
Statistical Learning and Optimization
Based on Comparative Judgments

data
Rob Nowak www.ece.wisc.edu/~nowakOSL, Les Houches, January 10, 2013

mailto:nowak@ece.wisc.edu
mailto:nowak@ece.wisc.edu

 model
 space

Is model
A better
than B?

data
space

Learning from Comparative Judgements

L. L. Thurstone

answers = bits

Humans are much more reliable and
consistent at making comparative
judgements, than at giving numerical
ratings or evaluations

Bijmolt and Wedel (1995)
Stewart, Brown, and Chater (2005)

active learning

Machine Learning from Human Judgements

Recommendation Systems Document Classification

experiments

datascientist

Optimizing Experimentation

labels

Challenge:
Computing is cheap, but human
assistance/guidance is expensive

Goal:
Optimize such systems with as little
human involvement as possible

Learning from Paired Comparisons

1. Derivative Free Optimization
 using Human Subjects

minimizing a
convex function

ranking objects that
embed into a low-
dimensional space

2. Ranking from
 Pairwise Comparisons

10 20 30 40 50 60

10

20

30

40

50

60

1
2

3

4

5

6
7

Human oracles can provide
function values or comparisons,
but not function gradients

convex function to be minimized

Methods that don’t use gradients are called Derivative Free Optimization (DFO)

Optimization Based on Human Judgements

A Familiar Application

better

worse

spherical
correction

cylindrical
correction

optimal
prescription

Results SEARCH(query = “sebastian bach”, wA)
wA = w

old

Johann
Sebastian Bach
(1685-1750)
- Composer

wA = wnew

Sebastian Bach
(1968-current)
- Heavy Metal Singer
- Frontman of “Skid Row”

Personalized Search

Profile vector wA 2 Rd

Assume that the answers are probably correct: for some � > 0

P (answer = sign(f(x)� f(y))) � 1

2

+ �

Optimization Based on Pairwise Comparisons

The function will be minimized by asking pairwise comparisons of the form:

Is f(x) > f(y) ?

• f(x)

f(y) •

Assume that the (unknown) function f to be optimized

is strongly convex with Lipschitz gradients

line search iteratively reduces interval containing minimum

Optimization based on Pairwise Comparisons

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

•
x3

x0 •

x1 • •x2

•
• ••

x4

begin with large interval [y�0 , y+
0];

midpoint y0 is estimate of minimizer

y�0 y+
0y0

Optimization with Pairwise Comparisons
initialize: x0 = random point

for n = 0, 1, 2, . . .

1) select one of d coordinates uniformly at random

and consider line along coordinate that passes xn

2) minimize along coordinate using pairwise

comparisons and binary search

3) xn+1 = approximate minimizer

line search iteratively reduces interval containing minimum

Optimization based on Pairwise Comparisons

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

•
x3

x0 •

x1 • •x2

•
• ••

x4

y�0 y+
0y0

split intervals [y�0 , y0] and [y0, y
+
0] and compare

function values at these points with f(y0)

Optimization with Pairwise Comparisons
initialize: x0 = random point

for n = 0, 1, 2, . . .

1) select one of d coordinates uniformly at random

and consider line along coordinate that passes xn

2) minimize along coordinate using pairwise

comparisons and binary search

3) xn+1 = approximate minimizer

line search iteratively reduces interval containing minimum

Optimization based on Pairwise Comparisons

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

•
x3

x0 •

x1 • •x2

•
• ••

x4

y�0 y+
0y0y1y�1 y+

1

reduce to smallest interval

containing minimum of these points

Optimization with Pairwise Comparisons
initialize: x0 = random point

for n = 0, 1, 2, . . .

1) select one of d coordinates uniformly at random

and consider line along coordinate that passes xn

2) minimize along coordinate using pairwise

comparisons and binary search

3) xn+1 = approximate minimizer

line search iteratively reduces interval containing minimum

Optimization based on Pairwise Comparisons

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

•
x3

x0 •

x1 • •x2

•
• ••

x4

y1y�1 y+
1

repeat...

Optimization with Pairwise Comparisons
initialize: x0 = random point

for n = 0, 1, 2, . . .

1) select one of d coordinates uniformly at random

and consider line along coordinate that passes xn

2) minimize along coordinate using pairwise

comparisons and binary search

3) xn+1 = approximate minimizer

line search iteratively reduces interval containing minimum

Optimization based on Pairwise Comparisons

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

•
x3

x0 •

x1 • •x2

•
• ••

x4

repeat...

y1y�1 y+
1y2y�2 y+
2

Optimization with Pairwise Comparisons
initialize: x0 = random point

for n = 0, 1, 2, . . .

1) select one of d coordinates uniformly at random

and consider line along coordinate that passes xn

2) minimize along coordinate using pairwise

comparisons and binary search

3) xn+1 = approximate minimizer

each line search requires

1
2 log(

d
✏) comparisons

) total of n ⇡ d log

1
✏ log

d
✏ comparisons

) ✏ ⇡ exp

�
�

p
n
d

�

Noiseless Case:

line searches require

�
d
✏

�2
comparisons

) ✏ ⇡
q

d3

n

Unbounded Noise (� / |f(x)� f(y)|):

If we want error := E[f(xk)� f(x

⇤
)]  ✏,

we must solve k ⇡ d log

1
✏ line searches

(standard coordinate descent bound) and

each must be at least

p
✏
d accurate

Convergence Analysis

take majority vote of repeated

comparisons to mitigate noise

P (answer = sign(f(x)� f(y))) � 1
2

+ �

Noisy Case: probably correct answers to comparisons:

Bounded Noise (� � �0 > 0):

) ✏ ⇡ exp

�
�

p
n

d C

�line searches require C log

d
✏ comparisons,

where C > 1/2 depends on �0

+✏�✏

with ✏ ⇠ n�1/4

• KL Divergence = constant

• squared distance between minima ⇠ n�1/2

For unbounded noise, � / |f(x)� f(y)|, Kullback-Leibler Divergence

between response to f0(x) > f0(y)? vs. f1(x) > f1(y)? is O(✏4),
and KL Divergence between n responses is O(n✏4)

matches O(n�1/2
) upper bound of algorithm

) P
�
f(xn)� f(x

⇤
) � n

�1/2
�
� constant

Lower Bounds

f0(x) = |x + ✏|2 f1(x) = |x� ✏|2

l
x

l
y
l l

q
d
n in Rd

Jamieson, Recht, RN (2012)

suppose we can obtain noisy function

evaluations of the form: f(x) + noise

A Surprise
Could we do better with function evaluations (e.g., ratings instead of comparisons)?

x

y z

f(x) = 10

f(z) = 1

f(y) = 9

f(y) < f(x)

f(z) < f(x)
function values seem to provide
much more information than
comparisons alone

if we could measure noisy gradients (and function is
strongly convex), then O(d

n) convergence rate is possible Nemirovski et al 2009

q
d2

n
lower bound on optimization error
with noisy function evaluations

evaluations give at best a small
improvement over comparisons

q
d3

n

upper bound on optimization error
with noisy pairwise comparisons

see Agrawal, Dekel, Xiao (2010)
for similar upper bounds for function evals

O. Shamir (2012)

Philippe: “B”

Bartender: “Ok try these two: C or D?”

Bartender: “Try these two samples. Do you prefer A or B?”
Philippe: “Hmm... I prefer French wine”

Bartender: “What beer would you like?”

Preference Learning

Ranking Based on Pairwise Comparisons
Consider 10 beers ranked from best to worst: D < G < I < C < J < E < A < H < B < F

Which pairwise comparisons should we ask? How many are needed?

 0 1 -1 -1 -1 1 -1 1 -1 -1
 -1 0 -1 -1 -1 1 -1 -1 -1 -1
 1 1 0 -1 1 1 -1 1 -1 1
 1 1 1 0 1 1 1 1 1 1
 1 1 -1 -1 0 1 -1 1 -1 -1
 -1 -1 -1 -1 -1 0 -1 -1 -1 -1
 1 1 1 -1 1 1 0 1 1 1
 -1 1 -1 -1 -1 1 -1 0 -1 -1
 1 1 1 -1 1 1 -1 1 0 1
 1 1 -1 -1 1 1 -1 1 -1 0

A B C D E F G H I J
A
B
C
D
E
F
G
H
I
J

Assumption: responses to pairwise comparisons are consistent with ranking

Problem: n! possible rankings requires n log n bits of information

fraction of pairs misordered  c n log n

m

almost all pairs must be compared,
i.e., about n(n� 1)/2 comparisons

perfect recovery:

approximate recovery:

Consider 10 beers ranked from best to worst:
D < G < I < C < J < E < A < H < B < F

select m pairwise
comparisons at random

binary insertion sort also requires n log n comparisons

That’s a lot of beer!

adaptive selection:

Ranking Based on Pairwise Comparisons

⌅xi �W⌅ < ⌅xj �W⌅ ⇤ xi ⇥ xj

Low-Dimensional Assumption: Beer Space

A B

C

D

E

F

G

w
Philippe’s latent preferences in “beer space”
(e.g, hoppiness, lightness, maltiness,...)

Suppose beers can be embedded (according to characteristics) into
a low-dimensional Euclidean space.

Ranking According to Distance

A B

C

D

E

F

G

C < A < B < E < G < D < F

w

Ranking According to Distance

A B

C

D

E

F

G

E < B < F < G < C < A < D

w

... now there are at most n2d rankings (instead of n!), and so in
principle no more than 2d log n bits of information are needed.

Goal: Determine ranking by asking
comparisons like “Do you prefer A or B?”

Ranking According to Distance

A B

C

D

E

F

G

D < G < C < E < A < B < F

w

Lazy Binary Search

input: x1, . . . , xn � Rd

initialize: x1, . . . , xn in uniformly random order

for k=2,. . . ,n
for i=1,. . . ,k-1
if qi,k is ambiguous given {qi,j}i,j<k,

then ask for pairwise comparison,
else impute qi,j from {qi,j}i,j<k

output: ranking of x1, . . . , xn consistent with all pairwise comparisons

binary information we can gather: qi,j � do you prefer xi or xj

Consider n objects x1, x2, . . . , xn � Rd. Many comparisons are redundant
because the objects embed in Rd, and therefore it may be possible to correctly
rank based on a small subset.

Optimal selection of a sequence of qi,j requires a computationally
di�cult search, involving a combinatorial optimization.

Optimization

simple linear program

Ranking and Geometry
suppose we have ranked 4 beers
ranking implies that Philippe’s optimal
preferences are in shaded region

Ranking and Geometry

new beer

Answers to queries that intersect
shaded region are ambiguous,
otherwise they are not.

suppose we have ranked 4 beers
ranking implies that Philippe’s optimal
preferences are in shaded region

Key Observation: most queries will not be ambiguous, therefore the expected

total number of queries made by lazy binary search is about d log n

K. Jamieson and RN (2011)

=⇥ E[#ambiguous] � d
k

of d-cells ⇡ k2d

d!

intersected ⇡ k2(d�1)

(d�1)!

=) E[# requested] ⇡
nX

k=2

d

k

(Coombs 1960)

(Buck 1943)

(Cover 1965)

⇡ d log n

Tolerance to erroneous responses

using d log

2 n queries

(Jamieson & RN 2011)

Ranking and Geometry

=⇥ P(ambiguous) � d
k2

at k-th step of algorithm

robust to noise and non-transitivity

BeerMapper

BeerMapper app learns a
persons ranking of beers
by selecting pairwise
comparisons using lazy
binary search and a low-
dimensional embedding
based on key beer features

http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling

Embedding in
3 dimensions

Two Hearted Ale - Input ~2500 natural language reviews

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/
http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling

Embedding in
3 dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Two Hearted Ale - Weighted Bag of Words:

Weighted count vector

for the ith beer:

zi 2 R400,000

Cosine distance:

d(zi, zj) = 1� zT
i zj

||zi|| ||zj ||

Reviews for
each beer

Bag of Words
weighted by

TF-IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling

Embedding in
3 dimensions

Two Hearted Ale - Nearest Neighbors:
Bear Republic Racer 5
Avery IPA
Stone India Pale Ale (IPA)
Founders Centennial IPA
Smuttynose IPA
Anderson Valley Hop Ottin IPA
AleSmith IPA
BridgePort IPA
Boulder Beer Mojo IPA
Goose Island India Pale Ale
Great Divide Titan IPA
New Holland Mad Hatter Ale
Lagunitas India Pale Ale
Heavy Seas Loose Cannon Hop3
Sweetwater IPA ...

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Weighted count vector

for the ith beer:

zi 2 R400,000

Cosine distance:

d(zi, zj) = 1� zT
i zj

||zi|| ||zj ||

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Embedding in
3 dimensions

Two Hearted Ale - Nearest Neighbors:
Bear Republic Racer 5
Avery IPA
Stone India Pale Ale (IPA)
Founders Centennial IPA
Smuttynose IPA
Anderson Valley Hop Ottin IPA
AleSmith IPA
BridgePort IPA
Boulder Beer Mojo IPA
Goose Island India Pale Ale
Great Divide Titan IPA
New Holland Mad Hatter Ale
Lagunitas India Pale Ale
Heavy Seas Loose Cannon Hop3
Sweetwater IPA ...

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 15 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling

Embedding in
3 dimensions

Red = IPA
Green = Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians
 (light + dark)
Black = Stout + Porter
Blue = Everything else

Sanity check: styles
should cluster together
and similar styles
should be close.

Derivative Free Optimization
using Human Subjects

 Ranking from
 Pairwise Comparisons

10 20 30 40 50 60

10

20

30

40

50

60

1
2

3

4

5

6
7

Humans are much more reliable and
consistent at making comparative
judgements, than in giving numerical
ratings or evaluations

Challenge:
Computing is cheap, but human
assistance/guidance is expensive

Goal:
Optimize such systems with as little
human involvement as possible

Machine Learning from Comparative Judgements

“Binary search” procedures can
play a role in active learning

References

K. Jamieson, B. Recht, and R. Nowak, “Query complexity of derivative free optimization,” NIPS 2012

S. Tong and D. Koller, “Support vector machine active learning with applications,” JMLR 2001

R. Nowak, “The geometry of generalized binary search,” IEEE Trans. IT 2011

R. Castro and R. Nowak, “Minimax bounds for active learning,” IEEE Trans. IT 2008

M. Raginsky and S. Rahklin, “Lower bounds for passive and active learning,” NIPS 2011

K. Jamieson and R. Nowak, “Active ranking using pairwise comparisons,” NIPS 2011

T. Bijmolt and M. Wedel, “The effects of alternative methods of collecting similarity data for
multidimensional scaling,” IJRM 1995

N. Steward, G. Brown and N. Chater, “Absolute identification by relative judgement,” Psych. Review 2005

A. Agrawal, O. Dekel and L. Xiao, “Optimal algorithms for online convex optimization with multi-point
bandit feedback,” COLT 2010

M. Horstein, “Sequential decoding using noiseless feedback,” IEEE Trans. IT 1963

M. Burnashev and K. Zigangirov, “An interval estimation problem for controlled observations,” Prob.
Info. Transmission 1974

R. Karp and R. Kleinberg, “Noisy binary search and its applications,” SODA 2007

S. Hanneke, “Rates of convergence in active learning,” Ann. Stat. 2011

A. Nemirovski, A. Juditsky, G. Lan and A. Shapiro, “Robust stochastic approximation approach to
stochastic programming,” SIAM J. Opt 2009

O. Shamir, “On the complexity of bandit and derivative free stochastic convex optimization,” arxiv 2012

Y. Yue and T. Joachims, “Interactively Optimizing Information Retrieval Systems as a Dueling
Bandits Problem, 2009

