Robust Sparse

Analysis Recovery

Gabriel Peyré

www.numerical-tours.com

Joint work with: Samuel Vaiter Charles Dossal Jalal Fadili

- Synthesis vs. Analysis Regularization
- Risk Estimation
- Local Behavior of Sparse Regularization
- Robustness to Noise
- Numerical Illustrations

Inverse Problems

Recovering $x_0 \in \mathbb{R}^N$ from noisy observations $y = \Phi x_0 + w \in \mathbb{R}^P$

 $\Phi: \mathbb{R}^N \mapsto \mathbb{R}^P \text{ with } P \ll N \text{ (missing information)}$

Inverse Problems

Recovering $x_0 \in \mathbb{R}^N$ from noisy observations $y = \Phi x_0 + w \in \mathbb{R}^P$

 $\Phi: \mathbb{R}^N \mapsto \mathbb{R}^P$ with $P \ll N$ (missing information)

 $Examples: \ Inpainting, \ super-resolution, \ compressed-sensing$

Inverse Problems

Recovering $x_0 \in \mathbb{R}^N$ from noisy observations $y = \Phi x_0 + w \in \mathbb{R}^P$

 $\Phi: \mathbb{R}^N \mapsto \mathbb{R}^P \text{ with } P \ll N \text{ (missing information)}$

 $Examples: \ Inpainting, \ super-resolution, \ compressed-sensing$

Synthesis regularization

 Ψ

Coefficients α

Image $x = \Psi \alpha$

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^{Q}} \frac{1}{2} \|y - \Phi\Psi\boldsymbol{\alpha}\|_{2}^{2} + \lambda\|\boldsymbol{\alpha}\|_{1}$$

Synthesis regularization

 Ψ

Coefficients α

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{Q}} \frac{1}{2} \| y - \Phi \Psi \boldsymbol{\alpha} \|_{2}^{2} + \lambda \| \boldsymbol{\alpha} \|_{1}$$

Analysis regularization

Image x

 $\min_{\boldsymbol{x} \in \mathbb{R}^N} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x} \|_2^2 + \lambda \| \boldsymbol{D}^* \boldsymbol{x} \|_1$

Synthesis regularization

 Ψ

Coefficients α

 Ψ

 $\min_{\boldsymbol{\alpha} \in \mathbb{R}^{Q}} \frac{1}{2} \| y - \Phi \Psi \boldsymbol{\alpha} \|_{2}^{2} + \lambda \| \boldsymbol{\alpha} \|_{1}$

Analysis regularization

Image x

Correlations $\min_{x \in \mathbb{R}^N} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1$

Synthesis regularization

Coefficients α

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{Q}} \frac{1}{2} \| y - \Phi \Psi \boldsymbol{\alpha} \|_{2}^{2} + \lambda \| \boldsymbol{\alpha} \|_{1}$$

 $\Psi = \begin{bmatrix} x \\ x \end{bmatrix}$

Analysis regularization

Image x

 $\min_{x \in \mathbb{R}^N} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1$

Unless $D = \Psi$ is orthogonal, produces different results.

Observations: $y = \Phi x_0 + w$

Recovery:

$$\stackrel{g.}{\stackrel{\leftarrow}{\rightarrow}} \quad x_{\lambda}(y) \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \frac{1}{2} \| \Phi x - y \|^{2} + \lambda \| D^{*} x \|_{1} \quad (\mathcal{P}_{\lambda}(y))$$

$$\stackrel{\uparrow}{\stackrel{\leftarrow}{\rightarrow}} \quad x_{0^{+}}(y) \in \underset{\Phi x = y}{\operatorname{argmin}} \| D^{*} x \|_{1} \quad (\text{no noise}) \quad (\mathcal{P}_{0}(y))$$

١đ

Observations: $y = \Phi x_0 + w$

Recovery:

$$\begin{array}{c} & \underset{x \in \mathbb{R}^{N}}{\stackrel{+}{\longrightarrow}} \int x_{\lambda}(y) \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \quad (\mathcal{P}_{\lambda}(y)) \\ & \underset{\Phi x = y}{\stackrel{+}{\longrightarrow}} \int x_{0^{+}}(y) \in \underset{\Phi x = y}{\operatorname{argmin}} \|D^{*}x\|_{1} \quad (\text{no noise}) \quad (\mathcal{P}_{0}(y)) \\ & \end{array}$$
Questions:

- Behavior of $x_{\lambda}(y)$ with respect to y and λ .

 $\longrightarrow Application:$ risk estimation (SURE, GCV, etc.)

ЪŔ

Observations: $y = \Phi x_0 + w$

Recovery:

$$\begin{array}{c} + & \sum_{x \in \mathbb{R}^N} x_{\lambda}(y) \in \operatorname*{argmin}_{x \in \mathbb{R}^N} \frac{1}{2} \|\Phi x - y\|^2 + \lambda \|D^* x\|_1 \quad (\mathcal{P}_{\lambda}(y)) \\ \downarrow & \downarrow \\ \times & \downarrow \\ x_{0^+}(y) \in \operatorname*{argmin}_{\Phi x = y} \|D^* x\|_1 \quad (\text{no noise}) \quad (\mathcal{P}_0(y)) \\ \end{array}$$
Questions:

- Behavior of $x_{\lambda}(y)$ with respect to y and λ .

 $\longrightarrow Application:$ risk estimation (SURE, GCV, etc.)

- Criteria to ensure $||x_{\lambda}(y) - x_{0}|| \leq C||w||$ (with "reasonable" C)

ιđ

Observations: $y = \Phi x_0 + w$

Recovery:

- Behavior of $x_{\lambda}(y)$ with respect to y and λ .

 $\longrightarrow Application:$ risk estimation (SURE, GCV, etc.)

- Criteria to ensure $||x_{\lambda}(y) - x_{0}|| \leq C||w||$ (with "reasonable" C)

Synthesis case (D = Id): works of Fuchs and Tropp. Analysis case: [Nam et al. 2011] for w = 0.

<u>i di</u>

- Synthesis vs. Analysis Regularization
- Risk Estimation
- Local Behavior of Sparse Regularization
- Robustness to Noise
- Numerical Illustrations

 Risk Minimization

 Average risk: $R(\lambda) = \mathbb{E}_w(||x_\lambda(y) - x_0||^2)$
 $\lambda^*(y) = \underset{\lambda}{\operatorname{argmin}} R(\lambda)$

 Plugin-estimator: $x_{\lambda^*(y)}(y)$

Risk MinimizationAverage risk: $R(\lambda) = \mathbb{E}_w(||x_\lambda(y) - x_0||^2)$ $\lambda^*(y) = \operatorname*{argmin}_{\lambda} R(\lambda)$ Plugin-estimator: $x_{\lambda^*(y)}(y)$

But: \mathbb{E}_w is not accessible \rightarrow use one observation.

Risk MinimizationAverage risk: $R(\lambda) = \mathbb{E}_w(||x_\lambda(y) - x_0||^2)$ $\lambda^*(y) = \operatorname*{argmin}_{\lambda} R(\lambda)$ Plugin-estimator: $x_{\lambda^*(y)}(y)$

But: $\begin{bmatrix} \mathbb{E}_w & \text{is not accessible} \to \text{use one observation.} \\ x_0 & \text{is not accessible} \to \text{needs risk estimators.} \end{bmatrix}$

Prediction: $\mu_{\lambda}(y) = \Phi x_{\lambda}(y)$

Sensitivity analysis: if μ_{λ} is weakly differentiable $\mu_{\lambda}(y+\delta) = \mu_{\lambda}(y) + \partial \mu_{\lambda}(y) \cdot \delta + O(\|\delta\|^2)$

Prediction: $\mu_{\lambda}(y) = \Phi x_{\lambda}(y)$

Sensitivity analysis: if μ_{λ} is weakly differentiable $\mu_{\lambda}(y+\delta) = \mu_{\lambda}(y) + \partial \mu_{\lambda}(y) \cdot \delta + O(\|\delta\|^2)$

Stein Unbiased Risk Estimator:

SURE_{$$\lambda$$}(y) = $||y - \mu_{\lambda}(y)||^2 - \sigma^2 P + 2\sigma^2 df_{\lambda}(y)$
df _{λ} (y) = tr($\partial \mu_{\lambda}(y)$) = div(μ_{λ})(y)

Prediction: $\mu_{\lambda}(y) = \Phi x_{\lambda}(y)$

Sensitivity analysis: if μ_{λ} is weakly differentiable $\mu_{\lambda}(y+\delta) = \mu_{\lambda}(y) + \partial \mu_{\lambda}(y) \cdot \delta + O(\|\delta\|^2)$

Stein Unbiased Risk Estimator:

SURE_{$$\lambda$$}(y) = $||y - \mu_{\lambda}(y)||^2 - \sigma^2 P + 2\sigma^2 df_{\lambda}(y)$
df _{λ} (y) = tr($\partial \mu_{\lambda}(y)$) = div(μ_{λ})(y)

Theorem: [Stein, 1981] $\mathbb{E}_w(\mathrm{SURE}_\lambda(y)) = \mathbb{E}_w(\|\Phi x_0 - \mu_\lambda(y)\|^2)$

Prediction: $\mu_{\lambda}(y) = \Phi x_{\lambda}(y)$

Sensitivity analysis: if μ_{λ} is weakly differentiable $\mu_{\lambda}(y+\delta) = \mu_{\lambda}(y) + \partial \mu_{\lambda}(y) \cdot \delta + O(\|\delta\|^2)$

Stein Unbiased Risk Estimator:

SURE_{$$\lambda$$}(y) = $||y - \mu_{\lambda}(y)||^2 - \sigma^2 P + 2\sigma^2 df_{\lambda}(y)$
df _{λ} (y) = tr($\partial \mu_{\lambda}(y)$) = div(μ_{λ})(y)

Theorem: [Stein, 1981] $\mathbb{E}_w(\mathrm{SURE}_\lambda(y)) = \mathbb{E}_w(\|\Phi x_0 - \mu_\lambda(y)\|^2)$

Other estimators: GCV, BIC, AIC, ...

SURE: \sim Requires σ (not always available) Unbiased and good practical performances

Problem: $\|\Phi x_0 - \Phi x_\lambda(y)\|$ poor indicator of $\|x_0 - x_\lambda(y)\|$.

Generalized SURE: take into account risk on $\ker(\Phi)^{\perp}$

Problem: $\|\Phi x_0 - \Phi x_\lambda(y)\|$ poor indicator of $\|x_0 - x_\lambda(y)\|$. Generalized SURE: take into account risk on $\ker(\Phi)^{\perp}$ GSURE_{λ} $(y) = \|\hat{x}(y) - \Phi x_\lambda(y)\|^2 - \sigma^2 \operatorname{tr}((\Phi \Phi^*)^+) + 2\sigma^2 \operatorname{gdf}_{\lambda}(y)$ Generalized df: $\operatorname{gdf}_{\lambda}(y) = \operatorname{tr}((\Phi \Phi^*)^+ \partial \mu_\lambda(y))$ Proj_{$\ker(\Phi)^{\perp}$} = $\Pi = \Phi^*(\Phi \Phi^*)^+ \Phi$ ML estimator: $\hat{x}(y) = \Phi^*(\Phi \Phi^*)^+ y$.

Problem: $\|\Phi x_0 - \Phi x_\lambda(y)\|$ poor indicator of $\|x_0 - x_\lambda(y)\|$. Generalized SURE: take into account risk on $\ker(\Phi)^{\perp}$ GSURE_{λ} $(y) = \|\hat{x}(y) - \Phi x_\lambda(y)\|^2 - \sigma^2 \operatorname{tr}((\Phi\Phi^*)^+) + 2\sigma^2 \operatorname{gdf}_{\lambda}(y)$ Generalized df: $\operatorname{gdf}_{\lambda}(y) = \operatorname{tr}((\Phi\Phi^*)^+ \partial \mu_\lambda(y))$ Proj_{ker(Φ)^{\perp}} = $\Pi = \Phi^*(\Phi\Phi^*)^+ \Phi$ ML estimator: $\hat{x}(y) = \Phi^*(\Phi\Phi^*)^+ y$.

Theorem: [Eldar 09, Pesquet al. 09, Vonesh et al. 08] $\mathbb{E}_w(\text{GSURE}_\lambda(y)) = \mathbb{E}_w(\|\Pi(x_0 - x_\lambda(y))\|^2)$

Problem: $\|\Phi x_0 - \Phi x_\lambda(y)\|$ poor indicator of $\|x_0 - x_\lambda(y)\|$. Generalized SURE: take into account risk on $\ker(\Phi)^{\perp}$ GSURE_{λ} $(y) = \|\hat{x}(y) - \Phi x_\lambda(y)\|^2 - \sigma^2 \operatorname{tr}((\Phi\Phi^*)^+) + 2\sigma^2 \operatorname{gdf}_{\lambda}(y)$ Generalized df: $\operatorname{gdf}_{\lambda}(y) = \operatorname{tr}((\Phi\Phi^*)^+ \partial \mu_\lambda(y))$ Proj_{ker(Φ)^{\perp}} = $\Pi = \Phi^*(\Phi\Phi^*)^+ \Phi$ ML estimator: $\hat{x}(y) = \Phi^*(\Phi\Phi^*)^+ y$.

Theorem: [Eldar 09, Pesquet al. 09, Vonesh et al. 08] $\mathbb{E}_w(\text{GSURE}_\lambda(y)) = \mathbb{E}_w(\|\Pi(x_0 - x_\lambda(y))\|^2)$

 \longrightarrow How to compute $\partial \mu_{\lambda}(y)$?

<u>i di</u>

- Synthesis vs. Analysis Regularization
- Risk Estimation
- Local Behavior of Sparse Regularization
- Robustness to Noise
- Numerical Illustrations

Observations: $y = \Phi x_0 + w$

Recovery:

$$x_{\lambda}(y) \in \operatorname*{argmin}_{x \in \mathbb{R}^{N}} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \qquad (\mathcal{P}_{\lambda}(y))$$

Observations: $y = \Phi x_0 + w$

Recovery:

$$x_{\lambda}(y) \in \operatorname*{argmin}_{x \in \mathbb{R}^{N}} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \qquad (\mathcal{P}_{\lambda}(y))$$

Remark: $x_{\lambda}(y)$ not always unique **but** $\mu_{\lambda}(y) = \Phi x_{\lambda}(y)$ always unique.

Observations: $y = \Phi x_0 + w$

Recovery:

$$x_{\lambda}(y) \in \operatorname*{argmin}_{x \in \mathbb{R}^{N}} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \qquad (\mathcal{P}_{\lambda}(y))$$

Remark: $x_{\lambda}(y)$ not always unique **but** $\mu_{\lambda}(y) = \Phi x_{\lambda}(y)$ always unique.

Questions:

- When is $y \to \mu_{\lambda}(y)$ differentiable ?
- Formula for $\partial \mu_{\lambda}(y)$.

TV-1D Polytope TV-1D ball: $\mathcal{B} = \{x \setminus \|D^*x\|_1 \le 1\}$ Displayed in $\{x \setminus \langle x, 1 \rangle = 0\} \sim \mathbb{R}^3$ $D^* = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{pmatrix}$ $y = \Phi x$

Copyright © Mael

Union of Subspaces Model

$$x_{\lambda}(y) \in \operatorname*{argmin}_{x \in \mathbb{R}^{N}} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \qquad (\mathcal{P}_{\lambda}(y))$$

Support of the solution:

$$I = \{i \setminus (D^* x_\lambda(y))_i \neq 0\}$$
$$J = I^c$$

Union of Subspaces Model

$$x_{\lambda}(y) \in \operatorname*{argmin}_{x \in \mathbb{R}^{N}} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \qquad (\mathcal{P}_{\lambda}(y))$$

Support of the solution: $I = \{i \setminus (D^* x_\lambda(y))_i \neq 0\}$ $J = I^c$

1-D total variation: $D^*x = (x_i - x_{i-1})_i$

Union of Subspaces Model

$$x_{\lambda}(y) \in \operatorname*{argmin}_{x \in \mathbb{R}^N} \frac{1}{2} \|\Phi x - y\|^2 + \lambda \|D^* x\|_1 \qquad (\mathcal{P}_{\lambda}(y))$$

Support of the solution: $I = \{i \setminus (D^* x_\lambda(y))_i \neq 0\}$ $J = I^c$

1-D total variation: $D^*x = (x_i - x_{i-1})_i$

Sub-space model: $\mathcal{G}_J = \ker(D_J^*) = \operatorname{Im}(D_J)^{\perp}$
Union of Subspaces Model

$$x_{\lambda}(y) \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \ \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \qquad (\mathcal{P}_{\lambda}(y))$$

Support of the solution:

$$I = \{i \setminus (D^* x_\lambda(y))_i \neq 0\}$$

$$J = I^c$$

1-D total variation: $D^*x = (x_i - x_{i-1})_i$

Sub-space model:
$$\mathcal{G}_J = \ker(D_J^*) = \operatorname{Im}(D_J)^{\perp}$$

Local well-posedness: $\ker(\Phi) \cap \mathcal{G}_J = \{0\} \quad (H_J)$

Lemma: There exists a solution x^* such that (H_J) holds.

$$x_{\lambda}(y) \in \operatorname{argmin}_{x} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \qquad (\mathcal{P}_{\lambda}(y))$$

Lemma: sign $(D^*x_{\lambda}(y))$ is constant around $(y, \lambda) \notin \mathcal{H}$.

To be understood: there exists a solution with same sign.

$$x_{\lambda}(y) \in \operatorname{argmin}_{x} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \qquad (\mathcal{P}_{\lambda}(y))$$

Lemma: sign $(D^*x_{\lambda}(y))$ is constant around $(y,\lambda) \notin \mathcal{H}$.

To be understood: there exists a solution with same sign.

Linearized problem: $\hat{x}_{\bar{\lambda}}(\bar{y}) = \underset{x \in \mathcal{G}_J}{\operatorname{argmin}} \frac{1}{2} \|\Phi x - \bar{y}\|^2 + \bar{\lambda} \langle D_I^* x, s_I \rangle$

$$x_{\lambda}(y) \in \operatorname{argmin}_{x} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \qquad (\mathcal{P}_{\lambda}(y))$$

Lemma: sign $(D^*x_{\lambda}(y))$ is constant around $(y, \lambda) \notin \mathcal{H}$.

To be understood: there exists a solution with same sign.

$$\begin{aligned} \hat{x}_{\bar{\lambda}}(\bar{y}) &= \operatorname{argmin}_{x \in \mathcal{G}_J} \frac{1}{2} \|\Phi x - \bar{y}\|^2 + \bar{\lambda} \langle D_I^* x, \boldsymbol{s}_I \rangle \\ &= A^{[J]} \left(\Phi^* \bar{y} - \bar{\lambda} D_I \boldsymbol{s}_I \right) \\ A^{[J]} z &= \operatorname{argmin}_{x \in \mathcal{G}_J} \frac{1}{2} \|\Phi x\|^2 - \langle x, z \rangle \end{aligned}$$

0

2

 $\dim(\mathcal{G}_J)$

2

Τ

$$x_{\lambda}(y) \in \operatorname{argmin}_{x} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|D^{*}x\|_{1} \qquad (\mathcal{P}_{\lambda}(y))$$

Lemma: sign $(D^*x_{\lambda}(y))$ is constant around $(y, \lambda) \notin \mathcal{H}$.

To be understood: there exists a solution with same sign.

Local Affine Maps

. i de

Local parameterization: $\hat{x}_{\bar{\lambda}}(\bar{y}) = A^{[J]} \Phi^* \bar{y} - \bar{\lambda} A^{[J]} D_I s_I$

Under uniqueness assumption:

 $\begin{array}{c|c} y \mapsto x_{\lambda}(y) \\ \lambda \mapsto x_{\lambda}(y) \end{array} \quad \text{are piecewise affine functions.} \end{array}$

Application to GSURE

For $y \notin \mathcal{H}$, one has locally: $\mu_{\lambda}(y) = \Phi A^{[J]} \Phi^* y + \text{cst.}$

Corollary: Let
$$I = \operatorname{supp}(D^*x_{\lambda}(y))$$
 such that H_J holds.
 $df_{\lambda}(y) = \operatorname{div}(\mu_{\lambda})(y) = \dim(\mathcal{G}_J)$
 $df_{\lambda}(y) = \|x_{\lambda}(y)\|_0$ for $D = \operatorname{Id}$ (synthesis)
 $\operatorname{gdf}_{\lambda}(y) = \operatorname{tr}(\Pi A^{[J]})$
are unbiased estimators of df and gdf.

Application to GSURE

For $y \notin \mathcal{H}$, one has locally: $\mu_{\lambda}(y) = \Phi A^{[J]} \Phi^* y + \text{cst.}$

Corollary: Let
$$I = \operatorname{supp}(D^*x_{\lambda}(y))$$
 such that H_J holds.
 $df_{\lambda}(y) = \operatorname{div}(\mu_{\lambda})(y) = \dim(\mathcal{G}_J)$
 $df_{\lambda}(y) = \|x_{\lambda}(y)\|_0$ for $D = \operatorname{Id}$ (synthesis)
 $gdf_{\lambda}(y) = \operatorname{tr}(\Pi A^{[J]})$

are unbiased estimators of df and gdf.

Trick: $\operatorname{tr}(A) = \mathbb{E}_z(\langle Az, z \rangle), z \sim \mathcal{N}(0, \operatorname{Id}_P).$

Proposition: $\operatorname{gdf}_{\lambda}(y) = \mathbb{E}_{z}(\langle \boldsymbol{\nu}(\boldsymbol{z}), \Phi^{+}\boldsymbol{z} \rangle), \quad \boldsymbol{z} \sim \mathcal{N}(0, \operatorname{Id}_{P})$ where $\boldsymbol{\nu}(\boldsymbol{z})$ solves $\begin{pmatrix} \Phi^{*}\Phi & D_{J} \\ D_{J}^{*} & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\nu}(\boldsymbol{z}) \\ \tilde{\boldsymbol{\nu}} \end{pmatrix} = \begin{pmatrix} \Phi^{*}\boldsymbol{z} \\ 0 \end{pmatrix}$

In practice: $\operatorname{gdf}_{\lambda}(y) \approx \frac{1}{K} \sum_{k=1}^{K} \langle \nu(z_k), \Phi^+ z_k \rangle, \ z_k \sim \mathcal{N}(0, \operatorname{Id}_P).$

 $\Phi f = (\hat{f}(\omega))_{\omega \in \Omega}$ 0.3

0.4

170.000

290.000

410.000

 $x_{\lambda}\star$

530.000

 x_0

 Φ

<u>ista</u>

- Synthesis vs. Analysis Regularization
- Risk Estimation
- Local Behavior of Sparse Regularization
- Robustness to Noise
- Numerical Illustrations

Identifiability Criterion

Identifiability criterion of a sign: we suppose
$$(H_J)$$
 holds
 $IC(s) = \min_{u \in Ker D_J} \|\Omega s_I - u\|_{\infty}$ (convex \rightarrow computable)

where $\Omega = D_J^+ (\mathrm{Id} - \Phi^* \Phi A^{[J]}) D_I$

Identifiability Criterion

Identifiability criterion of a sign: we suppose
$$(H_J)$$
 holds
 $IC(s) = \min_{u \in Ker D_J} \|\Omega s_I - u\|_{\infty}$ (convex \rightarrow computable)

where $\Omega = D_J^+ (\mathrm{Id} - \Phi^* \Phi A^{[J]}) D_I$

Discrete 1-D derivative: $D^*x = (x_i - x_{i-1})_i$ $\Phi = \text{Id} \text{ (denoising)}$

Identifiability Criterion

Identifiability criterion of a sign: we suppose
$$(H_J)$$
 holds
 $IC(s) = \min_{u \in Ker D_J} \|\Omega s_I - u\|_{\infty}$ (convex \rightarrow computable)

where $\Omega = D_J^+ (\mathrm{Id} - \Phi^* \Phi A^{[J]}) D_I$

Discrete 1-D derivative: $D^*x = (x_i - x_{i-1})_i$ $\Phi = \text{Id (denoising)}$ $\text{IC}(s) = \|\sigma_J\|_{\infty}$ $\begin{cases} s_I = \text{sign}(D_I^*x) \\ \sigma_J = \Omega s_I \end{cases}$

 $\operatorname{IC}(s) = \min_{u \in \operatorname{Ker} D_J} \|\Omega s_I - u\|_{\infty} \qquad \Omega = D_J^+ (\operatorname{Id} - \Phi^* \Phi A^{[J]}) D_I$

$$IC(s) = \min_{u \in \text{Ker} D_J} \|\Omega s_I - u\|_{\infty} \qquad \Omega = D_J^+ (\text{Id} - \Phi^* \Phi A^{[J]}) D_I$$

$$Theorem: \text{ If IC}(\text{sign}(D^* x_0)) < 1 \qquad T = \min_{i \in I} |(D^* x_0)_i|$$

$$If \|w\|/T \text{ is small enough and } \lambda \sim \|w\|, \text{ then}$$

$$x^* = x_0 + A^{[J]} \Phi^* w - \lambda A^{[J]} D_I s_I,$$

is the unique solution of $\mathcal{P}_{\lambda}(y).$

$$IC(s) = \min_{u \in \text{Ker} D_J} \|\Omega s_I - u\|_{\infty} \qquad \Omega = D_J^+ (\text{Id} - \Phi^* \Phi A^{[J]}) D_I$$

$$Theorem: \text{ If IC}(\text{sign}(D^* x_0)) < 1 \qquad T = \min_{i \in I} |(D^* x_0)_i|$$

$$If \|w\|/T \text{ is small enough and } \lambda \sim \|w\|, \text{ then}$$

$$x^* = x_0 + A^{[J]} \Phi^* w - \lambda A^{[J]} D_I s_I,$$

is the unique solution of $\mathcal{P}_{\lambda}(y).$

Linear convergence rate: $||x^* - x_0|| = O(||w||)$

$$IC(s) = \min_{u \in \text{Ker} D_J} \|\Omega s_I - u\|_{\infty} \qquad \Omega = D_J^+ (\text{Id} - \Phi^* \Phi A^{[J]}) D_I$$

$$Theorem: \text{ If IC}(\text{sign}(D^* x_0)) < 1 \qquad T = \min_{i \in I} |(D^* x_0)_i|$$

$$If \|w\|/T \text{ is small enough and } \lambda \sim \|w\|, \text{ then}$$

$$x^* = x_0 + A^{[J]} \Phi^* w - \lambda A^{[J]} D_I s_I,$$

is the unique solution of $\mathcal{P}_{\lambda}(y).$
Linear convergence rate: $\|x^* - x_0\| = O(\|w\|)$

Theorem: If $IC(sign(D^*x_0)) < 1$ x_0 is the unique solution of $\mathcal{P}_0(\Phi x_0)$.

$$IC(s) = \min_{u \in \text{Ker} D_J} \|\Omega s_I - u\|_{\infty} \qquad \Omega = D_J^+ (\text{Id} - \Phi^* \Phi A^{[J]}) D_I$$

$$Theorem: \text{ If IC}(\text{sign}(D^* x_0)) < 1 \qquad T = \min_{i \in I} |(D^* x_0)_i|$$

$$If \|w\|/T \text{ is small enough and } \lambda \sim \|w\|, \text{ then}$$

$$x^* = x_0 + A^{[J]} \Phi^* w - \lambda A^{[J]} D_I s_I,$$

is the unique solution of $\mathcal{P}_{\lambda}(y).$
Linear convergence rate: $\|x^* - x_0\| = O(\|w\|)$

Theorem: If $IC(sign(D^*x_0)) < 1$ x_0 is the unique solution of $\mathcal{P}_0(\Phi x_0)$.

 \rightarrow When D = Id, results of J.J. Fuchs.

IC is Sharp for Sign Stability

$$\begin{array}{ll} Theorem: & \text{Suppose IC}(\operatorname{sign}(D^*x_0)) > 1, \\ \text{if} & \lambda > \frac{\|\Pi^{[J]}w\|_{\infty}}{\operatorname{IC}(\operatorname{sign}(D^*x_0)) - 1} \\ \text{where} & \Pi^{[J]} = D_J^+ \Phi^*(\Phi A^{[J]} \Phi^* - \operatorname{Id}) \\ \text{then for any solution } x^* \text{ of } \mathcal{P}_{\lambda}(y) \\ & \operatorname{sign}(D^*x_0) \neq \operatorname{sign}(D^*x^*) \end{array}$$

Corrolary: Suppose $IC(sign(D^*x_0)) > 1$, then for all $\lambda \ge 0$ and for any solution x^* of $\mathcal{P}_{\lambda}(\Phi x_0)$, $sign(D^*x_0) \ne sign(D^*x^*)$

IC is Sharp for Sign Stability

$$\begin{array}{ll} Theorem: & \text{Suppose IC}(\operatorname{sign}(D^*x_0)) > 1, \\ \text{if} & \lambda > \frac{\|\Pi^{[J]}w\|_{\infty}}{\operatorname{IC}(\operatorname{sign}(D^*x_0)) - 1} \\ \text{where} & \Pi^{[J]} = D_J^+ \Phi^*(\Phi A^{[J]} \Phi^* - \operatorname{Id}) \\ \text{then for any solution } x^* \text{ of } \mathcal{P}_{\lambda}(y) \\ & \operatorname{sign}(D^*x_0) \neq \operatorname{sign}(D^*x^*) \end{array}$$

Corrolary: Suppose IC(sign(D^*x_0)) > 1, then for all $\lambda \ge 0$ and for any solution x^* of $\mathcal{P}_{\lambda}(\Phi x_0)$, sign(D^*x_0) \neq sign(D^*x^*)

If $IC(sign(D^*x_0)) = 1$: both stability / no-stability depending on the value of w. **Robustness to Bounded Noise**

Robustness criterion: $\operatorname{RC}(I) = \max_{\|p_I\|_{\infty} \leq 1} \min_{u \in \ker(D_J)} \|\Omega p_I - u\|_{\infty}$

 $= \mathrm{IC}(p)$

Robustness to Bounded Noise

Robustness criterion:
$$\operatorname{RC}(I) = \max_{\|p_I\|_{\infty} \leq 1} \frac{\min_{u \in \ker(D_J)} \|\Omega p_I - u\|_{\infty}}{= \operatorname{IC}(p)}$$

Theorem: If
$$\operatorname{RC}(I) < 1$$
 for $I = \operatorname{Supp}(D^*x_0)$, setting
 $\lambda = \rho \|w\|_2 \frac{c_J}{1 - \operatorname{RC}(I)}$ with $\rho > 1$
 $\mathcal{P}_{\lambda}(y)$ has a unique solution $x^* \in \mathcal{G}_J$ and
 $\|x_0 - x^*\|_2 \leq C_J \|w\|_2$

Constants:
$$c_J = \|D_J^+ \Phi^*(\Phi A^{[J]} \Phi^* - \operatorname{Id})\|_{2,\infty}$$

 $C_J = \|A^{[J]}\|_{2,2} \left(\|\Phi\|_{2,2} + \frac{\rho c_J}{1 - \operatorname{RC}(I)}\|D_I\|_{2,\infty}\right)$
 \longrightarrow When $D = \operatorname{Id}$, results of Tropp (ERC)

Source ConditionNoiseless CNS:
$$x_0 \in \operatorname{argmin}_{\Phi x = \Phi x_0} \| D^* x \|_1$$
 $(\operatorname{SC}_{x_0})$ $\exists \alpha \in \partial \| D^* x_0 \|_1$ $D\alpha \in \operatorname{ker}(\Phi)^{\perp}$ $D\alpha \in \operatorname{ker}(\Phi)^{\perp}$ Theorem:If $(\operatorname{SC}_{x_0})$ (H_J) and $\| \alpha_J \|_{\infty} < 1$, then $\| D^* (x^* - x_0) \| = O\left(\frac{\| w \|}{1 - \| \alpha_J \|_{\infty}}\right)$ [Grassmair, Inverse Prob., 2011]

Source Condition
Noiseless CNS:
$$x_0 \in \underset{\Phi x = \Phi x_0}{\operatorname{sgmin}} \|D^*x\|_1$$

 $(\operatorname{SC}_{x_0}) \quad \exists \alpha \in \partial \|D^*x_0\|_1, \ D\alpha \in \ker(\Phi)^{\perp}$
Theorem: If $(\operatorname{SC}_{x_0}), \ (H_J)$ and $\|\alpha_J\|_{\infty} < 1$, then
 $\|D^*(x^* - x_0)\| = O\left(\frac{\|w\|}{1 - \|\alpha_J\|_{\infty}}\right)$
[Grassmair, Inverse Prob., 2011]
Proposition: Let $s = \operatorname{sign}(D^*x_0)$ and $\begin{cases} \alpha_J = \Omega s_I - u \\ \alpha_I = s_I \end{cases}$
Then IC $(s) < 1 \Longrightarrow (\operatorname{SC}_{x_0})$ and $\|\alpha_J\|_{\infty} = \operatorname{IC}(s)$.
IC $(s) = \min \|\Omega s_I - u\|_{\infty}$ subj.to $u \in \operatorname{Ker} D_J$

<u>. 198</u>

- Synthesis vs. Analysis Regularization
- Risk Estimation
- Local Behavior of Sparse Regularization
- Robustness to Noise
- Numerical Illustrations

Example: TV Denoising in 1-D

Discrete 1-D derivative:

$$D^*x = (x_i - x_{i-1})_i$$

Denoising $\Phi = \text{Id.}$

Example: TV Denoising in 1-D

$$D^*x = (x_i - x_{i-1})_i$$

Denoising $\Phi = \text{Id.}$

$$\operatorname{IC}(s) = \|\sigma_J\|_{\infty} \left\{ \begin{array}{l} \sigma_I = \operatorname{sign}(D_I^* x) \\ \sigma_J = \Omega \operatorname{sign}(D_I^* x) \end{array} \right.$$

$$\{\mathcal{G}_J \setminus \dim \mathcal{G}_J = k\}$$

$$x$$

$$interpretation for all steps$$

$$k - 1 \text{ steps}$$

Example: TV Denoising in 1-D

$$D^*x = (x_i - x_{i-1})_i$$

Denoising $\Phi = \text{Id.}$

$$\operatorname{IC}(s) = \|\sigma_J\|_{\infty} \left\{ \begin{array}{l} \sigma_I = \operatorname{sign}(D_I^* x) \\ \sigma_J = \Omega \operatorname{sign}(D_I^* x) \end{array} \right.$$

$$\{\mathcal{G}_J \setminus \dim \mathcal{G}_J = k\}$$

Signals with k-1 steps

Example: Total Variation in 2-D

Directional derivatives:

$$D_1^* x = (x_{i,j} - x_{i-1,j})_{i,j} \in \mathbb{R}^N$$

$$D_2^* x = (x_{i,j} - x_{i,j-1})_{i,j} \in \mathbb{R}^N$$

Gradient: $D^*x = (D_1^*x, D_2^*x) \in \mathbb{R}^{N \times 2}$

Example: Total Variation in 2-D

Directional derivatives:

$$D_1^* x = (x_{i,j} - x_{i-1,j})_{i,j} \in \mathbb{R}^N$$

$$D_2^* x = (x_{i,j} - x_{i,j-1})_{i,j} \in \mathbb{R}^N$$

Gradient:

$$D^*x = (D_1^*x, D_2^*x) \in \mathbb{R}^{N \times 2}$$

Dual vector:

$$\begin{cases} \sigma_I = \operatorname{sign}(D_I^* x) \\ \sigma_J = \Omega \operatorname{sign}(D_I^* x) \end{cases}$$

IC(s) < 1 IC(s) = 1

Gaussian $\Phi \in \mathbb{R}^{Q \times N}$.

Example: Fused Lasso

Total variation and ℓ^1 hybrid: $D^*x = (x_i - x_{i-1})_i \cup (\varepsilon x_i)_i$

Compressed sensing: Gaussian $\Phi \in \mathbb{R}^{Q \times N}$.

Probabilité $P(\eta, \varepsilon, \frac{Q}{N})$ of the even IC< 1. 0

Example: Invariant Haar Analysis

Haar wavelets: $\psi_i^{(j)} = \frac{1}{2^{\tau(j+1)}} \begin{cases} +1 & \text{if } 0 \leq i < 2^j \\ -1 & \text{if } -2^j \leq i < 0 \\ 0 & \text{otherwise.} \end{cases}$ Haar TI analysis:

$$\|D^*x\|_1 = \sum_j \|x \star \psi^{(j)}\|_1 = \sum_j \|x \star \varphi^{(j)}\|_{\mathrm{TV}}$$

Example: Invariant Haar Analysis

Computing risk estimates

 \iff Sensitivity analysis.

Computing risk estimates

Conclusion

 \iff Sensitivity analysis.

Open problem: Fast algorithms to optimize λ .

Computing risk estimates

Conclusion

 \iff Sensitivity analysis.

Open problem: Fast algorithms to optimize λ .

Analysis vs. synthesis regularization: Analysis support is less stable.

Computing risk estimates

Conclusion

 \iff Sensitivity analysis.

Open problem: Fast algorithms to optimize λ .

Analysis vs. synthesis regularization: Analysis support is less stable.

Open problem: Robustness without support stability.

