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• Stat Learning / Stoch Optimization:
min||w||2≤B L(w) = Ex,y~D[ℓ(�w,x�;y)]

based on m iid samples x,y~D

• Using SAA/ERM: ŵ = arg min L̂(w)

• Rate of 1st order (or any local) optimization:

• Using SA/SGD on L(w): wt+1 ← wt - ηt∇wℓ(�w,xt�;yt)

SVM: ℓ(h(x);y) = [1-y·h(x)]+

L(ŵ) ≤ inf�w�≤B L(w) + 2
�
B2R2/m

||x||2 ≤ R

L̂(wT) ≤ inf�w�≤B L̂(w) +
�
B2R2/T

L(w̄m) ≤ inf�w�≤B L(w) +
�
B2R2/m

L̂(w) = 1/m ∑t ℓ(h(xt);yt)

Learning/Optimization over L2 Ball

[Bottou Bousquet 08][S Shalev-Shwartz 08][Juditsky Lan Nemirovski Shapiro 09]



Learning/Optimization over L2 Ball

• (Deterministic) Optimization:

• Statistical Learning:

• Stoch. Aprx. / One-pass SGD:

• Online Learning (avg regret):
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Questions

• What about other (convex) learning 
problems (other geometries):

– Is Stochastic Approximation always optimal?

– Are the rates for learning (# of samples) and 
optimization (runtime / # of accesses) always 
the same?



Outline

• Deterministic Optimization vs Stat. Learning
– Main result: fat shattering as lower bound on optimization
– Conclusion: sample complexity ≤ opt runtime 

• Stochastic Approximation for Learning
– Online Learning
– Optimality of Online Mirror Descent

Very briefly



Optimization Complexity
minw∈W f(w)

• Optimization problem defined by:
– Optimization space W
– Function class F ⊆ { f:W → R }

• Runtime to get accuracy ǫ:
– Input: instance f ∈ F, ǫ>0
– Output: w ∈ W s.t.

f(w) ≤ infw∈W f(w)+ǫ

• Count number of local black-box accesses to f(·):
Of:w → f(w), ∇f(w), any other “local” information
(∀neighborhood N(w) f

1
=f

2
on N(w) ⇒ Of1(w)=Of2 (w))



Generalized Lipchitz Problems
minw∈W f(w)

• We will consider problems where:
– W is a convex subset of a vector space L (e.g. Rd or inf. dim.)

– X convex ⊂ L*
– F = Flip(X) = { f:W → R convex | ∀w ∇f(w) ∈ X }

• Examples:
– X = { |x|2 ≤ 1 } corresponds to standard notion of Lipchitz functions
– X = { |x| ≤ 1} corresponds to Lipchitz w.r.t. norm |x|

• Theorem (Main Result):
The ǫ-fat shattering dimension of lin(W,X) is a lower bound on 
the number of accesses required to optimize Flip to within ǫ



Fat Shattering

• Definition:

• x1,…,xm ∈ X are ǫ-fat shattered by W if there 
exists scalars t1,…,tn s.t. for every sign pattern 
y1,…,ym, there exists w∈W s.t. yi(�w,xi�-ti) > ǫ.

• The ǫ-fat shattering dimension of lin(W,X) is the 
largest number of points m that can be ǫ-fat 
shattered



Optimization, ERM and Learning
• Supervised learning with linear predictors:

L̂(w) = (1/m) ∑t=1..m loss( �w,xt� , yt ) 

ERM: ŵ = minw∈W L̂(w)

Gradient of (empirical) risk: ∇ L̂(w) ∈ conv(X)

• Learning guarantee:
If for some q ≥ 2, fat-dim(ǫ) ≤ (V/ǫ)q ⇒
L(ŵ) ≤ infw∈W L(w) + O( V log1.5(m) / m1/q )

• Conclusion:
For q ≥ ≥ ≥ ≥ 2, if there exists V s.t. the rate of optimization is at most

ǫ(m) ≤ V/T1/q,
then the statistical rate of the associated learning problem is at most:

ǫ(m) ≤ 36 V log1.5(m) / m1/q

1-Lipshitz xt ∈ X



Convex Learning
⇒ Linear Prediction

• Consider learning with a hypothesis class H = { h:X → R }

L̂(h) = (1/m) ∑t=1..m loss( h(xt), yt )

• With any meaningful loss, L̂(hw) will be convex in a 
parameterization w, only if hw(x) is linear in w, i.e.

hw(x) = �w,φ(x)�

• Rich variety of learning problems obtained with different 
(sometimes implicit) choices of linear hypothesis classes, 
feature mappings φ, and loss functions.



Linear Prediction
• Gradient space X is the learning data domain (i.e. the space learning 

inputs come from), or image of feature map φ
– φ specified via Kernel (as in SVMs, kernalized logistic or ridge regression)
– In boosting: coordinates of φ are “weak learners”
– φ can specify evaluations (as in collaborative filtering, total variation problems)

• Optimization space F is the hypothesis class, the set of allowed linear 
predictors.  Corresponds to choice of “regularization”

– L2 (SVMs, ridge regression)
– L1 (LASSO, Boosting)
– Elastic net, other interpolations
– Group norms
– Matrix norms: trace-norm, max-norm, etc (eg for collaborative filtering and 

multi-task learning)

• Loss function need only be (scalar) Lipchitz.
– hinge, logistic, etc
– structured loss, where yi non-binary (CRFs, translation, etc)
– exp-loss (Boosting), squared loss ⇒ NOT globally Lipchitz



Main Result

• Problems of the form:
minw∈W f(w)

– W convex ⊂ vector space B (e.g. Rn, or inf.-dimensional)
– X convex ⊂ B*

– f ∈ F = Flip(X) = { f:W→ R convex | ∀w ∇f(w) ∈ X }

• Theorem (Main Result):
The ǫ-fat shattering dimension of lin(W,X) is a lower bound on the 
number of accesses required to optimize f ∈ Flip to within ǫ

• Conclusion:
For q≥≥≥≥ 2, if for some V, the rate of ERM optimization is at most
ǫ(m) ≤ V/T1/q,
then the learning rate of the associated problem is at most:
ǫ(m) ≤ 36 V log1.5(m) / m1/q



Proof of Main Result
• Theorem:

The ǫ-fat shattering dimension of lin(W,X) is a lower bound on the 
number of accesses required to optimize Flip to within ǫ

• That is, for any optimization algorithm, there exists a function f∈Flip
s.t. after m=fat-dim(ǫ) local accesses, the algorithm is ≥ ǫ-
suboptimal.

• Proof overview:
View optimization as a game, where at each round t:
– Optimizer asks for local information at wt,
– Adversary responds, ensuring consistency with some f∈F.

We will play the adversary, ensuring consistency with some f∈F
where infwf(w)≤ǫ, but where f(wt)≥0.



Playing the Adversary

• x1,..,xm fat-shattered with thresholds s1,..,sm.
I.e., ∀ signs y1,..,ym ∃ w s.t. yi(�w,xi�-si) ≥ ǫ

• We will consider functions of the form:
fy(w) = maxi yi(si-�w,xi�)

• Convex, piecewise linear
• (Sub)-gradients are yixi ⇒ fy∈Flip(X)

• Fat shattering ⇒ ∀y infw fy(w) ≤ -ǫ



Playing the Adversary
fy(w) = maxi yi(si-�w,xi)

• Goal: ensure consistency with some fy s.t. fy(wt) ≥ 0
• How: Maintain model

ft(w) = maxi∈At yi(si-�w,xi)
based on At ⊆ {1..m}.

• Initialize A0 = {}
• At each round t=1..m, add to At:

it = argmaxi∉At-1 |si-�w,xi�|
and set corresponding yi s.t. yi(si-�w,xi�)≥0

• Return local information at wt based on ft

• Claim: ft agrees with final fy on wt, and so adversarial responses to 
algorithm are consistent with fy, but

fy(wt) = ft(wt) ≥ 0 ≥ infw fy(w)+ǫ



Optimization vs Learning

• Converse?
– Optimize with dǫ accesses? (intractable alg OK)
– Learning ⇒ Optimization?

With sample size m, exact grad calculation is O(m) time, 
and so even if #iter=#samples, runtime is O(m2).
• Stochastic Approximation?

(stochastic, local access, O(1) memory method)

(deterministic) 
Optimization

dǫ
Statistical 
Learning≥

runtime,
# func, grad accesses

# samples

=



Online Optimization / Learning
• Online optimization setup:

– As before, problem specified by W, F
– f1,f2,… presented sequentially by “adversary”
– “Learner” responds with w1,w2,…

– Formally, learning rule A:F*→W with wt=A(f1,…,ft-1)

• Goal: minimize regret versus best single response in hindsight.
– Rule A has regret ǫ(m) if for all sequences f1,…,fm:

1/m ∑t=1..m ft(wt) ≤ infw∈W 1/m ∑t=1..m ft(w) + ǫ(m)

• Examples:
– Spam Filtering
– Investment return:

w[i] = investment in holding i
ft(w) = -�w,zt�, where zt[i]= return on holding i

w1
….

f1

Learner:

Adversary: f2 f3

w2 w3

wt=A(f1,…,ft-1)



Online To Batch

• An online optimization algorithm with regret guarantee
1/m ∑t=1..m ft(wt) ≤ infw∈W 1/m ∑t=1..m ft(w) + ǫ(m)

can be converted to a learning (stochastic optimization) algorithm, 
by running it on a sample and outputting the average of the iterates:
[Cesa-Bianchi et al 04]:

E [L(w̅m)] ≤ infw∈W L(w) + ǫ(m)

(in fact, even with high probability rather then in expectation)

• An online optimization algorithm that uses only local info at wi can 
also be used as for deterministic optimization, by setting zi=z:

f(w̅m) ≤ infw∈W f(w) + ǫ(m)

w̄m=(w1+..+wm)/m



Online Gradient Descent
wt+1 ← ΠW( wt - ηt∇wf(wt,zt) )

• Regret guarantee:

where
– B = supw∈W ||w||2
– R = supw∈W,f∈F ||∇w f(w)||2

• Online To Stochastic Conversion ⇒ Stochastic Gradient Descent
• Online to Deterministic Conversion ⇒ Gradient Descent

Stochastic Gradient Descent
[Nemirovski Yudin 78]

Onlined Gradient Descent
[Zinkevich 03] [Cesa-Binachi et al 04]

online2stochastic

1
m

�m
t=1 ft(wt) ≤

1
m

�m
t=1 ft(w

∗) +

�
R2B2

m



Classes of Optimization/Learning Problems

• Problem specified by:
– Optimization space / Hypothesis class W
– Function class F = { f:W → R }

• For convex W ⊂ B and X ⊂ B*, we consider:

Flip = { f(w) | ∀w ∇f(w) ∈ X }

Fsup-abs = { f
x,y

(w)=|�w,x�-y| | x∈X, y∈R }

or Fsup-hinge = { f
x,y

(w)=[1-y�w,x�]+ | x∈X, y=±1 } 

Flin = { fx(w)=�w,x� | x∈X }

• For all the above, X specifies the possible subgradients ∇f(w)
Flin,Fsup ⊂ Flip



Optimization vs Learning

• For L2 geometry (X={||x||2≤R}, W={||x||2≤B}): 
Online/Stoch Grad Descent
– Optimal for Learning
– local access (1st order), O(1) memory, optimizes Flip

≥
Deterministic, Local-Access  

Optimization (of Flip)
runtime,

# func, grad accesses

Stat Learning 
(Stoch Opt of Fsup)

# samples, full access
≥

Online 
Optimization 
(of Flip) with 
Local Info



Online Mirror Descent
• Grad Descent is inherently related to L2 norm.
• To handle other geometries (other W, X), consider potential function 

(regularizer) Ψ:W→R and the Bergman Divergence:
DΨ(w,v) = Ψ(w)-Ψ(v)-�∇Ψ(v),w-v�

• We will need Ψ that is non-negative and q-uniformly convex w.r.t. ||·||X* 
on W, i.e. s.t. for all v,w∈W:

DΨ(w,v) ≥ 1/q (||w-v||X*)q

• Online Mirror Descent:
wt+1 ← arg minw∈W ηt�∇ft(wt),w� + DΨ(w,wt)

• Regret Guarantee:

as long as ∇f(w)∈X

1
m

�m
t=1 ft(wt) ≤

1
m

�m
t=1 ft(w

∗)+2
q

�
supw∈WΨ(w)

m

[Nemirovski Yudin 78] [Beck Teboulle 03] [S Sridharan Tewari 11]

Dual of 
gauge of X



Optimality of Online Mirror Descent

• Theorem:
For any convex centrally symmetric X, W, 
if there exists an online learning rule for 
Fsup (or Flin or Flip) with online regret
ǫ(m) ≤ V/m1/q

then there exists Ψ and step size η, s.t. the 
regret of online Mirror Descent on Flip (and 
so also Fsup, Flin) is at most:
ǫMD(m) ≤ 6002 log2(m) V/m1/q

[S Sridharan Tewari 11]



Optimization vs Learning

≥
Deterministic, Local-Access  

Optimization (of Flip)
runtime,

# func, grad accesses

Stat Learning 
(Stoch Opt of Fsup)

# samples
≥

Online 
Optimization 

(of Flip)

Mirror 
Descent

Online 
Learning (Fsup)

=
=

• Mirror Descent is (nearly) optimal whenever online learning is 
possible (i.e. ensuring small adversarial regret).

• For such problems, need only consider Online/Stochastic 
Mirror Descent, a local (1st order), O(1) memory, SA-type 
method.



Summary
Tight connections between learning and optimization:

• Learning IS Optimization

• Fat shattering as lower bound on 
deterministic optimization runtime

• Mirror Descent optimal for Online Learning


