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Recommendation systems



Predicting from low-rank  
missing data
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Gender? Annual income?  
Will buy “Halo4”?  
Likes cats or dogs? 



Formally: 
predicting w. low-rank missing data

Unknown distribution on vectors/rows  x’i in {0,1}n  , missing data xi 
in {*,0,1}n  (observed), X has rank k, training data y in {0,1}, every row 
has >= k observed entries 
 

Find: efficient machine M: {*,0,1}n à R  
s.t. with  poly(δ,ε,k,n) samples, with probability 1-δ:  
 

Kernel version: 
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§  Missing data (usually MOST data is missing) 

§  Structure in missing data (low rank) 

§  NP-hard (low-rank reconstruction is a special 
case) 

§  Can we use a non-proper approach?   
(distributional assumptions, convex relaxations 
for reconstruction) 

Difficulties



Statistics books: i.i.d missing entries.  
recovery from (large) constant percentage 
(MCAR,MAR) 
Or generative model for missing-ness (MNAR) 
very different from what we need… 

Missing data (statistics & ML)



approach 1: Completion & prediction  
[Goldberg, Zhu, Recht, Xu, Nowak ‘10]

Method: add predictions y as another column in X, use 
matrix completion to reconstruct & predict.  



Can we use approach 1? 
Completion & prediction  
[Goldberg, Zhu, Recht, Xu, Nowak ‘10]
reconstruction is not sufficient nor necessary!! 



Can we use approach 1? 
Completion & prediction  
[Goldberg, Zhu, Recht, Xu, Nowak ‘10]
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Can we use approach 1? 
Completion & prediction  
[Goldberg, Zhu, Recht, Xu, Nowak ‘10]
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There is a recoverable k-dim subspace!! 
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§  Agnostic learning – compete with the best linear 
predictor that knows all the data, assuming it is 
rank k (or close) 

§  Provable  

§  Efficient (theoretically & practically) 

§  Significantly improves prediction over standard 
datasets (Netflix, Jester, ….) 

§  Generalizes to kernel (non-linear) prediction  

Our results (approach 2)



Unknown distribution on rows  x’i in {0,1}n  , missing data xi in 
{*,0,1}n  (observed), X’ has rank k, training data y in {0,1}, 
every row has >= k observed entries 
 

We build efficient machine M: {*,0,1}n à R  
s.t. with  poly(log δ,k,nlog(1/ε)) samples, with probability 1-δ:  
 
 
 
 
 
 
Extends to arbitrary kernels, # samples increases w. degree 
(polynomial kernels) 

Our results (approach 2) 
Formally:

Ei[(M(xi)� yi)
2]� min
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>
xi � yi)

2]  ✏



§  Data matrix = X of size m *n  (X’ is full matrix, X 
with hidden entries)  
rank = k 
every row has k visible entries  

§  “Optimal predictor” = subspace + linear predictor 
(SVM) 
§  B = basis ,   k * n matrix 
§  w = predictor, vector in Rk 

§  Given x = row in X, unknown label y predict 
according to: 

 
 

Warm up: agnostic, non-proper  
& useless (inefficient)

B↵ = x

ŷ = ↵

>
w



§  Given x = row in X, unknown label y predict 
according to:	
  

Inefficiently: learn B, w  (bounded sample 
complexity/regret – compact sets)  
 
(distributional world – bounded fat-shattering 
dimension) 
 

Warm up: inefficient, agnostic

B↵ = x

ŷ = ↵

>
w



Learning a hidden subspace is hidden-clique hard! 
[Berthet & Rigollet ‘13], any hope for efficient 
algorithms?  
 
Hardness applies only for proper learning!! 
 

Learning a hidden subspace



§  Let s be the set of k coordinates that are visible in 
a certain x. Then:	
  

Where Bs and xs are the submatrix (vector) 
corresponding to the coordinates s.  
 
 
“2 operations” – subset of s rows & inverse 
 
 
 
 
 

Efficient agnostic algorithm
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Replace inverse by polynomial (need condition on 
the eigenvalues): 
 
 
 
 
Let C = I – B, and up to precision independent of 
k,n: 
 
 
 
Thus, consider (non-proper) hypothesis class: 
 
 

Step 1: “rid of inverse”
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Observation:	
  

(polynomial in C,w multiplied by coefficients of x) 
 
Thus, there is a kernel mapping, and vector 
v=v(C,w)  such that 

Step 2: “rid of column selection”

gC,w(xs) =
X
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Kernel inner products take the form:  
 
 
 
 
 
Inner product ϕ (xs)*ϕ(xt) –computed in time n*q 	
  

Observation 3
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Kernel function 
 
 
 
 
Algorithm: SVM kernel with this particular kernel.  
 
Guarantee – agnostic, non-proper, as good as best 
subspace embedding.  
 
Nearly same algorithm for all degree q! 	
  

Algorithm

�(x(1)
s ) · �(x(2)

t ) =
|s \ t|q � 1

|s \ t|� 1

X

k2s\t

x

(1)
k x

(2)
k



To apply the Taylor series – eigenvalues need to be 
in unit circle.  
 
Reduces to an assumption on appearance of missing 
data. This is provably necessary.  
 
Regret bound (sample complexity) depend on this 
parameter – which is provably a constant 
independent of the rank/problem dimensions.  
 
Running time – independent of this parameter.  

λ  - regularity



Preliminary benchmarks 
MAR data
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Preliminary benchmarks 
NMAR data (blocks)
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Preliminary benchmarks 
real data

Karma 0-svm Mcb0 Mcb1 Geom 

mamographic 0.17 0.17 0.17 0.18 0.17 

bands 0.24 0.34 0.41 0.40 0.35 

hepatitis 0.23 0.17 0.23 0.21 0.22 

wisconsin 0.03 0.03 0.03 0.04 0.04 

Horses  0.35 0.36 0.55 0.37 0.36 

Movielens 
(age) 

0.16 0.22 0.25 0.25 NaN 



Summary
Prediction from recommendation data: 
§  Reconstruction+relaxation approach doomed to 

fail   

§  Non-proper agnostic learning gives provable 
guarantees, efficient algorithm 

§  Benchmarks are promising 

§  Non-reconstructive approach for other types of 
missing data?  Fully-polynomial alg? 

§  When does reconstruction fail and agnostic/non-
proper learning work?   

Thank you! 


