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Direct problem

z = Dq(LY)

z: observations (e.g. 2D signal of size M = M; x Mj)
y: original signal (unknown of size N)

L: linear operator (matrix of size M x N)

D,: perturbation of parameter «

Objective: inverse problem

Find an estimation j of i from observations z.
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FRAME REPRESENTATION

Frame coefficients (X)

Original (i)

» X € RX: Frame coefficients of original image 7 € RN

» F*: RK — RN : Frame synthesis operator such that
I(v,7) €]0, +oo[?, vld < F* o F < 7Id

(tight frame when v =7 = v)

y=F%

[L. Jacques et al., 2011]
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GENERAL CONTEXT

ooe

ANALYSIS APPROACH VS. SYNTHESIS

When frame decompositions are considered, the problem can
be formulated under a:
Synthesis Form (SF):

S

minimize Z fr(LeFx) + Z gs(x)

xeRK —1

Analysis Form (AF):

R S
minimize Z fr(Lyy) + Z gs(Fy).
r=1 s=1

yERN

AF is a particular case of SF [Chaari et al,, 2009].

Equivalence when F is an orthonormal transform.
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PROXIMAL APPROACHES

The proximity operator of ¢ € I'g(#) is defined as
prox,: H — H:u— argrréi}}% o — u|® + ¢(v).
v

Remark: if C is a nonempty closed convex set of H, and ¢
denotes the indicator function of C, i.e., (Yu € H) tc(u) = 0 if

u € C, 00 otherwise, then, prox, _ reduces to the projection Ilc
onto C.

eLetyp €I'g(G), L: H — G a bounded linear operator. Suppose
LL* = xI, for some x € |0, +oco[. Then

prox,, =1 —I—X_lL*(proxw —I)L|
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Minixmize Z]] fi(x)

» When | = 2: Forward-Backward algorithm [Figueiredo and
Nowak, 2003][Bect et al., 2004][Daubechies et al., 2004][Combettes and Wajs,
2005][Chaux et al., 2007][Beck and Teboulle, 2009], Douglas-Rachford
algorithm [Lions and Mercier, 1979][Combettes and Pesquet, 2007]

» When | > 2: Parallel ProXimal Algorithm (PPXA) [Combettes

and Pesquet, 2008]
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PPXA+: minimize Ejzlf](L]u)
Initialization

(\'F,‘\)K,x/ € {0. 1 [/. (:’vu,‘\)1</'</ S }0. +00 [/ ,
(M)nen  asequence of reals,
0

(2

D € G, (0} hsjss € (G,

2
ulll = argmin, ey Z;,l wj||Liu — Z,"”JH

| Foreveryje{l,..., J}, (n}”J,‘)”;I a sequence of reals,
Forn=0,1,...

For j=1,...,]

n_ N1 1] [1]
L p" =proxa—qy, (1 —¢)z" +ep ) +4;
wj
) 2
"l = arg min, ey ij':l wjl|Lju — p]["] |
For j=1,...,]

| z][nﬂ] = z][n] + A (L2 — gy — p][n])
u[”"‘” — u[”} + )\n(c[”] —_ u[”})
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PPXA+: minimize Ejzlf](L]u)
Initialization

(\'F,‘\)K,x/ € {0. 1 [/. (:’vu,‘\)1</'</ S }0. +00 [/ ,
(M)nen  asequence of reals,
0

(2

D € G, (0} hsjss € (G,

2
ulll = argmin, ey Z;,l wj||Liu — Z,"”JH

| Foreveryje{l,..., J}, (n}”J,‘)”;I a sequence of reals,
Forn=0,1,...
For j=1,...,]
n [n]
L pi~ = +a;
clnl —
For j=1,...,]

L5 =2 A (L — ul) - p)
u[”"‘” = u[”} + )\n(c[”] — u[”})
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PPXA+ CONVERGENCE

[Pesquet and Pustelnik, 2012]

The weak convergence of the sequence (u!"),cy to a minimizer
of 2]1'21 fj o Lj is established under the following assumptions:

1. 0 esri{(Liv—w1,...,.Liv—wy) |v e H,wn € domfy,...,wj €

domfj},
2. There exists A €]0,2[ such that (Vn € N), A < A1 < Ay,
3. Foreveryje {1,...,]}, a][”] are absolutely summable

sequences in H.
4. Z]j':l wiL7L; is an isomorphism. (PPXA+ iterations can be
slightly modified to avoid this assumption)
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PPXA+: A GENERAL FRAMEWORK

1. PPXA [Combettes, Pesquet, 2008, Algorithm 3.1] iS a special case of
PPXA+ corresponding to the case whene¢; = --- = ¢ =0,
gl = :g]:’H,andLl :"':L]:Id.

2. The SDMM algorithm derived from DR in [Setzer et al, 2010] is
a special case of PPXA+ corresponding to the case when
€ :...:€]:0,w1:---:w],)\nzland

1] —
(@ i<j<g = (0,---,0).
3. Algorithm introduced in [Attouch and Soueycatt, 2009] is a special

case of PPXA+ corresponding to the case when
«

(=== 1+a,(a][n})1gj§,;(0,... ,0).
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OTHER PROXIMAL APPROACHES: Minimize E]]. fi(Ljx)
X

» Parallel ProXimal Algorithm + (PPXA+) [Pesquet, Pustelnik, 2012]
In the same spirit as PPXA, requires to compute each
f- Quadratic minimizations need to be performed in
the initialization step and in the computation of one
intermediate variables < invert a large-size linear
operator.
» Generalized Forward-Backward [Raguet et al., 2012]
» Primal-Dual approaches:
» M+SFBF [Bricefio-Arias, Combettes, 2011]
Requires to compute each  and algorithm stepsize
dependent on ||L;.
» M+LFBF [Combettes, Pesquet, 2011]
Possibility that one function f;, is Lipschitz gradient;
requires to compute the gradient of f;, and each 5 for
j # jo. The algorithm stepsize is dependent on ||L;|.
» FB based algorithms [Chambolle, Pock,
2011],[V1,2013],[Condat,2013]
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CONSTRAINED FORMULATION

R x € (Cq,
Minimize > (T,x) s.t.
xeH Zé]( )

x € Cg,

where
> H: real Hilbert space,

» T'o(H): class of proper, L.s.c, convex functions from # to

|—00, +],
» (Vse{l,...,S}), ,
» (Vs € {1,...,5}), Cs is a nonempty closed convex subset of R,
» (Vref{l,...,R}), ,
» (Vref{l,...,R}), g (RN).
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CONSTRAINED FORMULATION

Forn =0,1,...
X — Zf:l wrl'V] + E§=1 wsgs[”]
For r=1,...,R Combettes,Bricefio-Arias,2011
wkl]y _ u)[?l] o v)[rz]
w[n] UV] + LIV]

[n+1]
1
For s=1,...,S

L Update u

wWs Tn
AT =T — (D)
A =+ ()
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CONSTRAINED FORMULATION

|(¥x € H) xeC, & h(Hx)<ns

(Vu € R9) ueC < hu)<ng

L
(Vi = [(u) T .. w7 e RO) weC o Zh“)(u@) <n
=1
size QM size Q(1)

— Any closed convex subset C can be expressed in this way by
settingn =0,L =1and h = dc.



PROXIMAL TOOLS

000@000

EPIGRAPHICAL PROJECTION

Forevery u = [(u)T ... (uB) 1T € RQ,
N—— ~——

size Q1) size QL)

ueC < Zh (u®)

By introducing now the auxiliary vector

e RL,

Z%:l <n,
nee < {(We{l,...,L})

h“)(u(‘)) <
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EPIGRAPHICAL PROJECTION

(u,) € E

eV
ueCs {

where
» V denotes a closed half-space such that:

V={ceRl |1/ <n}

» E is the closed convex set associated to the epigraphical
constraint:

E={(u,0) eRexRE|(vee{1,...,L}) (uD, ") € epin®}
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(u,) € E
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where
» V denotes a closed half-space such that:

V={ceRl |1/ <n}

» E is the closed convex set associated to the epigraphical
constraint:

E={(u,0) eRexRE|(vee{1,...,L}) (uD, ") € epin®}

K
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EPIGRAPHICAL PROJECTION

> functions defined as:

(Vee{1,....L}) (vu® e RQ”)  hOu®) = +O|u®)

where 79 €]0, +o0].
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EPIGRAPHICAL PROJECTION

> functions defined as:

(Ve {1,...,L}) (W e RQ“’)) OOy = +O)u®)

where 79 €10, +o0].

» Epigraphical projection: for every (u®, ")) € R x R

(U(Z), )7 if ||u(6)|| < OR
Hepipen U, 1) = £(0,0), if u® ] < —r O,
oD (O 7@, otherwise,
1 70
- -
where a 15 (D)2 (1+ TGl )

7/34
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EPIGRAPHICAL PROJECTION

> defined as:
(w e{l,... ,L}) (vUUf) = (UEm), o € RQ“))

| (&m)
19 (u®) = max { \u(é m)| |1<m< Q(e)}
T K

Mepin (u®, ")) has a closed form [G. Chierchia et al., 2012].
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RECONSTRUCTION PROBLEM: PET

Coincidence
Processing Unit.

Sinogram/
Listmode Data

&
i

Annihilation Tmage Reconstruction

» High level of noise

» Large amount of data

19 /34
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RECONSTRUCTION PROBLEM

z = Pa(AY)

where
» P,: Poisson noise of scale parameter «

» A: projection matrix

20/3
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RECONSTRUCTION PROBLEM

Our objective is:

T
min ZDKL(AF;"X,Z) + KtV (Fix) + wc(x) + 0 ||x]|g,
x€RK =1

y=Fx=(Fix)1<<T

where k > 0,9 > 0 and
» Dk is the Kullback-Leibler divergence
> tv represents a total variation term
» c is the indicator function of a closed convex set C

> ||x||¢, denotes the ¢1-norm.
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RECONSTRUCTION PROBLEM
Our objective is:

T
min Y D (AFfx,z) + £ tv(F{x) + tc(x) + 9 [|xlg,
xeRK =1

y=Fx=(Fix)1<<T

where k > 0,9 > 0 and
» Dk is the Kullback-Leibler divergence

> tv represents a total variation term = closed form in [Combettes
and Pesquet, 2008]

» .c is the indicator function of a closed convex set C = projection
onto C

> |lx|l¢, denotes the ¢1-norm. = soft thresholding [Chaux et al., 2007]

20/3
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RECONSTRUCTION PROBLEM

Our objective is:

T
min 3" Diw(AFfx.2) + tv(FfR) + ic(x) + 0 [l
xeRK =1

y=Fx=(Fix)1<<T

where , and
» Dk is the Kullback-Leibler divergence
> tv represents a total variation term
» c is the indicator function of a closed convex set C

> ||x||¢, denotes the ¢1-norm.
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000

z=Ay+b
» ¥: original image in [0, 255]N
— assumed to be after some appropriate transform,
» A € RMxN. ,
» b € RM: realization of a ,
» z: degraded image of size M.

N
()
h g
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IMAGE RESTORATION WITH MISSING SAMPLES

N
¥ € Argmin ||Ay — z|* s.t. Z Y@, <n
(=1

ye[0,255]N
where
> Y(Z) = (Wé,n(y(g) - y(n)))ne/\/e
» p>1andn > 0.
Particular cases:
» 0 —TV: , wen = 1, and Ny horizontal and vertical
neighbours,
> oo —TV: , wen = 1, and Ny horizontal and vertical
neighbours,
» /, — NLTV: , Wp p AS N [Foi, Boracchi, 2012] and Ay as in
[Gilboa, Osher, 2007],
» /oo — NLTV: , We.p AS N [Foi, Boracchi, 2012] and Ay as in

[Gilboa, Osher, 2007].
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IMAGE RESTORATION WITH MISSING SAMPLES

Argmin |[Ay — z|* s.t.
Y

S YO, <
y € [0,255)N

(Vee{1,....N}) [[YO, <
Argmin ||Ay — z|* s.t. ZQI:I <n
v y € [0,255)N
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IMAGE RESTORATION WITH MISSING SAMPLES

—1o§ -10
-20 \ -20
-30 =30 Tl
-40 . ek ! R | AN S SN Skt ot
2 4 6 8 10 100 200 300 400
6H-TV lo-TV
-25F
BON ol
=350 N( el - -35
-40 . 40
.- —-45 -.__\.,
2 4 6 8 200 400 600
£-NLTV loo-NLTV.

Figure: Comparison between eplgraphlcal method (solid line) and
Sl

direct method (dashed line): ”/7

St dB vs time.

N
()
h g
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IMAGE RESTORATION WITH MISSING SAMPLES

GPSR
SNR: 17.03 dB

Culicoidae Degraded

0H-T
SNR:20.80 dB SNR:20.25dB SNR:22.62dB SNR:22.38 dB

=] 5
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IMAGE RESTORATION WITH MISSING SAMPLES

GPSR
SNR: 20.26 dB

Culicoidae Degraded

i s lad

0H-TV oIV /-NLTV E -NLTV
SNR: 23.18 dB SNR. 22.77dB SNR:24.18 dB SNR:24.14 dB
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SEISMIC DATA ACQUISITION

seismic truek

_~geophone

Figure: Principles of seismic wave propagation, with reflections on
different layers, and data acquisition. Solid blue: primary; dashed
red: multiple.

26 /34
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OBSERVATION MODEL

Z(n) — S(n) _|_ y(n)

where
» ne€{0,---,N — 1}: the time index
>z = (Z(”))0§”<Ni the observed data combining

1. the primary y = (y™)o<,<n (signal of interest, )

2. the multiples (s)o<,<n (sum of undesired reflected
signals). We assume that a template (1 )o<,<y (for the
disturbance signal) is and that

s(m) — Eg’:}f% 1) (p)(=p)

We can rewrite the problem as

z=RI+y




MAP ESTIMATION - FILTERS h

Assumptions:

1. x = Fy (where F € RV*N denotes the analysis operator) is a
realization of a random vector, whose probability density
function (pdf) is given by (Vx € RN)  fx(x) o exp(—p(x))

2. his arealization of a random vector, whose pdf is

expressed as (Vi € RNP)  f;(h) o exp(—p(h)), and which
is independent of x.

MAP estimation of &

inimize - (F(z — Rh h).
minimize »(F(z — Rh)) + p(h)

o ©: term taking into account the statistical
properties of the basis coefficients
e p: prior informations that are available on h.
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CONVEX CONSTRAINTS ON THE FILTERS

Assumption: filters are varying along the time index n.

(V(np) BV (p) kM (p) <,

The associated closed convex set is defined as

C

{ne RN [(n,p) (KD (p) — K (p)] < 2}

29 /34
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CONVEX CONSTRAINTS ON THE FILTERS

Assumption: filters are varying along the time index n.

(V(np) BV (p) kM (p) <,

The associated closed convex set is defined as

C

{ne RN [(n,p) (KD (p) — K (p)] < 2}

Minimization problem to be solved

mihréié{}gze ¢(F(z — Rh)) + p(h) + e, (h) + e, (h).

Use of to perform the minimization.

29 /34
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RESULTS: CONTEXT

» N = 2048; filter length: P = 14 (noise-free case), P = 10
(noisy case)

PPXA+ parameters: \; = 1.5,

w1 = 10000/N,w2 = wl/P,w3 = W4 = 10&)2;

Iteration number: 10000 (stopping criterion at iteration i if
”h[i—i-l] _ h[i}H < 10—5),.

» Functions choice: g = |- | and p = pl| - ||?, » = 0.01;

v

v

v

Basis choice: Symlet wavelets of length 8 over 3 resolution
levels.

30 /34
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RESULTS: NON NOISY CASE

Observed signal z
Original signal y
Model

Original multiple s
Estimated signal v/
Estimated multiples s

31/34
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NOISY CASE

1 Iy | ﬁ\ |

| e
[ e‘u\ I i
Ny

\Hm
‘H‘,“v RN H‘\’
—oal | ‘\‘ \ “”w u \M | ‘\ \ f‘v ‘~ \“ | ‘ ‘U Ag | V

H o Il Reference signal y and
>l " A B estimated signal i/

L L L
1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

Multiples s and
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CONCLUSION

CONCLUSION

» Proximity operators and proximal methods are shown to
be very flexible tools for solving variational problems
encountered in inverse problems.

» The convex criterion can be composed of various terms
modelizing data fidelity (often linked to noise statictics)
and also prior information, possibly formulated under
convex (hard) constraints.

» Frames can be used to introduce prior information.

» Many other applications have been investigated (pMRI,
compressive sensing, satellite imaging, stereovision,
microcopy imaging,...).

Future work:
» Use of these methods in statistical learning.
» Extension to the non convex case.
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