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Outline / Advertisement

◮ Two alternative techniques to X-ray crystallography:

1. Single particle cryo-electron microscopy

2. Nuclear Magnetic Resonance (NMR) Spectroscopy

◮ Methods (a few examples of what is done now)

◮ Challenges

◮ Looking forward to your input

◮ Also looking for students and postdocs
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Single Particle Cryo-Electron Microscopy

Drawing of the imaging process:
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Single Particle Cryo-Electron Microscopy: Model

Projection Pi

Molecule φ

Electronsource

Ri =





| | |
R1
i R2

i R3
i

| | |



 ∈ SO(3)

◮ Projection images Pi (x , y) =
∫∞

−∞
φ(xR1

i + yR2
i + zR3

i ) dz + “noise”.

◮ φ : R3 7→ R is the electric potential of the molecule.
◮ Cryo-EM problem: Find φ and R1, . . . ,Rn given P1, . . . ,Pn.
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Toy Example
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E. coli 50S ribosomal subunit: sample images

Fred Sigworth, Yale Medical School
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Movie by Lanhui Wang and Zhizhen (Jane) Zhao
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Algorithmic Pipeline

◮ Particle Picking: manual, automatic or experimental image
segmentation.

◮ Class Averaging: classify images with similar viewing directions,
register and average to improve their signal-to-noise ratio (SNR).
S, Zhao, Shkolnisky, Hadani, SIIMS, 2011.

◮ Orientation Estimation:

S, Shkolnisky, SIIMS, 2011.

◮ Three-dimensional Reconstruction:

a 3D volume is generated by a tomographic inversion algorithm.

◮ Iterative Refinement

Assumptions for today’s talk:

◮ Trivial point-group symmetry

◮ Homogeneity
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What mathematics do we use to solve the problem?

◮ Tomography

◮ Convex optimization and semidefinite programming

◮ Random matrix theory (in several places)

◮ Representation theory of SO(3)
(if viewing directions are uniformly distributed)

◮ Spectral graph theory, (vector) diffusion maps

◮ Fast randomized algorithms

◮ ...
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Orientation Estimation: Fourier projection-slice theorem

Projection Pi

Projection Pj

P̂i

P̂j

3D Fourier space

3D Fourier space

(xij , yij)

(xji , yji )

Ricij cij = (xij , yij , 0)
T

Ricij = Rjcji
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Angular Reconstitution (Van Heel 1987, Vainshtein and Goncharov 1986)
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Experiments with simulated noisy projections
◮ Each projection is 129x129 pixels.

SNR =
Var(Signal)

Var(Noise)
,

(a) Clean (b) SNR=20 (c) SNR=2−1 (d) SNR=2−2 (e) SNR=2−3

(f) SNR=2−4 (g) SNR=2−5 (h) SNR=2−6 (i) SNR=2−7 (j) SNR=2−8
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Fraction of correctly identified common lines and the SNR

◮ Define common line as being correctly identified if both radial lines
deviate by no more than 10◦ from true directions.

◮ Fraction p of correctly identified common lines increases by PCA

log2(SNR) p
20 0.997
0 0.980
-1 0.956
-2 0.890
-3 0.764
-4 0.575
-5 0.345
-6 0.157
-7 0.064
-8 0.028
-9 0.019
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Least Squares Approach

◮ Consider the unit directional vectors as three-dimensional vectors:

cij = (xij , yij , 0)
T ,

cji = (xji , yji , 0)
T .

◮ Being the common-line of intersection, the mapping of cij by Ri must
coincide with the mapping of cji by Rj : (Ri ,Rj ∈ SO(3))

Ricij = Rjcji , for 1 ≤ i < j ≤ n.

◮ Least squares:

min
R1,R2,...,Rn∈SO(3)

∑

i 6=j

‖Ricij − Rjcji‖2

◮ Non-convex... Exponentially large search space...
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Quadratic Optimization Under Orthogonality Constraints
We approximate the solution to the least squares problem

min
R1,R2,...,Rn∈SO(3)

∑

i 6=j

‖Ricij − Rjcji‖2

using SDP and rounding. Related to:
◮ Goemans-Williamson SDP relaxation for MAX-CUT
◮ Generalized Orthogonal Procrustes Problem

(see, e.g., Nemirovski 2007)

“Robust” version – Least Unsquared Deviations:

min
R1,R2,...,Rn∈SO(3)

∑

i 6=j

‖Ricij − Rjcji‖

◮ Motivated by recent suggestions for “robust PCA”
◮ Also admits semidefinite relaxation
◮ Solved by alternating direction augmented Lagrangian method
◮ Less sensitive to misidentifications of common-lines (outliers)
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Spectral Relaxation for Uniformly Distributed Rotations

[ | |
R1
i R2

i

| |

]

=

[

x1i x2i
y1
i y2

i

z1i z2i

]

, i = 1, . . . , n.

◮ Define 3 vectors of length 2n

x =
[

x11 x21 x12 x22 · · · x1n x2n
]T

y =
[

y11 y21 y12 y22 · · · y1n y2n
]T

z =
[

z11 z21 z12 z22 · · · z1n z2n
]T

◮ Rewrite the least squares objective function as

max
R1,...,Rn∈SO(3)

∑

i 6=j

〈Ricij ,Rjcji 〉 = max
R1,...,Rn∈SO(3)

xTCx + yTCy + zTCz

◮ By symmetry, if rotations are uniformly distributed over SO(3), then
the top eigenvalue of C has multiplicity 3 and corresponding
eigenvectors are x , y , z from which we recover R1,R2, . . . ,Rn!
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Spectrum of C
◮ Numerical simulation with n = 1000 rotations sampled from the Haar

measure; no noise.
◮ Bar plot of positive (left) and negative (right) eigenvalues of C :
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◮ Eigenvalues: λl ≈ n (−1)l+1

l(l+1) , l = 1, 2, 3, . . .. (12 ,−1
6 ,

1
12 , . . .)

◮ Multiplicities: 2l + 1.
◮ Two basic questions:

1. Why this spectrum? Answer: Representation Theory of SO(3)
(Hadani, S, 2011)

2. Is it stable to noise? Answer: Yes, due to random matrix theory.
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Probabilistic Model and Wigner’s Semi-Circle Law
◮ Simplistic Model: every common line is detected correctly with

probability p, independently of all other common-lines, and with
probability 1− p the common lines are falsely detected and are
uniformly distributed over the unit circle.

◮ Let C clean be the matrix C when all common-lines are detected
correctly (p = 1).

◮ The expected value of the noisy matrix C is

E[C ] = pC clean,

as the contribution of the falsely detected common lines to the
expected value vanishes.

◮ Decompose C as
C = pC clean +W ,

where W is a 2n × 2n zero-mean random matrix.
◮ The eigenvalues of W are distributed according to Wigner’s

semi-circle law whose support, up to O(p) and finite sample
fluctuations, is [−

√
2n,

√
2n].
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Threshold probability

◮ Sufficient condition for top three eigenvalues to be pushed away from
the semi-circle and no other eigenvalue crossings:
(rank-1 and finite rank deformed Wigner matrices,
Füredi and Komlós 1981, Féral and Péché 2007, ...)

p∆(C clean) >
1

2
λ1(W )

◮ Spectral gap ∆(C clean) and spectral norm λ1(W ) are given by

∆(C clean) ≈ (
1

2
− 1

12
)n

and
λ1(W ) ≈

√
2n.

◮ Threshold probability

pc =
5
√
2

6
√
n
.
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Numerical Spectra of C , n = 1000
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MSE for n = 1000

SNR p λ1 λ2 λ3 λ4 MSE

2−1 0.951 523 491 475 89 0.0182

2−2 0.890 528 490 450 92 0.0224

2−3 0.761 533 482 397 101 0.0361

2−4 0.564 530 453 307 119 0.0737

2−5 0.342 499 381 193 134 0.2169

2−6 0.168 423 264 133 101 1.8011

2−7 0.072 309 155 105 80 2.5244

2−8 0.032 210 92 86 70 3.5196

◮ Model fails at low SNR. Why?
◮ Wigner model is too simplistic – cannot have n2 independent random

variables from just n images.
◮ Cij = K (Pi ,Pj), “kernel random matrix”, related to Koltchinskii and

Giné (2000), El-Karoui (2010)
◮ Kernel is discontinuous

Amit Singer (Princeton University) January 2013 21 / 25



Challenges / Work in Progress

◮ Currently not taking into account all available information:
e.g., “non-common lines” must be sufficiently far apart

◮ Convex relaxation of the log likelihood function using
SDP for Unique Games (in progress, with Moses Charikar)

◮ Translations

◮ Contrast transfer function of the microscope, different defocus groups

◮ Colored noise, signal dependent noise

◮ Beam induced motion

◮ Heterogeneity
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Challenges: What is the resolution?

Put another way, did we get the correct structure?

◮ No underlying ground truth for comparison, except in simulations
(even when a crystal structure is available, it is not necessarily
identical to the frozen-hydrated structure)

◮ Current practice: Fourier Shell Correlation (split data into two halves)
(not just a scientific issue – resolution is an NIH criterion for funding)

◮ Can we estimate bias and variance errors of reconstruction algorithms?

◮ Analyze refinement procedure (template/reference matching):
starting with the ground truth initial model (oracle),
or with low-pass filtered ground truth
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Thank You!
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