OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS

Philippe Rigollet (joint with Quentin Berthet)

High dimensional data

Cloud of point in \mathbb{R}^{p}

High dimensional data

Cloud of point in \mathbb{R}^{p}

High dimensional data

Cloud of n points in \mathbb{R}^{p}

Principal component

Principal component $=$ direction of largest variance

Principal component analysis (PCA)

- Tool for dimension reduction
- Spectrum of covariance matrix
- Main tool for exploratory data analysis.

We study only the first principal component
This talk: high-dimensional $p \gg n$, finite sample framework.

Testing for sphericity under rank-one alternative

$$
H_{0}: \Sigma=I_{p}
$$

Isotropic

$$
H_{1}: \Sigma=I_{p}+\theta v v^{\top}
$$

$$
|v|_{2}=1
$$

Principal component

The model

- Observations: i.i.d. $X_{1}, \ldots, X_{n} \sim \mathcal{N}_{p}(0, \Sigma)$
- Estimator: empirical covariance matrix

$$
\hat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top}
$$

If $n \gg p$ it is a consistent estimator.
If $n \simeq c p$ it is inconsistent (Nadler, Paul, Onatski, ...)
eigenvectors are orthogonal

Empirical spectrum under the null

$$
H_{0}: \Sigma=I_{p}
$$

Marcenko-Pastur distribution

Spectrum of $\hat{\Sigma}$

Empirical spectrum under the alternative

$$
H_{1}: \Sigma=I_{p}+\theta v v^{\top} \quad|v|_{2}=1
$$

The BBP (Baik, Ben Arous, Péché) transition $\frac{p}{n} \rightarrow \alpha>0$

Indistinguishable from the null

detection possible if

$$
\theta>\sqrt{\frac{p}{n}}
$$

very strong signal!

Testing for sparse principal component

$$
H_{0}: \Sigma=I_{p}
$$

$$
H_{1}: \Sigma=I_{p}+\theta v v^{\top},
$$

$$
|v|_{2}=1,|v|_{0} \leq k
$$

Isotropic

Testing for sparse principal component

Goal: find a statistic $\varphi: \mathbf{S}_{p}^{+} \mapsto \mathbb{R}$ such that

$$
\begin{aligned}
& \mathbf{P}_{H_{0}}\left(\varphi(\hat{\Sigma})<\tau_{0}\right) \geq 1-\delta \longrightarrow \text { small under } H_{0} \\
& \mathbf{P}_{H_{1}}\left(\varphi(\hat{\Sigma})>\tau_{1}\right) \geq 1-\delta \longrightarrow \text { large under } H_{1}
\end{aligned}
$$

$\mathbf{P}_{H_{0}}\left(\varphi(\hat{\Sigma})<\tau_{0}\right) \geq 1-\delta \longrightarrow$ small under H_{0} $\mathbf{P}_{H_{1}}\left(\varphi(\hat{\Sigma})>\tau_{1}\right) \geq 1-\delta \longrightarrow$ large under H_{1}

Take the test: $\psi(\hat{\Sigma})=\mathbf{1}\{\varphi(\hat{\Sigma})>\tau\}$. It satisfies:

$$
\mathbf{P}_{H_{0}}(\psi=1) \vee \max _{\substack{|v|_{2}=1 \\|v|_{0} \leq k}} \mathbf{P}_{H_{1}}(\psi=0) \leq \delta
$$

Sparse eigenvalue

k-sparse eigenvalue:

$$
\varphi(\hat{\Sigma})=\lambda_{\max }^{k}(\hat{\Sigma})=\max _{\substack{|x|_{2}=1 \\|x|_{0} \leq k}} x^{\top} \hat{\Sigma} x=\max _{|S|=k} \lambda_{\max }\left(\hat{\Sigma}_{S}\right)
$$

Note that: $\lambda_{\max }^{k}\left(I_{p}\right)=1 \quad$ and $\quad \lambda_{\max }^{k}\left(I_{p}+\theta v v^{\top}\right)=1+\theta$

Smaller fluctuations than the largest eigenvalue $\lambda_{\max }(\hat{\Sigma})$

Upper bounds w.p. $1-\delta$

Under the null hypothesis:

$$
\lambda_{\max }^{k}(\hat{\Sigma}) \leq 1+8 \sqrt{\frac{k \log (9 e p / k)+\log (1 / \delta)}{n}}=: \tau_{0}
$$

Under the alternative hypothesis:

$$
\lambda_{\max }^{k}(\hat{\Sigma}) \geq 1+\theta-2(1+\theta) \sqrt{\frac{\log (1 / \delta)}{n}}=: \tau_{1}
$$

Can detect as soon as $\tau_{0}<\tau_{1}$, which yields

$$
\theta \geq C \sqrt{\frac{k \log (p / k)}{n}}
$$

Minimax lower bound

Fix $\nu>0$ (small).
Then there exists a constant $C_{\nu}>0$ such that if

$$
\theta<\bar{\theta}:=\sqrt{\frac{k \log \left(C_{\nu} p / k^{2}+1\right)}{n}} \wedge \frac{1}{\sqrt{2}}
$$

Then

$$
\inf _{\psi}\left\{\mathbf{P}_{0}^{n}(\psi=1) \vee \max _{\substack{\left.\left|v 2_{2}=1\\\right| v\right|_{0} \leq k}} \mathbf{P}_{v}^{n}(\psi=0)\right\} \geq \frac{1}{2}-\nu
$$

See also Arias-Castro, Bubeck and Lugosi (I2)

Computational issues

To compute $\lambda_{\max }^{k}(\hat{\Sigma})$, need to compute $\binom{p}{k}$ eigenvalues
Can be used to find cliques in graphs: NP-complete pb.

Need an approximation...

Semidefinite relaxation IOI

Cauchy-Schwarz

$$
\left.\begin{array}{r}
\text { subject to } \operatorname{Tr}(x \bar{Z} x)=1 \\
Z|x|_{0} \leq k
\end{array}\right\} \quad\left|x x^{\top}\right|_{1} \leq k
$$

$$
Z=x x^{\top} \quad \operatorname{rank}(Z)=1 \quad Z \succeq 0
$$

Semidefinite program program (SDP) introduced by d'Aspremont, El Gahoui, Jordan and Lanckriet (2004).

Testing procedure: $\mathbf{1}\left\{\operatorname{SDP}_{k}(\hat{\Sigma})>\tau\right\}$
Defined even if solution of SDP has rank > ।

Performance of SDP

For the alternative: relaxation of $\lambda_{\max }^{k}(\hat{\Sigma})$ so

$$
\operatorname{SDP}_{k}(\hat{\Sigma}) \geq \lambda_{\max }^{k}(\hat{\Sigma})
$$

For the null: use dual (Bach et al. 2010)

$$
\operatorname{SDP}_{k}(A)=\min _{U \in \mathbf{S}_{p}^{+}}\left\{\lambda_{\max }(A+U)+k|U|_{\infty}\right\}
$$

For any $U \in \mathbf{S}_{p}^{+}$this gives an upper bound on $\operatorname{SDP}_{k}(\hat{\Sigma})$ Enough to look only at minimum dual perturbation

$$
\operatorname{MDP}_{k}(\hat{\Sigma})=\min _{z \geq 0}\left\{\lambda_{\max }\left(\operatorname{st}_{z}(\hat{\Sigma})\right)+k z\right\}
$$

Upper bounds w.p. $1-\delta$

Under the null hypothesis:

$$
* \mathrm{DP}_{k}(\hat{\Sigma}) \leq 1+10 \sqrt{\frac{k^{2} \log (e p / \delta)}{n}}=: \tau_{0}
$$

Under the alternative hypothesis:

$$
* \mathrm{DP}_{k}(\hat{\Sigma}) \geq 1+\theta-2(1+\theta) \sqrt{\frac{\log (1 / \delta)}{n}}=: \tau_{1}
$$

Can detect as soon as $\tau_{0}<\tau_{1}$, which yields

$$
\theta \geq C \sqrt{\frac{k^{2} \log (p / k)}{n}}
$$

Ratio of 5% quantile under \mathcal{H}_{1} over 95% quantile under \mathcal{H}_{0}, versus signal strength θ. When this ratio is larger than one, both type I and type II errors are below 5\%.

Summary

Can we tighten the gap?

Numerical evidence

Fix type I error at I\%, plot type II error of MDP $p=\{50,100,200,500\}, k=\sqrt{p}$

$$
\frac{k}{n} \log \left(\frac{p}{k}\right)
$$

minimax optimal scaling

$\frac{k^{2}}{n} \log \left(\frac{p}{k}\right)$
proved scaling

Random graphs

A random (Erdos-Renyi) graph on N vertices is obtained by drawing edges at random with probability I/2

$$
N=50
$$

largest clique is of size $2 \log N=7.8$ asymp. almost surely

Hidden clique

We can hide a clique (here of size 10) in this graph

Choose points arbitrarily and draw a clique

Hidden clique

embed in the original random graph

Hidden clique

Question: is there a hidden clique in this graph?

Hidden clique problem

It is believed that it is hard to find/test the presence of a clique in a random graph (Alon, Arora, Feige, Hazan, Krauthgamer,... Cryptosystems are based on this fact!)

Conjecture: It is hard to find cliques of size between
$2 \log N \quad$ and \sqrt{N} Alon, Krivelevich, Sudakov 98 Feige and Krauthgamer 00 Dekel et al. 10 Feige and Ron 10 Ames and Vavasis II
Canonical example of average case complexity

Hidden clique problem

It seems related to our problem but not trivially (the randomness structure is very fragile)

Note that all our results extend to sub-Gaussian r.v.
Theorem. If we could prove that there exists $C>0$ such that under the null hypothesis it holds

$$
\operatorname{SDP}_{k}(\hat{\Sigma}) \leq 1+C \sqrt{\frac{k^{\alpha} \log (e p / \delta)}{n}}
$$

for some $\alpha \in(1,2)$, then it can be used to test the presence of a clique of size polylog $(N) N^{\frac{1}{4-\alpha}}$

Remarks

Unlike usual hardness results, this one is for one (actually two) method only (not for all methods).

In progress: we can remove this limitation using bicliques (need to carefully deal with independence)

Conclusion

Optimal rates for sparse detection

Computationally efficient methods with suboptimal rate

- First(?) link between sparse detection and average case complexity

Opens the door to new statistical lower bounds: complexity theoretic lower bounds

Evidence that heuristics cannot be optimal

