SGD learner and gets a weak classifier h_{t}
- Update D_{t+1} based on the predictions of h_{t}
- The output of AdaBoost is an ensemble with prediction $\sum_{t=1}^{T} \alpha_{t} h_{t}(x)$
- The celebrated Freund \& Schapire theorem states that if $T=O(\log (1 / \epsilon))$ then the error of the ensemble classifier is at most ϵ
- Observe that each boosting iteration involves calling SGD on a relatively small data, and updating the distribution on the entire big data. The latter step can be performed in parallel
- Disadvantage of learning an ensemble: at prediction time, we need to apply many networks

Boosting the Same Network

- Can we obtain "boosting-like" convergence, while learning a single network?

The SelfieBoost Algorithm:

- Start with an initial network f_{1}
- At iteration t, define weights over the n examples according to $D_{i} \propto e^{-y_{i} f_{t}\left(x_{i}\right)}$
- Sub-sample a training set $S \sim D$
- Use SGD for approximately solving the problem

$$
f_{t+1} \approx \underset{g}{\operatorname{argmin}} \sum_{i \in S} y_{i}\left(f_{t}\left(x_{i}\right)-g\left(x_{i}\right)\right)+\frac{1}{2} \sum_{i \in S}\left(g\left(x_{i}\right)-f_{t}\left(x_{i}\right)\right)^{2}
$$

Analysis of the SelfieBoost Algorithm

- Lemma: At each iteration, with high probability over the choice of S, there exists a network g with objective value of at most $-1 / 4$
- Theorem: If at each iteration, the SGD algorithm finds a solution with objective value of at most $-\rho$, then after

$$
\frac{\log (1 / \epsilon)}{\rho}
$$

SelfieBoost iterations the error of f_{t} will be at most ϵ

- To summarize: we have obtained $\log (1 / \epsilon)$ convergence assuming that the SGD algorithm can solve each sub-problem to a fixed accuracy (which seems to hold in practice)

SelfieBoost vs. SGD

- On MNIST dataset, depth 5 network

Summary

- Why deep networks: Deep networks are the ultimate hypothesis class from the statistical perspective
- Why not: Deep networks are a horrible class from the computational point of view
- This work: Deep networks with bounded depth and ℓ_{1} norm are not hard to learn
- Provably correct theoretical algorithms are in general not practical.
- Why SGD works ???
- How can we make it better ?

