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High dimensional data
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Cloud of point in R



High dimensional data

Cloud of point in R



High dimensional data
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Cloud of n points in R”



Principal component

A

Principal component = direction of largest variance



Principal component analysis (PCA)

e (00l for dimension reduction

* Spectrum of covariance matrix

* Main tool for exploratory data analysis.\

We study only the first principal component

This talk: high-dimensional p > n, finite sample framework.



Testing for sphericity
under rank-one alternative

Hy : X =1, H =¥ sy

vl =1

.. Y N
NG 4 NG

lsotropic Principal component



The model

8@ ik atons .d. Xq,..., X, ~ N, (02

* tstimator: empirical covariance matrix

1
EZE;XiXZT

If n > p It is a consistent estimator:
It n ~ cpit i1s inconsistent (Nadler, Paul, Onatski, ...)

eigenvectors are orthogonal



Empirical spectrum under the null
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Empirical spectrum under the alternative

B g i —

The BBP (Balk, Ben Arous, Péché) transition — — @ > 0
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e

Indistinguishable detection possible it

from the null D
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very strong signall



Testing for sparse principal component

e — T H : X=1,+0w",
e oy =

N il
N ¢ \

lsotropic Sparse principal direction




Testing for sparse principal component

R
minimum detection level 6 ¢ M A
Goal: find a statistic ¢ : 87 +— R such that
PHO(SO(XA]) < ) = =0 > small under Hj
Py, (p(X)>7)>1-6 > large under H;

-




PHO(SO(EA]) <T9)>1-9 > small under Hj

PHl(SD(i) s 10 > large UneEEuE
/
1 — 5
, /////

Take the test: ¥(X) = 1{gp(f§) > T} It satisfies:

e (0= 11 max P (07— 090

|’U|2 i
|’U|0<k



Sparse eigenvalue

k-sparse eigenvalue:

p(X) = A () = |IT1aX1 'Y= |%1|a}l§ A 2o
2lo < k R

NEEiha: 2. (L) =1 and M:_ (I, + duoi=niea

Smaller fluctuations than the largest eigenvalue Amax(2)



Upper bounds w.p. 1 -

Under the null hypothesis:
M (8) <1+ 8\/k10g(9@p/k) + log(1/9)

n

—. 70

Under the alternative hypothesis:

PENSE St o 9)\/10g(1/5) -

n

Can detect as soon as 7y < 71, which yields

0> C \/kzlog(p/k>

f




Minimax lower bound

g () (small).
Then there exists a constant (), > Osuch that if

2
e \/mog(c,,p/k 1)
n V2

Then

& n n 1
1I¢f {PO W =1 |£I|12axl B O)} >

|’U|0<l€

See also Arias-Castro, Bubeck and Lugosi (12)



Computational issues

To compute ¥ (3), need to compute <p> eigenvalues

Imax k

Can be used to find cliques in graphs: NP-complete pb.

Need an approximation...



Semidefinite relaxation 101

SORk(A) = max Tr(zA& z) \
subject to Tr(zZz) = 1
J <Zya:\)0< k} oz L <k

7= aim il = 1l Z =10

Semidefinite program program (SDP) introduced by

d Aspremont, El Gahoul, Jordan and Lanckriet (2004).

Testing procedure: 1{SDP; (%) > 7}

Defined even If solution of SDP has rank > |



Performance of SDP

For the alternative: relaxation of A*__(3) so

SDP,(2) > M\ (%)

Imax

For the null: use dual (Bach et al. 2010)

SDPk(A) — mln {)\maX(A 0 U) a0 k‘U’OO}
UecS;

For any U € S this gives an upper bound on SDP (%)
Enough to look only at minimum dual perturbation

MDP(X) = min {)\max(stz(i)) 4 kz}

il



Upper bounds w.p. 1 -

xDP ¢ {SDP,MDP}

Under the null hypothesis:

i 2
B - 10\/k log(ep/d) _ o

n

Under the alternative hypothesis:.

«DP,(2) > 1460 — 2(1 + 9)\/10g(1/5) =

n

Can detect as soon as 7y < 71, which yields

- C\/k2 log(p/k)

n




— SDP,
1.08H 1\/[DPk3 7
=== Amax(‘)

1.06 T

1.04

H1/Ho

1.02

- | | | |

04 045 05 055 06 065 07 0.75

Ratio of 5% quantile under H; over 95% quantile under H, versus signal
strength 6. When this ratio is larger than one, both type | and type |l errors are
below 5%.

A. d’Aspremont Soutenance HDR, ENS Cachan, Nov. 2012. 32/33



Summary

Can we tighten the gap?
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Random graphs

A random (Erdos-Renyi) graph on N vertices is obtained
by drawing edges at random with probability |/2

largest clique is of size  2log N =7.8 asymp. almost surely



Hidden clique

B R ealilliiide @' clique (here of size [U) N tRISSSREBIT

Choose points arbitrarily and draw a cligue



Hidden clique

embed In the original random graph




Hidden clique

uestion: Is there a hidden clique In this gra

I



Hidden clique problem

[t Is believed that it 1s hard to find/test the presence of a
cligue in a random graph (Alon, Arora, Feige, Hazan,
Krauthgamer,... Cryptosystems are based on this fact!)

Conjecture: It 1s hard to find cliqgues of size between

2log N and \/NJ%J.OD, Krivelevich, Sudakov 983
-eige and Krauthgamer 00

Dekel et al. 10
Feloe AnciiROEES
_Ames and Vavasis | | -

Canonical example of average case complexity

\




Hidden clique problem

't seems related to our problem but not trivially (the
randomness structure is very fragile)

Note that all our results extend to sub=Gaussian r.v.

Theorem. |f we could prove that there exists C' > 0
such that under the null hypothesis it holds

SDIP, (00 = L C\/k log(ep/9)

n

for some a € (1,2),then 1t can be used to 1test the
presence of a clique of size polylog(N)N ==




Remarks

Unlike usual hardness results, this one Is for one
(actually two) method only (not for all methods).

In progress: we can remove this limrtation using bi-
cligues (need to carefully deal with iIndependence)



Conclusion

POptimal rates for sparse detection

2Computationally efficient methods with suboptimal
rate

2 First(?) link between sparse detection and average
case complexity

POpens the door to new statistical lower bounds:
complexity theoretic lower bounds

PEvidence that heuristics €annot be optimal



