
Seriation & Ranking: Spectral Approach

Fajwel Fogel, CNRS & ENS, Paris.

with Alexandre d’Aspremont, Francis Bach, Rodolphe Jenatton, & Milan Vojnovic

CNRS, INRIA, ENS Paris & MSR Cambridge

1



The seriation problem

⌅ Pairwise similarity information S

ij

on n variables.

⌅ Suppose the data has a serial structure, i.e. there is an order ⇡ such that

S

⇡(i)⇡(j)

decreases with |i� j| (R-matrix)

Recover ⇡?
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DNA de novo assembly

Seriation has direct applications in DNA de novo assembly.

⌅ Genomes are cloned multiple times and randomly cut into shorter reads
(⇠ 400bp), which are fully sequenced.

⌅ Reorder the reads to recover the genome.

(from Wikipedia. . . )
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Seriation: a combinatorial problem

⌅ Combinatorial Solution [FJBA. 2013, Laurent et Seminaroti 2014]

For R-matrices, 2-SUM () seriation.

⌅ 2-SUM: assign similar items to nearby positions in reordering, i.e. find
permutation ⇡ of items 1 to n that minimizes

nX

i,j=1

S

i,j

(⇡(i)� ⇡(j))

2

. (1)

⌅ The 2-SUM problem is NP-Complete for generic matrices S [George and
Pothen 1997].
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A spectral solution

Spectral Seriation. Define the Laplacian of S as L
S

= diag(S1)� S, the
Fiedler vector of S is written

f = argmin

1Tx=0,

kxk
2

=1

x

T

L

S

x.

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose S 2 S
n

is a pre-R matrix, with a simple Fiedler value

whose Fiedler vector f has no repeated values. Suppose that ⇧ 2 P is such that

the permuted Fielder vector ⇧v is monotonic, then ⇧S⇧

T

is an R-matrix.
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Spectral solution: advantages

⌅ Exact for R-matrices.

⌅ Quite robust to noise. Arguments similar to perturbation results in spectral
clustering.

⌅ Scales very well, especially when similarity matrix is sparse (as in DNA
sequencing and ranking).
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Ranking with pairwise comparisons
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Ranking

Goal: given pairwise comparisons between a set of items, find the most consistent
global order of these items.

Applications

⌅ sports competitions (e.g. chess, football. . . )

⌅ crowdsourcing services (e.g. TopCoder. . . )

⌅ online computer games. . .
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Ranking

Classical methods

⌅ ranking by score (e.g. #wins - #losses) [Huber, 1963; Wauthier et al., 2013]

⌅ ranking by “skills” under a probabilistic model [Bradley and Terry, 1952;
Luce, 1959; Herbrich et al., 2006]

⌅ ranking according to principal eigenvector of a transition matrix [Page et al.,
1998; Negahban et al., 2012]

⌅ . . .

Two main issues

⌅ missing comparisons

⌅ non transitive comparisons (i.e. a < b and b < c but a > c).
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Ranking
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Casting the ranking problem as a seriation problem

⌅ Input: a matrix of pairwise comparisons C where C

i,j

2 [�1, 1] e.g. for a
tournament C

i,j

2 {�1, 0, 1} (loss, tie, win)

⌅ Idea: count matching comparisons of i and j against other items k

Example: in a tournament setting, if players i and j had the same outcomes
against other opponents k , they should have a similar rank.
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Casting the ranking problem as a seriation problem

⌅ Construct a similarity matrix S

S

i,j

=

X

i,j compared with k

�(C

i,k

, C

j,k

),

where � is a similarity measure.

⌅ Example: when �(a, b) = 1 + ab, S = n11T

+ CC

T .

Comparison matrix Similarity matrix

⌅ Is it the right way to solve the ranking problem, in the presence of corrupted
and missing comparisons?
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SerialRank

New ranking algorithm: SerialRank

⌅ A very simple procedure:

� compute a similarity matrix from pairwise comparisons (e.g.count matching
comparisons)

� solve the corresponding seriation problem (e.g.use the spectral solution).

⌅ Might be improved by designing new similarities.
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Choice of similarity

⌅ In applications, the design of the similarity can have a major impact.

⌅ For ranking, depending on the nature of your data (cardinal or ordinal data,
ties etc.), you might adapt your similarity.

⌅ For DNA assembly, you would like to have a similarity robust to sequencing
noise.

⌅ Ongoing work...
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Performance guarantees for SerialRank

⌅ Robustness to missing/corrupted comparisons
Similarity based ranking is more robust than typical score based rankings (i.e.
#wins - #losses).

⌅ Exact recovery regime
Exact recovery of underlying ranking with probability 1� o(1) for o(

p
n)

random missing/corrupted comparisons.

⌅ Approximate recovery regime Competitive to other approaches for partial
observations and corrupted comparisons (cf. numerical experiments).
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Performance guarantees for SerialRank
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All comparisons given, corrupted entries induce ties in score based ranking but not
in similarity based ranking.
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Perturbation analysis

⌅ Derive asymptotic analytical expression of Fiedler vector in noise free
setting.

⌅ Use perturbation results (i.e. Davis-Kahan) in order to bound the
perturbation of the Fiedler vector with missing/corrupted comparisons.

⌅ Get theoretical guarantees for SerialRank in settings with only few
comparisons available.

17



Perturbation analysis

Analytical expression of Fiedler vector

⌅ Use results on the convergence of Laplacian operators to provide a
description of the spectrum of the unperturbed Laplacian.

⌅ Following the same analysis as in [Von Luxburg ’08] we can prove that
asymptotically, once normalized by n

2, apart from the first and second
eigenvalue, the spectrum of the Laplacian matrix is contained in the interval
[0.5, 0.75].

⌅ Moreover, we can characterize the eigenfunctions of the limit Laplacian
operator (i.e.lim L

n

n

) by a di↵erential equation, which gives an asymptotic
analytical expression for the Fiedler vector.
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Perturbation analysis

Analytical expression of Fiedler vector

⌅ Taking the same notations as in [Von Luxburg ’08] we have here
k(x, y) = 1� |x� y|. The degree function is

d(x) =

Z
1

0

k(x, y)dP (y) =

Z
1

0

k(x, y)d(y)

(samples are uniformly ranked).

d(x) = �x

2

+ x+ 1/2.

⌅ We deduce that the range of d is [0.5, 0.75]. Interesting eigenvectors
(i.e. here the second eigenvector) are not in this range.
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Perturbation analysis

Analytical expression of Fiedler vector

⌅ We can also characterize eigenfunctions f by a di↵erential equation

Uf(x) = �f(x) 8x 2 [0, 1]

) f

00
(x)(1/2� �+ x� x

2

) + 2f

0
(x)(1� 2x) = 0 8x 2 [0, 1]. (2)

⌅ The asymptotic expression for the Fiedler vector is a solution to this di↵erential
equation, with � < 0.5.

⌅ Very accurate numerically, even for small values of n.
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Perturbation analysis

Analytical expression of Fiedler vector

Comparison between the asymptotic analytical expression of the Fiedler vector
and the numeric values obtained from eigenvalue decomposition, for n = 10 (left)
and n = 100 (right).
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Perturbation analysis

Goal

Get similar result as for point score method (cf [Wauthier et al., 2013]).

Show that for any precision parameter µ, with a proportion of observations

p & log n

µn

max |⇡̃ � ⇡| . µn whp

.

... up to constants and log(n) factors.
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Perturbation analysis

Classical perturbation results

Davis-Kahan Theorem

If |ˆ�
3

� �

2

| > |�
3

� �

2

|/2 and |ˆ�
1

� �

2

| > |�
1

� �

2

|/2, then

||f � ˆ

f ||
2


p
2

||ˆL� L||
op

min(�

2

� �

1

,�

3

� �

2

)

.

Weyl’s Inequality

Let L

S

and L

˜

S

be n ⇥ n positive definite matrices and let L

R

= L

˜

S

� L

S

. Let

�

1

 . . .�

n

and

˜

�

1

 . . .

˜

�

n

be the eigenvalues of L

S

and L

˜

S

respectively.

Then, for all i, |˜�
i

� �

i

|  ||L
R

||
2

.

+ concentration inequalities
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Numerical results: ranking

Synthetic datasets with random missing/corrupted comp.

Evaluate Kendall rank correlation coe�cient ⌧ between recovered ranking and
“true” ranking (⌧ 2 [�1, 1], ⌧ = 1 means identical rankings).
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Numerical results: ranking

Real datasets

TopCoder England Premier League
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Conclusion

Results

⌅ Ranking as a seriation problem, with perturbation results.

⌅ Good performance on some applications, without specific tuning.

Open problems

⌅ Impact of similarity measures.

⌅ Predictive power of SerialRank.
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Merci!

⌅ Links to papers & SerialRank tutorial: www.di.ens.fr/⇠fogel.

⌅ Support from a European Research Council starting grant (project SIPA) and
MSR-INRIA Joint Center.

Thanks to the organizers and all the participants!
Bon voyage!
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