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Generic sparse optimization problem

Optimization problem with cardinality penalty:

min L(X"w) + A||wllo.
w

Data: X € R™"™.

Loss function L is convex.

Cardinality function ||w||o := |{j : w; # 0}] is non-convex.
A is a penalty parameter allowing to control sparsity.

v

v

v

v

v

Arises in many applications, including (but not limited to) machine
learning.

v

Computationally intractable.
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Sparse and Robust

Classical approach Optmization

A now classical approach is to replace the cardinality function with an
l-norm:

Sparse Optimization
min L(X"w) + A||wl|s.
w

Pros:
» Problem becomes convex, tractable.
» Many "recovery” results available.

Cons:
» Is neither a lower nor an upper bound in general.
» Fails completely in some cases (see next).



The /1-norm may fail

The /i-norm approach may fail to allow to control the level of sparsity

of the solution.

» When the variable is restricted to be a discrete distribution , the

l-norm is constant, and the level of sparsity cannot be controlled.

» |f the data matrix X is low-rank , the cardinality of the solution

may be also hard to control.

Example:
LASSO with rank-one data matrix

min [[(Gp")w — yllz + Alwll,

with p € R”, g, ¥ € R™. Solution for
A > 0 has cardinality one or zero.

Coordinates of optimal w vs. A
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Sparse and Robust

Sparse Probability Optimization Opimization
Generic sparse probability optimization problem:

p*:=min LX"w)+ Nwllo : w>0, 17Tw=1.
w

Sparse probabilties

» [1-norm approach fails to control sparsity.
» Applications: index fund construction, examplar-based clustering.



Sparse and Robust

Proposed Approach Optimization

Basic bound:
wilt < [[wllo||wllo-

Norm-ratios approach

Yields a lower bound on the original problem:

*

p* = min LX'w)+XA|wlo : w>0, 17w =1
w

llwlls
[wlloo

> p:=min L(X"w)+ A cw>0, 1Tw=1.
w

Fact: The lower bound can be computed as a sequence of n
uncoupled convex problems:

p= min min L(XTW)Jr/\l cw>0, 1Tw=1.
1<i<n w w;
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Checking approximation quality o Cimiation

Let w be a solution to

p= min min  L(X"w)+ A
Tsisn w: w>0,1 Tw=1 VV’ Norm-ratios approach
We then have the bounds:
LXT W)+ N|[w]o > p* > p. (1)

» The quality of approximation can be easily checked when the n
convex programs are solved.

» In contrast, ¢1 regularization does not have such a property since
it is not a lower bound or upper bound. Known guarantees are
not checkable in polynomial time, e.g., Restricted Isometry
Property (Candés & Tao, 2005).
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Sparse and Robust

Theoretical results for a special case Optimization

Problem: recover the sparsest probability measure given moment
constraints:

p=min [wlo : X'w=y, w>0, 1Tw=1,

Recovery

where y € R™ is given. This is a special case of our generic problem,
with L the indicator of the affine set {w : X"w = y}.

Our bound is p* > p = 1/(maxi<i<n qi), where each g; is the optimal
value of a linear program:

g:=maxw : X' w=y, w>0, 17w=1.
w
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Recovery result: geometric property P ptmisaton

Assume that the unique solution of p* is given by w*; let S be the
support of w*, and let S; be its complement. If Conv(Xs,) does not
intersect an extreme point of Conv(Xs) then w = w*, i.e. the
approximation is exact.

Recovery

Consequence: For X ~ iid Gaussian, this happens with very high
probability if nis O(]|w*||o)-
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Sparse and Robust

Application: Index Tracking Optimization

Given a time-series matrix of prices of n assets over m days

X = [x,..., Xm], reconstruct a given financial index time-series
y1,...,¥m as a convex combination of n assets using as few assets as
possible:
2 )
p* _ min HXTW_yH +>\HWHO Applications
w>0, 1T w=1 2

The -norm approach fails in this case.

Proposed approach:
2 A
“*>p= min  min ‘XT - ) hay
p=p 1S/'|§n wzo,1ITw:1 ‘ v y‘2+ w;

Solved by n second-order cone programs.
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Numerical results

30 assets in 197 trading days, 2007-2008.
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Sparse and Robust

Application: clustering Optimization

Maximum-likelihood mixture fitting

Given data {z, ..., z,} of d-dimensional vectors, consider fitting a
parametric iid distribution py via maximizing the log-likelihood over the
parameter 0

Applications

1 n
max - ; log ps(2).

Consider a mixture of Gaussians distribution with k centers:
K 2
—Bllz—n;
pW,m,-u,Hk(Z) ~ Z w;e | illz,
j=1

with unknown mixture weights vectors w € R, w > 0, 17w = 1,
unknown mean vectors p; € RY and fixed known covariances %/dxd.

The problem of fitting the mixture distribution becomes:

k

1 o _Bllz—u2

max _ E |Og§ ije Blizi /141”2.
i=1 j=1

Wi,k N4

This is a non-convex problem and is very hard to solve.



Sparse and Robust

Convex clustering Opimization

The examplar-based model

Examplar-based model (Lashkari & Golland, NIPS, 2008): assumes
that each cluster mean y; is equal to some data point (“example”) z;.

Applications

The problem is now convex:

1 < : _Bllzi—z |2
max — Y logy we Il
=

w>0,1Tw=1 N P

Since k = nthere are a maximum number of clusters in the mixture! .
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Sparse and Robust
OUI’ bOU nd Optimization

Idea: penalize the cardinality of the mixture to control the number of
clusters

n n

pri= max > log | > wkK;| - Xlwllo
w>0,1Tw=1 4 v

i=1 j= Applications

where K (Kj = e~#1zi=2113) is a kernel matrix that can be
pre-computed.

Our bound: p* < p, with

n n
P := max max log wiKi| — i
iR Wi

j=1

1<k<n w>0,1Tw=1 4 p
> =

For every k, an SOCP!



Sparse and Robust

Numerical results: comparison with soft k-means Optimization

50
Sparse probabilities
Norm-ratios approach
Recovery

4r X x Applications

( ) x
8r x Robust low-rank LP

Low-rank LASSO

X x x
2r x
.
nl
.
XO ' ®) R
X X u
ok Z
X X
.
-2 -1 0 1 2 3 4

Soft k-means : k=4
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Sparse and Robust

Numerical results: comparison with soft k-means Optimization
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Soft k-means : k=8
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Sparse and Robust

Numerical results: comparison with soft k-means Optimization

k-means can't find all the clusters!

5- Sparse probabilities

Norm-ratios approach
Recovery
Applications
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Soft k-means : k = 10

20/36



. ; . . S| d Robust
Numerical results: comparison with soft k-means D Ontimization
151
x Sparse probabilities
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1 X% X Recovery
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Proposed method : A = 1000
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Numerical results: comparison with soft k-means
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Proposed method : A = 100

Sparse and Robust
Optimization

Sparse probabilities
Norm-ratios approach
Recovery
Applications

Extensions

Robust low-rank LP
Low-rank LASSO

22/36



Numerical results: comparison with soft k-means

X = 45 finds all the correct clusters!

Proposed method : A = 45
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Extensions

This strategy can be applied to almost every cardinality problem. Not

only in the probability simplex!
» Basis Pursuit Denoising:

pr=min Wl : [X"w—ylz <e.
» Sparse Support Vector Machines:

p*=min [[wlo : yiw'xi+b)>1, i=1,....m.
w,

The corresponding lower-bound approximations p can be solved
using n convex programs.

» Provides a lower and upper-bound on p* (¢; formulations are
neither a lower nor an upper bound).

» In sparse recovery (2), it provably outperforms its ¢1 variant
LASSO with Gaussian iid design.

» Preprints and code: www.eecs.berkeley.edu/~mert.

(2)

Sparse and Robust
Optimization

Extensions
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Low-rank LP Spars and kst

Consider a linear programming problem in n variables with m
constraints:
min ¢'x : Ax < b,
X

with A € R™", b € R™, and such that

» Many different problem instances involving the same matrix A
have to be solved.

Robust low-rank LP

» The matrix A is close to low-rank.

» Clearly, we can approximate A with a low-rank matrix A, once,
and exploit the low-rank structure to solve many instances of the
LP fast.

» In doing so, we cannot guarantee that the solutions to the
approximated LP are even feasible for the original problem.
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Sparse and Robust

Approach: robust low-rank LP Optimization
For the LP
min ¢'x : Ax < b,

with many instances of b, c:

» Invest in finding a low-rank approximation A, to the data matrix A,
and estimate € := ||A — Ay

» Solve the robust counterpart R P

min c'x : (Ar+A)x<b VA, |A<e
X

» Robust counterpart can be written as SOCP

min ¢'x : Aux+11<b, t> x|

X,t

» We can exploit the low-rank structure of A, and solve the above
problem in time linear in m + n, for fixed rank.



Motivation: topic imaging P ptmisaton
Task: find a short list of words that summarizes a topic in a large
corpus.

Th s of it e o e’ sy Coin) Sparse probabilties
T Norm-ratios approach

Recovery

Applications

Extensions

Robust low-rank LP
Low-rank LASSO

Image of topic “Climate change” over time. Each square encodes the size of
regression coefficient in LASSO. Source: People’s Daily, 2000-2011.

Interactive plot at
http://atticus.berkeley.edu/guanchengli/pd_climate_change/
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Low-rank LASSO o Cimiation
In many learning problems, we need to solve many instances of the
LASSO problem
min [|X"w = yllz + || wl]s.
where

» For all the instanc~es, the matrix X is a rank-one modification of
the same matrix X.

Low-rank LASSO

» Matrix X is close to low-rank (hence, X is).

In the topic imaging problem:
» Xisa term-by-document matrix that represents the whole corpus.

» yis one row of X that encodes presence or absence of the topic
in documents.

» X contains all remaining rows.
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Robust low-rank LASSO P st
The robust low-rank LASSO

min max (X + ) w — yll2 + Al|wl];

is expressed as a variant of “elastic net”:

min 7w — llo + A wls + ]| wll

Low-rank LASSO

» Solution can be found in time linear in m 4+ n, for fixed rank.

» Solution has much better properties than low-rank LASSO, e.g.
we can control the amount of sparsity.
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Sparse and Robust

Example Optimization

Low-rank LASSO

Rank-1 LASSO (left) and Robust Rank-1 LASSO (right) with random data. The
plot shows the elements of the solution as a function of the /;-norm penalty
parameter.

» Without robustness (e = 0), the cardinality is 1 for 0 < A < Amax,
where Ana is @ function of data. For A > Anax, w = 0 at optimum.
Hence the /i-norm fails to control the solution.

» With robustness (e = 0.01), increasing X allows to gracefully
control the number of non-zeros in the solution.
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Numerical experiments: low-rank approximation

Are real-world datasets approximately low-rank?

[Dataset TMC2007 RCVIV2 NYTIMES PUBMED

n 28,596 23,149 300,000 8,200,000
d 49,060 46,236 102,660 141,043

Time () | 0xs1/0: | Time (s) | 0xs1/01 | Time (8) | 0xg1/os | Time (5) | 0xs1/0s
k=5 T 0.1539 1 0.2609 a7 0.4095 87 0.4072
k=10 1 0.1196 1 0.2100 50 0.3075 451 0.3494
k=15 1 0.1010 1 0.1907 59 0.2709 520 0.3041
k=20 2 0.0958 2 0.1769 73 0.2432 589 0.2793
k=25 3 0.0909 3 0.1662 87 0.2312 687 0.2680
k=30 4 0.0880 4 0.1615 93 0.2180 794 0.2580
k=35 4 0.0858 4 0.1555 114 0.2098 932 0.2477
k=40 5 0.0836 5 0.1507 130 0.2012 1150 0.2354
k=45 6 0.0826 5 0.1475 142 0.1932 1208 0.2255
k = 50 7 0.0811 7 0.1430 158 0.1850 1862 0.2209

Runtimes’ for computing a rank-k approximation to the whole data matrix.

! Experiments are conducted on a personal work station: 16GB RAM, 2.6GHz quad-core Intel
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Sparse and Robust

Multi-label classification Optimization

In multi-label classification, the task involves the same data matrix X,
but many different response vectors y.

» Treat each label as a single classification subproblem (one-vs-all). Lowfark LASSO

» Evaluation metric: Macro-F1 measure.
» Datasets:

» RCV1-V2: 23,149 training documents; 781,265 test documents;
46,236 features; 101 labels.

» TMC2007: 28,596 aviation safety reports; 49,060 features; 22
labels.

33/36



Sparse and Robust

Multi-label classification Optimization
Plot performance vs. training times for various values of rank
k=5,10,...,50.
TMC 2007 data set RCV1V2 data set
: e : [ —
f o ;
81 * 525 x3
a0 l' Low-rank LASSO
r 62 N
T L .
i L
6 i " ?
. e | ] wsld /. --t;;”
B 0 - i R

Training Time (seconds)

In both cases, the low-rank robust counterpart allows to recover the
performance obtained with full-rank LASSO (red dot), for a fraction of

computing time.
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Sparse and Robust

Topic imaging Optimization

» Labels are columns of whole data matrix X.

» Compute low-rank approximation of X when a column is
removed.

» Evaluation: report predictive word lists for 10 queries.
» Datasets:
> NYTimes: 300,000 documents; 102,660 features, file size is 1GB.
Queries: 10 industry sectors.
» PUBMED: 8,200,000 documents; 141,043 features, file size is
7.8GB. Queries: 10 diseases.
» In both cases we have pre-computed a rank k (k = 20)
approximation using power iteration.

Low-rank LASSO



Sparse and Robust

Topic imaging Optimization

technology | tourism | acrosp: defence financial | he: )t gaming
car government company tourist boeing afghanistan | company health oil game
vehicle farm computer hotel aircraft attack million care prices gambling
auto farmer system bu‘si.ness space itnl‘ces stock cost gas casino Sparse probabilities
sales food web visitor program military market patient fuel player
. . N V Norm-ratios approach
model water information | economy jet gulf money corp company online
driver trade internet travel plane troop business al_gore barrel computer Recovery
ford land american tour nasa aircraft firm doctor gasoline tribe Applications
driving crop job local flight terrorist fund drug bush money Extensions
engine economic product room airbus president investment medical energy playstation
consumer country software plan military war economy insurance opec video

Robust low-rank LP
The New York Times data: Top 10 predictive words for different queries Lowrank LASSO
corresponding to industry sectors.

arthritis asthma cancer depression | diabetes | gastritis hiv leukemia igrai ki
joint bronchial tumor effect diabetic gastric aid cell headache | treatment
synovial asthmatic treatment treatment insulin h.pylori infection acute headaches effect
infection children carcinoma disorder level chronic cell bone-marrow pain nerve
chronic | respiratory cell depressed glucose ulcer hiv-1 leukemic disorder syndrome
pain symptom | chemotherapy pressure control acid infected tumor women disorder
treatment allergic survival anxiety plasma stomach antibodies remission chronic neuron
fluid infant risk symptom diet atrophic risk t.cell duration receptor
knee inhalation dna drug liver antral positive antigen symptom alzheimer
acute airway malignant neuron renal reflux transmission | chemotherapy gene response
therapy fevl diagnosis response normal | treatment drug expression therapy brain

PubMed data: Top 10 predictive words for different queries corresponding to
diseases.
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