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Random sampling
Goal: generate points, uniformly distributed in a set Q ⊂ Rn.
Applications: integration over Q, volume and center of gravity
calculation, optimization (convex and nonconvex), control
(e.g. generate stabilizing controllers), robustness (generate
uncertainties) and many others.
Approaches: explicit algorithms for simple sets (boxes, balls,
simplices etc.); rejection method (take simple S ⊃ Q, generate
points x i in S and reject x i which are not in Q). However
these methods do not work for most Q. General technique —
random walks (Markov Chain Monte Carlo). Among them
Hit-and-Run techniques is the most popular.
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Hit-and-Run
Random walk in Q. [Turchin(1971), Smith(1984)]
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1 Choose initial point x0 ∈ Q.

2 d = s/||s||, s = randn(n, 1) — random direction on the
unit sphere

3 Boundary oracle: L = {t ∈ R : x0 + td ∈ Q}
4 Next point x1 = x0 + t1d , t1 is uniform random in L.

5 x0 is replaced with x1, go to Step 2.
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Advantages

1 Distribution of x i tends to uniform on Q.

2 Method is simple and works for nonconvex and
nonconnected sets.

3 Boundary oracle is available for many descriptions of sets
(linear inequalities, LMIs).

B.Polyak Billiards



Drawbacks
HR jams in corners.

HR jams for narrow bodies.
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(Lovasz, Vempala. Hit-and-Run from a corner, 2007): Estimate
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How to improve convergence?
Simple tools: transformations of the set, other distributions of
directions d . However this medicine is not universal. We try to
exploit another idea to improve HR.
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Physical motivation
Our algorithm is motivated by physical phenomena of a gas
diffusing in a vessel. A particle of gas moves with constant
speed until it meets a boundary of the vessel, then it reflects
(the angle of incidence equals the angle of reflection) and so
on. When the particle hits another one, its direction and speed
changes. In our simplified model we assume that direction
changes randomly while speed remains the same. Thus our
model combines ideas of Hit-and-Run technique with the use
of billiard trajectories.
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Billiards
There exist vast literature on mathematical theory of billiards:

S. Tabachnikov, Geometry and Billiards, RI: Amer. Math.
Soc., 1995.

G. Galperin, A. Zemlyakov, Mathematical Billiards,
Nauka, Moscow (in Russian), 1990.

Y. G. Sinai, Dynamical systems with elastic reflections,
Russian Mathematical Surveys 25 (2) (1970) 137–189.

Y. G. Sinai, Billiard trajectories in a polyhedral angle,
Russian Mathematical Surveys 33 (1) (1978) 219–220.

However billiard trajectories are deterministic. We introduce
randomness in them.
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New method - Billiard Walk
1 Choose starting point x0 ∈ Int Q; i = 0, x = x0.

2 Generate the length of the trajectory ℓ = −τ logξ, ξ is
uniform random in [0, 1], τ is a specified parameter.

3 Choose random direction d ∈ R
n uniform on the unit

sphere.

4 Construct billiard trajectory of length ℓ with initial
direction d . If it reaches a nonsmooth boundary point or
the number of reflections is greater than 10n, go to Step
3.

5 i = i + 1, the end point of the trajectory take as x i and
go to Step 2.
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New method - Billiard Walk
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Asymptotical uniformity
Theorem

Suppose Q is connected, bounded and open (or a closure of
such set) set, the boundary of Q is piecewise smooth. Then
the distribution of points x i sampled by BW algorithm tends
to uniform on Q.

Hint of the proof.

The algorithm is well defined.

p(y |x) > 0 for all x , y ∈ IntQ.

p(y |x) = p(x |y)

�
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Implementation issues
1 Choice of τ . There is trade-off between τ small and large.

τ ≈ diamQ

2 Preliminary transformation. If Q has a barrier function
F (x) with x∗ ≈ argminF , then take

(

∇2F (x∗)
)

−1/2

d .

3 Boundary oracle and normals. In most cases they are
easily available, see examples below.
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Boundary oracle and normals
For Q convex, boundary oracle is the segment [−t , t̂],

t = max{t : xk − td ∈ Q}, t̂ = max{t : xk + td ∈ Q}
If Q is a polytope

Q = {x ∈ Rn : (ai , x) ≤ bi , i = 1, . . . , m}
then

t = max
i :(ai ,d)<0

(ai , x
k) − bi

(ai , d)

t̂ = max
i :(ai ,d)>0

−(ai , x
k) + bi

(ai , d)

while the normal to the boundary at the point xk + t̂d equals
ai , where i is the index, for which maximum in above formulas
is achieved.
Calculations for Q given by LMIs are also simple.
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Comparison with HR
Each iteration of HR is less expensive than BW. However
number of iterations for BW is significantly smaller, as
demonstrated in examples below.
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Behavior in the corner
Angle α at a plane.

Billiard trajectory: quits with probability 1 after no more
than N∗ = ⌈π/α⌉ reflections.
HR: quits with probability 1 − (1 − α/π)k after k
iterations
(for large N∗ HR quits with probability 1 − 1/e = 0.63
after N∗ iterations).
Multidimentional case - polyhedral Q.

[Sinai (1967)] there exists M independent on initial point
such that billiard trajectory quits Q after no more than M
reflections.
Orthant Q = {x ∈ Rn : x ≥ 0}.
Billiard trajectory: quits with probability 1 after no more
than n reflections.
HR: quits with probability 1 − (1 − 2−n)n after
approximately 2n−1 iterations (for large n with probability
1 − 1/e = 0.63).
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Concave corner Q = {x ∈ R2 : ||x ||∞ ≤ 1, ||x − ai || ≥ 1

Concave corners can be attractions for billiard trajectories.
ai are vertices of {||x ||∞ ≤ 1}. N = 200
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Curvilinear triangle
Curvature tends to 0 — more dangerous case.

Q = {x ∈ R
2 : x1 < 1,−x4

1
< x2 < x4

1
}

The number of reflections increases dramatically as the first
coordinate of x0 tends to zero and even for x0

1
= 10−4 the

trajectory becomes unreliazable.

x0

2
= 0.9, ℓ = 1 d = [−1; 0]

x0

1
Number of reflections

1e-3 746
5e-4 1851
4e-4 2480
3e-4 3617
2e-4 6158

1.1e-4 13496
1.01e-4 >5e+6
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Curvilinear triangle
Q = {x ∈ R

2 : x1 < 1,−x4

1
< x2 < x4

1
}, N = 500
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Cube Q = {x ∈ R
n

: 0 ≤ xi ≤ 1}

The next point of the BW algorithm is derived explicitly!

Current point x, direction d , length of the trajectory ℓ.

Calculate ki = ⌊xi + ℓdi⌋ and go to y :

yi =

{

xi + ℓdi − ki , ki is even
1 − (xi + ℓdi − ki), ki is odd

, i = 1, . . . , n.
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Serial correlation: BW vs HR
we compare E||xk − x0||∞ for n = 50 averaged over 500 runs
for two initial points x0 = [1/2, . . . , 1/2]T (left) and
x0 = [1/n, . . . , 1/n]T (right). Implementing BW (blue) we
take τ =

√
n, HR (black).
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Simplex Sn = {xi ≥ 0,
∑

xi = 1, i = 0, 1, . . . , n}
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Simplex: uniformity estimation

Sα = {x ∈ R
n+1 : xi ≥ α,

∑

xi = 1}, 0 ≤ α ≤ 1

n + 1

f (α) =
volSα

volS0

= (1 − (n + 1)α)n.

B.Polyak Billiards



n = 50, 100 and 1000 samples
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Red - uniform random, black - HR, blue - BW.
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Simplex: x
0

=

[

0.9, 0.1
n

, . . . , 0.1
n

]T

n = 50, N = 200
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Toroid Q = {x ∈ R
n

: ||x − cx || ≤ 1

3
}

cx i = xi√
x2
1+x2

2

, i = 1, 2, cx i = 0, i > 2 is a projection to the

circumference x2

1
+ x2

2
= 1, x3 = · · · = xn = 0. n = 10,

N = 103.
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Applications — optimization
1 Convex optimization.

2 Concave optimization.

3 Global optimization
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Convex optimization
Approximation of center of gravity method
Cutting plane methods for SDP
However it is hard to compete with modern deterministic
methods for convex optimization.
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Concave optimization

min f (x), x ∈ Q

f (x) concave, Q is a polytope. Random x0 ∈ Q and
conditional gradient method starting at x0. That is we solve
several LP at each iteration. Branch and Bound ideas can be
exploited.
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Global optimization
Multi-start methods with random initial points. For
unconstrained minimization we can generate random points in
level sets. First simulations look promising.
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Conclusions
Billiard walk algorithm seems to be more effective if compared
with Hit-and-Run. However future work is needed.
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