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Sharp oracle inequalities

Let S € S be some index set and {Fs}scs be a collection of models.
Moreover let L(X, f) be a loss function and R(f) := EL(X, f). We say
that the estimator 7 satisfies a sharp oracle inequality if with large
probability

R(f) < mln{ min R(f) + Remainder(S)}.

feFs

Non-sharp oracle inequalities are of the form: with large probability

R(f) — R(f°) < (1 + ) melg{ mln(R(f) R(f%)) + Remainderg(S)},

where § > 0 and
9= min_ R(f).

fEUSES]:S
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Sharp oracle inequalities with structured sparsity
penalities

High-dimensional linear model:
Y =Xp3%+e,

with Y € R”, X and n x p matrix and 5% € RP.
We believe that 3° can be well approximated by a “structured sparse”

8.

Let © be some given norm on RP.

Norm-penalized estimator:

A

A ; _ 2
1= o= arg min { 1Y - Xglg/n+ 2202(9) |
Aim: A
(Sharp) sparsity oracle inequalities for /.
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Notation: for s € RPand S C {1,...,p}
Bj,S = ,le{j € S}
Example

£1-norm

o
Q(B) :==1Bll1 ==Y _18j| ~ Lasso

j=1
The ¢1-norm is decomposable:

18111 = I1Bsll1 + IBsell1¥ BV S.
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Definition

We say that the norm Q is weakly decomposable for S if there exists a
norm Qg on RP~IS! such that for all 5 € RP,

Q(B) > Q(Bs) + Q% (Bse).

Definition
We say that S is an allowed set (for Q) if Q is weakly decomposable for
S.

v
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Example
The group Lasso norm:

-
QB) = lIBllz1 :=>_ VIGlIBcll2 B € RP,
=1

where Gy, ..., Gt is a partition of {1,..., p} into disjoint groups.
It is (weakly) decomposable for S = Ui G with Qge = Q.
Thus, for any 8, S := U{G; : ||Bg,|l2 # 0} is an allowed set.

(Les Houches) Additive model January 8, 2013 7130



Example

From Micchelli et al. (2010)
Let A C [0, c0)P be some convex cone. Define

1B
Q(B) :=Q(B; A) := min 3 Z(Z, + a;).
j=1
Let As :={as: ac A}

Definition
We call Ag an allowed set, if Ag C A.

Lemma

Suppose Ags is an allowed set. Then S is allowed, i.e. S is weakly
decomposable for Q.
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We use the notation
Iv|[2:=vTv/n, veR"
Definition

Suppose S is an allowed set. Let L > 0 be some constant. The
Q-eigenvalue (for S) is

sa(L, S) = min{nms — XBselln: Bs) =1, 0°(Bsr) < L}.

The Q-effective sparsity is

’
d3(L, S)

r2(L,S) =
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The dual norm of Q is denoted by Q,, that is

Q.(w):= sup |w'g|, weRP.
Q(B)<1

We moreover let Q5° be the dual norm of Q5°.
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A sharp oracle inequality

Theorem

Let 5 € RP be arbitrary and let Let S O {j : 5; # 0} be an allowed set.

Define
AS=Q, ((eTX)S/n), A5 =0 ((eTX)Sc/n).

Suppose A > \5°. Define
S
Lg:= )\+—)\c .
A—\S
Then

2
IX(3 — 822 < [1X(8 — B2 + [(H AS)] r2(Ls, S).

Related results: Bach (2010).
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Theorem

Let 3 € RP be arbitrary and let Let S O {j : 5; # 0} be an allowed set.

Define
AS=Q, ((eTX)S/n), AS =¥ ((JX)SC/n)

Suppose
A> A

Define for some 0 < § < 1
A+ ASN\ /146
Lg:= 5 .
A—\S 1-9

IX(B — BO)II2 + 6(A — A5)Q5 (Bse) + (A + A5)Q(Bs — B)

Then

2
< IX(8 = 8O+ [(1 +6>(A+AS)] r2(Ls, S).

4
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Special case where Q = || - ||

Theorem
(Koltchinskii et al. (2011)) Letfor S c {1,...,p}

Ao = [I(e"X)loo/n.

Define for A > \g
A+ Ao
A— o

L=

Then

IX(B - B2 < Bn;]g},{uxw B2+ (A MM, HﬁHo)}-

(Les Houches) Additive model January 8, 2013

14/30




Compatibility (restricted eigenvalue condition)

Recall that for the ¢1-norm

1
2 —

with
3(L. ) i=min{ 165 ~ Xiieln: 135l =1, [3sels < L.

We have
S|

k2(L,S)’

where x2(L, S) is the restricted eigenvalue (Bickel et al. (2009)).

(L, S) <
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Consider the case S = {1}, and write X; := Xg, Xz := Xsc. Let X; PX;
be the projection (in R") of X; on X5 and X1 AX> := X; — X1 PX> be the

antiprojection. Define
30 .= argmin{|y]l1 : XiPXo = Xor}.

Then clearly .
O(L{1}) = X1 AXelln ¥ L = [[3°]]1.

When n < p one readily sees that

S(L{1}) =0V L= |5
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Suppose now that the rows of X are i.i.d. with sub-Gaussian
distribution Q. Let Xy PX> be the projection of X; on Xz in L»(Q) and
X1AXz = X1 — X1 PXz. Let || - || be the L»(Q)-norm. Define

7° = argmin{|ly[l1 : XiPXz = Xav}.
Then with large probability, for L/log p/n small
(L, 8) = (1 = ) XA V L > |11

(XiAX1)T(X1PX)/n = 4 IO%-

and moreover,
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Oracle inequalities for parameters of interest

High-dimensional linear model:
Y = X189 + X233 + e,
B eRY, B € RPY,

and the entries of ¢ i.i.d. sub-Gaussian. Suppose the rows of X are i.i.d
with sub-Gaussian distribution Q.

We are interested in estimating (9.

Lasso estimator:

— (1, B1) = arg mm{uv X1 X2ﬁ2\|§/”+>\\|ﬁ1\|1+>\H52H1}-
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Notation
Let Xi PX: be the projection of X;y on X in L»(Q), and define

X1 =Xy — Xq PXo = X{AXo.

Let o
2q1:= EX1TX1 /n,

and let A? be its smallest eigenvalue.
Define

C% = arg min{||C||17Oo : Xy PXo = XQC},

where
C ‘= max Y C = M,y---5Yp—q)-
|| H1,oo 1<k<q” k||17 ( 1, yIp q)

(Les Houches) Additive model January 8, 2013

19/30



Condition 1 1/A;

o(1)

Condition 2 [|8%|y = O(1) and sy := |89 V1 = 0(\/.ogp)
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Theorem

Take \ < \/logp/n. Then
18 = 8l = Op(1).
If moreover

1C°|1.00 = O(1) (i.€. £1 — smoothness of the projection),

181 - 851 = Oe s1y/°22) = 0x(1),

Special case: g = 1 (recall g = dim(f31)). Then s; = 1 and hence

B - 581 = 02 /°22),
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The high-dimensional partial linear model

Joint work with Patric Miiller.
Additive model:

Y = X%+ g% 2) + ¢, withe L (X, 2).

We assume that the entries of (X, Z) € RP x Z are i.i.d. with
distribution Q and that the entries of ¢ are i.i.d. sub-Gaussian.

We will assume that g° has a given “smoothness” m > 1/2 and that 3°
is sparse, with X9 is “smoother” than g°.

Estimator:

(5.6) = argmin{ I - X5 - 9(2)[3/n+ N3l + #22(@)

where J is some (semi-)norm on the space of functions on Z.
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Notation

We write X := XAZ := X — XPZ where XPZ := E(X|Z).

The smallest eigenvalue of EX7 X /n is denoted by A2.

The largest eigenvalue of E(XPZ)T(XPZ)/n is denoted by A2.
| - || is the Lo(Q)-norm.
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Condition 1 max; ;| X;;| = O(1).
Condition 2 1/A = O(1) and Ap = O(1).
Condition 3 For some fixed constant A it holds that

H(u{g: llgll <1, J(g) <11l o) < AuV™, u>0.

Condition 4
sup  [|gllec = O(1).
llgll<1, J(g)<1

Condition 5 s := ||3°]|o = o(n# /log p) and J(g°) = O(1).
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Theorem
Take \ < \/logp/n and p < n~zm+i, Then

IX(B — 8% + (& — g2 + AlIB — Bl1 + 122(§) = Op(n™2zmi1).

If moreover
J(h) = O(1),

where h(Z) = E(X|Z) (i.e. J-smoothness of the projection) then

IX(8 = BOIIZ + Al = Bl = OP(SIOQP) — op(n" 7).

n
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The additive model with different smoothness per
component

Joint work with Enno Mammen
Additive model:

Y = 9(X) + g°(2) + e with e L (X, 2)

We assume that the entries of (X, Z) € X x Z are i.i.d. with distribution
Qx,z and that the entries of ¢ are i.i.d. sub-Gaussian.

The density of Qx ~ with respect to some product measure is denoted
by gx z, with marginal densities gx and qz.

We will assume that 10 has given “smoothness” k > 1/2 and g° has
given “smoothness” m > 1/2, with k > m (i.e., f0 is “smoother” than

9°).
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Notation:
We define

and

Moreover, we let

We define

(Les Houches)

ax.z(X, 2)

rx.2) = ax(x)qz(z)’

Yoo = ()l

= [(r-1Paxaz.

fp= E(f(X)|Z =), fa:=f— fp.
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Condition 1 For some fixed constants A; and A, it holds that
Ha(u, {f: Il <1, () <A} [1-1) < Au= V5 u>o0,
and

Hae(u,{g: llgl <1, J(@) <1} ]) < Aw™V/™, u>o0.

Condition 2 For all R < 1 and for some fixed constants B, and B, it
holds that 1
sup  ||flleo < B/R' 2%,
IFlI<R, I(f)<1
and

sup ||l < ByR""2m.
llgll <R, J(g)<1

Condition 3 It holds that v < 1.
Condition 4 /(f°) = O(1) and J(g°) = O(1).
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Theorem

Take \ = n~ak and p =< n~ 21, Then
IF = £+ G — g% + NR(F) + n2U2(§) = Op(n~zmi7),

If moreover for some constant I and for all f, J(fp) < T||f||
(i.e. J-smoothness of the projection), then

2m

17— 0|2 + X22(F) = Op(n2+7) = op(n2m7).
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Conclusion

- The theory for the ¢1-penalty goes through for any weakly
decomposable norms

- Sparsity oracle inequalities however require small “effective sparsity”
(i.e., on restricted eigenvalues or compatibility conditions)

- If one is only interested in specific components, one can relax the
compatibility conditions

- But then one "needs” to assume sparse projections on the nuisance
part, or ...

- Or replace sparsity assumptions by smoothness assumptions...
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