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Generic sparse optimization problem

Optimization problem with cardinality penalty:

min
w

L(X T w) + λ‖w‖0.

I Data: X ∈ Rn×m.
I Loss function L is convex.
I Cardinality function ‖w‖0 := |{j : wj 6= 0}| is non-convex.
I λ is a penalty parameter allowing to control sparsity.

I Arises in many applications, including (but not limited to) machine
learning.

I Computationally intractable.
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Classical approach

A now classical approach is to replace the cardinality function with an
l1-norm:

min
w

L(X T w) + λ‖w‖1.

Pros:
I Problem becomes convex, tractable.
I Many ”recovery” results available.

Cons:
I Is neither a lower nor an upper bound in general.
I Fails completely in some cases (see next).
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The l1-norm may fail

The l1-norm approach may fail to allow to control the level of sparsity
of the solution.

I When the variable is restricted to be a discrete distribution , the
l1-norm is constant, and the level of sparsity cannot be controlled.

I If the data matrix X is low-rank , the cardinality of the solution
may be also hard to control.

Example:
LASSO with rank-one data matrix

min
w
‖(qpT )w − y‖2 + λ‖w‖1,

with p ∈ Rn, q, y ∈ Rm. Solution for
λ > 0 has cardinality one or zero.

Coordinates of optimal w vs. λ
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Sparse Probability Optimization

Generic sparse probability optimization problem:

p∗ := min
w

L(X T w) + λ‖w‖0 : w ≥ 0, 1T w = 1.

I l1-norm approach fails to control sparsity.
I Applications: index fund construction, examplar-based clustering.
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Proposed Approach

Basic bound:
‖w‖1 ≤ ‖w‖0‖w‖∞.

Yields a lower bound on the original problem:

p∗ = min
w

L(X T w) + λ‖w‖0 : w ≥ 0, 1T w = 1

≥ p̂ := min
w

L(X T w) + λ
‖w‖1

‖w‖∞
: w ≥ 0, 1T w = 1.

Fact: The lower bound can be computed as a sequence of n
uncoupled convex problems:

p̂ = min
1≤i≤n

min
w

L(X T w) + λ
1
wi

: w ≥ 0, 1T w = 1.
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Checking approximation quality

Let ŵ be a solution to

p̂ = min
1≤i≤n

min
w : w≥0,1T w=1

L(X T w) +
λ

wi
.

We then have the bounds:

L(X T ŵ) + λ‖ŵ‖0 ≥ p∗ ≥ p̂. (1)

I The quality of approximation can be easily checked when the n
convex programs are solved.

I In contrast, `1 regularization does not have such a property since
it is not a lower bound or upper bound. Known guarantees are
not checkable in polynomial time, e.g. , Restricted Isometry
Property (Candés & Tao, 2005).
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Theoretical results for a special case

Problem: recover the sparsest probability measure given moment
constraints:

p∗ = min
w
‖w‖0 : X T w = y , w ≥ 0, 1T w = 1,

where y ∈ Rm is given. This is a special case of our generic problem,
with L the indicator of the affine set {w : X T w = y}.

Our bound is p∗ ≥ p̂ = 1/(max1≤i≤n qi ), where each qi is the optimal
value of a linear program:

qi := max
w

wi : X T w = y , w ≥ 0, 1T w = 1.
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Recovery result: geometric property

Assume that the unique solution of p∗ is given by w∗; let S be the
support of w∗, and let Sc be its complement. If Conv(XSc ) does not
intersect an extreme point of Conv(XS) then ŵ = w∗, i.e. the
approximation is exact.

Consequence: For X ∼ iid Gaussian, this happens with very high
probability if n is O(||w∗||0).

12 / 36



Sparse and Robust
Optimization

Sparse Optimization

Sparse Probabilities
Sparse probabilities

Norm-ratios approach

Recovery

Applications

Extensions

Robust Optimization
Robust low-rank LP

Low-rank LASSO

Application: Index Tracking

Given a time-series matrix of prices of n assets over m days
X = [x1, . . . , xm], reconstruct a given financial index time-series
y1, . . . , ym as a convex combination of n assets using as few assets as
possible:

p∗ = min
w≥0, 1T w=1

∥∥∥X T w − y
∥∥∥2

2
+ λ||w ||0.

The l1-norm approach fails in this case.

Proposed approach:

p∗ ≥ p̂ = min
1≤j≤n

min
w≥0,1T w=1

∥∥∥X T w − y
∥∥∥2

2
+

λ

wj
.

Solved by n second-order cone programs.
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Numerical results

30 assets in 197 trading days, 2007-2008.
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Application: clustering
Maximum-likelihood mixture fitting

Given data {z1, . . . , zn} of d-dimensional vectors, consider fitting a
parametric iid distribution pθ via maximizing the log-likelihood over the
parameter θ

max
θ

1
n

n∑
i=1

log pθ(zi ).

Consider a mixture of Gaussians distribution with k centers:

pw,µ1,...,µk (z) ∼
k∑

j=1

wje−β‖z−µj‖2
2 .

with unknown mixture weights vectors w ∈ Rk , w ≥ 0, 1T w = 1,
unknown mean vectors µj ∈ Rd and fixed known covariances 1

β
Id×d .

The problem of fitting the mixture distribution becomes:

max
w,µ1,...,µk

1
n

n∑
i=1

log
k∑

j=1

wje−β‖zi−µj‖2
2 .

This is a non-convex problem and is very hard to solve.
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Convex clustering
The examplar-based model

Examplar-based model (Lashkari & Golland, NIPS, 2008): assumes
that each cluster mean µj is equal to some data point (“example”) zi .

The problem is now convex:

max
w≥0, 1T w=1

1
n

n∑
i=1

log
n∑

j=1

wje−β‖zi−zj‖2
2 .

Since k = n there are a maximum number of clusters in the mixture! .
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Our bound

Idea: penalize the cardinality of the mixture to control the number of
clusters

p∗ := max
w≥0, 1T w=1

n∑
i=1

log

 n∑
j=1

wjKij

− λ||w ||0
where K (Kij = e−β‖zi−zj‖2

2 ) is a kernel matrix that can be
pre-computed.

Our bound: p∗ ≤ p̂, with

p̂ := max
1≤k≤n

max
w≥0, 1T w=1

n∑
i=1

log

 n∑
j=1

wjKij

− λ

wk
.

For every k , an SOCP!
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Numerical results: comparison with soft k-means
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Soft k-means : k = 4
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Numerical results: comparison with soft k-means
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Soft k-means : k = 8
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Numerical results: comparison with soft k-means

k-means can’t find all the clusters!
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Soft k-means : k = 10
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Numerical results: comparison with soft k-means
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Proposed method : λ = 1000
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Numerical results: comparison with soft k-means
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Proposed method : λ = 100
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Numerical results: comparison with soft k-means

λ = 45 finds all the correct clusters!

−1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Proposed method : λ = 45
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Extensions

This strategy can be applied to almost every cardinality problem. Not
only in the probability simplex!

I Basis Pursuit Denoising:

p∗ = min
w
‖w‖0 : ‖X T w − y‖2 ≤ ε. (2)

I Sparse Support Vector Machines:

p∗ = min
w,b
‖w‖0 : yi (wT xi + b) ≥ 1, i = 1, . . . ,m.

The corresponding lower-bound approximations p̂ can be solved
using n convex programs.

I Provides a lower and upper-bound on p∗ (`1 formulations are
neither a lower nor an upper bound).

I In sparse recovery (2), it provably outperforms its `1 variant
LASSO with Gaussian iid design.

I Preprints and code: www.eecs.berkeley.edu/˜mert.
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Low-rank LP

Consider a linear programming problem in n variables with m
constraints:

min
x

cT x : Ax ≤ b,

with A ∈ Rm×n, b ∈ Rm, and such that
I Many different problem instances involving the same matrix A

have to be solved.
I The matrix A is close to low-rank.

I Clearly, we can approximate A with a low-rank matrix Alr once ,
and exploit the low-rank structure to solve many instances of the
LP fast.

I In doing so, we cannot guarantee that the solutions to the
approximated LP are even feasible for the original problem.
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Approach: robust low-rank LP

For the LP
min

x
cT x : Ax ≤ b,

with many instances of b, c:
I Invest in finding a low-rank approximation Alr to the data matrix A,

and estimate ε := ‖A− Alr‖.
I Solve the robust counterpart

min
x

cT x : (Alr + ∆)x ≤ b ∀∆, ‖∆‖ ≤ ε.

I Robust counterpart can be written as SOCP

min
x,t

cT x : Alrx + t1 ≤ b, t ≥ ‖x‖2.

I We can exploit the low-rank structure of Alr and solve the above
problem in time linear in m + n, for fixed rank.
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Motivation: topic imaging

Task: find a short list of words that summarizes a topic in a large
corpus.
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Hover on the heatmap to read news. Copyrighted, The Regents of University of California 2012. All rights reserved.

The Image of "climate change" on People's Daily (China)

staircase http://atticus.berkeley.edu/guanchengli/pd_climate_change/

1 of 1 12/29/12 11:23 AM

Image of topic “Climate change” over time. Each square encodes the size of
regression coefficient in LASSO. Source: People’s Daily, 2000-2011.

Interactive plot at
http://atticus.berkeley.edu/guanchengli/pd_climate_change/
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Low-rank LASSO

In many learning problems, we need to solve many instances of the
LASSO problem

min
w
‖X T w − y‖2 + λ‖w‖1.

where
I For all the instances, the matrix X is a rank-one modification of

the same matrix X̃ .
I Matrix X̃ is close to low-rank (hence, X is).

In the topic imaging problem:
I X̃ is a term-by-document matrix that represents the whole corpus.
I y is one row of X̃ that encodes presence or absence of the topic

in documents.
I X contains all remaining rows.
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Robust low-rank LASSO

The robust low-rank LASSO

min
w

max
‖∆‖≤ε

‖(Xlr + ∆)T w − y‖2 + λ‖w‖1

is expressed as a variant of “elastic net”:

min
w
‖X T

lr w − y‖2 + λ‖w‖1 + ε‖w‖2.

I Solution can be found in time linear in m + n, for fixed rank.
I Solution has much better properties than low-rank LASSO, e.g.

we can control the amount of sparsity.
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Example
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Rank-1 LASSO (left) and Robust Rank-1 LASSO (right) with random data. The
plot shows the elements of the solution as a function of the l1-norm penalty
parameter.

I Without robustness (ε = 0), the cardinality is 1 for 0 < λ < λmax,
where λmax is a function of data. For λ ≥ λmax, w = 0 at optimum.
Hence the l1-norm fails to control the solution.

I With robustness (ε = 0.01), increasing λ allows to gracefully
control the number of non-zeros in the solution.
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Numerical experiments: low-rank approximation

Are real-world datasets approximately low-rank?

Runtimes1 for computing a rank-k approximation to the whole data matrix.

1Experiments are conducted on a personal work station: 16GB RAM, 2.6GHz quad-core Intel.
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Multi-label classification

In multi-label classification, the task involves the same data matrix X ,
but many different response vectors y .

I Treat each label as a single classification subproblem (one-vs-all).
I Evaluation metric: Macro-F1 measure.
I Datasets:

I RCV1-V2: 23,149 training documents; 781,265 test documents;
46,236 features; 101 labels.

I TMC2007: 28,596 aviation safety reports; 49,060 features; 22
labels.
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Multi-label classification

Plot performance vs. training times for various values of rank
k = 5, 10, . . . , 50.

TMC 2007 data set RCV1V2 data set

In both cases, the low-rank robust counterpart allows to recover the
performance obtained with full-rank LASSO (red dot), for a fraction of
computing time.
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Topic imaging

I Labels are columns of whole data matrix X̃ .
I Compute low-rank approximation of X̃ when a column is

removed.
I Evaluation: report predictive word lists for 10 queries.
I Datasets:

I NYTimes: 300,000 documents; 102,660 features, file size is 1GB.
Queries: 10 industry sectors.

I PUBMED: 8,200,000 documents; 141,043 features, file size is
7.8GB. Queries: 10 diseases.

I In both cases we have pre-computed a rank k (k = 20)
approximation using power iteration.
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Topic imaging

The New York Times data: Top 10 predictive words for different queries
corresponding to industry sectors.

PubMed data: Top 10 predictive words for different queries corresponding to
diseases.
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