Learning and Optimization:
Lower Bounds and Tight Connections

Natl Srebro
TTI-Chicago

On The Universality of Online Mirror Descent

S, Karthik Sridharan (UPenn), Ambuj Tewari (Michigan), NIPS’'11
Learning from an Optimization Viewpoint

Karthik Sridharan TTIC PhD Thesis

Learning/Optimization over L, Ball

Stat Learning / Stoch Optimization: SVM:A(h():y) = [1-y-h(9l.

min||w||2§|3 L(w) = Ex,y~D[£(<W’X>;y)]
based on m iid samples x,y~D IXll, <R

~ L(w) = 2/m 2, 4(h(x,);y,)
Using SAA/ERM: w = arg min L(w)

L(®) < inf,<p L(w) + 2/B2R2/m

Rate of 15t order (or any local) optimization:
lA}(wT) < mew”SB lA}(w) + \/BQRQ/T

Using SA/SGD on L(w): W,,; < W, - N,V L((W,x,);y,)
L(@m) < inf < L(w) +/ B2R2/m

[Bottou Bousquet 08][S Shalev-Shwartz 08][Juditsky Lan Nemirovski Shapiro 09]

Learning/Optimization over L, Ball

radius of opt
domain Lipshitz
B2RZ
runtime
T‘\(grad evals)

(Deterministic) Optimization:

radius of

..] hypothesis radius of data
Statistical Learning: fB2R?

M~ #samples

Stoch. Aprx. / One-pass SGD: \/Bifi

#grad estimates
= #samples
= runtime

| _ B?R?
Online Learning (avg regret): \/T

¥~ #rounds

Questions

« \WWhat about other (convex) learning
problems (other geometries):.

— |s Stochastic Approximation always optimal?

— Are the rates for learning (# of samples) and
optimization (runtime / # of accesses) always
the same?

Outline

e Deterministic Optimization vs Stat. Learning

— Main result: fat shattering as lower bound on optimization
— Conclusion: sample complexity < opt runtime

« Stochastic Approximation for Learning |
— Online Learning —\/ery briefly
— Optimality of Online Mirror Descent

Optimization Complexity

minweW f(W)

e Optimization problem defined by:
— Optimization space W
— Functionclass FC {f W — R }

 Runtime to get accuracy e:
— Input: instance f € F, >0
— Output: w € Ws.t.
f(w) <inf,,, f(w)+e

e Count number of local black-box accesses to f(-):

Ohw — f(w), Vf(w), any other “local” information
(\v/neighborhood N(w) fl:fz on N(W) = Ofl(W):sz (W))

Generalized Lipchitz Problems

minweW f(W)

 We will consider problems where:
— Wis a convex subset of a vector space £ (e.g. R9 or inf. dim.)

— X convex C L*
— F= Fipy = { W — R convex | V,, Vf(w) € X'}

 Examples:
— X={]x|, <1} corresponds to standard notion of Lipchitz functions

— X ={|x] <1} corresponds to Lipchitz w.r.t. norm [x|

 Theorem (Main Result):

The e-fat shattering dimension of lin()V,X) is a lower bound on
the number of accesses required to optimize F;, to within e

Fat Shattering
o Definition:

* Xy,...,Xy € X are e-fat shattered by W if there

exists scalars t,,...,t, s.t. for every sign pattern
Yi,--¥Ym, there exists weW s.t. y;((w,x;)-t;) > €.

* The e-fat shattering dimension of lin(W)W,X) is the
largest number of points m that can be e-fat

shattered

Optimization, ERM and Learning

* Supervised learning with linear predictors:
L(w) = (1/m) 2i_g m loss((w,Xy) , Vi)

1-Lipshitz X; € X

ERM: W = min,,,, L(w)
Gradient of (empirical) risk: V L(w) € conv(X)

e Learning guarantee:
If for some q > 2, fat-dim(e) < (V/e)4 =
L(W) < inf,, L(w) + O(V log*>(m) / mi/a)

e Conclusion:
For g > 2, if there exists V s.t. the rate of optimization is at most
e(m) < V/TYq,
then the statistical rate of the associated learning problem is at most:
e(m) < 36 V log!->(m) / ml/a

Convex Learning
= Linear Prediction

 Consider learning with a hypothesis class H ={h:X — R }
L(h) = (1/m) Xy loss(h(xy), ;)

e With any meaningful loss, L(h,) will be convex in a
parameterization w, only if h,(x) is linear in w, I.e.

hy(X) = (W,¢(X))

* Rich variety of learning problems obtained with different
(sometimes implicit) choices of linear hypothesis classes,
feature mappings ¢, and loss functions.

Linear Prediction

 Gradient space X is the learning data domain (i.e. the space learning
Inputs come from), or image of feature map ¢

— ¢ specified via Kernel (as in SVMs, kernalized logistic or ridge regression)
—In boosting: coordinates of ¢ are “weak learners”
— ¢ can specify evaluations (as in collaborative filtering, total variation problems)

* Optimization space F is the hypothesis class, the set of allowed linear
predictors. Corresponds to choice of “regularization”

—L, (SVMs, ridge regression)
—L, (LASSO, Boosting)

— Elastic net, other interpolations
— Group norms

— Matrix norms: trace-norm, max-norm, etc (eg for collaborative filtering and
multi-task learning)

» Loss function need only be (scalar) Lipchitz.
—hinge, logistic, etc
— structured loss, where y; non-binary (CRFs, translation, etc)
— exp-loss (Boosting), squared loss = NOT globally Lipchitz

Main Result

 Problems of the form:
minWEW f(W)
— W<convex C vector space B (e.g. R", or inf.-dimensional)

— Xconvex C BB
- feF=Fpmy={fW— Rconvex |V, Viw) e X }

« Theorem (Main Result):

The e-fat shattering dimension of lin(W,X) is a lower bound on the
number of accesses required to optimize f € F;, to within e

e Conclusion:
For g> 2, if for some V, the rate of ERM optimization is at most
e(m) < V/TYa,
then the learning rate of the associated problem is at most:
e(m) < 36 V logt3(m) / m/a

Proof of Main Result

Theorem:

The e-fat shattering dimension of lin(W,) is a lower bound on the
number of accesses required to optimize F, to within ¢

That is, for any optimization algorithm, there exists a function fe 7,
s.t. after m=fat- -dim(e) local accesses, the algorithm is > -
suboptimal.

Proof overview:

View optimization as a game, where at each round t:
— Optimizer asks for local information at wt,
— Adversary responds, ensuring consistency with some feF,

We will play the adversary, ensuring consistency with some fe F
where inf, f(w)<e, but where f(wt)>0.

Playing the Adversary

Xy,--, Xy, fat-shattered with thresholds s,,..,s,,.
l.e., V signs y,,...Y,, 3 W S.t. yi({w,X)-S;) > €

We will consider functions of the form:
f, (W) = max; yi(si-(W,X;))

Convex, piecewise linear
(Sub)-gradients are yxx; = f,€Fp v
Fat shattering =V, inf,, f,(w) < -¢

Playing the Adversary
f,(w) = max; yi(s-(w,x;)

Goal: ensure consistency with some f, s.t. f (W' > 0
How: Maintain model

f(w) = maXicat Yi(Si-(W, ;)
based on A' C {1..m}.

Initialize A° = {}
At each round t=1..m, add to A;:
It = argmaxigat-1 |Si- (W, X) |
and set corresponding y; s.t. yi(si-(w,x))>0
Return local information at wt based on ft

Claim: f agrees with final f, on w!, and so adversarial responses to
algorithm are consistent with f,, but

f (W) = fi(w) >0 > inf, f(W)+e

Optimization vs Learning

(deterministic) . Statistical
L > d — .
Optimization — ¢ Learning
runtime, # samples

func, grad accesses

e Converse?
— Optimize with d_ accesses? (intractable alg OK)
— Learning = Optimization?

With sample size m, exact grad calculation is O(m) time,
and so even if #iter=#samples, runtime is O(m>).

e Stochastic Approximation?
(stochastic, local access, O(1) memory method)

Online Optimization / Learning

* Online optimization setup:
— As before, problem specified by W, F
— f..f,,... presented sequentially by “adversary”
— “Learner” responds with w;,w,,...

Adversary: f f f
Fooa O A AN
Learner: w; W, Wy

— Formally, learning rule A:F7*—W with w=A(f;,...,f._,)

« Goal: minimize regret versus best single response in hindsight.
— Rule A has regret ¢(m) if for all sequences f,,...,f.:
1/m z = f(Wt) < infweW 1/m thl..m ft(W) + G(m)

(WAt —

 Examples:
— Spam Filtering
— Investment return:
wl[i] = investment in holding i
f(w) = -(w,z,), where z[i]= return on holding i

Online To Batch

* An online optimization algorithm with regret guarantee
1M 2iey m fiwy) < inflgpy 1M 24 1 fi(w) + e(m)

can be converted to a learning (stochastic optimization) algorithm,
by running it on a sample and outputting the average of the iterates:
[Cesa-Bianchi et al 04].

E [L@W,)] < infyeyy LOW) + e(m)

[W, =(w,+..+w,)/m
(in fact, even with high probability rather then in expectation)

* An online optimization algorithm that uses only local info at w; can
also be used as for deterministic optimization, by setting z;=z:

(W) < iNfcpy FW) + ()

Online Gradient Descent
Wiy < I W, - NV f(wW,zy))
e Regret guarantee:

Lym o fr(wy) <25 fr(w*) A \/Ri?Q

where

— B= SUPyew ”WHZ
— R=supyepser Vi W)l

e Online To Stochastic Conversion = Stochastic Gradient Descent
e Online to Deterministic Conversion = Gradient Descent

Onlined Gradient Descent online2stochastic R Stochastic Gradient Descent
[Zinkevich 03] [Cesa-Binachi et al 04] [Nemirovski Yudin 78]

Classes of Optimization/Learning Problems

* Problem specified by:
— Optimization space / Hypothesis class W
— Function class F={f W — R }

e Forconvex W C Band X C B, we consider:
Fip ={f(w) | V,, Vi(w) € X'}

fsup—abs = { fx,y(W):|<W’X>'y| | XeX, yER }
or fsup—hinge = { fx’y(W)Z[l-y<W,X>]+ | XEX’ y=il }

Fiin = { fi(W)=(w,x) | xe X'}

* For all the above, X specifies the possible subgradients Vf(w)
'ﬁin’fsup - f]ip

Optimization vs Learning

Online

Optimizat Deterministic, Local-Access Stat Learning
ptimization > Optimization (of F,;,) > (Stoch Opt of F_,,)
(of Fy,) with = | P - P
runtime, # samples, full access
Local Info # func, grad accesses

+ For L, geometry (X={||x|l,<R}, W={||x||,<B}):
Online/Stoch Grad Descent

— Optimal for Learning
— local access (1% order), O(1) memory, optimizes F,

Online Mirror Descent

Grad Descent is inherently related to L, norm.

To handle other geometries (other W, &), consider potential function
(regularizer) ¥:)Y—R and the Bergman Divergence:

Dy(w,v) = ¥(w)-¥(v)-(VP(V),W-V)

We will need ¥ that is non-negative and g-uniformly convex w.r.t. ||-|| /¥
on W, i.e. s.t. for all v,weW.

Dy(w,v) > 1/q ([[w-v]]*)9 Dual of
gauge of X

Online Mirror Descent:
Wyyp <= arg miny,q, N(Vi(w),w) + Dy(w,w)

Regret Guarantee:

Sy fe(wg) < 20 ft(w*)_|_2€/supwervr\i W (w)

as long as Vf(w)eX
[Nemirovski Yudin 78] [Beck Teboulle 03] [S Sridharan Tewari 11]

Optimality of Online Mirror Descent

e Theorem:

For any convex centrally symmetric X, W,
If there exists an online learning rule for

Fsup (OF Fyip Or Fiip) with online regret
e(m) < V/m/a
then there exists ¥ and step size n, s.t. the

regret of online Mirror Descent on F, (and
so also Fg,, Fj,) Is at most:

emp(M) < 6002 log?(m) V/mt/a

[S Sridharan Tewari 11]

Optimization vs Learning

\

1 Deterministic, Local-Access Stat Learning

Online > Optimization (of 7;,) > (Stoch Opt of F,,)
Learning (]:sup) runtime, o # samples

| # func, grad accesses

Online
Optimization

(Of 'Flip)

* Mirror Descent is (nearly) optimal whenever online learning is
possible (i.e. ensuring small adversarial regret).

e For such problems, need only consider Online/Stochastic
Mirror Descent, a local (15t order), O(1) memory, SA-type
method.

Summary

Tight connections between learning and optimization:
e Learning IS Optimization

 Fat shattering as lower bound on
deterministic optimization runtime

* Mirror Descent optimal for Online Learning

