Learning and Optimization: Lower Bounds and Tight Connections

Nati Srebro TTI-Chicago

On The Universality of Online Mirror Descent S, Karthik Sridharan (UPenn), Ambuj Tewari (Michigan), NIPS'11 Learning from an Optimization Viewpoint Karthik Sridharan TTIC PhD Thesis

Learning/Optimization over L₂ Ball

- Rate of 1st order (or any local) optimization: $\hat{L}(w_T) \leq \inf_{\|w\| \leq B} \hat{L}(w) + \sqrt{B^2 R^2 / T}$
- Using SA/SGD on L(w): $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \eta_t \nabla_w \ell(\langle \mathbf{w}, \mathbf{x}_t \rangle; \mathbf{y}_t)$ $L(\bar{w}_m) \leq \inf_{\|w\| \leq B} L(w) + \sqrt{B^2 R^2 / m}$

Learning/Optimization over L₂ Ball

- (Deterministic) Optimization:
- Statistical Learning:
- Stoch. Aprx. / One-pass SGD:

• Online Learning (avg regret):

Questions

- What about other (convex) learning problems (other geometries):
 - Is Stochastic Approximation always optimal?
 - Are the rates for learning (# of samples) and optimization (runtime / # of accesses) always the same?

Outline

- Deterministic Optimization vs Stat. Learning
 - Main result: fat shattering as lower bound on optimization
 - Conclusion: sample complexity \leq opt runtime
- Stochastic Approximation for Learning
 - Online Learning
 - Optimality of Online Mirror Descent

Very briefly

Optimization Complexity

$min_{w\in\mathcal{W}}\,f(w)$

- Optimization problem defined by:
 - Optimization space $\ensuremath{\mathcal{W}}$
 - Function class $\mathcal{F} \subseteq$ { f:} $\mathcal{W} \rightarrow \mathbb{R}$ }
- Runtime to get accuracy ϵ :
 - Input: instance f $\in \mathcal{F}$, ϵ >0
 - Output: $w \in \mathcal{W} \text{ s.t.}$ $f(w) \leq \inf_{w \in \mathcal{W}} f(w) + \epsilon$
- Count number of local black-box accesses to $f(\cdot)$: $O^{f}: w \to f(w), \nabla f(w), any other "local" information$ $(\forall_{neighborhood N(w)} f_1 = f_2 \text{ on } N(w) \Rightarrow O^{f_1}(w) = O^{f_2}(w))$

Generalized Lipchitz Problems $\label{eq:minwew} \min_{w \in \mathcal{W}} f(w)$

- We will consider problems where:
 - \mathcal{W} is a convex subset of a vector space \mathcal{L} (e.g. \mathbb{R}^d or inf. dim.)
 - $\mathcal{X} \operatorname{convex} \subset \mathcal{L}^*$
 - $\mathcal{F} = \mathcal{F}_{lip(\mathcal{X})} = \{ f: \mathcal{W} \to \mathbb{R} \text{ convex } | \forall_w \nabla f(w) \in \mathcal{X} \}$
- Examples:
 - $-~\mathcal{X}$ = { $|x|_2 \leq 1$ } corresponds to standard notion of Lipchitz functions
 - $\mathcal{X} = \{ |x| \le 1 \}$ corresponds to Lipchitz w.r.t. norm |x|
- Theorem (Main Result):

The ϵ -fat shattering dimension of $lin(\mathcal{W}, \mathcal{X})$ is a lower bound on the number of accesses required to optimize \mathcal{F}_{lip} to within ϵ

Fat Shattering

- Definition:
- $x_1, \ldots, x_m \in \mathcal{X}$ are ϵ -fat shattered by \mathcal{W} if there exists scalars t_1, \ldots, t_n s.t. for every sign pattern y_1, \ldots, y_m , there exists $w \in \mathcal{W}$ s.t. $y_i(\langle w, x_i \rangle t_i) > \epsilon$.
- The ε-fat shattering dimension of lin(W, X) is the largest number of points m that can be ε-fat shattered

Optimization, ERM and Learning

• Supervised learning with linear predictors:

 $\hat{L}(w) = (1/m) \sum_{t=1..m} \text{loss}(\langle w, x_t \rangle, y_t)$ $1-\text{Lipshitz} \quad x_t \in \mathcal{X}$

ERM: $\hat{\mathbf{w}} = \min_{\mathbf{w} \in \mathcal{W}} \hat{\mathbf{L}}(\mathbf{w})$

Gradient of (empirical) risk: $\nabla \hat{L}(w) \in conv(\mathcal{X})$

- Learning guarantee: If for some $q \ge 2$, fat-dim $(\epsilon) \le (V/\epsilon)^q \Rightarrow$ $L(\hat{w}) \le \inf_{w \in W} L(w) + O(V \log^{1.5}(m) / m^{1/q})$
- Conclusion:

For $q \ge 2$, if there exists V s.t. the rate of optimization is at most $\epsilon(m) \le V/T^{1/q}$,

then the statistical rate of the associated learning problem is at most: $\epsilon(m) \leq 36 \; V \; log^{1.5}(m) \; / \; m^{1/q}$

Convex Learning \Rightarrow Linear Prediction

- Consider learning with a hypothesis class $\mathcal{H} = \{ h: \mathcal{X} \to \mathbb{R} \}$ $\hat{L}(h) = (1/m) \sum_{t=1..m} loss(h(x_t), y_t)$
- With any meaningful loss, $\hat{L}(h_w)$ will be convex in a parameterization w, only if $h_w(x)$ is linear in w, i.e. $h_w(x) = \langle w, \phi(x) \rangle$
- Rich variety of learning problems obtained with different (sometimes implicit) choices of linear hypothesis classes, feature mappings φ, and loss functions.

Linear Prediction

- Gradient space \mathcal{X} is the learning *data domain* (i.e. the space learning inputs come from), or image of feature map ϕ
 - $-\phi$ specified via Kernel (as in SVMs, kernalized logistic or ridge regression)
 - In boosting: coordinates of ϕ are "weak learners"
 - $-\phi$ can specify evaluations (as in collaborative filtering, total variation problems)
- Optimization space \mathcal{F} is the *hypothesis class*, the set of allowed linear predictors. Corresponds to choice of "regularization"
 - $-L_2$ (SVMs, ridge regression)
 - -L₁ (LASSO, Boosting)
 - Elastic net, other interpolations
 - Group norms
 - Matrix norms: trace-norm, max-norm, etc (eg for collaborative filtering and multi-task learning)
- Loss function need only be (scalar) Lipchitz.
 - -hinge, logistic, etc
 - structured loss, where y_i non-binary (CRFs, translation, etc)
 - exp-loss (Boosting), squared loss \Rightarrow NOT globally Lipchitz

Main Result

• Problems of the form:

$$\min_{\mathsf{w}\in\mathcal{W}}\mathsf{f}(\mathsf{w})$$

- \mathcal{W} convex \subset vector space \mathcal{B} (e.g. \mathbb{R}^n , or inf.-dimensional)
- $\mathcal{X} \operatorname{\textbf{convex}} \subset \mathcal{B}^*$
- $\quad f \in \mathcal{F} = \mathcal{F}_{\mathsf{lip}(\mathcal{X})} = \{ \ f: \mathcal{W} \rightarrow \mathbb{R} \ \textbf{convex} \ | \ \forall_w \ \nabla f(w) \in \mathcal{X} \ \}$
- Theorem (Main Result):

The ϵ -fat shattering dimension of lin(W, X) is a lower bound on the number of accesses required to optimize $f \in \mathcal{F}_{lip}$ to within ϵ

• Conclusion:

For $q \ge 2$, if for some V, the rate of ERM optimization is at most $\epsilon(m) \le V/T^{1/q}$, then the learning rate of the associated problem is at most: $\epsilon(m) \le 36 \text{ V } \log^{1.5}(m) / m^{1/q}$

Proof of Main Result

• Theorem:

The ϵ -fat shattering dimension of lin(W, X) is a lower bound on the number of accesses required to optimize \mathcal{F}_{lip} to within ϵ

That is, for any optimization algorithm, there exists a function f∈ *F*_{lip} s.t. after m=fat-dim(ε) local accesses, the algorithm is ≥ ε-suboptimal.

• **Proof overview:**

View optimization as a game, where at each round t:

- Optimizer asks for local information at w^t,
- Adversary responds, ensuring consistency with some $f \in \mathcal{F}$.

We will play the adversary, ensuring consistency with some $f \in \mathcal{F}$ where $\inf_w f(w) \leq \epsilon$, but where $f(w^t) \geq 0$.

Playing the Adversary

- $x_1,...,x_m$ fat-shattered with thresholds $s_1,...,s_m$. I.e., \forall signs $y_1,...,y_m \exists w \text{ s.t. } y_i(\langle w,x_i \rangle - s_i) \geq \epsilon$
- We will consider functions of the form: $f_y(w) = \max_i y_i(s_i - \langle w, x_i \rangle)$
- Convex, piecewise linear
- (Sub)-gradients are $y_i x_i \Rightarrow f_y \in \mathcal{F}_{lip(\mathcal{X})}$
- Fat shattering $\Rightarrow \forall_y \inf_w f_y(w) \leq -\epsilon$

Playing the Adversary

 $f_y(w) = \max_i y_i(s_i - \langle w, x_i)$

- Goal: ensure consistency with some f_v s.t. $f_v(w^t) \ge 0$
- How: Maintain model
 f^t(w) = max_{i∈A^t} y_i(s_i-⟨w,x_i)

 based on A^t ⊂ {1..m}.
- Initialize $A^0 = \{\}$
- At each round t=1..m, add to A_t : $i^t = argmax_{i \notin A^{t-1}} |s_i - \langle w, x_i \rangle|$ and set corresponding y_i s.t. $y_i(s_i - \langle w, x_i \rangle) \ge 0$
- Return local information at w^t based on f^t
- Claim: f^t agrees with final f_y on w^t, and so adversarial responses to algorithm are consistent with f_y, but

$$f_y(w^t) = f^t(w^t) \ge 0 \ge \inf_w f_y(w) + \epsilon$$

Optimization vs Learning

- Converse?
 - Optimize with d_e accesses? (intractable alg OK)
 - Learning \Rightarrow Optimization?

With sample size *m*, exact grad calculation is O(m) time, and so even if #iter=#samples, runtime is $O(m^2)$.

 Stochastic Approximation? (stochastic, local access, O(1) memory method)

Online Optimization / Learning

- Online optimization setup:
 - As before, problem specified by $\mathcal{W},\,\mathcal{F}$
 - f_1, f_2, \dots presented sequentially by "adversary"
 - "Learner" responds with w_1, w_2, \dots

– Formally, learning rule A: $\mathcal{F}^* \rightarrow \mathcal{W}$ with $w_t = A(f_1, \dots, f_{t-1})$

- Goal: minimize regret versus best single response in hindsight.
 - Rule A has regret $\epsilon(m)$ if for all sequences f_1, \dots, f_m :

$$\frac{1}{2} \sum_{t=1..m} f_t(w_t) \le \inf_{w \in \mathcal{W}} 1/m \sum_{t=1..m} f_t(w) + \epsilon(m)$$

 $W_t = A(f_1, \dots, f_{t-1})$

- Examples:
 - Spam Filtering
 - Investment return:
 - w[*i*] = investment in holding *i*
 - $f_t(w) = -\langle w, z_t \rangle$, where $z_t[i]$ return on holding *i*

Online To Batch

• An online optimization algorithm with regret guarantee $1/m \sum_{t=1..m} f_t(w_t) \leq inf_{w \in \mathcal{W}} 1/m \sum_{t=1..m} f_t(w) + \epsilon(m)$

can be converted to a learning (stochastic optimization) algorithm, by running it on a sample and outputting the average of the iterates: [Cesa-Bianchi et al 04]:

$$\mathbb{E}\left[\mathsf{L}(\overline{\mathsf{w}}_{\mathsf{m}})\right] \leq \inf_{\mathsf{w}\in\mathcal{W}}\mathsf{L}(\mathsf{w}) + \epsilon(\mathsf{m})$$

 $\overline{\mathbf{w}_{m}}=(\mathbf{w}_{1}+..+\mathbf{w}_{m})/m$

(in fact, even with high probability rather then in expectation)

An online optimization algorithm *that uses only local info* at w_i can also be used as for deterministic optimization, by setting z_i=z:
 f(w̄_m) ≤ inf_{w∈W} f(w) + ε(m)

Online Gradient Descent

 $w_{t+1} \leftarrow \varPi_{\mathcal{W}}(w_t - \eta_t \nabla_w f(w_t, z_t))$

• Regret guarantee:

$$\frac{1}{m}\sum_{t=1}^{m} f_t(\mathsf{w}_t) \leq \frac{1}{m}\sum_{t=1}^{m} f_t(\mathsf{w}^*) + \sqrt{\frac{R^2B^2}{m}}$$

where

$$\begin{array}{l} - \quad \mathsf{B} = \sup_{\mathsf{w} \in \mathcal{W}} ||\mathsf{w}||_2 \\ - \quad \mathsf{R} = \sup_{\mathsf{w} \in \mathcal{W}, \mathsf{f} \in \mathcal{F}} ||\nabla_\mathsf{w} |\mathsf{f}(\mathsf{w})||_2 \end{array}$$

- Online To Stochastic Conversion \Rightarrow Stochastic Gradient Descent
- Online to Deterministic Conversion \Rightarrow Gradient Descent

Onlined Gradient Descent	online2stochastic	Stochastic Gradient Descent
[Zinkevich 03]	[Cesa-Binachi et al 04]	[Nemirovski Yudin 78]

Classes of Optimization/Learning Problems

- Problem specified by:
 - Optimization space / Hypothesis class ${\cal W}$
 - Function class $\mathcal{F} = \{ f: \mathcal{W} \to \mathbb{R} \}$
- For convex $\mathcal{W} \subset \mathcal{B}$ and $\mathcal{X} \subset \mathcal{B}^*$, we consider:

$$\mathcal{F}_{\mathsf{lip}} = \{ \mathsf{f}(\mathsf{w}) \mid \forall_{\mathsf{w}} \nabla \mathsf{f}(\mathsf{w}) \in \mathcal{X} \}$$

$$\begin{split} \mathcal{F}_{\text{sup-abs}} &= \{ \text{ f}_{x,y}(w) = |\langle w, x \rangle - y| \mid x \in \mathcal{X}, \ y \in \mathbb{R} \} \\ \text{ or } \mathcal{F}_{\text{sup-hinge}} &= \{ \text{ f}_{x,y}(w) = [1 - y \langle w, x \rangle]_{+} \mid x \in \mathcal{X}, \ y = \pm 1 \} \\ \mathcal{F}_{\text{lin}} &= \{ \text{ f}_{x}(w) = \langle w, x \rangle \mid x \in \mathcal{X} \} \end{split}$$

• For all the above, \mathcal{X} specifies the possible subgradients $\nabla f(w)$ $\mathcal{F}_{lin}, \mathcal{F}_{sup} \subset \mathcal{F}_{lip}$

Optimization vs Learning

Deterministic, Local-Access

runtime, # func, grad accesses

Stat Learning Optimization (of \mathcal{F}_{lip}) > (Stoch Opt of \mathcal{F}_{sup}) # samples, full access

- For L₂ geometry ($\mathcal{X}=\{||\mathbf{x}||_2 \leq R\}, \mathcal{W}=\{||\mathbf{x}||_2 \leq B\}$): **Online/Stoch Grad Descent**
 - Optimal for Learning
 - local access (1st order), O(1) memory, optimizes \mathcal{F}_{lip}

Online Mirror Descent

- Grad Descent is inherently related to L₂ norm.
- To handle other geometries (other *W*, *X*), consider potential function (regularizer) *Ψ*:*W*→ℝ and the Bergman Divergence:

 $\mathsf{D}_{\varPsi}(\mathbf{w},\mathbf{v}) = \varPsi(\mathbf{w}) \cdot \varPsi(\mathbf{v}) \cdot \langle \nabla \varPsi(\mathbf{v}), \mathbf{w} \cdot \mathbf{v} \rangle$

 $\mathsf{D}_{\varPsi}(\mathbf{w},\mathbf{v}) \geq 1/q \; (||\mathbf{w}-\mathbf{v}||_{\mathcal{X}}^{*})^{\mathsf{q}}$

Dual of gauge of $\mathcal X$

• Online Mirror Descent:

 $w_{t+1} \gets \text{arg min}_{w \in \mathcal{W}} \eta_t \langle \nabla f_t(w_t), w \rangle + D_{\varPsi}(w, w_t)$

• Regret Guarantee:

$$\frac{1}{m}\sum_{t=1}^{m} f_t(\mathsf{w}_t) \leq \frac{1}{m}\sum_{t=1}^{m} f_t(\mathsf{w}^*) + 2\sqrt[q]{\frac{\sup_{\mathsf{w}\in\mathcal{W}} \Psi(\mathsf{w})}{m}}$$

as long as $\nabla f(w) \in \mathcal{X}$

[Nemirovski Yudin 78] [Beck Teboulle 03] [S Sridharan Tewari 11]

Optimality of Online Mirror Descent

• Theorem:

For any convex centrally symmetric \mathcal{X}, \mathcal{W} , if there exists an online learning rule for \mathcal{F}_{sup} (or \mathcal{F}_{lin} or \mathcal{F}_{lip}) with online regret $\epsilon(m) \leq V/m^{1/q}$

then there exists Ψ and step size η , s.t. the regret of online Mirror Descent on \mathcal{F}_{lip} (and so also \mathcal{F}_{sup} , \mathcal{F}_{lin}) is at most: $\epsilon_{MD}(m) \leq 6002 \log^2(m) V/m^{1/q}$

Optimization vs Learning

- Mirror Descent is (nearly) optimal whenever online learning is possible (i.e. ensuring small adversarial regret).
- For such problems, need only consider Online/Stochastic Mirror Descent, a local (1st order), O(1) memory, SA-type method.

Summary

Tight connections between learning and optimization:

- Learning IS Optimization
- Fat shattering as lower bound on deterministic optimization runtime
- Mirror Descent optimal for Online Learning