
Statistical Learning and Optimization 
Based on Comparative Judgments

data
Rob Nowak www.ece.wisc.edu/~nowakOSL, Les Houches, January 10, 2013

mailto:nowak@ece.wisc.edu
mailto:nowak@ece.wisc.edu


    model
    space

Is model 
A better 
than B?
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Learning from Comparative Judgements

L. L. Thurstone

answers = bits

Humans are much more reliable and 
consistent at making comparative 
judgements, than at giving numerical 
ratings or evaluations

Bijmolt and Wedel (1995)
Stewart, Brown, and Chater (2005)

active learning



Machine Learning from Human Judgements

Recommendation Systems Document Classification

experiments

datascientist

Optimizing Experimentation

labels

Challenge:
Computing is cheap, but human 
assistance/guidance is expensive

Goal: 
Optimize such systems with as little 
human involvement as possible



Learning from Paired Comparisons

1. Derivative Free Optimization
    using Human Subjects

minimizing a 
convex function

ranking objects that 
embed into a low-
dimensional space

2. Ranking from 
    Pairwise Comparisons
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Human oracles can provide 
function values or comparisons, 
but not function gradients

convex function to be minimized

Methods that don’t use gradients are called Derivative Free Optimization (DFO)

Optimization Based on Human Judgements



A Familiar Application

better

worse

spherical 
correction

cylindrical 
correction

optimal 
prescription



Results  SEARCH(query = “sebastian bach”, wA)
wA = w

old

Johann 
Sebastian Bach
(1685-1750)
- Composer

wA = wnew

Sebastian Bach
(1968-current)
- Heavy Metal Singer
- Frontman of “Skid Row”

Personalized Search

Profile vector wA 2 Rd



Assume that the answers are probably correct: for some � > 0

P (answer = sign(f(x)� f(y))) � 1

2

+ �

Optimization Based on Pairwise Comparisons

The function will be minimized by asking pairwise comparisons of the form:

Is f(x) > f(y) ?

• f(x)

f(y) •

Assume that the (unknown) function f to be optimized

is strongly convex with Lipschitz gradients



line search iteratively reduces interval containing minimum

Optimization based on Pairwise Comparisons
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Optimization with Pairwise Comparisons
initialize: x0 = random point

for n = 0, 1, 2, . . .

1) select one of d coordinates uniformly at random

and consider line along coordinate that passes xn

2) minimize along coordinate using pairwise

comparisons and binary search

3) xn+1 = approximate minimizer
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Optimization with Pairwise Comparisons
initialize: x0 = random point

for n = 0, 1, 2, . . .

1) select one of d coordinates uniformly at random

and consider line along coordinate that passes xn

2) minimize along coordinate using pairwise

comparisons and binary search

3) xn+1 = approximate minimizer



line search iteratively reduces interval containing minimum

Optimization based on Pairwise Comparisons

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

•
x3

x0 •

x1 • •x2

•
• ••

x4

y�0 y+
0y0y1y�1 y+

1

reduce to smallest interval

containing minimum of these points

Optimization with Pairwise Comparisons
initialize: x0 = random point

for n = 0, 1, 2, . . .

1) select one of d coordinates uniformly at random

and consider line along coordinate that passes xn

2) minimize along coordinate using pairwise

comparisons and binary search

3) xn+1 = approximate minimizer
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initialize: x0 = random point

for n = 0, 1, 2, . . .

1) select one of d coordinates uniformly at random

and consider line along coordinate that passes xn

2) minimize along coordinate using pairwise

comparisons and binary search

3) xn+1 = approximate minimizer



line search iteratively reduces interval containing minimum

Optimization based on Pairwise Comparisons

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

•
x3

x0 •

x1 • •x2

•
• ••

x4

repeat...

y1y�1 y+
1y2y�2 y+
2

Optimization with Pairwise Comparisons
initialize: x0 = random point

for n = 0, 1, 2, . . .

1) select one of d coordinates uniformly at random

and consider line along coordinate that passes xn

2) minimize along coordinate using pairwise

comparisons and binary search

3) xn+1 = approximate minimizer



each line search requires

1
2 log(

d
✏ ) comparisons

) total of n ⇡ d log

1
✏ log

d
✏ comparisons

) ✏ ⇡ exp

�
�

p
n
d

�

Noiseless Case:

line searches require

�
d
✏

�2
comparisons

) ✏ ⇡
q

d3

n

Unbounded Noise (� / |f(x)� f(y)|):

If we want error := E[f(xk)� f(x

⇤
)]  ✏,

we must solve k ⇡ d log

1
✏ line searches

(standard coordinate descent bound) and

each must be at least

p
✏
d accurate

Convergence Analysis

take majority vote of repeated

comparisons to mitigate noise

P (answer = sign(f(x)� f(y))) � 1
2

+ �

Noisy Case: probably correct answers to comparisons:

Bounded Noise (� � �0 > 0):

) ✏ ⇡ exp

�
�

p
n

d C

�line searches require C log

d
✏ comparisons,

where C > 1/2 depends on �0



+✏�✏

with ✏ ⇠ n�1/4

• KL Divergence = constant

• squared distance between minima ⇠ n�1/2

For unbounded noise, � / |f(x)� f(y)|, Kullback-Leibler Divergence

between response to f0(x) > f0(y)? vs. f1(x) > f1(y)? is O(✏4),
and KL Divergence between n responses is O(n✏4)

matches O(n�1/2
) upper bound of algorithm

) P
�
f(xn)� f(x

⇤
) � n

�1/2
�
� constant

Lower Bounds

f0(x) = |x + ✏|2 f1(x) = |x� ✏|2

l
x

l
y
l l

q
d
n in Rd

Jamieson, Recht, RN (2012)



suppose we can obtain noisy function

evaluations of the form: f(x) + noise

A Surprise
Could we do better with function evaluations (e.g., ratings instead of comparisons)?

x

y z

f(x) = 10

f(z) = 1

f(y) = 9

f(y) < f(x)

f(z) < f(x)
function values seem to provide 
much more information than 
comparisons alone

if we could measure noisy gradients (and function is
strongly convex), then O( d

n ) convergence rate is possible Nemirovski et al 2009

q
d2

n
lower bound on optimization error 
with noisy function evaluations

evaluations give at best a small 
improvement over comparisons

q
d3

n

upper bound on optimization error 
with noisy pairwise comparisons

see Agrawal, Dekel, Xiao (2010)
for similar upper bounds for function evals

O. Shamir (2012)



Philippe: “B”

Bartender: “Ok try these two:  C or D?” ....

Bartender: “Try these two samples. Do you prefer A or B?”
Philippe: “Hmm... I prefer French wine”

Bartender: “What beer would you like?”

Preference Learning



Ranking Based on Pairwise Comparisons
Consider 10 beers ranked from best to worst: D < G < I < C < J < E < A < H < B < F

Which pairwise comparisons should we ask?  How many are needed?

     0     1    -1    -1    -1     1    -1     1    -1    -1
    -1     0    -1    -1    -1     1    -1    -1    -1    -1
     1     1     0    -1     1     1    -1     1    -1     1
     1     1     1     0     1     1     1     1     1     1
     1     1    -1    -1     0     1    -1     1    -1    -1
    -1    -1    -1    -1    -1     0    -1    -1    -1    -1
     1     1     1    -1     1     1     0     1     1     1
    -1     1    -1    -1    -1     1    -1     0    -1    -1
     1     1     1    -1     1     1    -1     1     0     1
     1     1    -1    -1     1     1    -1     1    -1     0

A     B    C     D     E    F     G    H      I     J
A     
B    
C     
D     
E    
F     
G
H      
I     
J

Assumption: responses to pairwise comparisons are consistent with ranking



Problem: n! possible rankings requires n log n bits of information

fraction of pairs misordered  c n log n

m

almost all pairs must be compared,
i.e., about n(n� 1)/2 comparisons

perfect recovery:

approximate recovery:

Consider 10 beers ranked from best to worst: 
D < G < I < C < J < E < A < H < B < F

select m pairwise 
comparisons at random

binary insertion sort also requires n log n comparisons

That’s a lot of beer!

adaptive selection:

Ranking Based on Pairwise Comparisons



⌅xi �W⌅ < ⌅xj �W⌅ ⇤ xi ⇥ xj

Low-Dimensional Assumption: Beer Space

A B

C

D

E

F

G

w
Philippe’s latent preferences in “beer space”
(e.g, hoppiness, lightness, maltiness,...)

Suppose beers can be embedded (according to characteristics) into 
a low-dimensional Euclidean space.



Ranking According to Distance
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C < A < B < E < G < D < F
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Ranking According to Distance

A B

C

D

E
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E < B < F < G < C < A < D

w



... now there are at most n2d rankings (instead of n!), and so in
principle no more than 2d log n bits of information are needed.

Goal: Determine ranking by asking
comparisons like “Do you prefer A or B?”

Ranking According to Distance

A B

C

D

E

F

G

D < G < C < E < A < B < F

w



Lazy Binary Search

input: x1, . . . , xn � Rd

initialize: x1, . . . , xn in uniformly random order

for k=2,. . . ,n
for i=1,. . . ,k-1
if qi,k is ambiguous given {qi,j}i,j<k,

then ask for pairwise comparison,
else impute qi,j from {qi,j}i,j<k

output: ranking of x1, . . . , xn consistent with all pairwise comparisons

binary information we can gather: qi,j � do you prefer xi or xj

Consider n objects x1, x2, . . . , xn � Rd. Many comparisons are redundant
because the objects embed in Rd, and therefore it may be possible to correctly
rank based on a small subset.

Optimal selection of a sequence of qi,j requires a computationally
di�cult search, involving a combinatorial optimization.

Optimization

simple linear program



Ranking and Geometry
suppose we have ranked 4 beers
ranking implies that Philippe’s optimal 
preferences are in shaded region



Ranking and Geometry

new beer

Answers to queries that intersect 
shaded region are ambiguous, 
otherwise they are not.

suppose we have ranked 4 beers
ranking implies that Philippe’s optimal 
preferences are in shaded region

Key Observation: most queries will not be ambiguous, therefore the expected

total number of queries made by lazy binary search is about d log n

K. Jamieson and RN (2011)



=⇥ E[#ambiguous] � d
k

# of d-cells ⇡ k2d

d!

# intersected ⇡ k2(d�1)

(d�1)!

=) E[# requested] ⇡
nX

k=2

d

k

(Coombs 1960)

(Buck 1943)

(Cover 1965)

⇡ d log n

Tolerance to erroneous responses

using d log

2 n queries

(Jamieson & RN 2011)

Ranking and Geometry

=⇥ P(ambiguous) � d
k2

at k-th step of algorithm

robust to noise and non-transitivity



BeerMapper

BeerMapper app learns a 
persons ranking of beers 
by selecting pairwise 
comparisons using lazy 
binary search and a low-
dimensional embedding 
based on key beer features



http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

Reviews for 
each beer

Bag of Words 
weighted by 

TF*IDF

Get 100 nearest 
neighbors using 
cosine distance

Non-metric
multidimensional

scaling

Embedding in 
3 dimensions

Two Hearted Ale - Input ~2500 natural language reviews

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/
http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/


Reviews for 
each beer

Bag of Words 
weighted by 

TF*IDF

Get 100 nearest 
neighbors using 
cosine distance

Non-metric
multidimensional

scaling

Embedding in 
3 dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Two Hearted Ale - Weighted Bag of Words:



Weighted count vector

for the ith beer:

zi 2 R400,000

Cosine distance:

d(zi, zj) = 1� zT
i zj

||zi|| ||zj ||

Reviews for 
each beer

Bag of Words 
weighted by 

TF-IDF

Get 100 nearest 
neighbors using 
cosine distance

Non-metric
multidimensional

scaling

Embedding in 
3 dimensions

Two Hearted Ale - Nearest Neighbors:
Bear Republic Racer 5
Avery IPA
Stone India Pale Ale &#40;IPA&#41;
Founders Centennial IPA
Smuttynose IPA 
Anderson Valley Hop Ottin IPA
AleSmith IPA
BridgePort IPA
Boulder Beer Mojo IPA
Goose Island India Pale Ale
Great Divide Titan IPA
New Holland Mad Hatter Ale
Lagunitas India Pale Ale
Heavy Seas Loose Cannon Hop3
Sweetwater IPA ...

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood



Weighted count vector

for the ith beer:

zi 2 R400,000

Cosine distance:

d(zi, zj) = 1� zT
i zj

||zi|| ||zj ||

Reviews for 
each beer

Bag of Words 
weighted by 

TF*IDF

Embedding in 
3 dimensions

Two Hearted Ale - Nearest Neighbors:
Bear Republic Racer 5
Avery IPA
Stone India Pale Ale &#40;IPA&#41;
Founders Centennial IPA
Smuttynose IPA 
Anderson Valley Hop Ottin IPA
AleSmith IPA
BridgePort IPA
Boulder Beer Mojo IPA
Goose Island India Pale Ale
Great Divide Titan IPA
New Holland Mad Hatter Ale
Lagunitas India Pale Ale
Heavy Seas Loose Cannon Hop3
Sweetwater IPA ...

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Get 100 nearest 
neighbors using 
cosine distance

Non-metric
multidimensional

scaling



Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for 
each beer

Bag of Words 
weighted by 

TF*IDF

Get 15 nearest 
neighbors using 
cosine distance

Non-metric
multidimensional

scaling

Embedding in 
3 dimensions

Red = IPA
Green = Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians 
               (light + dark)
Black = Stout + Porter
Blue = Everything else

Sanity check: styles 
should cluster together 
and similar styles 
should be close.



Derivative Free Optimization
using Human Subjects

    Ranking from 
    Pairwise Comparisons
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Humans are much more reliable and 
consistent at making comparative 
judgements, than in giving numerical 
ratings or evaluations

Challenge:
Computing is cheap, but human 
assistance/guidance is expensive

Goal: 
Optimize such systems with as little 
human involvement as possible

Machine Learning from Comparative Judgements

“Binary search” procedures can 
play a role in active learning
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