
On the Computational Complexity of Deep Learning

Shai Shalev-Shwartz

School of CS and Engineering,
The Hebrew University of Jerusalem

”Optimization and Statistical Learning”,
Les Houches, January 2014

Based on joint work with:
Roi Livni and Ohad Shamir,
Amit Daniely and Nati Linial,
Tong Zhang

Shalev-Shwartz (HU) DL OSL’15 1 / 35

PAC Learning

Goal (informal): Learn an accurate mapping h : X → Y based on
examples ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n

PAC learning: Given H ⊂ YX , probably approximately solve

min
h∈H

[
P

(x,y)∼D
[h(x) 6= y]

]
,

where D is unknown but the learner can sample (x, y) ∼ D

Shalev-Shwartz (HU) DL OSL’15 2 / 35

PAC Learning

Goal (informal): Learn an accurate mapping h : X → Y based on
examples ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n

PAC learning: Given H ⊂ YX , probably approximately solve

min
h∈H

[
P

(x,y)∼D
[h(x) 6= y]

]
,

where D is unknown but the learner can sample (x, y) ∼ D

Shalev-Shwartz (HU) DL OSL’15 2 / 35

What should be H ?

min
h∈H

[
P

(x,y)∼D
[h(x) 6= y]

]
1 Expressiveness

Larger H ⇒ smaller minimum

2 Sample complexity
How many samples are needed to be ε-accurate?

3 Computational complexity
How much computational time is needed to be ε-accurate ?

No Free Lunch: If H = YX then the sample complexity is Ω(|X |).

Prior Knowledge:
We must choose smaller H based on prior knowledge on D

Shalev-Shwartz (HU) DL OSL’15 3 / 35

What should be H ?

min
h∈H

[
P

(x,y)∼D
[h(x) 6= y]

]
1 Expressiveness

Larger H ⇒ smaller minimum

2 Sample complexity
How many samples are needed to be ε-accurate?

3 Computational complexity
How much computational time is needed to be ε-accurate ?

No Free Lunch: If H = YX then the sample complexity is Ω(|X |).

Prior Knowledge:
We must choose smaller H based on prior knowledge on D

Shalev-Shwartz (HU) DL OSL’15 3 / 35

What should be H ?

min
h∈H

[
P

(x,y)∼D
[h(x) 6= y]

]
1 Expressiveness

Larger H ⇒ smaller minimum

2 Sample complexity
How many samples are needed to be ε-accurate?

3 Computational complexity
How much computational time is needed to be ε-accurate ?

No Free Lunch: If H = YX then the sample complexity is Ω(|X |).

Prior Knowledge:
We must choose smaller H based on prior knowledge on D

Shalev-Shwartz (HU) DL OSL’15 3 / 35

What should be H ?

min
h∈H

[
P

(x,y)∼D
[h(x) 6= y]

]
1 Expressiveness

Larger H ⇒ smaller minimum

2 Sample complexity
How many samples are needed to be ε-accurate?

3 Computational complexity
How much computational time is needed to be ε-accurate ?

No Free Lunch: If H = YX then the sample complexity is Ω(|X |).

Prior Knowledge:
We must choose smaller H based on prior knowledge on D

Shalev-Shwartz (HU) DL OSL’15 3 / 35

What should be H ?

min
h∈H

[
P

(x,y)∼D
[h(x) 6= y]

]
1 Expressiveness

Larger H ⇒ smaller minimum

2 Sample complexity
How many samples are needed to be ε-accurate?

3 Computational complexity
How much computational time is needed to be ε-accurate ?

No Free Lunch: If H = YX then the sample complexity is Ω(|X |).

Prior Knowledge:
We must choose smaller H based on prior knowledge on D

Shalev-Shwartz (HU) DL OSL’15 3 / 35

Prior Knowledge

SVM and AdaBoost learn a halfspace on top of features, and most of
the practical work is on finding good features

Very strong prior knowledge

x

x

Shalev-Shwartz (HU) DL OSL’15 4 / 35

Weaker prior knowledge

Let HT be all functions from {0, 1}p → {0, 1} that can be
implemented by a Turing machine using at most T operations.

Very expressive class

Sample complexity ?

Theorem

HT is contained in the class of neural networks of depth O(T) and
size O(T 2)

The sample complexity of this class is O(T 2)

Shalev-Shwartz (HU) DL OSL’15 5 / 35

Weaker prior knowledge

Let HT be all functions from {0, 1}p → {0, 1} that can be
implemented by a Turing machine using at most T operations.

Very expressive class

Sample complexity ?

Theorem

HT is contained in the class of neural networks of depth O(T) and
size O(T 2)

The sample complexity of this class is O(T 2)

Shalev-Shwartz (HU) DL OSL’15 5 / 35

Weaker prior knowledge

Let HT be all functions from {0, 1}p → {0, 1} that can be
implemented by a Turing machine using at most T operations.

Very expressive class

Sample complexity ?

Theorem

HT is contained in the class of neural networks of depth O(T) and
size O(T 2)

The sample complexity of this class is O(T 2)

Shalev-Shwartz (HU) DL OSL’15 5 / 35

Weaker prior knowledge

Let HT be all functions from {0, 1}p → {0, 1} that can be
implemented by a Turing machine using at most T operations.

Very expressive class

Sample complexity ?

Theorem

HT is contained in the class of neural networks of depth O(T) and
size O(T 2)

The sample complexity of this class is O(T 2)

Shalev-Shwartz (HU) DL OSL’15 5 / 35

The ultimate hypothesis class

less prior knowledge
more data

expert
system

SVM: use prior
knowledge
to construct
φ(x) and learn
〈w, φ(x)〉

deep neural
networks

No Free Lunch

Shalev-Shwartz (HU) DL OSL’15 6 / 35

Neural Networks

A single neuron with activation function σ : R→ R

x1

x2

x3

x4

x5

σ(〈v, x〉)

v1

v2

v3

v4

v5

E.g., σ is a sigmoidal function

Shalev-Shwartz (HU) DL OSL’15 7 / 35

Neural Networks

A multilayer neural network of depth 3 and size 6

x1

x2

x3

x4

x5

Hidden
layer

Hidden
layer

Input
layer

Output
layer

Shalev-Shwartz (HU) DL OSL’15 8 / 35

Brief history

Neural networks were popular in the 70’s and 80’s

Then, suppressed by SVM and Adaboost on the 90’s

In 2006, several deep architectures with unsupervised pre-training
have been proposed

In 2012, Krizhevsky, Sutskever, and Hinton significantly improved
state-of-the-art without unsupervised pre-training

Since 2012, state-of-the-art in vision, speech, and more

Shalev-Shwartz (HU) DL OSL’15 9 / 35

Computational Complexity of Deep Learning

By fixing an architecture of a network (underlying graph and
activation functions), each network is parameterized by a weight
vector w ∈ Rd, so our goal is to learn the vector w

Empirical Risk Minimization (ERM):
Sample S = ((x1, y1), . . . , (xn, yn)) ∼ Dn and approximately solve

min
w∈Rd

1

n

n∑
i=1

`i(w)

Realizable sample: ∃w∗ s.t. ∀i, hw∗(xi) = yi

Blum and Rivest 1992: Distinguishing between realizable and
unrealizable S is NP hard even for depth 2 networks with 3 hidden
neurons (reduction to k coloring)
Hence, solving the ERM problem is NP hard even under realizability

Shalev-Shwartz (HU) DL OSL’15 10 / 35

Computational Complexity of Deep Learning

By fixing an architecture of a network (underlying graph and
activation functions), each network is parameterized by a weight
vector w ∈ Rd, so our goal is to learn the vector w

Empirical Risk Minimization (ERM):
Sample S = ((x1, y1), . . . , (xn, yn)) ∼ Dn and approximately solve

min
w∈Rd

1

n

n∑
i=1

`i(w)

Realizable sample: ∃w∗ s.t. ∀i, hw∗(xi) = yi

Blum and Rivest 1992: Distinguishing between realizable and
unrealizable S is NP hard even for depth 2 networks with 3 hidden
neurons (reduction to k coloring)
Hence, solving the ERM problem is NP hard even under realizability

Shalev-Shwartz (HU) DL OSL’15 10 / 35

Computational Complexity of Deep Learning

By fixing an architecture of a network (underlying graph and
activation functions), each network is parameterized by a weight
vector w ∈ Rd, so our goal is to learn the vector w

Empirical Risk Minimization (ERM):
Sample S = ((x1, y1), . . . , (xn, yn)) ∼ Dn and approximately solve

min
w∈Rd

1

n

n∑
i=1

`i(w)

Realizable sample: ∃w∗ s.t. ∀i, hw∗(xi) = yi

Blum and Rivest 1992: Distinguishing between realizable and
unrealizable S is NP hard even for depth 2 networks with 3 hidden
neurons (reduction to k coloring)
Hence, solving the ERM problem is NP hard even under realizability

Shalev-Shwartz (HU) DL OSL’15 10 / 35

Computational Complexity of Deep Learning

By fixing an architecture of a network (underlying graph and
activation functions), each network is parameterized by a weight
vector w ∈ Rd, so our goal is to learn the vector w

Empirical Risk Minimization (ERM):
Sample S = ((x1, y1), . . . , (xn, yn)) ∼ Dn and approximately solve

min
w∈Rd

1

n

n∑
i=1

`i(w)

Realizable sample: ∃w∗ s.t. ∀i, hw∗(xi) = yi

Blum and Rivest 1992: Distinguishing between realizable and
unrealizable S is NP hard even for depth 2 networks with 3 hidden
neurons (reduction to k coloring)
Hence, solving the ERM problem is NP hard even under realizability

Shalev-Shwartz (HU) DL OSL’15 10 / 35

Computational Complexity of Deep Learning

The argument of Pitt and Valiant (1988)

If it is NP-hard to distinguish realizable from un-realizable samples, then
properly learning H is hard (unless RP=NP)

Proof: Run the learning algorithm on the empirical distribution over the
sample to get h ∈ H with empirical error < 1/n:

If ∀i, h(xi) = yi, return “realizable”

Otherwise, return “unrealizable”

Shalev-Shwartz (HU) DL OSL’15 11 / 35

Computational Complexity of Deep Learning

The argument of Pitt and Valiant (1988)

If it is NP-hard to distinguish realizable from un-realizable samples, then
properly learning H is hard (unless RP=NP)

Proof: Run the learning algorithm on the empirical distribution over the
sample to get h ∈ H with empirical error < 1/n:

If ∀i, h(xi) = yi, return “realizable”

Otherwise, return “unrealizable”

Shalev-Shwartz (HU) DL OSL’15 11 / 35

Improper Learning

Original
search space

New search space

Allow the learner to output h 6∈ H

The argument of Pitt and Valiant fails because the algorithm may
return consistent h even though S is unrealizable by H
Is deep learning still hard in the improper model ?

Shalev-Shwartz (HU) DL OSL’15 12 / 35

Improper Learning

Original
search space

New search space

Allow the learner to output h 6∈ H
The argument of Pitt and Valiant fails because the algorithm may
return consistent h even though S is unrealizable by H

Is deep learning still hard in the improper model ?

Shalev-Shwartz (HU) DL OSL’15 12 / 35

Improper Learning

Original
search space

New search space

Allow the learner to output h 6∈ H
The argument of Pitt and Valiant fails because the algorithm may
return consistent h even though S is unrealizable by H
Is deep learning still hard in the improper model ?

Shalev-Shwartz (HU) DL OSL’15 12 / 35

Hope ...

Generated examples in R150 and passed them through a random
depth-2 network that contains 60 hidden neurons with the ReLU
activation function.
Tried to fit a new network to this data with over-specification factors
of 1, 2, 4, 8

0 0.2 0.4 0.6 0.8 1

·105

0

1

2

3

4

#iterations

M
S

E

1
2
4
8

Shalev-Shwartz (HU) DL OSL’15 13 / 35

How to show hardness of improper learning?

The argument of Pitt and Valiant fails for improper learning because
improper algorithms might perform well on unrealizable samples

Key Observation

If a learning algorithm is computationally efficient its output must
come from a class of “small” VC dimension

Hence, it cannot perform well on “very random” samples

Using the above observation we conclude:

Hardness of distinguishing realizable form “random” samples implies
hardness of improper learning of H

Shalev-Shwartz (HU) DL OSL’15 14 / 35

How to show hardness of improper learning?

The argument of Pitt and Valiant fails for improper learning because
improper algorithms might perform well on unrealizable samples

Key Observation

If a learning algorithm is computationally efficient its output must
come from a class of “small” VC dimension

Hence, it cannot perform well on “very random” samples

Using the above observation we conclude:

Hardness of distinguishing realizable form “random” samples implies
hardness of improper learning of H

Shalev-Shwartz (HU) DL OSL’15 14 / 35

How to show hardness of improper learning?

The argument of Pitt and Valiant fails for improper learning because
improper algorithms might perform well on unrealizable samples

Key Observation

If a learning algorithm is computationally efficient its output must
come from a class of “small” VC dimension

Hence, it cannot perform well on “very random” samples

Using the above observation we conclude:

Hardness of distinguishing realizable form “random” samples implies
hardness of improper learning of H

Shalev-Shwartz (HU) DL OSL’15 14 / 35

Deep Learning is Hard

Using the new technique and under a natural hardness assumption we can
show:

It is hard to improperly learn intersections of ω(1) halfspaces

It is hard to improperly learn depth ≥ 2 networks with ω(1) neurons,
with the threshold or ReLU or sigmoid activation functions

Shalev-Shwartz (HU) DL OSL’15 15 / 35

Theory-Practice Gap

In theory: it is hard to train even depth 2 networks

In practice: Networks of depth 2− 20 are trained successfully

How to circumvent hardness?

Change the problem ...

Add more assumptions

Depart from worst-case analysis

Shalev-Shwartz (HU) DL OSL’15 16 / 35

Theory-Practice Gap

In theory: it is hard to train even depth 2 networks

In practice: Networks of depth 2− 20 are trained successfully

How to circumvent hardness?

Change the problem ...

Add more assumptions

Depart from worst-case analysis

Shalev-Shwartz (HU) DL OSL’15 16 / 35

Theory-Practice Gap

In theory: it is hard to train even depth 2 networks

In practice: Networks of depth 2− 20 are trained successfully

How to circumvent hardness?

Change the problem ...

Add more assumptions

Depart from worst-case analysis

Shalev-Shwartz (HU) DL OSL’15 16 / 35

Theory-Practice Gap

In theory: it is hard to train even depth 2 networks

In practice: Networks of depth 2− 20 are trained successfully

How to circumvent hardness?

Change the problem ...

Add more assumptions

Depart from worst-case analysis

Shalev-Shwartz (HU) DL OSL’15 16 / 35

Change the activation function

Simpler non-linearity — replace sigmoidal activation function by the
square function σ(a) = a2

Network implements polynomials, where the depth correlative to
degree

Is this class still very expressive ?

Expressiveness of polynomial networks

Recall the definition of HT (functions that can be implemented by T
operations of a turing machine). Then, HT is contained in the class of
polynomial networks of depth O(T log(T)) and size O(T 2 log2(T))

Shalev-Shwartz (HU) DL OSL’15 17 / 35

Change the activation function

Simpler non-linearity — replace sigmoidal activation function by the
square function σ(a) = a2

Network implements polynomials, where the depth correlative to
degree

Is this class still very expressive ?

Expressiveness of polynomial networks

Recall the definition of HT (functions that can be implemented by T
operations of a turing machine). Then, HT is contained in the class of
polynomial networks of depth O(T log(T)) and size O(T 2 log2(T))

Shalev-Shwartz (HU) DL OSL’15 17 / 35

Computational Complexity of Polynomial Networks

H

H′

Proper learning is still hard even for depth 2

But, for constant depth, improper learning works

Replace original class with a linear classifier over all degree 2depth−1

monomials

Size of the network is very large. Can we do better?

Shalev-Shwartz (HU) DL OSL’15 18 / 35

Computational Complexity of Polynomial Networks

H

H′

Proper learning is still hard even for depth 2

But, for constant depth, improper learning works

Replace original class with a linear classifier over all degree 2depth−1

monomials

Size of the network is very large. Can we do better?

Shalev-Shwartz (HU) DL OSL’15 18 / 35

Computational Complexity of Polynomial Networks

H

H′

Proper learning is still hard even for depth 2

But, for constant depth, improper learning works

Replace original class with a linear classifier over all degree 2depth−1

monomials

Size of the network is very large. Can we do better?

Shalev-Shwartz (HU) DL OSL’15 18 / 35

Computational Complexity of Polynomial Networks

H

H′

Proper learning is still hard even for depth 2

But, for constant depth, improper learning works

Replace original class with a linear classifier over all degree 2depth−1

monomials

Size of the network is very large. Can we do better?

Shalev-Shwartz (HU) DL OSL’15 18 / 35

Forward Greedy Selection for Polynomial Networks

Consider depth 2 polynomial networks

Let S be the Euclidean sphere of Rd

Observation: Two layer polynomial networks equivalent to mappings
from S to R with sparse support

Apply forward greedy selection for learning the sparse mapping

Main caveat: at each greedy iteration we need to find v that
approximately solve

argmax
v∈S

|∇vR(w)|

Luckily, this is an eigenvalue problem

∇vR(w) = v>

 E
(x,y)

`′

 ∑
u∈supp(w)

wu〈u, x〉2, y

xx>

 v

Shalev-Shwartz (HU) DL OSL’15 19 / 35

Back to Sigmoidal (and ReLU) Networks

Let Ht,n,L,sig be the class of sigmoidal networks with depth t, size n,
and bound L on the `1 norm of the input weights of each neuron

Let Ht,n,poly be defined similarly for polynomial networks

Theorem

∀ε, Ht,n,L,sig ⊂ε Ht log(L(t−log ε)),nL(t−log ε),poly

Corollary

Constant depth sigmoidal networks with L = O(1) are efficiently
learnable !

It is hard to learn polynomial networks of depth Ω(log(d)) and size
Ω(d)

Shalev-Shwartz (HU) DL OSL’15 20 / 35

Back to Sigmoidal (and ReLU) Networks

Let Ht,n,L,sig be the class of sigmoidal networks with depth t, size n,
and bound L on the `1 norm of the input weights of each neuron

Let Ht,n,poly be defined similarly for polynomial networks

Theorem

∀ε, Ht,n,L,sig ⊂ε Ht log(L(t−log ε)),nL(t−log ε),poly

Corollary

Constant depth sigmoidal networks with L = O(1) are efficiently
learnable !

It is hard to learn polynomial networks of depth Ω(log(d)) and size
Ω(d)

Shalev-Shwartz (HU) DL OSL’15 20 / 35

Back to Sigmoidal (and ReLU) Networks

Let Ht,n,L,sig be the class of sigmoidal networks with depth t, size n,
and bound L on the `1 norm of the input weights of each neuron

Let Ht,n,poly be defined similarly for polynomial networks

Theorem

∀ε, Ht,n,L,sig ⊂ε Ht log(L(t−log ε)),nL(t−log ε),poly

Corollary

Constant depth sigmoidal networks with L = O(1) are efficiently
learnable !

It is hard to learn polynomial networks of depth Ω(log(d)) and size
Ω(d)

Shalev-Shwartz (HU) DL OSL’15 20 / 35

Back to Sigmoidal (and ReLU) Networks

Let Ht,n,L,sig be the class of sigmoidal networks with depth t, size n,
and bound L on the `1 norm of the input weights of each neuron

Let Ht,n,poly be defined similarly for polynomial networks

Theorem

∀ε, Ht,n,L,sig ⊂ε Ht log(L(t−log ε)),nL(t−log ε),poly

Corollary

Constant depth sigmoidal networks with L = O(1) are efficiently
learnable !

It is hard to learn polynomial networks of depth Ω(log(d)) and size
Ω(d)

Shalev-Shwartz (HU) DL OSL’15 20 / 35

Back to the Theory-Practice Gap

In theory:

Hard to train depth 2 networks

Easy to train constant depth networks with constant bound on the
weights

In practice:

Provably correct algorithms are not practical ...
Networks of depth 2− 20 are trained successfully with SGD (and
strong GPU and a lot of patient)

How to circumvent hardness?

Change the problem ...

Add more assumptions

Depart from worst-case analysis
When does SGD work ? Can we make it better ?

Shalev-Shwartz (HU) DL OSL’15 21 / 35

Back to the Theory-Practice Gap

In theory:

Hard to train depth 2 networks
Easy to train constant depth networks with constant bound on the
weights

In practice:

Provably correct algorithms are not practical ...
Networks of depth 2− 20 are trained successfully with SGD (and
strong GPU and a lot of patient)

How to circumvent hardness?

Change the problem ...

Add more assumptions

Depart from worst-case analysis
When does SGD work ? Can we make it better ?

Shalev-Shwartz (HU) DL OSL’15 21 / 35

Back to the Theory-Practice Gap

In theory:

Hard to train depth 2 networks
Easy to train constant depth networks with constant bound on the
weights

In practice:

Provably correct algorithms are not practical ...

Networks of depth 2− 20 are trained successfully with SGD (and
strong GPU and a lot of patient)

How to circumvent hardness?

Change the problem ...

Add more assumptions

Depart from worst-case analysis
When does SGD work ? Can we make it better ?

Shalev-Shwartz (HU) DL OSL’15 21 / 35

Back to the Theory-Practice Gap

In theory:

Hard to train depth 2 networks
Easy to train constant depth networks with constant bound on the
weights

In practice:

Provably correct algorithms are not practical ...
Networks of depth 2− 20 are trained successfully with SGD (and
strong GPU and a lot of patient)

How to circumvent hardness?

Change the problem ...

Add more assumptions

Depart from worst-case analysis
When does SGD work ? Can we make it better ?

Shalev-Shwartz (HU) DL OSL’15 21 / 35

Back to the Theory-Practice Gap

In theory:

Hard to train depth 2 networks
Easy to train constant depth networks with constant bound on the
weights

In practice:

Provably correct algorithms are not practical ...
Networks of depth 2− 20 are trained successfully with SGD (and
strong GPU and a lot of patient)

How to circumvent hardness?

Change the problem ...

Add more assumptions

Depart from worst-case analysis
When does SGD work ? Can we make it better ?

Shalev-Shwartz (HU) DL OSL’15 21 / 35

SGD for Deep Learning

Advantages:
Works well in practice
Per iteration cost independent of n

Disadvantage: slow convergence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

·107

10−2

10−1

100

of backpropagation

ob
je

ct
iv

e

Shalev-Shwartz (HU) DL OSL’15 22 / 35

SGD for Deep Learning

Advantages:
Works well in practice
Per iteration cost independent of n

Disadvantage: slow convergence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

·107

10−2

10−1

100

of backpropagation

ob
je

ct
iv

e

Shalev-Shwartz (HU) DL OSL’15 22 / 35

How to improve SGD convergence rate?

1 Variance Reduction

SAG, SDCA, SVRG
Same per iteration cost as SGD

... but converges exponentially faster
Designed for convex problems

... but can be adapted to deep learning

2 SelfieBoost:

AdaBoost, with SGD as weak learner, converges exponentially faster
than vanilla SGD
But yields an ensemble of networks — very expensive at prediction time
A new boosting algorithm that boost the performance of the same
network
Faster convergence under some “SGD success” assumption

Shalev-Shwartz (HU) DL OSL’15 23 / 35

How to improve SGD convergence rate?

1 Variance Reduction

SAG, SDCA, SVRG
Same per iteration cost as SGD

... but converges exponentially faster
Designed for convex problems

... but can be adapted to deep learning

2 SelfieBoost:

AdaBoost, with SGD as weak learner, converges exponentially faster
than vanilla SGD
But yields an ensemble of networks — very expensive at prediction time
A new boosting algorithm that boost the performance of the same
network
Faster convergence under some “SGD success” assumption

Shalev-Shwartz (HU) DL OSL’15 23 / 35

Deep Networks are Non-Convex

A 2-dim slice of a network with hidden layers {10, 10, 10, 10}, on MNIST,
with the clamped ReLU activation function and logistic loss.

The slice is defined by finding a global minimum (using SGD) and creating
two random permutations of the first hidden layer.

−1
−0.8
−0.6
−0.4
−0.2

0
0.2

0.4
0.6

0.8

1

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

1

2

Shalev-Shwartz (HU) DL OSL’15 24 / 35

But Deep Networks Seem Convex Near a Miminum

Now the slice is based on 2 random points at distance 1 around a global
minimum

−1 −0.8 −0.6 −0.4 −0.2
0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

4

5

6

7

8

·10−2

Shalev-Shwartz (HU) DL OSL’15 25 / 35

SDCA for Deep Learning

min
w∈Rd

P (w) :=
1

n

n∑
i=1

φi(w) +
λ

2
‖w‖2

SDCA is motivated by duality, which is meaningless for non-convex

functions, but yields an algorithm we can run without duality:

”Dual” update: α
(t)
i = α

(t−1)
i − ηλn

(
∇φi(w(t−1)) + α

(t−1)
i

)
”Primal dual” relationship: w(t−1) =

1

λn

n∑
i=1

α
(t−1)
i

Primal update: w(t) = w(t−1) − η
(
∇φi(w(t−1)) + α

(t−1)
i

)

Converges rate (for convex and smooth):
(
n+ 1

λ

)
log
(
1
ε

)
Shalev-Shwartz (HU) DL OSL’15 26 / 35

SDCA is SGD

Recall that SDCA primal update rule is

w(t) = w(t−1) − η
(
∇φi(w(t−1)) + α

(t−1)
i

)
︸ ︷︷ ︸

v(t)

and that w(t−1) = 1
λn

∑n
i=1 α

(t−1)
i .

Observe: v(t) is unbiased estimate of the gradient:

E[v(t)|w(t−1)] =
1

n

n∑
i=1

(
∇φi(w(t−1)) + α

(t−1)
i

)
= ∇P (w(t−1))− λw(t−1) + λw(t−1)

= ∇P (w(t−1))

Shalev-Shwartz (HU) DL OSL’15 27 / 35

SDCA is SGD

Recall that SDCA primal update rule is

w(t) = w(t−1) − η
(
∇φi(w(t−1)) + α

(t−1)
i

)
︸ ︷︷ ︸

v(t)

and that w(t−1) = 1
λn

∑n
i=1 α

(t−1)
i .

Observe: v(t) is unbiased estimate of the gradient:

E[v(t)|w(t−1)] =
1

n

n∑
i=1

(
∇φi(w(t−1)) + α

(t−1)
i

)
= ∇P (w(t−1))− λw(t−1) + λw(t−1)

= ∇P (w(t−1))

Shalev-Shwartz (HU) DL OSL’15 27 / 35

SDCA is SGD, but better

The update step of both SGD and SDCA is w(t) = w(t−1) − ηv(t)
where

v(t) =

{
∇φi(w(t−1)) + λw(t−1) for SGD

∇φi(w(t−1)) + α
(t−1)
i for SDCA

In both cases E[v(t)|w(t−1)] = ∇P (w(t))

What about the variance?

For SGD, even if w(t−1) = w∗, the variance of v(t) is still constant

For SDCA, it can be shown that the variance of v(t) goes to zero as
w(t−1) → w∗

Shalev-Shwartz (HU) DL OSL’15 28 / 35

How to improve SGD?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

·107

10−2

10−1

100

of backpropagation

ob
je

ct
iv

e

Why SGD is slow at the end?

High variance, even close to the optimum

Rare mistakes: Suppose all but 1% of the examples are correctly
classified. SGD will now waste 99% of its time on examples that are
already correct by the model

Shalev-Shwartz (HU) DL OSL’15 29 / 35

SelfieBoost Motivation

For simplicity, consider a binary classification problem in the realizable
case

For a fixed ε0 (not too small), few SGD iterations find an ε0-accurate
solution

However, for a small ε, SGD requires many iterations

Smells like we need to use boosting

Shalev-Shwartz (HU) DL OSL’15 30 / 35

First idea: learn an ensemble using AdaBoost

Fix ε0 (say 0.05), and assume SGD can find a solution with error < ε0
quite fast

Lets apply AdaBoost with the SGD learner as a weak learner:

At iteration t, we sub-sample a training set based on a distribution Dt

over [n]
We feed the sub-sample to a SGD learner and gets a weak classifier ht
Update Dt+1 based on the predictions of ht
The output of AdaBoost is an ensemble with prediction

∑T
t=1 αtht(x)

The celebrated Freund & Schapire theorem states that if
T = O(log(1/ε)) then the error of the ensemble classifier is at most ε

Observe that each boosting iteration involves calling SGD on a
relatively small data, and updating the distribution on the entire big
data. The latter step can be performed in parallel

Disadvantage of learning an ensemble: at prediction time, we need to
apply many networks

Shalev-Shwartz (HU) DL OSL’15 31 / 35

Boosting the Same Network

Can we obtain “boosting-like” convergence, while learning a single
network?

The SelfieBoost Algorithm:

Start with an initial network f1

At iteration t, define weights over the n examples according to
Di ∝ e−yift(xi)

Sub-sample a training set S ∼ D
Use SGD for approximately solving the problem

ft+1 ≈ argmin
g

∑
i∈S

yi(ft(xi)− g(xi)) +
1

2

∑
i∈S

(g(xi)− ft(xi))2

Shalev-Shwartz (HU) DL OSL’15 32 / 35

Analysis of the SelfieBoost Algorithm

Lemma: At each iteration, with high probability over the choice of S,
there exists a network g with objective value of at most −1/4

Theorem: If at each iteration, the SGD algorithm finds a solution
with objective value of at most −ρ, then after

log(1/ε)

ρ

SelfieBoost iterations the error of ft will be at most ε

To summarize: we have obtained log(1/ε) convergence assuming that
the SGD algorithm can solve each sub-problem to a fixed accuracy
(which seems to hold in practice)

Shalev-Shwartz (HU) DL OSL’15 33 / 35

SelfieBoost vs. SGD

On MNIST dataset, depth 5 network

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

·107

10−4

10−3

10−2

10−1

100

of backpropagation

er
ro

r

SGD
SelfieBoost

Shalev-Shwartz (HU) DL OSL’15 34 / 35

Summary

Why deep networks: Deep networks are the ultimate hypothesis class
from the statistical perspective

Why not: Deep networks are a horrible class from the computational
point of view

This work: Deep networks with bounded depth and `1 norm are not
hard to learn

Provably correct theoretical algorithms are in general not practical.

Why SGD works ???

How can we make it better ?

Shalev-Shwartz (HU) DL OSL’15 35 / 35

