Learning sparsely used overcomplete dictionaries

Alekh Agarwal Microsoft Research

Joint work with Anima Anandkumar, Prateek Jain, Praneeth Netrapalli and Rashish Tandon

Agarwal, Anandkumar, Jain, Netrapalli, Tandon Overcomplete Dictionary Learning

Practice

- Feature engineering takes considerable time and skill
- Typically critical to good performance

- Feature engineering takes considerable time and skill
- Typically critical to good performance
- Can we learn good features from data?

Motivation II: Signal compression

• Expensive to store high-dimensional signals

Motivation II: Signal compression

- Expensive to store high-dimensional signals
- Sparse signals have compact representation

- Expensive to store high-dimensional signals
- Sparse signals have compact representation
- Can we learn a representation where signals of interest are sparse?

Dictionary learning in practice

Original

K-SVD (33.26dB)

Image compression (Bruckstein et al., 2009)

Dictionary learning in practice

Original

Image compression (Bruckstein et al., 2009)

• Similar successes in image denoising, inpainting, superresolution, ...

Dictionary learning in practice

Original

Image compression (Bruckstein et al., 2009)

• Similar successes in image denoising, inpainting, superresolution, ...

Non-convex optimization, limited theoretical understanding ۲

Dictionary learning setup

Goal

Find a dictionary with **r** elements such that each data point is a combination of only **s** dictionary elements.

Dictionary learning setup

Goal

Find a dictionary with **r** elements such that each data point is a combination of only **s** dictionary elements.

Dictionary learning setup

Goal

Find a dictionary with **r** elements such that each data point is a combination of only **s** dictionary elements.

- Encode faces using dictionary rather than pixel values
- Sparsity for compression, signal processing ...

Agarwal, Anandkumar, Jain, Netrapalli, Tandon Overcomplete Dictionary Learning

Goal

Find a dictionary with **r** elements such that each data point is a combination of only **s** dictionary elements.

- Topic models, overlapping clustering, image representation
- Overcomplete setting, $r \gg d$ relevant in practice

Objective

$$\min_{A,X} \underbrace{\|X\|_{1}}_{\sum_{i,j}|X_{ij}|} \quad subject \ to \quad Y = AX$$

- Dominant approach in practice
- Start with initial dictionary A(0)
- Sparse regression for coefficients given dictionary

$$X(t+1)_i = \arg\min_{x \in \mathbb{R}^r} \|x\|_1 \quad \text{s.t.} \quad \|Y_i - A(t)x\|_2 \le \epsilon_t$$

Objective

$$\min_{A,X} \underbrace{\|X\|_{1}}_{\sum_{i,j} |X_{ij}|} \quad subject \ to \quad Y = AX$$

- Dominant approach in practice
- Start with initial dictionary A(0)
- Sparse regression for coefficients given dictionary
- Least squares for dictionary given coefficients

 $A(t+1) = YX(t+1)^+$ i.e. $Y \approx A(t+1)X(t+1)$

Objective

$$\min_{A,X} \underbrace{\|X\|_{1}}_{\sum_{i,j} |X_{ij}|} \quad subject \ to \quad Y = AX$$

- Dominant approach in practice
- Start with initial dictionary A(0)
- Sparse regression for coefficients given dictionary
- Least squares for dictionary given coefficients

$$A(t+1) = YX(t+1)^+$$
 i.e. $Y \approx A(t+1)X(t+1)$

• Similar to EM for this problem

Objective

$$\min_{A,X} \underbrace{\|X\|_{1}}_{\sum_{i,j} |X_{ij}|} \quad subject \ to \quad Y = AX$$

- Dominant approach in practice
- Start with initial dictionary A(0)
- Sparse regression for coefficients given dictionary
- Least squares for dictionary given coefficients

 $A(t+1) = YX(t+1)^+$ i.e. $Y \approx A(t+1)X(t+1)$

- Similar to EM for this problem
- Does *not* converge to global optimum from arbitrary A(0)

$$(\widehat{A}, \widehat{X}) = \min_{A, X} ||X||_1$$
 subject to $Y = AX$

•
$$Y = AX$$
 is a non-convex constraint

• Average of solutions is not a solution!

$$Y = AX, \quad Y = (-A)(-X),$$

$$(\widehat{A}, \widehat{X}) = \min_{A, X} ||X||_1$$
 subject to $Y = AX$

- Y = AX is a non-convex constraint
- Average of solutions is not a solution!

$$Y = AX$$
, $Y = (-A)(-X)$, $\mathbf{Y} \neq \left(\frac{\mathbf{A} + (-\mathbf{A})}{2}\right) \left(\frac{\mathbf{X} + (-\mathbf{X})}{2}\right)$

• Non-convex optimization, NP-hard in general

• Exact recovery in undercomplete setting by Spielman et al. via linear programming

• Exact recovery in undercomplete setting by Spielman et al. via linear programming

- We combine alternating minimization with a novel initialization
- Global optimum despite non-convexity in overcomplete setting

Initialization: Key ideas

• Find several samples with a common dictionary element

Initialization: Key ideas

- Find several samples with a common dictionary element
- Top singular vector of these samples is an estimate of this element

• Large correlation \Rightarrow common dictionary element

Definition (Correlation graph)

- One node for each example
- Edge $\{Y_i, Y_j\}$ if $|\langle Y_i, Y_j\rangle| \ge \rho$

• Large correlation \Rightarrow common dictionary element

Definition (Correlation graph)

- One node for each example
- Edge $\{Y_i, Y_j\}$ if $|\langle Y_i, Y_j\rangle| \ge \rho$

• Large correlation \Rightarrow common dictionary element

Correlation graph

Definition (Correlation graph)

- One node for each example
- Edge $\{Y_i, Y_j\}$ if $|\langle Y_i, Y_j\rangle| \ge \rho$

- Large correlation \Rightarrow common dictionary element
- Samples in a clique contain a common dictionary element

Correlation graph

Definition (Correlation graph)

- One node for each example
- Edge $\{Y_i, Y_j\}$ if $|\langle Y_i, Y_j\rangle| \ge \rho$

- Large correlation \Rightarrow common dictionary element
- Samples in a clique contain a common dictionary element
- Easy to construct cliques

Correlation graph

Definition (Correlation graph)

- One node for each example
- Edge $\{Y_i, Y_j\}$ if $|\langle Y_i, Y_j\rangle| \ge \rho$

- Large correlation \Rightarrow common dictionary element
- Samples in a clique contain a common dictionary element
- Easy to construct cliques

- 1. Construct correlation graph $G_{
 ho}$ given a threshold ho
- 2. For each edge (Y_i, Y_j) in G_{ρ}

- 1. Construct correlation graph ${\cal G}_{
 ho}$ given a threshold ho
- 2. For each edge (Y_i, Y_j) in G_{ρ}
 - If (Y_i, Y_j) is good

(a) Let S be all common neighbors of Y_i and Y_j

- 1. Construct correlation graph $G_{
 ho}$ given a threshold ho
- 2. For each edge (Y_i, Y_j) in G_{ρ}
 - If (Y_i, Y_j) is good
 - (a) Let S be all common neighbors of Y_i and Y_j
 - (b) Let *M* be the covariance matrix of *S*: $\sum_{i \in S} Y_i Y_i^T$
 - (c) Set \hat{a} to the **top singular vector** of *M*
- 3. Each vector \hat{a} is estimate of some A_i^*
- Similar algorithm developed simultaneously and independently in Arora et al. (2013)

• Incoherent dictionary: $|\langle A_i^*, A_j^* \rangle| \le \mu_0/\sqrt{d}$

- Incoherent dictionary: $|\langle A_i^*, A_j^* \rangle| \le \mu_0/\sqrt{d}$
- **Sparse coefficients:** Each sample has at most *s* non-zero X_{ij}^* with random sparsity pattern

Theorem (AAJNT'13)

Suppose we have $O(r^2)$ examples. Use graph clustering algorithm to initialize alternating minimization. With high probability, for all $t \ge 1$ and i = 1, 2, ..., r

$$\|A(t)_i - \mathbf{A}^*_{\mathbf{i}}\|_2 \le \|A(0)_i - \mathbf{A}^*_{\mathbf{i}}\|_2 2^{-t}$$

- Exact recovery from $\mathcal{O}(r^2)$ samples
- Global optimum through novel initialization

Theorem (AAJNT'13)

Suppose we have $O(r^2)$ examples. Use graph clustering algorithm to initialize alternating minimization. With high probability, for all $t \ge 1$ and i = 1, 2, ..., r

$$\|A(t)_i - \mathbf{A}^*_{\mathbf{i}}\|_2 \le \|A(0)_i - \mathbf{A}^*_{\mathbf{i}}\|_2 2^{-t}$$

- Exact recovery from $\mathcal{O}(r^2)$ samples
- Global optimum through novel initialization
- Approximate recovery in initialization step
- Local linear convergence of alternating minimization

Sample complexity

Ideally want

A(0) A*

*X**

Agarwal, Anandkumar, Jain, Netrapalli, Tandon Overcomplete Dictionary Learning

Ideally want

Ideally want

Ideally want

Ideally want

But what about

Lemma

Suppose
$$||X(t+1) - X^*||_{\infty} = O(1/s)$$
. Then

$$\|A(t+1)_i - A_i^*\|_2 = \mathcal{O}\left(\frac{s^2}{\sqrt{d}} \|X(t+1) - X^*\|_{\infty}\right)$$

- $s^2 \le \sqrt{d}$ ensures error decreases
- Contraction by relating $\|X(t+1) X^*\|_{\infty}$ to $\|A(t)_i A_i^*\|_2$
- Good initialization ensures precondition

- Provable recovery of overcomplete dictionaries
- Global optimality through novel initialization
- Local linear convergence of alternating minimization
- Local convexity under same initialization
- General theory for latent variable models

- A Clustering Approach to Learn Sparsely-Used Overcomplete Dictionaries, arxiv:1309.1952
- Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization, arxiv:1310.7991

Questions?

Agarwal, Anandkumar, Jain, Netrapalli, Tandon Overcomplete Dictionary Learning