
Convex sets, conic matrix factorizations
and conic rank lower bounds

Pablo A. Parrilo

Laboratory for Information and Decision Systems
Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Based on joint work with João Gouveia (U. Coimbra),
Rekha Thomas (U. Washington), and Hamza Fawzi (MIT)

1 / 31

Pablo
Stamp

Pablo
Stamp

Pablo
Stamp



Nonnegative factorizations

Given a nonnegative matrix A ∈ Rn×m, a factorization

A = UV

where U ∈ Rn×k , V ∈ Rk×m are also nonnegative.

The smallest such k is the nonnegative rank of the matrix A.
Many applications: statistics, factor models, machine learning, . . .
Very difficult problem, many heuristics exist.
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Factorizations and hidden variables

Let X ,Y be discrete random variables, with joint distribution

P[X = i ,Y = j] = Pij .

The nonnegative rank of P is the smallest support of a random variable
W , such that X and Y are conditionally independent given W (i.e.,
X −W − Y is Markov):

P[X = i ,Y = j] =
∑

s=1,...,k

P[X = i ,Z = s] · P[Y = j ,Z = s].

Relations with information theory, “correlation generation,”
communication complexity, etc.
Quantum versions are also of interest.

As we’ll see, fundamental in optimization . . .
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Representations of convex sets Examples

Motivating example

The crosspolytope Cn is the unit ball of the `1 ball:

Cn := {x ∈ Rn :
n∑

i=1

|xi | ≤ 1}.

It is a polytope defined by 2n linear inequalities:

±x1 ± x2 ± · · · ± xn ≤ 1

The “obvious” linear program is exponentially large!
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Representations of convex sets Examples

A better representation

By introducing slack or auxiliary variables, the set Cn can be
represented more conveniently:

Cn := {x ∈ Rn : ∃y ∈ Rn, −yi ≤ xi ≤ yi ,

n∑
i=1

yi = 1}.

This has only 2n variables (x1, y1, . . . , xn, yn) and 2n + 1 constraints.
A “small” linear program. Much better!

What is going on in here?
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Representations of convex sets Examples

Geometric viewpoint

Geometrically, we are representing our polytope as a projection of a
higher-dimensional polytope.

The number of vertices does not increase, but the number of facets
can grow exponentially!

“Complicated” objects are sometimes easily described as “projections”
of “simpler” ones.

A general theme: algebraic varieties, graphical models, . . .
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Representations of convex sets Extended formulations

Extended formulations

These representations are usually called extended formulations.
Particularly relevant in combinatorial optimization (e.g., TSP).

Seminal work by Yannakakis (1991), who used them to disprove the
existence of a “symmetric” LP formulation for the TSP polytope.
Nice recent survey by Conforti-Cornuéjols-Zambelli (2010).

Our goal: to understand this phenomenon for convex optimization, not
just LP.
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Representations of convex sets Extended formulations

“Extended formulations” in SDP

Many convex sets and functions can be modeled by SDP or SOCP in
nontrivial ways. Among others:

Sums of eigenvalues of symmetric matrices
Convex envelope of univariate polynomials
Multivariate polynomials that are sums of squares
Unit ball of matrix operator and nuclear norms
Geometric and harmonic means

E.g., Nesterov/Nemirovski, Boyd/Vandenberghe, Ben-Tal/Nemirovski,
etc.

Often, clever and non-obvious reformulations.
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Representations of convex sets Extended formulations

Our questions

Existence and efficiency:
When is a convex set representable by conic optimization?
How to quantify the number of additional variables that are
needed?

Given a convex set C, is it possible to rep-
resent it as

C = π(K ∩ L)

where K is a cone, L is an affine subspace,
and π is a linear map?
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Representations of convex sets Extended formulations

Cone lifts of convex bodies

When do such representations exist?
Even ignoring complexity aspects, this question is not well understood.

Why a sphere is not a polytope?
Can every basic closed semialgebraic set be represented using
semidefinite programming?

What are “obstructions” for cone representability?
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Representations of convex sets Slack operators

This talk: polytopes

What happens in the case of polytopes?

P = {x ∈ Rn : f T
i x ≤ 1}

(WLOG, compact with 0 ∈ int P).

Polytopes have a finite number of facets fi and vertices vj .
Define a nonnegative matrix, called the slack matrix of the polytope:

[SP ]ij = f T
i vj , i = 1, . . . , |F | j = 1, . . . , |V |
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Representations of convex sets Slack operators

Example: hexagon (I)

Consider a regular hexagon in the plane.

It has 6 vertices, and 6 facets. Its slack matrix is

SH =



0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 .

“Trivial” representation requires 6 facets. Can we do better?
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Conic factorizations Factorizations and representability

Cone factorizations and representability

“Geometric” LP formulations exactly correspond to “algebraic”
factorizations of the slack matrix.

For polytopes, this amounts to a nonnegative factorization of the slack
matrix:

Sij = 〈ai ,bj〉, i = 1, . . . , v , j = 1, . . . , f

and ai , bi are nonnegative vectors.

Yannakakis (1991) showed that the minimal lifting dimension is equal
to the nonnegative rank of the slack matrix.
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Conic factorizations Factorizations and representability

Example: hexagon (II)

Regular hexagon in the plane.

Slack matrix is

SH =



0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 .

Nonnegative rank is 5.
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Rank lower bounds

Bounding nonnegative rank

Want techniques to lower bound the nonnegative rank of a matrix.

In applications, these bounds may yield:

Minimal size of latent variables
Complexity lower bounds on extended representations

Known bounds exist (e.g. rank bound, combinatorial bounds, etc.).
Want to do better, using convex optimization...
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Rank lower bounds

Two convex cones

Two important and well-known convex cones of symmetric matrices:
Copositive matrices:

C := {M ∈ Sn : xT Mx ≥ 0, ∀x ≥ 0}

Completely positive matrices:

B := conv{xxT : x ≥ 0}

These are proper cones (convex, closed, proper and solid), and they
are dual to each other:

C∗ = B, B∗ = C.
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Rank lower bounds

A convex bound for nonnegative rank

Let A ∈ Rm×n
+ be a nonnegative matrix, and define

ν+(A) := max
W∈Rm×n

{
〈A,W 〉 :

[
I −W

−W T I

]
copositive

}
.

Then,

rank+(A) ≥
(
ν+(A)
‖A‖F

)2

,

where ‖A‖F :=
√∑

i,j A2
i,j is the Frobenius norm of A.

Essentially, a kind of “nonnegative nuclear norm”
Convex, but hard... (membership in B and C is NP-hard!)

But, we know how to approximate them...
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Rank lower bounds

Proof

If A =
∑r

i=1 uivT
i , a scaling argument show that wlog we can take

‖ui‖ = ‖vi‖ for all i . By Cauchy-Schwarz,∑r
i=1 ‖ui‖‖vi‖√∑r
i=1 ‖ui‖2‖vi‖2

≤
√

r =
√

rank+(A)

We can then bound the numerator and denominator:
Numerator: if W is feasible, then uT

i Wvi ≤ ‖ui‖‖vi‖, and thus
〈A,W 〉 ≤

∑r
i=1 ‖ui‖‖vi‖.

Denominator:

‖A‖2F =
r∑

i,j=1

〈uivT
i ,ujvT

j 〉 ≥
r∑

i=1

‖ui‖2‖vi‖2.
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Rank lower bounds

Approximation

Can approximate the cones C and B using sum of squares and
semidefinite programming (P. 2000). We can write C as

C =

M ∈ Sn : the polynomial
n∑

i,j=1

Mi,jx2
i x2

j is nonnegative

 .

The k th order relaxation is defined as:

C[k ] =

M ∈ Sn :

(
n∑

i=1

x2
i

)k
 n∑

i,j=1

Mi,jx2
i x2

j

 is a sums-of-squares

 .

Clearly, C[k ] ⊆ C and also C[k ] ⊆ C[k+1]. Furthermore, each C[k ] is
computable via SDP.
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Rank lower bounds

Simplest case (k = 0)

The case k = 0 is the simple sufficient condition for copositivity

M = P + N, P � 0, Nij ≥ 0.

Thus, the quantity ν[0]+ (A) takes the more explicit form:

ν
[0]
+ (A) = max

{
〈A,W 〉 :

[
I −W

−W T I

]
∈ N n+m + Sn+m

+

}
For any k ≥ 0:

ν(A) ≤ ν[0]+ (A) ≤ ν[k ]+ (A) ≤ ν+(A) ≤
√

rank+(A)‖A‖F

where ν(A) is the standard nuclear norm.
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Rank lower bounds

Comparison: Rank bound

Trivially, rank(A) ≤ rank+(A). Can our bound improve on this?

Consider

A =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1


It is known that rank(A) = 3 and rank+(A) = 4.

We have ν[0]+ (A) = 4
√

2, and thus our lower bound is sharp:

4 = rank+(A) ≥

(
ν
[0]
+ (A)
‖A‖F

)2

=

(
4
√

2√
8

)2

= 4.
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Rank lower bounds

Comparison: Boolean rank (rectangle covering)

A lower bound used in communication complexity. Relies only on
sparsity pattern of matrix.

A =


0 1 1 1
1 1 1 1
1 1 0 0
1 1 0 0

 .
The rectangle covering number of A is 2 since supp(A) can be covered
with the two rectangles {1,2} × {2,3,4} and {2,3,4} × {1,2}.

Our bound yields rank+(A) ≥ d(ν[0]+ (A)/‖A‖F )2e = 3. In fact rank+(A)
is exactly equal to 3:

A =


1 1 0
1 1 1
0 1 1
0 1 1


0 0 1 1

0 1 0 0
1 0 0 0

 .
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Rank lower bounds

Example: hypercube

What is the extension complexity of the n-dimensional hypercube?
Is there better representation than the “obvious” 2n inequalities?

Rank bound is n + 1. Goemans’ face-counting lower bound gives
≈
√

3n... Perhaps something nontrivial can be done?

Notice that the slack matrix is exponentially large (2n × 2n).

Proposition: Let Cn = [0,1]n be the hypercube in n dimensions and let
S(Cn) ∈ R2n×2n

be its slack matrix. Then

rank+(S(Cn)) =

(
ν
[0]
+ (S(Cn))

‖S(Cn)‖F

)2

= 2n.
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Rank lower bounds

Beyond LPs and nonnegative factorizations

LPs are nice, but what about broader representability questions?

In [GPT11], a generalization of Yannakakis’ theorem to the general
convex case. General theme:

“Geometric” extended formulations exactly correspond to “algebraic”
factorizations of a slack operator.

polytopes/LP convex sets/convex cones
slack matrix slack operators

facets, vertices primal and dual extreme points
nonnegative factorizations conic factorizations
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Rank lower bounds

Polytopes and PSD factorizations

Even for polytopes, PSD factorizations can be interesting.

Well-known example: the stable set or independent set polytope.
Efficient SDP representations, but no known subexponential LP.

Natural notion: positive semidefinite rank ([GPT 11]).
Exactly captures the complexity of SDP-representability.
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Rank lower bounds

PSD rank of a nonnegative matrix

Let M ∈ Rm×n be a nonnegative matrix.

The PSD rank of M, denoted rankpsd , is the smallest r for which there
exists r × r PSD matrices {A1, . . . ,Am} and {B1, . . . ,Bn} such that

Mij = trace AiBj , i = 1, . . . ,m j = 1, . . . ,n.

Natural generalization of nonnegative rank.

The PSD rank determines the “best” semidefinite lifting.
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Rank lower bounds

Lower bounding PSD rank?

Currently extending our bound to PSD rank, since combinatorial
methods (based on sparsity patterns) cannot possibly work.

But, a few unexpected difficulties...

In the PSD case, the underlying norm is non-atomic, and the
corresponding “obvious” inequalities do not hold...
“Noncommutative” versions of C and B, quite complicated
structure...

Nice links between rankpsd and quantum communication complexity,
mirroring the situation between rank+ and classical communication
complexity (e.g., Fiorini et al. (2011), Jain et al. (2011), Zhang (2012)).
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Rank lower bounds

Computation

Even for nonnegative factorization, non-convex and very difficult.

A simple approach: alternating convex minimization.

For instance, for PSD factorizations of a nonnegative matrix M = AB,
we can alternate between minimizing over A = [A1, . . . ,Am]

T and
B = [B1, . . . ,Bn]:

minimize
Ai�0

‖M − AB‖ minimize
Bi�0

‖M − AB‖

These subproblems are SDPs (and if ‖ · ‖ is the Euclidean norm, they
are decoupled). However, no global guarantees.

Ongoing work of F. Glineur (UCL).
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END

The End

Thank You!
Want to know more?

J. Gouveia, P.A. Parrilo, R. Thomas, Lifts of convex sets and cone
factorizations, Mathematics of Operations Research, to appear, 2013.
arXiv:1111.3164.

H. Fawzi, P.A. Parrilo, New lower bounds on nonnegative rank using
conic programming, arXiv:1210.6970.
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END
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END

Example: hexagon (III)

A nonnegative factorization:

SH =



1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0





0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1


,
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