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Motivation II: Signal compression

Expensive to store high-dimensional signals

Sparse signals have compact representation

Can we learn a representation where signals of interest are
sparse?
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Dictionary learning in practice

Image compression (Bruckstein et al., 2009)

Similar successes in image denoising, inpainting, superresolution, . . .

Non-convex optimization, limited theoretical understanding
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Dictionary learning setup

Goal

Find a dictionary with r elements such that each data point is a
combination of only s dictionary elements.

Encode faces using dictionary rather than pixel values

Sparsity for compression, signal processing . . .
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Dictionary learning setup

Goal

Find a dictionary with r elements such that each data point is a
combination of only s dictionary elements.

Examples Dictionary Coefficients

d =

n r
n

r

X ∗Y A∗

d

Topic models, overlapping clustering, image representation

Overcomplete setting, r � d relevant in practice
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Alternating minimization

Objective

min
A,X
‖X‖1︸ ︷︷ ︸∑
i,j |Xij |

subject to Y = AX

Dominant approach in practice

Start with initial dictionary A(0)

Sparse regression for coefficients given dictionary

X (t + 1)i = arg min
x∈Rr
‖x‖1 s.t. ‖Yi − A(t)x‖2 ≤ εt

Least squares for dictionary given coefficients

Similar to EM for this problem

Does not converge to global optimum from arbitrary A(0)
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Alternating minimization goal

(Â, X̂ ) = min
A,X
‖X‖1 subject to Y = AX

Y = AX is a non-convex constraint

Average of solutions is not a solution!

Y = AX , Y = (−A)(−X ),

Y 6=
(

A + (−A)

2

) (
X + (−X)

2

)

Non-convex optimization, NP-hard in general
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Previous theory work

Exact recovery in undercomplete setting by Spielman et al. via linear
programming

We combine alternating minimization with a novel initialization

Global optimum despite non-convexity in overcomplete setting
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Initialization: Key ideas
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Find several samples with a common dictionary element

Top singular vector of these samples is an estimate of this element
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Correlation graph

Definition (Correlation graph)

One node for each
example

Edge {Yi ,Yj} if
|〈Yi ,Yj〉| ≥ ρ

Large correlation ⇒ common dictionary element

Samples in a clique contain a common dictionary element

Easy to construct cliques
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Initialization algorithm

1. Construct correlation graph Gρ given a threshold ρ

2. For each edge (Yi ,Yj) in Gρ

If (Yi ,Yj) is good

(a) Let S be all common neighbors of Yi and Yj

(b) Let M be the covariance matrix of S :
∑

i∈S YiY
T
i

(c) Set â to the top singular vector of M

3. Each vector â is estimate of some A∗i

Similar algorithm developed simultaneously and independently in Arora
et al. (2013)
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Assumptions

Incoherent dictionary: |〈A∗i ,A∗j 〉| ≤ µ0/
√
d

Sparse coefficients: Each sample has at most s non-zero X ∗ij with
random sparsity pattern
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Exact recovery

Theorem (AAJNT’13)

Suppose we have O(r2) examples. Use graph clustering algorithm to
initialize alternating minimization. With high probability, for all t ≥ 1 and
i = 1, 2, . . . , r

‖A(t)i − A∗i ‖2 ≤ ‖A(0)i − A∗i ‖2 2−t

Exact recovery from O(r2) samples

Global optimum through novel initialization

Approximate recovery in initialization step

Local linear convergence of alternating minimization
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Local linear convergence
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One-shot vs alternating
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Sample complexity
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Alternating minimization proof sketch

Ideally want

X ∗

A∗A(0)

But what about
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Alternating minimization proof sketch (contd.)

Lemma

Suppose ‖X (t + 1)− X ∗‖∞ = O(1/s). Then

‖A(t + 1)i − A∗i ‖2 = O
(

s2√
d
‖X (t + 1)− X ∗‖∞

)
.

s2 ≤
√
d ensures error decreases

Contraction by relating ‖X (t + 1)− X ∗‖∞ to ‖A(t)i − A∗i ‖2
Good initialization ensures precondition
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Conclusions

Provable recovery of overcomplete dictionaries

Global optimality through novel initialization

Local linear convergence of alternating minimization

Local convexity under same initialization

General theory for latent variable models

Agarwal, Anandkumar, Jain, Netrapalli, Tandon Overcomplete Dictionary Learning



A Clustering Approach to Learn Sparsely-Used Overcomplete
Dictionaries, arxiv:1309.1952

Learning Sparsely Used Overcomplete Dictionaries via Alternating
Minimization, arxiv:1310.7991

Questions?
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