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High dimensional data

Cloud of point in Rp



High dimensional data

Cloud of point in Rp



High dimensional data

Cloud of n points in Rp



Principal component

Principal component = direction of largest variance



Principal component analysis (PCA)

•Tool for dimension reduction

•Spectrum of covariance matrix

•Main tool for exploratory data analysis.

We study only the first principal component

This talk: high-dimensional          , finite sample framework.p � n



Testing for sphericity 
under rank-one alternative

H0 : ⌃ = Ip

Isotropic Principal component

H1 : ⌃ = Ip + ✓vv>

|v|2 = 1



•Observations: i.i.d.

•Estimator: empirical covariance matrix

The model

If           it is a consistent estimator.  
If           it is inconsistent (Nadler, Paul, Onatski, ...)
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eigenvectors are orthogonal



Empirical spectrum under the null
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Empirical spectrum under the alternative

H1 : ⌃ = Ip + ✓vv> |v|2 = 1
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Testing for sparse principal component

H0 : ⌃ = Ip H1 : ⌃ = Ip + ✓vv>,

|v|2 = 1 , |v|0  k

Isotropic Sparse principal direction



Testing for sparse principal component

minimum detection level    ? ✓

Goal: find a statistic                   such that ' : S+
p 7! R

small under PH0('(⌃̂) < ⌧0) � 1� �

PH1('(⌃̂) > ⌧1) � 1� � large under 
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⌧0 ⌧1

H0 : ⌃ = Ip H1 : ⌃ = Ip + ✓vv>,

|v|2 = 1 , |v|0  k



small under PH0('(⌃̂) < ⌧0) � 1� �

PH1('(⌃̂) > ⌧1) � 1� � large under 
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Take the test:  (⌃̂) = 1{'(⌃̂) > ⌧}. It satisfies:

PH0( = 1) _ max
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|v|0k

PH1( = 0)  �



Sparse eigenvalue

 k-sparse eigenvalue:
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Upper bounds w.p. 

Under the null hypothesis: 

Under the alternative hypothesis: 
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Can detect as soon as            , which yields⌧0 < ⌧1
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Then there exists a constant             such that if

Minimax lower bound

Fix           (small). 
C⌫ > 0

Then

✓ < ¯✓ :=
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See also Arias-Castro, Bubeck and Lugosi (12)



To compute            , need to compute        eigenvalues  

Computational issues

�k
max

(⌃̂)

✓
p

k

◆

Can be used to find cliques in graphs: NP-complete pb.

Need an approximation...
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Semidefinite relaxation 101
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Z
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Semidefinite program program (SDP) introduced by 
d’Aspremont, El Gahoui, Jordan and Lanckriet (2004).

Testing procedure:  1{SDPk(⌃̂) > ⌧}

Defined even if solution of SDP has rank > 1

Z = xx

>

| |1  k



Performance of SDP

For the null: use dual (Bach et al.  2010)

SDPk(A) = min
U2S+

p

{�
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(A+ U) + k|U |1}

For any             this gives an upper bound on  
Enough to look only at minimum dual perturbation
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Upper bounds w.p. 

Under the null hypothesis: 

Under the alternative hypothesis: 
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Numerical results

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

0.98

1

1.02

1.04

1.06

1.08

 

 

θ

H
1
/H

0

SDPk

MDPk

λmax(·)

Ratio of 5% quantile under H
1

over 95% quantile under H
0

, versus signal
strength ✓. When this ratio is larger than one, both type I and type II errors are
below 5%.

A. d’Aspremont Soutenance HDR, ENS Cachan, Nov. 2012. 32/33



Summary
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Can we tighten the gap?



Numerical evidence
Fix type I error at 1%, plot type II error of MDPk

p={50, 100, 200, 500}, k=√p
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largest clique is of size              =7.8  asymp. almost surely

Random graphs

A random (Erdos-Renyi) graph on N vertices is obtained 
by drawing edges at random with probability 1/2

2 logN

N=50



Hidden clique

We can hide a clique (here of size 10) in this graph

Choose points arbitrarily and draw a clique



Hidden clique

embed in the original random graph



Hidden clique

Question: is there a hidden clique in this graph?



Hidden clique problem

It is believed that it is hard to find/test the presence of a 
clique in a random graph  (Alon, Arora, Feige, Hazan, 
Krauthgamer,... Cryptosystems are based on this fact!)

Conjecture: It is hard to find cliques of size between  

and2 logN
p
N

Alon, Krivelevich, Sudakov 98
Feige and Krauthgamer 00
Dekel et al. 10
Feige and Ron 10
Ames and Vavasis 11

Canonical example of average case complexity



Hidden clique problem
It seems related to our problem but not trivially (the 
randomness structure is very fragile)

Note that all our results extend to sub-Gaussian r.v.

Theorem. If we could prove that there exists 
such that under the null hypothesis it holds

for some               , then it can be used to test the 
presence of a clique of size 

SDPk(
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↵ 2 (1, 2)

C > 0

polylog(N)N
1

4�↵



Remarks

Unlike usual hardness results, this one is for one 
(actually two) method only (not for all methods).

In progress: we can remove this limitation using bi-
cliques (need to carefully deal with independence)



Conclusion

Optimal rates for sparse detection

Computationally efficient methods with suboptimal 
rate

 First(?) link between sparse detection and average 
case complexity

Opens the door to new statistical lower bounds: 
complexity theoretic lower bounds 

Evidence that heuristics cannot be optimal


