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Exact reconstruction

Reconstruction of a shape K ⊂ Rn (convex or not)
from knowledge of finitely many moments

yα =

∫
K

xα1
1 · · · x

αn
n dx , α ∈ Nn

d ,

for some integer d , is a difficult and challenging problem!

EXACT recovery of K
from y = (yα), α ∈ Nn

d , is even more difficult and challenging!
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Exact recovery (continued)

Examples of exact recovery:

Quadrature (planar) Domains in (R2) (Gustafsson, He,
Milanfar and Putinar (Inverse Problems, 2000))
• via an exponential transform
Convex Polytopes (in Rn) (Gravin, Lasserre, Pasechnik
and Robins (Discrete & Comput. Geometry (2012))
• Use Brion-Barvinok-Khovanski-Lawrence-Pukhlikov
moment formula for projections

∫
P
〈c, x〉j dx combined with

a Prony-type method to recover the vertices of P.
and extension to Non convex polyhedra by Pasechnik et al.
• via inversion of Fantappié transform
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Approximate recovery can de done in multi-dimensions
(Cuyt, Golub, Milanfar and Verdonk, 2005) via :

(multi-dimensional versions of) homogeneous Padé
approximants applied to the Stieltjes transform.
cubature formula at each point of grid
solving a linear system of equations to retrieve the
indicator function of K
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This talk: I
Exact recovery.
K = { x ∈ Rn : g(x) ≤ 1 } compact.
g is a nonnegative homogeneous polynomial
Data are finitely many moments:

yα =

∫
K

xα dx, α ∈ Nn
d .

• Also works for Quasi-homogeneous polynomials, i.e., when

g(λu1x1, . . . , λ
unxn) = λg(x), x ∈ Rn, λ > 0

for some vector u ∈ Qn.

(d-Homogeneous =u-quasi homogeneous with ui = 1
d for all i).
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This talk: II
Exact recovery.
G ⊂ Rn is open with G = int G and with real algebraic
boundary ∂G. A polynomial of degree d vanishes on ∂G.
Data are finitely many moments:

yα =

∫
K

xα dx, α ∈ Nn
d .
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A little detour

Positively Homogeneous functions (PHF) form a wide class of
functions encountered in many applications. As a consequence
of homogeneity, they enjoy very particular properties, and
among them the celebrated and very useful Euler’s identity
which allows to deduce additional properties of PHFs in various
contexts.

Another (apparently not well-known) property of PHFs yields
surprising and unexpected results, some of them already
known in particular cases.

The case of homogeneous polynomials is even more
interesting!
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So we are now concerned with PHFs, their sublevel sets and in
particular, the integral

y 7→ Ig,h(y) :=

∫
{x : g(x)≤y}

h(x) dx,

as a function Ig,h : R+ → R when g,h are PHFs.

With y fixed, we are also interested in

g 7→ Ig,h(y),

now as a function of g, especially when g is a nonnegative
homogeneous polynomial.

Nonnegative homogeneous polynomials are particularly
interesting as they can be used to approximate norms; see e.g.
Barvinok
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Some motivation

Interestingly, the latter integral is related in a simple and
remarkable manner to the non-Gaussian integral∫

Rn h exp(−g)dx .

Functional integrals appear frequently in quantum Physics

. . . ... where a challenging issue is to provide

exact formulas for
∫

exp(−g) dx , the most well-known being
when deg g = 2, i.e., g(x) = xT Qx , with Q � 0,

d = 2⇒
∫

exp(−g) dx =
Cte√
det(Q)

.

Observe that det(Q) is an algebraic invariant of g,
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The key tools are discriminants and SL(n)-invariants.

An integral

J(g) :=

∫
exp(−g) dx

is called a discriminant integral.

Next if one write

x 7→ g(x) =
∑
a∈Nn

ga xa (=
∑
a∈Nn

ga xa1
1 · · · x

an
n ).
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Integral discriminants satisfy WARD Identities(
∂

∂ga1···an

∂

∂gb1···bn

− ∂

∂gc1···cn

∂

∂gd1···dn

)
· J(g) = 0,

where ai + bi = ci + di for all i .

which in some (few) low-dimensional cases, permits to obtain
exact formulas in terms of algebraic invariants of g. See e.g.
Morosov and Shakirov1

1New and old results in Resultant theory, arXiv.0911.5278v1.
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In particular, as a by-product in the important particular case
when h = 1, they have proved that for all forms g of degree d ,

Vol ({x : g(x) ≤ 1}) =

∫
{x : g(x)≤1}

dx

= cte(d) ·
∫
Rn

exp(−g)dx,

where the constant depends only on d and n.
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In fact, a formula of exactly the same flavor was already known
for convex sets, and was the initial motivation of our work.
Namely, if C ⊂ Rn is convex, its support function

x 7→ σC(x) := sup {xT y : y ∈ C},

is a PHF of degree 1, and the polar C◦ ⊂ Rn of C is the convex
set {x : σC(x) ≤ 1}.

Then . . .

vol (C◦) =
1
n!

∫
Rn

exp(−σC(x)) dx , ∀C.
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I. An important property of PHF’s

Let φ1, φ2 : R+ → R be measurable mappings, and let g ≥ 0
and h be PHFs of respective degree 0 6= d ,p ∈ Z.
We next show that∫

φ1(g) h dx∫
φ2(g) h dx

= C(φ1, φ2,d ,p),

that is
The ratio DEPENDS ONLY on φ1, φ2 and the degree of

homogeneity of g and h!

With t 7→ φ1(t) = 1[0,1](t) :→
∫
{g(x)≤1}

h(x) dx.

With t 7→ φ2(t) = exp(−t) :→
∫
Rn

h(x) exp(−g(x))dx
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Theorem
Let φ : R+ → R be a measurable mapping, and let g ≥ 0 and h
be PHFs of respective degree 0 6= d ,p ∈ Z and such that∫
|h|exp(−g)dx is finite,∫

Rn
φ(g(x)) h(x) dx = C(φ,d ,p) ·

∫
Rn

h exp(−g) dx ,

where the constant C(φ,d ,p) depends only on φ,d ,p.
In particular, if the sublevel set {x : g(x) ≤ 1} is bounded, then∫

{x : g(x)≤y}
h dx =

y (n+p)/d

Γ(1 + (n + p)/d)

∫
Rn

h exp(−g) dx ,

with Γ being the standard Gamma function
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Proof for nonnegative h

For simplicity assume that g(x) > 0 if x 6= 0. With
z = (z1, . . . , zn−1), do the change of variable x1 = t ,
x2 = t z1, . . . , xn = t zn−1 so that one may decompose∫
Rn φ(g(x)) h(x)dx into the sum∫

R+×Rn−1
tn+p−1φ(tdg(1, z)) h(1, z) dt dz

+

∫
R+×Rn−1

tn+p−1φ(tdg(−1,−z)) h(−1, z) dt dz,

=

∫
Rn−1

(∫ ∞
0

tn+p−1φ(tdg(1, z)) dt
)

h(1, z) dz

+

∫
Rn−1

(∫ ∞
0

tn+p−1φ(tdg(−1,−z)) dt
)

h(−1,−z) dz,

where the last two integrals are obtained from the sum of the
previous two by using Tonelli’s Theorem.
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Proof (continued)

Next, with the change of variable u = t g(1, z)1/d and
u = t g(−1,−z)1/d

∫
Rn
φ(g(x)) h(x) dx =

(∫
R+

un+p−1φ(ud ) du
)

︸ ︷︷ ︸
Cte(φ,p,d)

·A(g,h),

with

A(g,h) =

∫
Rn−1

(
h(1, z)

g(1, z)(n+p)/d +
h(−1,−z)

g(−1,−z)(n+p)/d

)
dz.

�
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Choosing φ(t) = exp(−t) on [0,+∞) yields:∫
Rn

exp(−g(x)) h(x) dx =
Γ(1 + (n + p)/d)

n + p
· A(g,h),

whereas, choosing φ(t) = I[0,1](t) on [0,+∞) yields:∫
{x : g(x)≤1}

h(x) dx =
1

n + p
· A(g,h),
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And so in particular, whenever g is nonnegative and
{x : g(x) ≤ 1} has finite Lebesgue volume:

Theorem
If g,h are PHFs of degree 0 < d and p respectively, then:∫

{x : g(x)≤y}
h dx =

y (n+p)/d

Γ(1 + (n + p)/d)

∫
Rn

exp(−g) h dx

vol ({x : g(x) ≤ y}) =
yn/d

Γ(1 + n/d)

∫
Rn

exp(−g) dx
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An alternative proof

Let g,h be nonnegative so that Ig,h(y) vanishes on (−∞,0]. For
0 < λ ∈ R, its Laplace transform
λ 7→ LIg,h (λ) =

∫∞
0 exp(−λy)Ig,h(y) dy reads:

LIg,h (λ) =

∫ ∞
0

exp(−λy)

(∫
{x :g(x)≤y}

hdx

)
dy

=

∫
Rn

h(x)

(∫ ∞
g(x)

exp(−λy)dy

)
dx [by Fubini]

=
1
λ

∫
Rn

h(x) exp(−λg(x)) dx

=
1

λ1+(n+p)/d

∫
Rn

h(z) exp(−g(z)) dz [by homog]

=

∫
Rn

h(z) exp(−g(z)) dz

Γ(1 + (n + p)/d)
Ly (n+p)/d (λ).
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And so, by analyticity and the Identity theorem of analytical
functions

Ig,h(y) =
y (n+p)/d

Γ(1 + (n + p)/d)

∫
Rn

h(x) exp(−g(x)) dx ,
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II. Approximating a non gaussian integral

Hence computing the non Gaussian integral
∫

exp(−g) dx

reduces to computing the volume of the level set
G := {x : g(x) ≤ 1},

. . . which is the same as solving the optimization problem:

max
µ

µ(G)

s.t. µ+ ν = λ
µ(B \G) = 0

where :
B is a box [−a,a]n containing G and
λ is the Lebesgue measure.

Jean B. Lasserre Recovery of algebraic-exponential data from moments



II. Approximating a non gaussian integral

Hence computing the non Gaussian integral
∫

exp(−g) dx

reduces to computing the volume of the level set
G := {x : g(x) ≤ 1},

. . . which is the same as solving the optimization problem:

max
µ

µ(G)

s.t. µ+ ν = λ
µ(B \G) = 0

where :
B is a box [−a,a]n containing G and
λ is the Lebesgue measure.

Jean B. Lasserre Recovery of algebraic-exponential data from moments



. . . and we know how to
approximate as closely as desired µ(G) and any FIXED

number of moments of µ, by solving an appropriate hierarchy of
semidefinite programs (SDP).

(see: Approximate volume and integration for basic semi algebraic
sets, Henrion, Lasserre and Savorgnan, SIAM Review 51, 2009.)

However . . .
the resulting SDPs are numerically difficult to solve.

Solving the dual reduces to approximating the indicator function
I(G) by polynomials of increasing degrees→ Gibbs effect, etc.
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Let G ⊆ B := [−1,1]n (possibly after scaling), and let z = (zα),
α ∈ Nn

2k , be the moments of the Lebesgue measure λ on B.

Solve the hierarchy of semidefinite programs:

ρk = max y0
s.t. Mk (y),Mk (v) � 0,

Mk−d(d)/2e(g y) � 0
Mk−1((1− x2

i ) v) � 0, i = 1, . . . ,n
yα + vα = zα, α ∈ Nn

2k

for some moment and localizing matrices Mk (y) and Mk (g, y).
• The linear constraints yα + vα = zα for all α ∈ Nn

2k “ensure"
µ+ ν = λ, while the “� 0" constraints “ensure" suppµ = G and
supp ν = B.
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Another identity

Corollary
If g has degree d and G has finite volume then∫

{x : g(x)≤ y}
exp(−g) dx∫

Rn
exp(−g) dx

=

∫ y

0
tn/d−1 exp(−t)dt∫ ∞

0
tn/d−1 exp(−t)dt

=

∫ y

0
tn/d−1 exp(−t)dt

Γ(n/d)

expresses how fast µ({x : g(x) ≤ y}) goes to µ(Rn) as
y →∞, for the Borel measure dµ = exp(−g) dx .

It is like for the Gamma function Γ(n/d) when approximated by∫ y
0 tn/d−1 exp(−t)dt .
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III. Convexity

An interesting issue is to analyze how the Lebesgue volume
vol {x ∈ Rn : g(x) ≤ 1}, (i.e. vol (G)) changes with g.

Corollary

Let h be a PHF of degree p and let Cd ⊂ R[x ]d be the convex
cone of homogeneous polynomials g of degree at most d such
that

∫
G |h|dx <∞. Then the function f h : Cd → R,

g 7→ f h(g) :=

∫
G

h dx , g ∈ Cd ,

is a PHF of degree −(n + p)/d,
convex whenever h is nonnegative and strictly convex if
h > 0 on Rn \ {0}
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Convexity (continued)

Corollary (continued)

Moreover, if h is continuous and g ∈ int(Cd ) then:

∂f h(g)

∂gα
=

−1
Γ(1 + (n + p)/d)

∫
Rn

xα h exp(−g) dx

=
−Γ(2 + (n + p)/d)

Γ(1 + (n + p)/d)

∫
G

xα h dx

∂2f h(g)

∂gα∂gβ
=

−1
Γ(1 + (n + p)/d)

∫
Rn

xα+β h exp(−g) dx
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PROOF: Just use∫
{x : g(x)≤1}

h dx =
1

Γ(1 + (n + p)/d)

∫
Rn

h exp(−g) dx

Notice that proving convexity directly would be non trivial but
becomes easy when using the previous lemma!
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III. Polarity

For a set C ⊂ Rn, recall:
The support function x 7→ σC(x) := sup

y
{xT y : y ∈ C}

The POLAR C◦ := {x ∈ Rn : σC(x) ≤ 1}
and for a PHF g of degree d , its Legendre-Fenchel
conjugate g∗(x) = sup

y
{xT y − g(y)} is a PHF of degree q

with 1
d + 1

q = 1.
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Polarity (continued)

Lemma
Let g be a closed proper convex PHF of degree 1 < d and let
G = {x : g(x) ≤ 1/d}. Then:

G◦ = {x ∈ Rn : g∗(x) ≤ 1/q}

vol (G) =
p−n/p

Γ(1 + n/p)

∫
exp(−g) dx

vol (G◦) =
q−n/q

Γ(1 + n/q)

∫
exp(−g∗) dx

→ yields completely symmetric formulas for g and its conjugate
g∗.
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Examples

g(x) = |x |3 so that g∗(x) = 2
3
√

3
|x |3/2. And so

G = [−3−1/3, 3−1/3]; G◦ = [−31/3, 31/3].

TV screen: g(x) = x4
1 + x4

2 so that
g∗(x) = 4−4/33(x4/3

1 + x4/3
2 ). And,

G = {x : x2
1 + x4

2 ≤
1
4
}; G◦ = {x : x4/3

1 + x4/3
2 ≤ 41/3}.

g(x) = |x | so that d 6> 1, and g∗(x) = 0 if x ∈ [−1,1], and
+∞ otherwise. Hence G = {x : |x | ≤ 1} = [−1,1] and with
q = +∞,

G◦ = [−1,1] = {x : g∗(x) ≤ 1
q

= 0}.
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IV. A variational property of homogeneous polynomials

Let vd (x) be the vector of monomials (xα) of degree d , i.e.,
such that α1 + · · ·+ αn = d . (And so v1(x) = x .)
If g ∈ R[x ]2d is homogeneous and SOS then

g(x) =
1
2

vd (x)T Σ vd (x),

for some real symmetric positive definite matrix Σ � 0.

And if d = 1 one has the Gaussian property∫
Rn

exp(−g) dx =
(2π)n/2
√

det Σ
,∫

Rn
vd (x) vd (x)T exp(−g) dx∫

Rn
exp(−g) dx

= Σ−1.
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In other words, if µ is the Gaussian measure

µ(B) :=

∫
B

exp
(
−1

2
xT Σ x

)
dx∫

Rn
exp

(
−1

2
xT Σ x

)
dx
, ∀B,

then its (covariance) matrix of moments of order 2 satisfies:

M1(Σ) :=

∫
Rn

x xT dµ(x) = Σ−1,

and the function

θ1(Σ) := (det Σ)1/2
∫
Rn

exp
(
−1

2
v1(x)T Σ v1(x)

)
dx .

is constant!

. . . not true anymore for d > 1!
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However, let `(d) =
(n+d−1

d

)
, and S`(d)++ be the cone of real

positive definite `(d)× `(d) matrices. Let k := n/(2d`(d)).

With Σ ∈ S`(d)++ , define the probability measure µ

µ(B) :=

∫
B

exp
(
−kvd (x)T Σ vd (x)

)
dx∫

Rn
exp

(
−kvd (x)T Σ vd (x)

)
dx
, ∀B,

with matrix of moments of order 2d given by:

Md (Σ) :=

∫
Rn

vd (x) vd (x)T dµ(x).

Jean B. Lasserre Recovery of algebraic-exponential data from moments



Define θd : S`(d)++ → R to be the function

Σ 7→ θd (Σ) := (det Σ)k
∫
Rn

exp
(
−kvd (x)T Σ vd (x)

)
dx .

Theorem

Md (Σ) = Σ−1 ⇐⇒ ∇θd (Σ) = 0

Hence critical points Σ∗ of θd have the Gaussian property∫
vd (x)vd (x)T exp

(
−kvd (x)T Σ∗ vd (x)

)
dx∫

exp
(
−kvd (x)T Σ∗ vd (x)

)
dx

= (Σ∗)−1

? If d = 1 then θd (·) is constant and so ∇θd (·) = 0.
? If d > 1 then θd (·) is constant in each ray λΣ, λ > 0.
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Proof

∇θd (Σ) = k
ΣA

det Σ
θd (Σ)

−k(det Σ)k
∫
Rn

vd (x)vd (x)T exp
(
−kvd (x)T Σ vd (x)

)
dx

= kθd (Σ)
[
Σ−1 −Md (Σ)

]
and so

Md (Σ) = Σ−1 ⇒ ∇θd (Σ) = 0.
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V. Sublevel sets G of minimum volume

If K ⊂ Rn is compact then computing the ellipsoid ξ of minimum
volume containing K is a classical problem whose optimal
solution is called the Löwner-John ellipsoid.
So consider the following problem:

Find an homogeneous polynomial g ∈ R[x ]2d such that its sub
level set G := {x : g(x) ≤ 1} contains K and has minimum
volume among all such levels sets with this inclusion property.
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Let P[x ]2d be the convex cone of homogeneous polynomials of
degree 2d whose sub-level set G = {x : g(x) ≤ 1} has finite
Lebesgue volume and with K ⊂ Rn, let C2d (K) be the convex
cone of polynomials nonnegative on K.

Lemma
Let K ⊂ Rn be compact. The minimum volume of a sublevel set
G = {x : g(x) ≤ 1}, g ∈ P[x ]2d , that contains K ⊂ Rn is
ρ/Γ(1 + n/2d) where:

P : ρ = inf
g∈P[x ]2d

{∫
Rn

exp(−g) dx : 1− g ∈ C2d (K)

}
.

a finite-dimensional convex optimization problem!
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Proof

•We have seen that:

vol ({x : g(x) ≤ 1}) =
1

Γ(1 + n/2d)

∫
Rn

exp(−g) dx .

Moreover, the sub-level set {x : g(x) ≤ 1} contains K if and
only if 1− g ∈ C2d (K), and so ρ/Γ(1 + n/2d) is the minimum
value of all volumes of sub-levels sets {x : g(x) ≤ 1},
g ∈ P[x]2d , that contain K.

• Now since g 7→
∫
Rn exp(−g)dx is strictly convex and C2d (K) is

a convex cone, problem P is a finite-dimensional convex
optimization problem.

Jean B. Lasserre Recovery of algebraic-exponential data from moments



V (continued). Characterizing an optimal solution

Theorem
(a) P has a unique optimal solution g∗ ∈ P[x ]2d and if
g∗ ∈ int(P[x ]2d ) there exists a Borel measure µ∗ supported on
K such that:

(∗) :


∫
Rn

xα exp(−g∗)dx =

∫
K

xα dµ∗, ∀|α| = 2d∫
K

(1− g∗) dµ∗ = 0

In particular, µ∗ is supported on the real variety
V := {x ∈ K : g∗(x) = 1} and in fact, µ∗ can be substituted with
another measure ν∗ supported on at most

(n+2d−1
2d

)
points of V .

(b) Conversely, if g∗ ∈ int(P[x ]2d ) and µ∗ satisfy (*) then g∗ is an
optimal solution of P.
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Example

Let K ⊂ R2 be the box [−1,1]2.

The set G4 := {x : g(x) ≤ 1 } with g homogeneous of degree 4
which contains K and has minimum volume is

x 7→ g4(x) := x4
1 + y4

1 − x2
1 x2

2 ,

with vol(G4) ≈ 4.39 much better than
- πR2 = 2π ≈ 6.28 for the Löwner-John ellipsoid of minimum
volume, and
- the (convex) TV screen G := {x : (x4

1 + x4
2 )/2 <= 1} with

volume > 5.
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Example (continued)

Let K ⊂ R2 be the box [−1,1]2.

The set G6 := {x : g(x) ≤ 1 } with g homogeneous of degree 6
which contains K and has minimum volume is

x 7→ g6(x) := x6
1 + y6

1 − (x4
1 x2

2 + x2
1 x4

2 )/2,

with vol(G6) ≈ 4.19 much better than
- πR2 = 2π ≈ 6.28 for the Löwner-John ellipsoid of minimum
volume, and
- better than the set G4 with volume 4.39.
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VI. Recovering g from moments of G

Write g(x) =
∑

β gβ xβ.

Lemma
If g is nonnegative and d-homogeneous with G compact then:∫

G
xα g(x) dx︸ ︷︷ ︸∑
β gβ yα+β

,=
n + |α|

n + d + |α|

∫
G

xα dx︸ ︷︷ ︸
yα

, α ∈ Nn.

and so we see that the moments (yα) satisfy linear
relationships explicit in terms of the coefficients of the
polynomial g that describes the boundary of G.
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So let us write g ∈ Rs(d) the unknown vector of coefficients of
the unknown polynomial g.
Let Md (y) be the moment matrix of order d whose rows and
columns are indexed in the canonical basis of monomials (xα),
α ∈ Nn

d , and with entries

Md (y)(α, β) = yα+β, α, β ∈ Nn
d .

and let yd be the vector (yα), α ∈ Nn
d .

Previous Lemma states that

Md (y) g = yd ,

or, equivalently,
g = Md (y)−1 yd ,

because the moment matrix Md (y) is nonsingular whenever G
has nonempty interior.
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In other words ...

one may recover g EXACTLY from knowledge of moments (yα)
of order d and 2d !
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Non homogeneous polynomials

If g is not quasi-homogeneous then one cannot directly relate∫
{x:g(x)≤1}

dx and
∫
Rn

exp(−g(x)) dx.

But still the Laplace transform λ 7→ F (λ) of the function

y 7→ f (y) :=

∫
{x:| g(x) |≤y}

dx

is the non Gaussian integral

λ 7→ F (λ) =
1
λ

∫
Rn

exp(−λ |g(x) |) dx.
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Nice asymptotic results are available (Vassiliev)

f (y) ≈ ya ln(y)b, as y →∞

for some rationals a, b obtained from the Newton polytope of g.

One even has asymptotic results for

y 7→ f̃ (y) := # ({x : |g(x) | ≤ y} ∩ Zn ) , as y →∞

still in the form

f̃ (y) ≈ ya′ ln(y)b′ , as y →∞

for some rationals a′, b′ obtained from the (modified) Newton
polytope of g.
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Exact recovery

Given a polynomial g ∈ R[x]d write g(x) =
∑d

k=0 gk (x), where
each gk is homogeneous of degree k .

Lemma
Let g ∈ R[x]d be such that its level set G := {x : g(x) ≤ 1} is
bounded. Then for every α = (α1, . . . , αn) ∈ Nn:∫

G
xα(1− g(x)) dx =

d∑
k=1

k
n + |α|

∫
G

xαgk (x) dx

Observe that for each fixed arbitrary α ∈ Nn ...
One obtains LINEAR EQUALITIES between MOMENTS of the

Lebesgue measure on G!
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Proof:

• Use Stokes’ formula∫
G

Div(X ) f (x) dx +

∫
G
〈X ,∇f (x)〉dx =

∫
∂G
〈X , ~nx〉 f dσ,

with vector field X = x and f (x) = xα(1− g(x)).

• Then observe that Div(X ) = n and:

〈X ,∇f (x)〉 = |α| f − xα
d∑

k=1

k gk (x).

? In the general case, when ∂G may have singular points, or
lower dimensional components, we can invoke Sard’s theorem,
for the (smooth) sublevel sets

Gγ = {x : g(x) < γ }

and pass to the limit γ → 1, γ < 1. �
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Let G ⊂ Rn be open with G = int G and with real algebraic
boundary ∂G. A polynomial of degree d vanishes on ∂G.

Define a renormalised moment-type matrix Md
k (y) as follows:

- s(d) (=
(n+d

n

)
) columns indexed by β ∈ Nn

d ,

- countably many rows indexed by α ∈ Nn
k ,

and with entries:

Md
k (y)(α, β) :=

n + |α|+ |β|
n + |α|

yα+β, α ∈ Nn
k , β ∈ Nn

d .
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Theorem
Let G ⊂ Rn be a bounded open set with real algebraic
boundary. Assume that G = int G and a polynomial of degree d
vanishes on ∂G and not at 0. Then the linear system

Md
2d (y)

[
−1
g

]
= 0,

admits a unique solution g ∈ Rs(d)−1, and the polynomial g with
coefficients (0,g) satisfies

(x ∈ ∂G)⇒ (g(x) = 1).
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Sketch of the proof

The identity (obtained from Stokes’ theorem)∫
G

xα(1− g(x)) dx =
d∑

k=1

k
n + |α|

∫
G

xαgk (x) dx

for all α ∈ Nn
k

in fact reads:

Md
k (y)

[
−1
g

]
= 0,

Conversely, if g solves

Md
2d (y)

[
−1
g

]
= 0,

then ∫
∂G
〈x, ~nx〉(1− g(x)) xα dσ = 0, ∀α ∈ Nn

2d .
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As ∂G is algebraic, one may write

~nx =
∇h(x)

‖∇h(x)‖
,

for some polynomial h. Therefore

0 =

∫
∂G
〈x, ~nx〉(1− g(x)) xα dσ ∀α ∈ Nn

2d

=

∫
∂G
〈x,∇h(x)〉︸ ︷︷ ︸
∈R[x]d

(1− g(x))︸ ︷︷ ︸
∈R[x]d

xα
1
‖∇h‖

dσ︸ ︷︷ ︸
dσ′

∀α ∈ Nn
2d

⇒
∫
∂G
〈x,∇h(x)〉2︸ ︷︷ ︸
6=0 σ−a.e.

(1− g(x))2dσ′ = 0 �
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For sake of rigor the boundary ∂G can be written

∂G = Z0 ∪ Z1,

with Z0 being a finite union of smooth n − 1-submanifolds of Rn

leaving G on one side, Z1 is a union of the lower dimensional
strata, and σ(Z1) = 0.
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Convexity

Theorem
Let G ⊂ Rn be a bounded convex open set with real algebraic
boundary. Assume that G = int G, 0 ∈ G, and a polynomial of
degree d vanishes on ∂G and not at 0. Then the linear system

Md
d (y)

[
−1
g

]
= 0,

admits a unique solution g ∈ Rs(d)−1, and the polynomial g with
coefficients (0,g) satisfies

(x ∈ ∂G)⇒ (g(x) = 1).
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? As in the previous proof, if

Md
d (y)

[
−1
g

]
= 0,

then ∫
∂G
〈x, ~nx〉(1− g(x))2 dσ = 0.

But one now uses that if 0 ∈ G then 〈x, ~nx〉 ≥ 0.
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Example

Let us consider the two-dimensional example of the annulus

G := {x ∈ R2 : 1− x2
1 − x2

2 ≥ 0; x2
1 + x2

2 − 2/3 ≥ 0 }.
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The polynomial (1− x2
1 − x2

2 )(x2
1 + x2

2 − 2/3) is the unique
solution of M4

4(y) [−1,g] = 0.
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Example continued: Non-algebraic boundary

Let G = {x ∈ R2 : x1 ≥ −1; x2 ≥ 1; x2 ≤ exp(−x1) }.
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We now look as the eigenvector g of the smallest eigenvalue of
M3

3(y).
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Figure: Shape G′ = {x : g(x) ≤ 0} with d = 3
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M4

4(y).
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Figure: Shape G′ = {x : g(x) ≤ 0} with d = 4

Jean B. Lasserre Recovery of algebraic-exponential data from moments



A consequence in Probability

Consider the Probability measure µ

uniformly supported on a set G of the form {x : g(x) ≤ 1}, for
some polynomial g ∈ R[x]d .

Then :

• ALL moments yα :=

∫
G

xα dµ, α ∈ Nn, are determined from

those up to order 3d (and 2d if G is convex) !

• A similar result holds true
if now µ has a density exp(h(x)) on G (for some h ∈ R[x]).

→ is an extension to such measures of a well-known result for
exponential families
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A consequence in Probability

Consider the Probability measure µ

uniformly supported on a set G of the form {x : g(x) ≤ 1}, for
some polynomial g ∈ R[x]d .

Then :

• ALL moments yα :=

∫
G

xα dµ, α ∈ Nn, are determined from

those up to order 3d (and 2d if G is convex) !

• A similar result holds true
if now µ has a density exp(h(x)) on G (for some h ∈ R[x]).

→ is an extension to such measures of a well-known result for
exponential families
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Conclusion

• Compact sub-level sets G := {x : g(x) ≤ y} of homogeneous
polynomials exhibit surprising properties. E.g.:

convexity of volume(G) with respect to the coefficients of g
Integrating a PHF h on G reduce to evaluating the non
Gaussian integral

∫
h exp(−g)dx

A variational property yields a Gaussian-like property
exact recovery of G from finitely moments.
(Also works for quasi-homogeneous polynomials with
bounded sublevel sets!)
exact recovery for sets with algebraic boundary of known
degree
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Practical and important issues

COMPUTATION!: Efficient evaluation of
∫
Rn

exp(−g) dx , or

equivalently, evaluation of vol ({x : g(x) ≤ 1}!

• The property∫
G

xαg(x) dx =
n + |α|

n + d + |α|

∫
G

xα dx , ∀α,

helps a lot to improve efficiency of the method in Henrion,
Lasserre and Savorgnan (SIAM Review)
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