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Sharp oracle inequalities

Let S ∈ S be some index set and {FS}S∈S be a collection of models.
Moreover let L(X , f ) be a loss function and R(f ) := EL(X , f ). We say
that the estimator f̂ satisfies a sharp oracle inequality if with large
probability

R(f̂ ) ≤ min
S∈S

{
min
f∈FS

R(f ) + Remainder(S)

}
.

Non-sharp oracle inequalities are of the form: with large probability

R(f̂ )− R(f 0) ≤ (1 + δ) min
S∈S

{
min
f∈FS

(R(f )− R(f 0)) + Remainderδ(S)

}
,

where δ > 0 and
f 0 := min

f∈∪S∈SFS

R(f ).
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Sharp oracle inequalities with structured sparsity
penalities
High-dimensional linear model:

Y = Xβ0 + ε,

with Y ∈ Rn, X and n × p matrix and β0 ∈ Rp.
We believe that β0 can be well approximated by a “structured sparse”
β.
Let Ω be some given norm on Rp.

Norm-penalized estimator:

β̂ := β̂Ω := arg min
β∈Rp

{
‖Y − Xβ‖22/n + 2λΩ(β)

}
.

Aim:
(Sharp) sparsity oracle inequalities for β̂.
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Notation: for β ∈ Rp and S ⊂ {1, . . . ,p}

βj,S := βj l{j ∈ S}.

Example
`1-norm

Ω(β) := ‖β‖1 :=

p∑
j=1

|βj | ; Lasso

The `1-norm is decomposable:

‖β‖1 = ‖βS‖1 + ‖βSc‖1∀ β ∀ S.
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Definition

We say that the norm Ω is weakly decomposable for S if there exists a
norm ΩSc on Rp−|S| such that for all β ∈ Rp,

Ω(β) ≥ Ω(βS) + ΩSc
(βSc ).

Definition
We say that S is an allowed set (for Ω) if Ω is weakly decomposable for
S.
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Example
The group Lasso norm:

Ω(β) := ‖β‖2,1 :=
T∑

t=1

√
|Gt |‖βGt‖2, β ∈ Rp,

where G1, . . . ,GT is a partition of {1, . . . ,p} into disjoint groups.
It is (weakly) decomposable for S = ∪t∈T Gt with ΩSc = Ω.
Thus, for any β, S := ∪{Gt : ‖βGt‖2 6= 0} is an allowed set.
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Example
From Micchelli et al. (2010)
Let A ⊂ [0,∞)p be some convex cone. Define

Ω(β) := Ω(β;A) := min
a∈A

1
2

p∑
j=1

(
β2

j

aj
+ aj

)
.

Let AS := {aS : a ∈ A}.

Definition
We call AS an allowed set, if AS ⊂ A.

Lemma

Suppose AS is an allowed set. Then S is allowed, i.e. S is weakly
decomposable for Ω.
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We use the notation

‖v‖2n := vT v/n, v ∈ Rn.

Definition
Suppose S is an allowed set. Let L > 0 be some constant. The
Ω-eigenvalue (for S) is

δΩ(L,S) := min
{
‖XβS − XβSc‖n : Ω(βS) = 1, ΩSc

(βSc ) ≤ L
}
.

The Ω-effective sparsity is

Γ2
Ω(L,S) :=

1
δ2

Ω(L,S)
.
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The dual norm of Ω is denoted by Ω∗, that is

Ω∗(w) := sup
Ω(β)≤1

|wTβ|, w ∈ Rp.

We moreover let ΩSc

∗ be the dual norm of ΩSc
.
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A sharp oracle inequality

Theorem

Let β ∈ Rp be arbitrary and let Let S ⊃ {j : βj 6= 0} be an allowed set.
Define

λS := Ω∗

(
(εT X )S/n

)
, λSc

:= ΩSc

∗

(
(εT X )Sc/n

)
.

Suppose λ > λSc
. Define

LS :=

(
λ+ λS

λ− λSc

)
.

Then

‖X (β̂ − β0)‖2n ≤ ‖X (β − β0)‖2n +

[
(λ+ λS)

]2

Γ2
Ω(LS,S).

Related results: Bach (2010).
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What about convergence of the Ω-estimation error?
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Theorem

Let β ∈ Rp be arbitrary and let Let S ⊃ {j : βj 6= 0} be an allowed set.
Define

λS := Ω∗

(
(εT X )S/n

)
, λSc

:= ΩSc

∗

(
(εT X )Sc/n

)
.

Suppose
λ > λSc

.

Define for some 0 ≤ δ < 1

LS :=

(
λ+ λS

λ− λSc

)(
1 + δ

1− δ

)
.

Then

‖X (β̂ − β0)‖2n + δ(λ− λSc
)ΩSc

(β̂Sc ) + δ(λ+ λS)Ω(β̂S − β)

≤ ‖X (β − β0)‖2n +

[
(1 + δ)(λ+ λS)

]2

Γ2
Ω(LS,S).
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Special case where Ω = ‖ · ‖1

Theorem

(Koltchinskii et al. (2011)) Let for S ⊂ {1, . . . ,p}

λ0 := ‖(εT X )‖∞/n.

Define for λ > λ0

L :=
λ+ λ0

λ− λ0
.

Then

‖X (β̂ − β0)‖2n ≤ min
β∈Rp

{
‖X (β − β0)‖2n + (λ+ λ0)2Γ2(L, ‖β‖0)

}
.
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Compatibility (restricted eigenvalue condition)

Recall that for the `1-norm

Γ2(L,S) =
1

δ2(L,S)
,

with

δ(L,S) := min
{
‖XβS − XβSc‖n : ‖βS‖1 = 1, ‖βSc‖1 ≤ L

}
.

We have
Γ2(L,S) ≤ |S|

κ2(L,S)
,

where κ2(L,S) is the restricted eigenvalue (Bickel et al. (2009)).
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Consider the case S = {1}, and write X1 := XS, X2 := XSc . Let X1P̂X2
be the projection (in Rn) of X1 on X2 and X1ÂX2 := X1 − X1P̂X2 be the
antiprojection. Define

γ̂0 := arg min{‖γ‖1 : X1P̂X2 = X2γ}.

Then clearly
δ(L, {1}) = ‖X1ÂX2‖n ∀ L ≥ ‖γ̂0‖1.

When n < p one readily sees that

δ(L, {1}) = 0 ∀ L ≥ ‖γ̂0‖1.
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Suppose now that the rows of X are i.i.d. with sub-Gaussian
distribution Q. Let X1PX2 be the projection of X1 on X2 in L2(Q) and
X1AX2 := X1 − X1PX2. Let ‖ · ‖ be the L2(Q)-norm. Define

γ0 := arg min{‖γ‖1 : X1PX2 = X2γ}.

Then with large probability, for L
√

log p/n small

δ(L,S) ≥ (1− ε)‖X1AX2‖ ∀ L ≥ ‖γ0‖1.

and moreover,

(X1AX1)T (X1PX2)/n �
√

log p
n

.
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Oracle inequalities for parameters of interest

High-dimensional linear model:

Y = X1β
0
1 + X2β

0
2 + ε,

β0
1 ∈ Rq, β0

2 ∈ Rp−q,

and the entries of ε i.i.d. sub-Gaussian. Suppose the rows of X are i.i.d
with sub-Gaussian distribution Q.
We are interested in estimating β0

1 .
Lasso estimator:

β̂ = (β̂1, β̂1) := arg min
β1, β2

{
‖Y − X1β1 − X2β2‖22/n + λ‖β1‖1 + λ‖β2‖1

}
.
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Notation
Let X1PX2 be the projection of X1 on X2 in L2(Q), and define

X̃1 := X1 − X1PX2 = X1AX2.

Let
Σ1 := EX̃ T

1 X̃1/n,

and let Λ̃2
1 be its smallest eigenvalue.

Define

C0 := arg min
{
‖C‖1,∞ : X1PX2 = X2C

}
,

where
‖C‖1,∞ := max

1≤k≤q
‖γk‖1, C := (γ1, . . . , γp−q).
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Condition 1 1/Λ̃1 = O(1)

Condition 2 ‖β0‖1 = O(1) and s1 := ‖β0
1‖0 ∨ 1 = o

(√
n

log p

)
.
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Theorem
Take λ �

√
log p/n. Then

‖β̂ − β0‖1 = OP(1).

If moreover

‖C0‖1,∞ = O(1) (i .e. `1 − smoothness of the projection),

then

‖β̂1 − β0
1‖1 = OP

(
s1

√
log p

n

)
= oP(1).

Special case: q = 1 (recall q = dim(β1)). Then s1 = 1 and hence

|β̂1 − β0
1 | = OP

(√
log p

n

)
.
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The high-dimensional partial linear model

Joint work with Patric Müller.
Additive model:

Y = Xβ0 + g0(Z ) + ε, with ε ⊥ (X ,Z ).

We assume that the entries of (X ,Z ) ∈ Rp ×Z are i.i.d. with
distribution Q and that the entries of ε are i.i.d. sub-Gaussian.
We will assume that g0 has a given “smoothness” m > 1/2 and that β0

is sparse, with Xβ0 is “smoother” than g0.
Estimator:

(β̂, ĝ) := arg min
β, g

{
‖Y − Xβ − g(Z )‖22/n + λ‖β‖1 + µ2J2(g)

}
,

where J is some (semi-)norm on the space of functions on Z.
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Notation

We write X̃ := XAZ := X − XPZ where XPZ := E(X |Z ).

The smallest eigenvalue of EX̃ T X̃/n is denoted by Λ̃2.

The largest eigenvalue of E(XPZ )T (XPZ )/n is denoted by Λ2
P .

‖ · ‖ is the L2(Q)-norm.
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Condition 1 maxi,j |Xi,j | = O(1).
Condition 2 1/Λ̃ = O(1) and ΛP = O(1).
Condition 3 For some fixed constant A it holds that

H
(
u, {g : ‖g‖ ≤ 1, J(g) ≤ 1}, ‖ · ‖∞

)
≤ Au−1/m, u > 0.

Condition 4
sup

‖g‖≤1, J(g)≤1
‖g‖∞ = O(1).

Condition 5 s := ‖β0‖0 = o(n
1

2m+1 / log p) and J(g0) = O(1).
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Theorem

Take λ �
√

log p/n and µ � n−
m

2m+1 . Then

‖X (β̂ − β0) + (ĝ − g0)‖2 + λ‖β̂ − β0‖1 + µ2J2(ĝ) = OP(n−
2m

2m+1 ).

If moreover
J(h) = O(1),

where h(Z ) = E(X |Z ) ( i.e. J-smoothness of the projection) then

‖X̃ (β̂ − β0)‖2 + λ‖β̂ − β0‖1 = OP

(
s log p

n

)
= oP(n−

2m
2m+1 ).
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The additive model with different smoothness per
component

Joint work with Enno Mammen
Additive model:

Y = f 0(X ) + g0(Z ) + ε with ε ⊥ (X ,Z )

We assume that the entries of (X ,Z ) ∈ X ×Z are i.i.d. with distribution
QX ,Z and that the entries of ε are i.i.d. sub-Gaussian.

The density of QX ,Z with respect to some product measure is denoted
by qX ,Z , with marginal densities qX and qZ .

We will assume that f 0 has given “smoothness” k > 1/2 and g0 has
given “smoothness” m > 1/2, with k > m (i.e., f 0 is “smoother” than
g0).
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Notation:

We define

r(x , z) :=
qX ,Z (x , z)

qX (x)qZ (z)
,

and
γ2
∞ := ‖r(·, ·)‖∞.

Moreover, we let

γ2 :=

∫
(r − 1)2qX qZ .

We define
fP = E(f (X )|Z = ·), fA := f − fP .
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Condition 1 For some fixed constants AI and AJ it holds that

HB(u, {f : ‖f‖ ≤ 1, I(f ) ≤ 1}, ‖ · ‖) ≤ AIu−1/k , u > 0,

and

HB(u, {g : ‖g‖ ≤ 1, J(g) ≤ 1}, ‖ · ‖) ≤ AJu−1/m, u > 0.

Condition 2 For all R ≤ 1 and for some fixed constants BI and BJ it
holds that

sup
‖f‖≤R, I(f )≤1

‖f‖∞ ≤ BIR1− 1
2k ,

and
sup

‖g‖≤R, J(g)≤1
‖g‖∞ ≤ BJR1− 1

2m .

Condition 3 It holds that γ < 1.
Condition 4 I(f 0) = O(1) and J(g0) = O(1).

(Les Houches) Additive model January 8, 2013 28 / 30



Theorem

Take λ � n−
k

2k+1 and µ � n−
m

2m+1 . Then

‖f̂ − f 0 + ĝ − g0‖2 + λ2I2(f̂ ) + µ2J2(ĝ) = OP(n−
2m

2m+1 ).

If moreover for some constant Γ and for all f , J(fP) ≤ Γ‖f‖
( i.e. J-smoothness of the projection), then

‖f̂ − f 0‖2 + λ2I2(f̂ ) = OP(n−
2k

2k+1 ) = oP(n−
2m

2m+1 ).
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Conclusion

- The theory for the `1-penalty goes through for any weakly
decomposable norms

- Sparsity oracle inequalities however require small ”effective sparsity”
(i.e., on restricted eigenvalues or compatibility conditions)

- If one is only interested in specific components, one can relax the
compatibility conditions

- But then one ”needs” to assume sparse projections on the nuisance
part, or ...

- Or replace sparsity assumptions by smoothness assumptions...
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