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Synthesis case (D = Id): works of Fuchs and Tropp.

Analysis case: [Nam et al. 2011] for w = 0.
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Problem statement

Consider the convex but non-smooth Analysis Sparsity Regularization problem
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which aims at inverting

y = �x0 + w

by promoting sparsity and with

I
x0 2 RN the unknown image of interest,

I
y 2 RQ the low-dimensional noisy observation of x0,

I � 2 RQ⇥N a linear operator that models the acquisition process,

I
w ⇠ N (0, �2Id

Q

) the noise component,

I
D 2 RN⇥P an analysis dictionary, and

I
� > 0 a regularization parameter.

How to choose the value of the parameter �?

Risk-based selection of �

I Risk associated to �: measure of the expected quality of x?(y,�) wrt x0,

R(�) = E
w

||x?(y,�) � x0||2 .
I The optimal (theoretical) � minimizes the risk.

The risk is unknown since it depends on x0.

Can we estimate the risk solely from x

?(y,�)?

Risk estimation

I Assume y 7! �x?(y,�) is weakly di↵erentiable (a fortiori uniquely defined).

Prediction risk estimation via SURE

I The Stein Unbiased Risk Estimator (SURE):

SURE(y,�) =||y � �x?(y,�)||2 � �

2
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Projection risk estimation via GSURE

I Let ⇧ = �⇤(��⇤)+� be the orthogonal projector on ker(�)? = Im(�⇤),
I Denote xML(y) = �⇤(��⇤)+y,
I The Generalized Stein Unbiased Risk Estimator (GSURE):
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is an unbiased estimator of the projection risk [Vaiter et al., 2012]

E
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(||⇧x0 � ⇧x?(y,�)||2)
(see also [Eldar, 2009, Pesquet et al., 2009, Vonesch et al., 2008] for similar results).

Illustration of risk estimation

(here, x? denotes x?(y,�) for an arbitrary value of �)
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be the submatrix of D whose columns are indexed by I ,

I Let s
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= sign(D⇤
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I

be the subvector of D⇤
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?(y,�) whose entries are indexed by I ,

I Let G
J

= KerD⇤
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be the “cospace” associated to x
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I To study the local behaviour of x?(y,�), we impose � to be “invertible” on G
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I It allows us to define the matrix
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U

⇤
,

where U is a matrix whose columns form a basis of G
J

,

I In this case, we obtain an implicit equation:

x
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Is this relation true in a neighbourhood of (y,�)?

Theorem (Local Parameterization)

I Even if the solutions x?(y,�) of P
�

(y) might be
not unique, �x?(y,�) is uniquely defined.

I If (y,�) 62 H, for (ȳ, �̄) close to (y,�), x̂(ȳ, �̄)
is a solution of P(ȳ, �̄) where
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I Hence, it allows us writing
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I Moreover, the DOF can be estimated by
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Computation of GSURE

I One has for Z ⇠ N (0, Id
P

),

tr
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where, for any z 2 RP , ⌫ = ⌫(z) solves the following linear system
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z
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I In practice, with law of large number, the empirical mean is replaced for the expectation.

I The computation of ⌫(z) is achieved by solving the linear system with a conjugate gradient solver.
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Compressed-sensing using multi-scale wavelet thresholding
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Perspectives: How to e�ciently minimizes GSURE(y,�) wrt �?
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I

s

I

.

I Hence, it allows us writing

@�x?(y,�)

@y

= �A[J ]�⇤
,

I Moreover, the DOF can be estimated by

tr

✓
@�x?(y,�)

@y

◆
= dim(G

J

) .

Can we compute this quantity e�ciently?

�

x1

x2

�0 = 0 �k

x�k = 0

x�
0

P0(y)
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Computation of GSURE

I One has for Z ⇠ N (0, Id
P

),

tr

✓
(��⇤)+@�x

?(y,�)

@y

◆
= E

Z

(h⌫(Z), �⇤(��⇤)+Zi)

where, for any z 2 RP , ⌫ = ⌫(z) solves the following linear system
✓
�⇤� D

J

D

⇤
J

0

◆✓
⌫

⌫̃

◆
=

✓
�⇤

z

0

◆
.

I In practice, with law of large number, the empirical mean is replaced for the expectation.

I The computation of ⌫(z) is achieved by solving the linear system with a conjugate gradient solver.

Numerical example

Super-resolution using (anisotropic) Total-Variation
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Compressed-sensing using multi-scale wavelet thresholding
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Perspectives: How to e�ciently minimizes GSURE(y,�) wrt �?
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Prediction: µ�(y) = �x�(y)

Sensitivity analysis: if µ� is weakly di↵erentiable

µ�(y + �) = µ�(y) + @µ�(y) · � +O(||�||2)

Prediction Risk Estimation
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Prediction: µ�(y) = �x�(y)

Sensitivity analysis: if µ� is weakly di↵erentiable

Theorem: [Stein, 1981]

Other estimators: GCV, BIC, AIC, . . .

SURE:
Requires � (not always available)

Unbiased and good practical performances

Stein Unbiased Risk Estimator:

µ�(y + �) = µ�(y) + @µ�(y) · � +O(||�||2)

df�(y) = tr(@µ�(y)) = div(µ�)(y)

SURE�(y) = ||y � µ�(y)||2 � �2P + 2�2df�(y)

Ew(SURE�(y)) = Ew(||�x0 � µ�(y)||2)

Prediction Risk Estimation



Problem: ||�x0 � �x�(y)|| poor indicator of ||x0 � x�(y)||.

Generalized SURE: take into account risk on ker(�)

?

Generalized SURE 
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Generalized df:
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Generalized SURE 

[Eldar 09, Pesquet al. 09, Vonesh et al. 08]
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Recovery:

Observations:
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(y) 2 argmin
x2RN

1

2
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Remark: x�(y) not always unique but

µ�(y) = �x�(y) always unique.

Variations and Stability

(P�(y))



y = �x0 + w

Questions:

Recovery:

Observations:

x

�

(y) 2 argmin
x2RN

1

2
||�x� y||2 + �||D⇤

x||1

– When is y ! µ�(y) di↵erentiable ?

– Formula for @µ�(y).

Remark: x�(y) not always unique but

µ�(y) = �x�(y) always unique.

Variations and Stability

(P�(y))
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Support of the solution:
I = {i \ (D⇤

x�(y))i 6= 0}

Union of Subspaces Model
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J = Ic

(P�(y))

I

Support of the solution:

1-D total variation:

I = {i \ (D⇤
x�(y))i 6= 0}

Union of Subspaces Model

D�x = (xi � xi�1)i
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Support of the solution:

1-D total variation:

Sub-space model:

I = {i \ (D⇤
x�(y))i 6= 0}

Union of Subspaces Model

D�x = (xi � xi�1)i
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GJ = ker(D�
J) = Im(DJ)�
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J = Ic

(P�(y))

I

Support of the solution:

1-D total variation:

Sub-space model:

I = {i \ (D⇤
x�(y))i 6= 0}

Lemma: There exists a solution x?
such that (HJ) holds.

Union of Subspaces Model

D�x = (xi � xi�1)i

x

GJ = ker(D�
J) = Im(DJ)�

Local well-posedness: ker(�) � GJ = {0} (HJ)
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2
||�x� y||2 + �||D⇤

x||1



To be understood: there exists a solution with same sign.

Local Sign Stability
(P�(y))

Lemma:
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⇤
x�(y)) is constant around (y,�) /2 H.



Linearized problem:
x̂�̄(ȳ) = argmin

x�GJ
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To be understood: there exists a solution with same sign.
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Linearized problem:

= A[J]
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��ȳ � �̄DIsI
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To be understood: there exists a solution with same sign.
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= A[J]
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||�x � ȳ||2 + �̄ �D�
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To be understood: there exists a solution with same sign.
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0Theorem:
x̂�̄(ȳ) is a solution of P�̄(ȳ).
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Local parameterization:

Under uniqueness assumption:

are piecewise a�ne functions.y 7! x�(y)
� 7! x�(y)

change of support of D

⇤
x�(y)x0+

Local Affine Maps

�
�0 = 0 �k

x�k = 0

breaking points
��

x̂�̄(ȳ) = A[J]��ȳ � �̄A[J]DI sI



for D = Id (synthesis)

gdf�(y) = tr(⇧A[J])

Let I = supp(D⇤x�(y)) such that HJ holds.

are unbiased estimators of df and gdf.

Application to GSURE

For y /2 H, one has locally:

df�(y) = ||x�(y)||0

Corollary:

µ�(y) = �A[J]�⇤y + cst.

df�(y) = div (µ�) (y) = dim(GJ)



In practice:

for D = Id (synthesis)

gdf�(y) = tr(⇧A[J])

Proposition:

gdf�(y) = Ez(h⌫(z), �+zi), z ⇠ N (0, IdP )✓
�⇤� DJ

D⇤
J 0

◆✓
⌫(z)
⌫̃

◆
=

✓
�⇤z
0

◆
where ⌫(z) solves

Let I = supp(D⇤x�(y)) such that HJ holds.

are unbiased estimators of df and gdf.

Trick: tr(A) = Ez(hAz, zi), z ⇠ N (0, IdP ).

gdf�(y) ⇡ 1
K

PK
k=1h⌫(zk), �+zki, zk ⇠ N (0, IdP ).

Application to GSURE

For y /2 H, one has locally:

df�(y) = ||x�(y)||0

Corollary:

µ�(y) = �A[J]�⇤y + cst.

df�(y) = div (µ�) (y) = dim(GJ)
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Problem statement

Consider the convex but non-smooth Analysis Sparsity Regularization problem

x

?(y,�) 2 argmin
x2RN

1

2
||y � �x||2 + �||D⇤

x||1 (P
�

(y))

which aims at inverting

y = �x0 + w

by promoting sparsity and with

I
x0 2 RN the unknown image of interest,

I
y 2 RQ the low-dimensional noisy observation of x0,

I � 2 RQ⇥N a linear operator that models the acquisition process,

I
w ⇠ N (0, �2Id

Q

) the noise component,

I
D 2 RN⇥P an analysis dictionary, and

I
� > 0 a regularization parameter.

How to choose the value of the parameter �?

Risk-based selection of �

I Risk associated to �: measure of the expected quality of x?(y,�) wrt x0,

R(�) = E
w

||x?(y,�) � x0||2 .
I The optimal (theoretical) � minimizes the risk.

The risk is unknown since it depends on x0.

Can we estimate the risk solely from x

?(y,�)?

Risk estimation

I Assume y 7! �x?(y,�) is weakly di↵erentiable (a fortiori uniquely defined).

Prediction risk estimation via SURE

I The Stein Unbiased Risk Estimator (SURE):

SURE(y,�) =||y � �x?(y,�)||2 � �

2
Q + 2�2 tr

✓
@�x?(y,�)

@y

◆

| {z }
Estimator of the DOF

is an unbiased estimator of the prediction risk [Stein, 1981]:

E
w

(SURE(y,�)) = E
w

(||�x0 � �x?(y,�)||2) .

Projection risk estimation via GSURE

I Let ⇧ = �⇤(��⇤)+� be the orthogonal projector on ker(�)? = Im(�⇤),
I Denote xML(y) = �⇤(��⇤)+y,
I The Generalized Stein Unbiased Risk Estimator (GSURE):

GSURE(y,�) =||xML(y) � ⇧x?(y,�)||2 � �

2 tr((��⇤)+) + 2�2 tr

✓
(��⇤)+@�x

?(y,�)

@y

◆

is an unbiased estimator of the projection risk [Vaiter et al., 2012]

E
w

(GSURE(y,�)) = E
w

(||⇧x0 � ⇧x?(y,�)||2)
(see also [Eldar, 2009, Pesquet et al., 2009, Vonesch et al., 2008] for similar results).

Illustration of risk estimation

(here, x? denotes x?(y,�) for an arbitrary value of �)

How to estimate the quantity tr
⇣
(��⇤)+@x

?(y,�)
@y

⌘
?

Main notations and assumptions

I Let I = supp(D⇤
x

?(y,�)) be the support of D⇤
x

?(y,�),
I Let J = I

c be the co-support of D⇤
x

?(y,�),
I Let D

I

be the submatrix of D whose columns are indexed by I ,

I Let s
I

= sign(D⇤
x

?(y,�))
I

be the subvector of D⇤
x

?(y,�) whose entries are indexed by I ,

I Let G
J

= KerD⇤
J

be the “cospace” associated to x

?(y,�) ,
I To study the local behaviour of x?(y,�), we impose � to be “invertible” on G

J

:

G
J

\ Ker� = {0},
I It allows us to define the matrix

A

[J ] = U(U⇤�⇤�U)�1
U

⇤
,

where U is a matrix whose columns form a basis of G
J

,

I In this case, we obtain an implicit equation:

x

?(y,�) solution of P
�

(y) , x

?(y,�) = x̂(y,�) , A

[J ]�⇤
y � �A

[J ]
D

I

s

I

.

Is this relation true in a neighbourhood of (y,�)?

Theorem (Local Parameterization)

I Even if the solutions x?(y,�) of P
�

(y) might be
not unique, �x?(y,�) is uniquely defined.

I If (y,�) 62 H, for (ȳ, �̄) close to (y,�), x̂(ȳ, �̄)
is a solution of P(ȳ, �̄) where

x̂(ȳ, �̄) = A

[J ]�⇤
ȳ � �̄A

[J ]
D

I

s

I

.

I Hence, it allows us writing

@�x?(y,�)

@y

= �A[J ]�⇤
,

I Moreover, the DOF can be estimated by

tr

✓
@�x?(y,�)

@y

◆
= dim(G

J

) .

Can we compute this quantity e�ciently?

�

x1

x2

�0 = 0 �k

x�k = 0

x�
0

P0(y)
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Computation of GSURE

I One has for Z ⇠ N (0, Id
P

),

tr

✓
(��⇤)+@�x

?(y,�)

@y

◆
= E

Z

(h⌫(Z), �⇤(��⇤)+Zi)

where, for any z 2 RP , ⌫ = ⌫(z) solves the following linear system
✓
�⇤� D

J

D

⇤
J

0

◆✓
⌫

⌫̃

◆
=

✓
�⇤

z

0

◆
.

I In practice, with law of large number, the empirical mean is replaced for the expectation.

I The computation of ⌫(z) is achieved by solving the linear system with a conjugate gradient solver.

Numerical example

Super-resolution using (anisotropic) Total-Variation
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Compressed-sensing using multi-scale wavelet thresholding
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Perspectives: How to e�ciently minimizes GSURE(y,�) wrt �?
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Problem statement

Consider the convex but non-smooth Analysis Sparsity Regularization problem

x

?(y,�) 2 argmin
x2RN

1

2
||y � �x||2 + �||D⇤

x||1 (P
�

(y))

which aims at inverting

y = �x0 + w

by promoting sparsity and with

I
x0 2 RN the unknown image of interest,

I
y 2 RQ the low-dimensional noisy observation of x0,

I � 2 RQ⇥N a linear operator that models the acquisition process,

I
w ⇠ N (0, �2Id

Q

) the noise component,

I
D 2 RN⇥P an analysis dictionary, and

I
� > 0 a regularization parameter.

How to choose the value of the parameter �?

Risk-based selection of �

I Risk associated to �: measure of the expected quality of x?(y,�) wrt x0,

R(�) = E
w

||x?(y,�) � x0||2 .
I The optimal (theoretical) � minimizes the risk.

The risk is unknown since it depends on x0.

Can we estimate the risk solely from x

?(y,�)?

Risk estimation

I Assume y 7! �x?(y,�) is weakly di↵erentiable (a fortiori uniquely defined).

Prediction risk estimation via SURE

I The Stein Unbiased Risk Estimator (SURE):

SURE(y,�) =||y � �x?(y,�)||2 � �

2
Q + 2�2 tr

✓
@�x?(y,�)

@y

◆

| {z }
Estimator of the DOF

is an unbiased estimator of the prediction risk [Stein, 1981]:

E
w

(SURE(y,�)) = E
w

(||�x0 � �x?(y,�)||2) .

Projection risk estimation via GSURE

I Let ⇧ = �⇤(��⇤)+� be the orthogonal projector on ker(�)? = Im(�⇤),
I Denote xML(y) = �⇤(��⇤)+y,
I The Generalized Stein Unbiased Risk Estimator (GSURE):

GSURE(y,�) =||xML(y) � ⇧x?(y,�)||2 � �

2 tr((��⇤)+) + 2�2 tr

✓
(��⇤)+@�x

?(y,�)

@y

◆

is an unbiased estimator of the projection risk [Vaiter et al., 2012]

E
w

(GSURE(y,�)) = E
w

(||⇧x0 � ⇧x?(y,�)||2)
(see also [Eldar, 2009, Pesquet et al., 2009, Vonesch et al., 2008] for similar results).

Illustration of risk estimation

(here, x? denotes x?(y,�) for an arbitrary value of �)

How to estimate the quantity tr
⇣
(��⇤)+@x

?(y,�)
@y

⌘
?

Main notations and assumptions

I Let I = supp(D⇤
x

?(y,�)) be the support of D⇤
x

?(y,�),
I Let J = I

c be the co-support of D⇤
x

?(y,�),
I Let D

I

be the submatrix of D whose columns are indexed by I ,

I Let s
I

= sign(D⇤
x

?(y,�))
I

be the subvector of D⇤
x

?(y,�) whose entries are indexed by I ,

I Let G
J

= KerD⇤
J

be the “cospace” associated to x

?(y,�) ,
I To study the local behaviour of x?(y,�), we impose � to be “invertible” on G

J

:

G
J

\ Ker� = {0},
I It allows us to define the matrix

A

[J ] = U(U⇤�⇤�U)�1
U

⇤
,

where U is a matrix whose columns form a basis of G
J

,

I In this case, we obtain an implicit equation:

x

?(y,�) solution of P
�

(y) , x

?(y,�) = x̂(y,�) , A

[J ]�⇤
y � �A

[J ]
D

I

s

I

.

Is this relation true in a neighbourhood of (y,�)?

Theorem (Local Parameterization)

I Even if the solutions x?(y,�) of P
�

(y) might be
not unique, �x?(y,�) is uniquely defined.

I If (y,�) 62 H, for (ȳ, �̄) close to (y,�), x̂(ȳ, �̄)
is a solution of P(ȳ, �̄) where

x̂(ȳ, �̄) = A

[J ]�⇤
ȳ � �̄A

[J ]
D

I

s

I

.

I Hence, it allows us writing

@�x?(y,�)

@y

= �A[J ]�⇤
,

I Moreover, the DOF can be estimated by

tr

✓
@�x?(y,�)

@y

◆
= dim(G

J

) .

Can we compute this quantity e�ciently?

�

x1

x2

�0 = 0 �k

x�k = 0

x�
0

P0(y)

Monday, September 24, 12

Computation of GSURE

I One has for Z ⇠ N (0, Id
P

),

tr

✓
(��⇤)+@�x

?(y,�)

@y

◆
= E

Z

(h⌫(Z), �⇤(��⇤)+Zi)

where, for any z 2 RP , ⌫ = ⌫(z) solves the following linear system
✓
�⇤� D

J

D

⇤
J

0

◆✓
⌫

⌫̃

◆
=

✓
�⇤

z

0

◆
.

I In practice, with law of large number, the empirical mean is replaced for the expectation.

I The computation of ⌫(z) is achieved by solving the linear system with a conjugate gradient solver.

Numerical example

Super-resolution using (anisotropic) Total-Variation
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The risk is unknown since it depends on x0.
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I Assume y 7! �x?(y,�) is weakly di↵erentiable (a fortiori uniquely defined).

Prediction risk estimation via SURE

I The Stein Unbiased Risk Estimator (SURE):

SURE(y,�) =||y � �x?(y,�)||2 � �

2
Q + 2�2 tr

✓
@�x?(y,�)

@y

◆

| {z }
Estimator of the DOF

is an unbiased estimator of the prediction risk [Stein, 1981]:

E
w

(SURE(y,�)) = E
w

(||�x0 � �x?(y,�)||2) .

Projection risk estimation via GSURE

I Let ⇧ = �⇤(��⇤)+� be the orthogonal projector on ker(�)? = Im(�⇤),
I Denote xML(y) = �⇤(��⇤)+y,
I The Generalized Stein Unbiased Risk Estimator (GSURE):

GSURE(y,�) =||xML(y) � ⇧x?(y,�)||2 � �

2 tr((��⇤)+) + 2�2 tr

✓
(��⇤)+@�x

?(y,�)

@y

◆

is an unbiased estimator of the projection risk [Vaiter et al., 2012]

E
w

(GSURE(y,�)) = E
w

(||⇧x0 � ⇧x?(y,�)||2)
(see also [Eldar, 2009, Pesquet et al., 2009, Vonesch et al., 2008] for similar results).

Illustration of risk estimation

(here, x? denotes x?(y,�) for an arbitrary value of �)

How to estimate the quantity tr
⇣
(��⇤)+@x

?(y,�)
@y

⌘
?

Main notations and assumptions

I Let I = supp(D⇤
x

?(y,�)) be the support of D⇤
x

?(y,�),
I Let J = I

c be the co-support of D⇤
x

?(y,�),
I Let D

I

be the submatrix of D whose columns are indexed by I ,

I Let s
I

= sign(D⇤
x

?(y,�))
I

be the subvector of D⇤
x

?(y,�) whose entries are indexed by I ,

I Let G
J

= KerD⇤
J

be the “cospace” associated to x

?(y,�) ,
I To study the local behaviour of x?(y,�), we impose � to be “invertible” on G

J

:

G
J

\ Ker� = {0},
I It allows us to define the matrix

A

[J ] = U(U⇤�⇤�U)�1
U

⇤
,

where U is a matrix whose columns form a basis of G
J

,

I In this case, we obtain an implicit equation:

x

?(y,�) solution of P
�

(y) , x

?(y,�) = x̂(y,�) , A

[J ]�⇤
y � �A

[J ]
D

I

s

I

.

Is this relation true in a neighbourhood of (y,�)?

Theorem (Local Parameterization)

I Even if the solutions x?(y,�) of P
�

(y) might be
not unique, �x?(y,�) is uniquely defined.
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Identifiability Criterion

Identifiability criterion of a sign: we suppose (HJ) holds

where � = D+
J (Id� ���A[J])DI

IC(s) = min
u�Ker DJ

||�sI � u||� (convex ! computable)



� = Id (denoising)

Identifiability Criterion

xD�x = (xi � xi�1)i

Discrete 1-D derivative:

Identifiability criterion of a sign: we suppose (HJ) holds

where � = D+
J (Id� ���A[J])DI

IC(s) = min
u�Ker DJ

||�sI � u||� (convex ! computable)



� = Id (denoising)

�
sI = sign(D�

Ix)
�J = �sI

sI

Identifiability Criterion
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+1

�1

�J

IC(sign(D�x)) < 1

IC(s) = ||�J ||�

D�x = (xi � xi�1)i

Discrete 1-D derivative:

Identifiability criterion of a sign: we suppose (HJ) holds

where � = D+
J (Id� ���A[J])DI

IC(s) = min
u�Ker DJ

||�sI � u||� (convex ! computable)



IC(s) = min
u�Ker DJ

||�sI � u||� � = D+
J (Id� ���A[J])DI

Robustness to Small Noise



IC(s) = min
u�Ker DJ

||�sI � u||� � = D+
J (Id� ���A[J])DI

Robustness to Small Noise

is the unique solution of P�(y).

If ||w||/T is small enough and � � ||w||, then
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|(D�x0)i|
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[J]
DIsI ,



IC(s) = min
u�Ker DJ

||�sI � u||� � = D+
J (Id� ���A[J])DI

||x? � x0|| = O(||w||)
Linear convergence rate:

Robustness to Small Noise
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�� When D = Id, results of J.J. Fuchs.
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IC is Sharp for Sign Stability
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If IC(sign(D
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Robustness criterion:

= IC(p)

Robustness to Bounded Noise

RC(I) = max
||pI ||��1

min
u�ker(DJ )

||�pI � u||�



Robustness criterion:

cJ = ||D+
J ��(�A[J]�� � Id)||2,�

CJ = ||A[J]||2,2

�
||�||2,2 +

�cJ

1� RC(I)
||DI ||2,�

�Constants:

�� When D = Id, results of Tropp (ERC)
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Robustness to Bounded Noise

Theorem:
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P�(y) has a unique solution x⇥ � GJ and
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Discrete 1-D derivative:

Signals with k � 1 steps

Denoising � = Id.
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Example: TV Denoising in 1-D
{GJ \ dimGJ = k}
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Sum of k interval indicators.

x

Gaussian � 2 RQ⇥N .

Example: Fused Lasso
{GJ \ dimGJ = k}
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Total variation and �1 hybrid:
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Haar wavelets:
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Example: Invariant Haar Analysis
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For N a multiple of 4, we split {1, . . . , N} into 4 sets lk =

{(k� 1)M +1, ..., kM} of cardinality M = N/4. Let 1lk be
the boxcar signal whose support is lk . Consider the staircase
signal x

0

= �1l1 + 1l4 degraded by a deterministic noise w
of the form w = "(1l3 � 1l2), where " 2 R. The observation
vector y = x

0

+ w reads

y = �1l1 � "1l2 + "1l3 + 1l4 .
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. Figure 2 displays
plots of the the coordinates’ path for both cases. It is worth
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Fig. 2: Top row: Signals y for " < 0 (left) and " > 0

(right). Bottom row: Corresponding coordinates’ path of x?
� as

a function of �. The solid lines correspond to the coordinates
in l

1

and l
4

, and the dashed ones to the coordinates in l
2

and
l
3

.

pointing out that when " > 0, the D-support of x?
� is always

different from that of x
0

whatever the choice of �, whereas
in the case " < 0, for any ¯�

1

6 � 6 ¯�
2

, the D-support of x?
�

and sign of D⇤x?
� are exactly those of x

0

.

D. Shift-Invariant Haar Deconvolution

Sparse analysis regularization using a 1-D shift invariant
Haar dictionary is efficient to recover piecewise constant

signals. This dictionary is built using a set of scaled and dilated
Haar filters
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where ⌧ > 0 is a normalization exponent. For ⌧ = 1,
the dictionary is said to be unit-normed. For ⌧ = 1/2, it
corresponds to a Parseval tight-frame. The action on a signal
x of the analysis operator corresponding to the translation
invariant Haar dictionary DH is

D⇤
Hx =

⇣

 (j) ? x
⌘

06j6Jmax

,

where ? stands for the discrete convolution (with appropriate
boundary conditions) and Jmax < log

2

(N), where N is the
size of the signal. The analysis regularization ||D⇤

Hx||
1

can also
be written as the sum over scales of the TV semi-norms of
filtered versions of the signal. As such, it can be understood as
a sort of multiscale total variation regularization. Apart from a
multiplicative factor, one recovers Total Variation when Jmax =

0.
We consider a noiseless convolution setting (for N = 256)

where � is a circular convolution operator with a Gaussian
kernel of standard deviation �. We first study the impact of �
on the identifiability criterion IC. The blurred signal x⌘ is a
centered boxcar signal with a support of size 2⌘N

x⌘ = 1{bN/2�⌘Nc,...,bN/2+⌘Nc}, ⌘ 2 (0, 1/2] .

Figure 3 displays the evolution of IC(sign(D⇤
Hx

0

) as a
function of � for three dictionaries (⌧ = 1, ⌧ = 0.5 and the
Total Variation), where we fixed ⌘ = 0.2. In the identifiability

Fig. 3: Behaviour of IC for a noiseless deconvolution scenario
with a Gaussian blur and `

1

-analsyis sparsity regularization
in a shift invariant Haar dictionary with J

max

= 4. IC is
plotted as a function of the Gaussian bluring kernel size � 2
[0.5, 3.0] for the total variation dictionary and the Haar wavelet
dictionary with two normalization exponents ⌧ . Dash-dotted
line: ⌧ = 1 (unit-normed). Dashed line: ⌧ = 1/2 (tight-frame).
Solid line: total variation.

regime, IC(sign(D⇤
Hx

0

) appears smaller in the case of the
unit-normed normalization. However, one should avoid to

⌧ = 1

⌧ = 1/2

TV
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SURE risk estimation:
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Open problem:

Fast algorithms to optimize �.

Robustness without support stability.
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