Some applications of proximal methods

Caroline CHAUX

Joint work with P. L. Combettes, L. Duval, J.-C. Pesquet and N. Pustelnik
LATP - UMR CNRS 7353, Aix-Marseille Université, France
OSL 2013, Les Houches, 7-11 Jan. 2013

Direct problem

\qquad

Direct problem

$$
z=
$$

- z : observations (e.g. 2D signal of size $M=M_{1} \times M_{2}$)

Direct problem

$$
z=\bar{y}
$$

- z: observations (e.g. 2D signal of size $M=M_{1} \times M_{2}$)
- \bar{y} : original signal (unknown of size N)

Direct problem

$$
z=\quad L \bar{y}
$$

- z : observations (e.g. 2D signal of size $M=M_{1} \times M_{2}$)
- \bar{y} : original signal (unknown of size N)
- L : linear operator (matrix of size $M \times N$)

Direct problem

$$
z=\mathcal{D}_{\alpha}(L \bar{y})
$$

- z : observations (e.g. 2D signal of size $M=M_{1} \times M_{2}$)
- \bar{y} : original signal (unknown of size N)
- L: linear operator (matrix of size $M \times N$)
- \mathcal{D}_{α} : perturbation of parameter α

Direct problem

$$
z=\mathcal{D}_{\alpha}(L \bar{y})
$$

- z : observations (e.g. 2D signal of size $M=M_{1} \times M_{2}$)
- \bar{y} : original signal (unknown of size N)
- L: linear operator (matrix of size $M \times N$)
- \mathcal{D}_{α} : perturbation of parameter α

Objective: inverse problem

Find an estimation \hat{y} of \bar{y} from observations z.

FRAME REPRESENTATION

- $\bar{x} \in \mathbb{R}^{K}$: Frame coefficients of original image $\bar{y} \in \mathbb{R}^{N}$
- $F^{*}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{N}$: Frame synthesis operator such that $\exists(\underline{\nu}, \bar{\nu}) \in] 0,+\infty\left[^{2}, \underline{\nu} \mathrm{Id} \leq F^{*} \circ F \leq \bar{\nu} \mathrm{Id}\right.$ (tight frame when $\underline{\nu}=\bar{\nu}=\nu$)

$$
\bar{y}=F^{*} \bar{x}
$$

[L. Jacques et al., 2011]

VARIATIONAL APPROACH

$$
\operatorname{minimize}_{x \in \mathcal{H}} \quad \sum_{j=1}^{J} f_{j}\left(L_{j} x\right)
$$

where $\left(f_{j}\right)_{1 \leq j \leq J}$: functions in the class $\Gamma_{0}\left(\mathcal{G}_{j}\right)$ (class of l.s.c. proper convex functions on \mathcal{G}_{j} taking their values in] $\left.-\infty,+\infty\right]$) and where, for every $j \in\{1, \ldots, J\}, L_{j}: \mathcal{H} \rightarrow \mathcal{G}_{j}$ is a bounded linear operator (where $\left(\mathcal{G}_{j}\right)_{1 \leq j \leq J}$ denote Hilbert spaces).
This criterion can be non differentiable.

VARIATIONAL APPROACH

$$
\operatorname{minimize}_{x \in \mathcal{H}} \quad \sum_{j=1}^{J} f_{j}\left(L_{j} x\right)
$$

where $\left(f_{j}\right)_{1 \leq j \leq J}$: functions in the class $\Gamma_{0}\left(\mathcal{G}_{j}\right)$ (class of l.s.c. proper convex functions on \mathcal{G}_{j} taking their values in] $\left.-\infty,+\infty\right]$) and where, for every $j \in\{1, \ldots, J\}, L_{j}: \mathcal{H} \rightarrow \mathcal{G}_{j}$ is a bounded linear operator (where $\left(\mathcal{G}_{j}\right)_{1 \leq j \leq J}$ denote Hilbert spaces).
This criterion can be non differentiable.

- f_{j} can be related to noise (e.g. a quadratic term when the noise is Gaussian)

VARIATIONAL APPROACH

$$
\operatorname{minimize}_{x \in \mathcal{H}} \quad \sum_{j=1}^{J} f_{j}\left(L_{j} x\right)
$$

where $\left(f_{j}\right)_{1 \leq j \leq J}$: functions in the class $\Gamma_{0}\left(\mathcal{G}_{j}\right)$ (class of l.s.c. proper convex functions on \mathcal{G}_{j} taking their values in] $\left.-\infty,+\infty\right]$) and where, for every $j \in\{1, \ldots, J\}, L_{j}: \mathcal{H} \rightarrow \mathcal{G}_{j}$ is a bounded linear operator (where $\left(\mathcal{G}_{j}\right)_{1 \leq j \leq J}$ denote Hilbert spaces).
This criterion can be non differentiable.

- f_{j} can be related to noise (e.g. a quadratic term when the noise is Gaussian)
- f_{j} can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution)

VARIATIONAL APPROACH

$$
\operatorname{minimize}_{x \in \mathcal{H}} \quad \sum_{j=1}^{J} f_{j}\left(L_{j} x\right)
$$

where $\left(f_{j}\right)_{1 \leq j \leq J}$: functions in the class $\Gamma_{0}\left(\mathcal{G}_{j}\right)$ (class of l.s.c. proper convex functions on \mathcal{G}_{j} taking their values in] $\left.-\infty,+\infty\right]$) and where, for every $j \in\{1, \ldots, J\}, L_{j}: \mathcal{H} \rightarrow \mathcal{G}_{j}$ is a bounded linear operator (where $\left(\mathcal{G}_{j}\right)_{1 \leq j \leq J}$ denote Hilbert spaces).
This criterion can be non differentiable.

- f_{j} can be related to noise (e.g. a quadratic term when the noise is Gaussian)
- f_{j} can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution)
- f_{j} can be related to a constraint (e.g. a support constraint)

VARIATIONAL APPROACH

$$
\operatorname{minimize}_{x \in \mathcal{H}} \quad \sum_{j=1}^{J} f_{j}\left(L_{j} x\right)
$$

where $\left(f_{j}\right)_{1 \leq j \leq J}$: functions in the class $\Gamma_{0}\left(\mathcal{G}_{j}\right)$ (class of l.s.c. proper convex functions on \mathcal{G}_{j} taking their values in] $\left.-\infty,+\infty\right]$) and where, for every $j \in\{1, \ldots, J\}, L_{j}: \mathcal{H} \rightarrow \mathcal{G}_{j}$ is a bounded linear operator (where $\left(\mathcal{G}_{j}\right)_{1 \leq j \leq J}$ denote Hilbert spaces).
This criterion can be non differentiable.

- f_{j} can be related to noise (e.g. a quadratic term when the noise is Gaussian)
- f_{j} can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution)
- f_{j} can be related to a constraint (e.g. a support constraint)
- L_{j} can model a blur operator.

VARIATIONAL APPROACH

$$
\operatorname{minimize}_{x \in \mathcal{H}} \quad \sum_{j=1}^{J} f_{j}\left(L_{j} x\right)
$$

where $\left(f_{j}\right)_{1 \leq j \leq J}$: functions in the class $\Gamma_{0}\left(\mathcal{G}_{j}\right)$ (class of l.s.c. proper convex functions on \mathcal{G}_{j} taking their values in] $\left.-\infty,+\infty\right]$) and where, for every $j \in\{1, \ldots, J\}, L_{j}: \mathcal{H} \rightarrow \mathcal{G}_{j}$ is a bounded linear operator (where $\left(\mathcal{G}_{j}\right)_{1 \leq j \leq J}$ denote Hilbert spaces).
This criterion can be non differentiable.

- f_{j} can be related to noise (e.g. a quadratic term when the noise is Gaussian)
- f_{j} can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution)
- f_{j} can be related to a constraint (e.g. a support constraint)
- L_{j} can model a blur operator.
- L_{j} can model a gradient operator (e.g. total variation).

VARIATIONAL APPROACH

$$
\operatorname{minimize}_{x \in \mathcal{H}} \quad \sum_{j=1}^{J} f_{j}\left(L_{j} x\right)
$$

where $\left(f_{j}\right)_{1 \leq j \leq J}$: functions in the class $\Gamma_{0}\left(\mathcal{G}_{j}\right)$ (class of l.s.c. proper convex functions on \mathcal{G}_{j} taking their values in] $\left.-\infty,+\infty\right]$) and where, for every $j \in\{1, \ldots, J\}, L_{j}: \mathcal{H} \rightarrow \mathcal{G}_{j}$ is a bounded linear operator (where $\left(\mathcal{G}_{j}\right)_{1 \leq j \leq J}$ denote Hilbert spaces).
This criterion can be non differentiable.

- f_{j} can be related to noise (e.g. a quadratic term when the noise is Gaussian)
- f_{j} can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution)
- f_{j} can be related to a constraint (e.g. a support constraint)
- L_{j} can model a blur operator.
- L_{j} can model a gradient operator (e.g. total variation).
- L_{j} can model a frame operator.

ANALYSIS APPROACH VS. SYNTHESIS

When frame decompositions are considered, the problem can be formulated under a:

ANALYSIS APPROACH VS. SYNTHESIS

When frame decompositions are considered, the problem can be formulated under a:
Synthesis Form (SF):

$$
\underset{x \in \mathbb{R}^{K}}{\operatorname{minimize}} \sum_{r=1}^{R} f_{r}\left(L_{r} F^{*} x\right)+\sum_{s=1}^{S} g_{s}(x)
$$

ANALYSIS APPROACH VS. SYNTHESIS

When frame decompositions are considered, the problem can be formulated under a:
Synthesis Form (SF):

$$
\underset{x \in \mathbb{R}^{K}}{\operatorname{minimize}} \sum_{r=1}^{R} f_{r}\left(L_{r} F^{*} x\right)+\sum_{s=1}^{S} g_{s}(x)
$$

Analysis Form (AF):

$$
\underset{y \in \mathbb{R}^{N}}{\operatorname{minimize}} \sum_{r=1}^{R} f_{r}\left(L_{r} y\right)+\sum_{s=1}^{S} g_{s}(F y)
$$

ANALYSIS APPROACH VS. SYNTHESIS

When frame decompositions are considered, the problem can be formulated under a:
Synthesis Form (SF):

$$
\underset{x \in \mathbb{R}^{K}}{\operatorname{minimize}} \sum_{r=1}^{R} f_{r}\left(L_{r} F^{*} x\right)+\sum_{s=1}^{S} g_{s}(x)
$$

Analysis Form (AF):

$$
\underset{y \in \mathbb{R}^{N}}{\operatorname{minimize}} \sum_{r=1}^{R} f_{r}\left(L_{r} y\right)+\sum_{s=1}^{S} g_{s}(F y)
$$

Inclusion

AF is a particular case of SF [Chaâri et al., 2009].

Equivalence

Equivalence when F is an orthonormal transform.

PROXIMAL APPROACHES

The proximity operator of $\phi \in \Gamma_{0}(\mathcal{H})$ is defined as

$$
\operatorname{prox}_{\phi}: \mathcal{H} \rightarrow \mathcal{H}: u \mapsto \arg \min _{v \in \mathcal{H}} \frac{1}{2}\|v-u\|^{2}+\phi(v) .
$$

PROXIMAL APPROACHES

The proximity operator of $\phi \in \Gamma_{0}(\mathcal{H})$ is defined as

$$
\operatorname{prox}_{\phi}: \mathcal{H} \rightarrow \mathcal{H}: u \mapsto \arg \min _{v \in \mathcal{H}} \frac{1}{2}\|v-u\|^{2}+\phi(v) .
$$

Remark: if C is a nonempty closed convex set of \mathcal{H}, and ι_{C} denotes the indicator function of C, i.e., $(\forall u \in \mathcal{H}) \iota_{C}(u)=0$ if $u \in C,+\infty$ otherwise, then, $\operatorname{prox}_{\iota_{\mathrm{C}}}$ reduces to the projection Π_{C} onto C.

PROXIMAL APPROACHES

The proximity operator of $\phi \in \Gamma_{0}(\mathcal{H})$ is defined as

$$
\operatorname{prox}_{\phi}: \mathcal{H} \rightarrow \mathcal{H}: u \mapsto \arg \min _{v \in \mathcal{H}} \frac{1}{2}\|v-u\|^{2}+\phi(v) .
$$

Remark: if C is a nonempty closed convex set of \mathcal{H}, and ${ }^{\iota} \mathrm{C}$ denotes the indicator function of C , i.e., $(\forall u \in \mathcal{H}) \iota_{\mathrm{C}}(u)=0$ if $u \in C,+\infty$ otherwise, then, prox $_{{ }^{\iota C}}$ reduces to the projection Π_{C} onto C.

- Let $\phi \in \Gamma_{0}(\mathcal{G}), L: \mathcal{H} \rightarrow \mathcal{G}$ a bounded linear operator. Suppose $L L^{*}=\chi \mathrm{I}$, for some $\left.\chi \in\right] 0,+\infty[$. Then

$$
\operatorname{prox}_{\phi \circ L}=\mathrm{I}+\chi^{-1} L^{*}\left(\operatorname{prox}_{\chi \phi}-\mathrm{I}\right) L \text {. }
$$

$\underset{x}{\operatorname{Minimize}} \sum_{j}^{J} f_{j}(x)$

- When $J=2$: Forward-Backward algorithm [Figueiredo and Nowak, 2003][Bect et al., 2004][Daubechies et al., 2004][Combettes and Wajs, 2005][Chaux et al., 2007][Beck and Teboulle, 2009], Douglas-Rachford algorithm [Lions and Mercier, 1979][Combettes and Pesquet, 2007]
- When $J>2$: Parallel ProXimal Algorithm (PPXA) [Combettes and Pesquet, 2008]

PPXA+: $\underset{u \in \mathcal{H}}{\operatorname{minimize}} \sum_{j=1}^{J} f_{j}\left(L_{j} u\right)$

Initialization
$\left(\epsilon_{j}\right)_{1 \leq j \leq I} \in\left[0,1^{J},\left(\omega_{j}\right)_{1 \leq j \leq I} \in\right] 0,+\infty \|^{\mu}$,
$\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ a sequence of reals,
$\left(z_{j}^{[0]}\right)_{1 \leq j \leq I} \in\left(\mathcal{G}_{j}\right)^{J},\left(p_{j}^{[-1]}\right)_{1 \leq j \leq I} \in\left(\mathcal{G}_{j}\right)^{\prime}$,
$u^{[0]}=\arg \min _{u \in \mathcal{H}} \sum_{j=1}^{J} \omega_{j}\left\|L_{j} u-z_{j}^{[0]}\right\|^{2}$
For every $j \in\{1, \ldots, J\},\left(a_{j}^{[n]}\right)_{n \in \mathbb{N}}$ a sequence of reals,
For $n=0,1, \ldots$

$$
\begin{aligned}
& \text { For } j=1, \ldots, J \\
& L \quad p_{j}^{[n]}=\operatorname{prox}_{\frac{\left(1-\epsilon_{j}\right) j}{\omega_{j}}}\left(\left(1-\epsilon_{j}\right) z_{j}^{[n]}+\epsilon_{j} p_{j}^{[n-1]}\right)+a_{j}^{[n]} \\
& c^{[n]}=\arg \min _{u \in \mathcal{H}} \sum_{j=1}^{J} \omega_{j}\left\|L_{j} u-p_{j}^{[n]}\right\|^{2} \\
& \text { For } j=1, \ldots, J \\
& L \quad z_{j}^{[n+1]}=z_{j}^{[h]}+\lambda_{n}\left(L_{j}\left(2 c^{[n]}-u^{[n]}\right)-p_{j}^{[n]}\right) \\
& u^{[n+1]}=u^{[n]}+\lambda_{n}\left(c^{[n]}-u^{[n]}\right)
\end{aligned}
$$

PPXA+: $\underset{u \in \mathcal{H}}{\operatorname{minimize}} \sum_{j=1}^{J} f_{j}\left(L_{j} u\right)$

Initialization

$$
\begin{aligned}
& \left(\epsilon_{j}\right)_{1 \leq j \leq I} \in\left[0,1^{J},\left(\omega_{j}\right)_{1 \leq j \leq I} \in\right] 0,+\left.\infty\right|^{J} \text {, } \\
& \left(\lambda_{n}\right)_{n \in \mathbb{N}} \text { a sequence of reals, } \\
& \left(z_{j}^{[0]}\right)_{1 \leq j \leq I} \in\left(\mathcal{G}_{j}\right)^{J},\left(p_{j}^{[-1]}\right)_{1 \leq j \leq I} \in\left(\mathcal{G}_{j}\right)^{I} \text {, } \\
& u^{[0]}=\arg \min _{u \in \mathcal{H}} \sum_{j=1}^{J} \omega_{j}\left\|L_{j} u-z_{j}^{[0]}\right\|^{2}
\end{aligned}
$$

For every $j \in\{1, \ldots, J\},\left(a_{j}^{[n]}\right)_{n \in \mathbb{N}}$ a sequence of reals,
For $n=0,1, \ldots$
For $j=1, \ldots, J$

$$
\begin{aligned}
& L p_{j}^{[n]}=\operatorname{prox}_{\frac{\left(1-\epsilon_{j}\right) j_{j}}{\omega_{j}}}\left(\left(1-\epsilon_{j}\right) z_{j}^{[n]}+\epsilon_{j} j_{j}^{[n-1]}\right)+a_{j}^{[n]} \\
& c^{[n]}=\arg \min _{u \in \mathcal{H}} \sum_{j=1}^{n} \omega_{j}\left\|L_{j} u-p_{j}^{[n]}\right\|^{2}
\end{aligned}
$$

For $j=1, \ldots$,
$\left\lfloor z_{j}^{[n+1]}=z_{j}^{[n]}+\lambda_{n}\left(L_{j}\left(2 c^{[n]}-u^{[n]}\right)-p_{j}^{[n]}\right)\right.$
$u^{[n+1]}=u^{[n]}+\lambda_{n}\left(c^{[n]}-u^{[n]}\right)$

PPXA+ CONVERGENCE

Proposition [Pesquet and Pustelnik, 2012]

The weak convergence of the sequence $\left(u^{[n]}\right)_{n \in \mathbb{N}}$ to a minimizer of $\sum_{j=1}^{J} f_{j} \circ L_{j}$ is established under the following assumptions:

1. $\mathbf{0} \in \operatorname{sri}\left\{\left(L_{1} v-w_{1}, \ldots, L_{J} v-w_{J}\right) \mid v \in \mathcal{H}, w_{1} \in \operatorname{dom} f_{1}, \ldots, w_{J} \in\right.$ $\left.\operatorname{dom} f_{J}\right\}$,
2. There exists $\underline{\lambda} \in] 0,2\left[\right.$ such that $(\forall n \in \mathbb{N}), \underline{\lambda} \leq \lambda_{n+1} \leq \lambda_{n}$,
3. For every $j \in\{1, \ldots, J\}, a_{j}^{[n]}$ are absolutely summable sequences in \mathcal{H}.
4. $\sum_{j=1}^{J} \omega_{j} L_{j}^{*} L_{j}$ is an isomorphism. (PPXA+ iterations can be slightly modified to avoid this assumption)

PPXA+: A GENERAL FRAMEWORK

1. PPXA [Combettes, Pesquet, 2008, Algorithm 3.1] is a special case of PPXA+ corresponding to the case when $\epsilon_{1}=\cdots=\epsilon_{J}=0$, $\mathcal{G}_{1}=\cdots=\mathcal{G}_{J}=\mathcal{H}$, and $L_{1}=\cdots=L_{J}=$ Id.
2. The SDMM algorithm derived from DR in [Setzer et al., 2010] is a special case of PPXA+ corresponding to the case when $\epsilon_{1}=\cdots=\epsilon_{J}=0, \omega_{1}=\cdots=\omega_{J}, \lambda_{n} \equiv 1$ and $\left(a_{j}^{[n]}\right)_{1 \leq j \leq J} \equiv(0, \cdots, 0)$.
3. Algorithm introduced in [Attouch and Soueycatt, 2009] is a special case of PPXA+ corresponding to the case when
$\epsilon_{1}=\cdots=\epsilon_{J}=\frac{\alpha}{1+\alpha},\left(a_{j}^{[n]}\right)_{1 \leq j \leq J} \equiv(0, \cdots, 0)$.

OTHER PROXIMAL APPROACHES: Minimize $\sum_{j}^{J} f_{j}\left(L_{j} x\right)$

- Parallel ProXimal Algorithm $+($ PPXA +) [Pesquet, Pustelnik, 2012] In the same spirit as PPXA, requires to compute each prox $_{f_{i}}$. Quadratic minimizations need to be performed in the initialization step and in the computation of one intermediate variables \Leftrightarrow invert a large-size linear operator.
- Generalized Forward-Backward [Raguet et al. 2012]
- Primal-Dual approaches:
- M+SFBF [Briceño-Arias, Combettes, 2011]

Requires to compute each $\operatorname{prox}_{f_{j}}$ and algorithm stepsize dependent on $\left\|L_{j}\right\|$.

- M+LFBF [Combettes, Pesquet, 2011] Possibility that one function $f_{j_{0}}$ is Lipschitz gradient; requires to compute the gradient of $f_{j_{0}}$ and each $\operatorname{prox}_{f_{j}}$ for $j \neq j_{0}$. The algorithm stepsize is dependent on $\left\|L_{j}\right\|$.
- FB based algorithms [Chambolle, Pock,

CONSTRAINED FORMULATION

$$
\underset{x \in \mathcal{H}}{\operatorname{Minimize}} \sum_{r=1}^{R} g_{r}\left(T_{r} x\right) \quad \text { s.t. } \quad\left\{\begin{array}{l}
H_{1} x \in C_{1} \\
\vdots \\
H_{S} x \in C_{S}
\end{array}\right.
$$

where

- H: real Hilbert space,
- $\Gamma_{0}(\mathcal{H})$: class of proper, l.s.c, convex functions from \mathcal{H} to] $-\infty,+\infty$],
- $(\forall s \in\{1, \ldots, S\}), H_{s}: \mathcal{H} \rightarrow \mathbb{R}^{Q_{s}}$ is a bounded linear operator,
- $(\forall s \in\{1, \ldots, S\}), C_{s}$ is a nonempty closed convex subset of $\mathbb{R}^{Q_{s}}$,
- $(\forall r \in\{1, \ldots, R\}), T_{r}: \mathcal{H} \rightarrow \mathbb{R}^{N_{r}}$ is a bounded linear operator,
- $(\forall r \in\{1, \ldots, R\}), g_{r} \in \Gamma_{0}\left(\mathbb{R}^{N_{r}}\right)$.

CONSTRAINED FORMULATION

$$
\begin{aligned}
& \text { For } n=0,1, \ldots \\
& x^{[n]}=\sum_{r=1}^{R} \omega_{r} u_{r}^{[n]}+\sum_{s=1}^{S} \omega_{s} \bar{u}_{s}^{[n]} \\
& \text { For } r=1, \ldots, R \\
& \text { - Under technical assumptions, }\left(x^{[n]}\right)_{n \in \mathbb{N}} \text { generated by } \\
& w_{1, r}^{[n]}=u_{r}^{[n]}-\gamma_{n} T_{r}^{*} v_{r}^{[n]} \\
& w_{2, r}^{[n]}=v_{r}^{[n]}+\gamma_{n} T_{r} u_{r}^{[n]} \\
& \text { For } s=1, \ldots, S \\
& \bar{w}_{1, s}^{[n]}=\bar{u}_{s}^{[n]}-\gamma_{n} H_{s}^{*} \bar{v}_{s}^{[n]} \\
& \bar{w}_{2, s}^{[n]}=\bar{u}_{s}^{[n]}+\gamma_{n} H_{s} \bar{u}_{s}^{[n]} \\
& p_{1}^{[n]}=\sum_{r=1}^{R} \omega_{r} w_{1, r}^{[n]}+\sum_{s=1}^{S} \omega_{s} \bar{w}_{1, s}^{[n]} \\
& \text { For } r=1, \ldots, R \\
& p_{2, r}^{[n]}=w_{2, r}^{[n]}-\frac{\gamma_{n}}{\omega_{r}} \operatorname{prox} \frac{\omega_{r}}{\gamma_{n}} g_{r}\left(\frac{\omega_{r}}{\gamma_{n}} w_{2, r}^{[n]}\right) \\
& q_{1, r}^{[n]}=p_{1}^{[n]}-\gamma_{n}\left(T_{r}^{*} p_{2, r}^{[n]}\right) \\
& q_{2, r}^{[n]}=p_{2, r}^{[n]}+\gamma_{n}\left(T_{r} p_{1}^{[n]}\right) \\
& \text { Update } u_{1}^{[n+1]} \text { and } v_{1}^{[n+1]} \\
& \text { For } s=1, \ldots, S \\
& \bar{p}_{2, s}^{[n]}=\bar{w}_{2, s}^{[n]}-\frac{\gamma_{n}}{\omega_{s}} \Pi_{C_{S}}\left(\frac{\omega_{s}}{\gamma_{n}} \bar{w}_{2, s}^{[n]}\right) \\
& \bar{q}_{1, s}^{[n]}=\bar{p}_{1}^{[n]}-\gamma_{n}\left(H_{s}^{*} \bar{p}_{2, s}^{[n]}\right) \\
& \bar{q}_{2, s}^{[n]}=\bar{p}_{2, s}^{[n]}+\gamma_{n}\left(H_{s} \bar{p}_{1}^{[n]}\right) \\
& \text { Update } \bar{u}_{1}^{[n+1]} \text { and } \bar{v}_{1}^{[n+1]}
\end{aligned}
$$

CONSTRAINED FORMULATION

$$
(\forall x \in \mathcal{H}) \quad H_{s} x \in C_{s} \quad \Leftrightarrow \quad h_{s}\left(H_{s} x\right) \leq \eta_{s}
$$

CONSTRAINED FORMULATION

$$
\begin{gathered}
(\forall x \in \mathcal{H}) \quad H_{s} x \in C_{s} \quad \Leftrightarrow \quad h_{s}\left(H_{s} x\right) \leq \eta_{s} \\
\vdots \\
\left(\forall u \in \mathbb{R}^{Q}\right) \quad u \in C \quad \Leftrightarrow \quad h(u) \leq \eta \\
\hline
\end{gathered}
$$

CONSTRAINED FORMULATION

$$
(\forall x \in \mathcal{H}) \quad H_{s} x \in C_{s} \quad \Leftrightarrow \quad h_{s}\left(H_{s} x\right) \leq \eta_{s}
$$

$$
\left(\forall u \in \mathbb{R}^{Q}\right) \quad u \in C \quad \Leftrightarrow \quad h(u) \leq \eta
$$

$$
(\forall u=[\underbrace{\left(\mathbf{u}^{(1)}\right)^{\top}}_{\operatorname{size} Q^{(1)}}, \ldots, \underbrace{\left(\mathbf{u}^{(L)}\right)^{\top}}_{\operatorname{size} Q^{(L)}}]^{\top} \in \mathbb{R}^{Q}) \quad u \in C \quad \sum_{\ell=1}^{L} h^{(\ell)}\left(\mathbf{u}^{(\ell)}\right) \leq \eta
$$

CONSTRAINED FORMULATION

$$
(\forall x \in \mathcal{H}) \quad H_{s} x \in C_{s} \quad \Leftrightarrow \quad h_{s}\left(H_{s} x\right) \leq \eta_{s}
$$

$$
\left(\forall u \in \mathbb{R}^{Q}\right) \quad u \in C \quad \Leftrightarrow \quad h(u) \leq \eta
$$

$$
(\forall u=[\underbrace{\left[\left(u^{(1)}\right)^{\top}\right.}_{\text {size } \mathbf{Q}^{(1)}} \ldots, \underbrace{\left(\mathbf{u}^{(L)}\right)^{\top}}_{\text {size } Q^{(L)}}]^{\top} \in \mathbb{R}^{Q}) \quad u \in C \quad \Leftrightarrow \quad \sum_{\ell=1}^{L} h^{(\ell)}\left(\mathbf{u}^{(\ell)}\right) \leq \eta
$$

\rightarrow Any closed convex subset C can be expressed in this way by setting $\eta=0, L=1$ and $h=d_{C}$.

CONSTRAINED FORMULATION

$$
(\forall x \in \mathcal{H}) \quad H_{s} x \in C_{s} \quad \Leftrightarrow \quad h_{s}\left(H_{s} x\right) \leq \eta_{s}
$$

$$
\left(\forall u \in \mathbb{R}^{Q}\right) \quad u \in C \quad \Leftrightarrow \quad h(u) \leq \eta
$$

$$
(\forall u=[\underbrace{\left[\left(u^{(1)}\right)^{\top}\right.}_{\text {size } \mathbf{Q}^{(1)}} \ldots, \underbrace{\left(\mathbf{u}^{(L)}\right)^{\top}}_{\text {size } Q^{(L)}}]^{\top} \in \mathbb{R}^{Q}) \quad u \in C \quad \Leftrightarrow \quad \sum_{\ell=1}^{L} h^{(\ell)}\left(\mathbf{u}^{(\ell)}\right) \leq \eta
$$

\rightarrow Any closed convex subset C can be expressed in this way by setting $\eta=0, L=1$ and $h=d_{C}$.

Question: What can we do if Π_{C} does not haye ascosed form $?_{\underline{\underline{\underline{E}}}}$

EPIGRAPHICAL PROJECTION

For every $u=[\underbrace{\left(u^{(1)}\right)^{\top}}_{\text {size } Q^{(1)}}, \ldots, \underbrace{\left(u^{(L)}\right)^{\top}}_{\text {size } Q^{(L)}}]^{\top} \in \mathbb{R}^{Q}$,

$$
u \in C \quad \Leftrightarrow \quad \sum_{\ell=1}^{L} h^{(\ell)}\left(\mathbf{u}^{(\ell)}\right) \leq \eta
$$

By introducing now the auxiliary vector $\zeta=\left(\zeta^{(\ell)}\right)_{1<\ell \leq L} \in \mathbb{R}^{L}$,

$$
u \in C \Leftrightarrow\left\{\begin{array}{l}
\sum_{\ell=1}^{L} \zeta^{(\ell)} \leq \eta, \\
(\forall \ell \in\{1, \ldots, L\})
\end{array} \quad h^{(\ell)}\left(\mathbf{u}^{(\ell)}\right) \leq \zeta^{(\ell)} .\right.
$$

EPIGRAPHICAL PROJECTION

$$
u \in C \Leftrightarrow\left\{\begin{array}{l}
\zeta \in V \\
(u, \zeta) \in E
\end{array}\right.
$$

where

- V denotes a closed half-space such that:

$$
V=\left\{\zeta \in \mathbb{R}^{L} \mid 1_{L}^{\top} \zeta \leq \eta\right\}
$$

- E is the closed convex set associated to the epigraphical constraint:

$$
E=\left\{(u, \zeta) \in \mathbb{R}^{Q} \times \mathbb{R}^{L} \mid(\forall \ell \in\{1, \ldots, L\})\left(\mathbf{u}^{(\ell)}, \zeta^{(\ell)}\right) \in \operatorname{epi} h^{(\ell)}\right\}
$$

EpIGRAPHICAL PROJECTION

$$
u \in C \Leftrightarrow\left\{\begin{array}{l}
\zeta \in V \\
(u, \zeta) \in E
\end{array}\right.
$$

where

- V denotes a closed half-space such that:

$$
V=\left\{\zeta \in \mathbb{R}^{L} \mid 1_{L}^{\top} \zeta \leq \eta\right\}
$$

$\rightarrow \Pi_{V}$ has a closed form: projection onto an half-space.

- E is the closed convex set associated to the epigraphical constraint:
$E=\left\{(u, \zeta) \in \mathbb{R}^{Q} \times \mathbb{R}^{L} \mid(\forall \ell \in\{1, \ldots, L\})\left(\mathbf{u}^{(\ell)}, \zeta^{(\ell)}\right) \in \operatorname{epi} h^{(\ell)}\right\}$
$\rightarrow \Pi_{E}$ has a closed form for specific choice of $h^{(\ell)}$

EPIGRAPHICAL PROJECTION

- Euclidean norm functions defined as:
$(\forall \ell \in\{1, \ldots, L\})\left(\forall \mathbf{u}^{(\ell)} \in \mathbb{R}^{Q^{(\ell)}}\right) \quad h^{(\ell)}\left(\mathbf{u}^{(\ell)}\right)=\tau^{(\ell)}\left\|\mathbf{u}^{(\ell)}\right\|$
where $\left.\tau^{(\ell)} \in\right] 0,+\infty[$.

EPIGRAPHICAL PROJECTION

- Euclidean norm functions defined as:

$$
(\forall \ell \in\{1, \ldots, L\})\left(\forall \mathbf{u}^{(\ell)} \in \mathbb{R}^{Q^{(\ell)}}\right) \quad h^{(\ell)}\left(\mathbf{u}^{(\ell)}\right)=\tau^{(\ell)}\left\|\mathbf{u}^{(\ell)}\right\|
$$

where $\left.\tau^{(\ell)} \in\right] 0,+\infty[$.

- Epigraphical projection: for every $\left(u^{(\ell)}, \zeta^{(\ell)}\right) \in \mathbb{R}^{Q^{(\ell)}} \times \mathbb{R}$

$$
\Pi_{\text {epi } h^{(\ell)}}\left(\mathbf{u}^{(\ell)}, \zeta^{(\ell)}\right)= \begin{cases}\left(\mathbf{u}^{(\ell)}, \zeta^{(\ell)}\right), & \text { if }\left\|\mathbf{u}^{(\ell)}\right\|<\frac{\zeta^{(\ell)}}{\tau^{(\ell)}}, \\ (0,0), & \text { if }\left\|\mathbf{u}^{(\ell)}\right\|<-\tau^{(\ell)} \zeta^{(\ell)}, \\ \alpha^{(\ell)}\left(\mathbf{u}^{(\ell)}, \tau^{(\ell)}\left\|\mathbf{u}^{(\ell)}\right\|\right), & \text { otherwise, }\end{cases}
$$

$$
\text { where } \alpha^{(\ell)}=\frac{1}{1+\left(\tau^{(\ell)}\right)^{2}}\left(1+\frac{\tau^{(\ell)} \zeta^{(\ell)}}{\left\|\mathbf{u}^{(\ell)}\right\|}\right) .
$$

EPIGRAPHICAL PROJECTION

- Infinity norms defined as:
$(\forall \ell \in\{1, \ldots, L\})\left(\forall \mathbf{u}^{(\ell)}=\left(\mathbf{u}^{(\ell, m)}\right)_{1 \leq m \leq Q^{(\ell)}} \in \mathbb{R}^{Q^{(\ell)}}\right)$

$$
h^{(\ell)}\left(\mathbf{u}^{(\ell)}\right)=\max \left\{\left.\frac{\left|\mathbf{u}^{(\ell, m)}\right|}{\tau^{(\ell, m)}} \right\rvert\, 1 \leq m \leq Q^{(\ell)}\right\}
$$

where $\left.\left(\tau^{(\ell, m)}\right)_{1 \leq m \leq Q^{(\ell)}} \in\right] 0,+\infty\left[Q^{(\ell)}\right.$.
$\Pi_{\text {epi } h^{(\ell)}}\left(\mathbf{u}^{(\ell)}, \zeta^{(\ell)}\right)$ has a closed form [G. Chierchia et al., 2012].

RECONSTRUCTION PROBLEM: PET

- High level of noise
- Large amount of data

RECONSTRUCTION PROBLEM

$$
z=\mathcal{P}_{\alpha}(A \bar{y})
$$

where

- \mathcal{P}_{α} : Poisson noise of scale parameter α
- A: projection matrix

RECONSTRUCTION PROBLEM

Our objective is:

$$
\min _{x \in \mathbb{R}^{K}} \sum_{t=1}^{T} D_{\mathrm{KL}}\left(A F_{t}^{*} x, z\right)+\kappa \operatorname{tv}\left(F_{t}^{*} x\right)+\iota_{C}(x)+\vartheta\|x\|_{\ell_{1}}
$$

$$
y=F^{*} x=\left(F_{t}^{*} x\right)_{1 \leq t \leq T}
$$

where $\kappa>0, \vartheta>0$ and

- D_{KL} is the Kullback-Leibler divergence
- tv represents a total variation term
- ι_{C} is the indicator function of a closed convex set C
- $\|x\|_{\ell_{1}}$ denotes the ℓ_{1}-norm.

RECONSTRUCTION PROBLEM

Our objective is:

$$
\min _{x \in \mathbb{R}^{K}} \sum_{t=1}^{T} D_{\mathrm{KL}}\left(A F_{t}^{*} x, z\right)+\kappa \operatorname{tv}\left(F_{t}^{*} x\right)+\iota_{C}(x)+\vartheta\|x\|_{\ell_{1}}
$$

$$
y=F^{*} x=\left(F_{t}^{*} x\right)_{1 \leq t \leq T}
$$

where $\kappa>0, \vartheta>0$ and

- D_{KL} is the Kullback-Leibler divergence \Rightarrow split into several proximable functions
- tv represents a total variation term \Rightarrow closed form in [Combettes and Pesquet, 2008]
- ι_{C} is the indicator function of a closed convex set $C \Rightarrow$ projection onto C
- $\|x\|_{\ell_{1}}$ denotes the ℓ_{1}-norm. \Rightarrow soft thresholding [Chaux et al., 2007]

Reconstruction problem

Our objective is:

$$
\min _{x \in \mathbb{R}^{K}} \sum_{t=1}^{T} D_{\mathrm{KL}}\left(A F_{t}^{*} x, z\right)+\kappa \operatorname{tv}\left(F_{t}^{*} x\right)+\iota_{C}(x)+\vartheta\|x\|_{\ell_{1}}
$$

$$
y=F^{*} x=\left(F_{t}^{*} x\right)_{1 \leq t \leq T}
$$

where $\kappa>0, \vartheta>0$ and

- D_{KL} is the Kullback-Leibler divergence
- tv represents a total variation term
- ι_{C} is the indicator function of a closed convex set C
- $\|x\|_{\ell_{1}}$ denotes the ℓ_{1}-norm.

PET RECONSTRUCTION RESULTS

Slice 11

PET RECONSTRUCTION RESULTS

Original

SIEVES

PPXA

PET RECONSTRUCTION RESULTS

Original

SIEVES

PPXA

PET RECONSTRUCTION RESULTS

Original

SIEVES

PPXA

ImAGE RESTORATION WITH MISSING SAMPLES

Original: $\bar{y} \in \mathbb{R}^{N}$

Degraded: $z \in \mathbb{R}^{M}$

$$
z=A \bar{y}+b
$$

- \bar{y} : original image in $[0,255]^{N}$
\rightarrow assumed to be sparse after some appropriate transform,
- $A \in \mathbb{R}^{M \times N}$: randomly decimated convolution,
- $b \in \mathbb{R}^{M}$: realization of a zero-mean white Gaussian noise,
- z : degraded image of size M.

ImAGE RESTORATION WITH MISSING SAMPLES

$$
\widehat{y} \in \underset{y \in[0,255]^{N}}{\operatorname{Argmin}}\|A y-z\|^{2} \quad \text { s.t. } \quad \sum_{\ell=1}^{N}\left\|Y^{(\ell)}\right\|_{p} \leq \eta
$$

where

- $Y^{(\ell)}=\left(\omega_{\ell, n}\left(y^{(\ell)}-y^{(n)}\right)\right)_{n \in \mathcal{N}_{\ell}}$
- $p \geq 1$ and $\eta>0$.

Particular cases:

- $\ell_{2}-T V: p=2, \omega_{\ell, n}=1$, and \mathcal{N}_{ℓ} horizontal and vertical neighbours,
- $\ell_{\infty}-T V: p=\infty, \omega_{\ell, n}=1$, and \mathcal{N}_{ℓ} horizontal and vertical neighbours,
- $\ell_{2}-N L T V: p=2, \omega_{\ell, n}$ as in [Foi, Boracchi, 2012] and \mathcal{N}_{ℓ} as in [Gilboa, Osher, 2007],
- $\ell_{\infty}-$ NLTV: $p=\infty, \omega_{\ell, n}$ as in [Foi, Boracchi, 2012] and \mathcal{N}_{ℓ} as in [Gilboa, Osher, 2007].

ImAGE RESTORATION WITH MISSING SAMPLES

$$
\underset{y}{\operatorname{Argmin}}\|A y-z\|^{2} \quad \text { s.t. } \quad\left\{\begin{array}{l}
\sum_{\ell=1}^{N}\left\|Y^{(\ell)}\right\|_{p} \leq \eta \\
y \in[0,255]^{N}
\end{array}\right.
$$

$$
\underset{y, \zeta}{\operatorname{Argmin}}\|A y-z\|^{2} \text { s.t. }\left\{\begin{array}{l}
(\forall \ell \in\{1, \ldots, N\})\left\|Y^{(\ell)}\right\|_{p} \leq \zeta^{(\ell)} \\
\sum_{\ell=1}^{N} \zeta^{(\ell)} \leq \eta \\
y \in[0,255]^{N}
\end{array}\right.
$$

Image Restoration with missing samples

Figure: Comparison between epigraphical method (solid line) and direct method (dashed line): $\frac{\left\|y^{[n]}-y^{[\infty]}\right\|}{\left\|y^{[\infty]}\right\|}$ in dB vs time.

Image Restoration with missing samples

Culicoidae

ℓ_{2}-TV
SNR: 20.80 dB

Degraded

SNR: 20.25 dB

Zoom

ℓ_{2}-NLTV
SNR: $\mathbf{2 2 . 6 2}$ dB

GPSR
SNR: 17.03 dB

ℓ_{∞}-NLTV
SNR: 22.38 dB

ImAGE RESTORATION WITH MISSING SAMPLES

Culicoidae

$$
\ell_{2}-\mathrm{TV}
$$

SNR: 23.18 dB

Degraded

$$
\ell_{\infty}-\mathrm{TV}
$$

SNR: 22.77 dB

Zoom

ℓ_{2}-NLTV
SNR: $\mathbf{2 4 . 1 8}$ dB

GPSR SNR: 20.26 dB

ℓ_{∞}-NLTV
SNR: 24.14 dB

SEISMIC DATA ACQUISITION

Figure: Principles of seismic wave propagation, with reflections on different layers, and data acquisition. Solid blue: primary; dashed red: multiple.

Observation model

$$
z^{(n)}=s^{(n)}+y^{(n)}
$$

where

- $n \in\{0, \cdots, N-1\}$: the time index
- $z=\left(z^{(n)}\right)_{0 \leq n<N}$: the observed data combining

1. the primary $y=\left(y^{(n)}\right)_{0 \leq n<N}$ (signal of interest, unknown)
2. the multiples $\left(s^{(n)}\right)_{0 \leq n<N}$ (sum of undesired reflected signals). We assume that a template $\left(r^{(n)}\right)_{0 \leq n<N}$ (for the disturbance signal) is available and that

$$
s^{(n)}=\sum_{p=p^{\prime}}^{p^{\prime}+P-1} h^{(n)}(p) r^{(n-p)}
$$

We can rewrite the problem as

$$
z=R h+y
$$

MAP ESTIMATION - FILTERS h

Assumptions:

1. $x=F y$ (where $F \in \mathbb{R}^{N \times N}$ denotes the analysis operator) is a realization of a random vector, whose probability density function (pdf) is given by $\left(\forall x \in \mathbb{R}^{N}\right) \quad f_{X}(x) \propto \exp (-\varphi(x))$
2. h is a realization of a random vector, whose pdf is expressed as $\left(\forall h \in \mathbb{R}^{N P}\right) \quad f_{H}(h) \propto \exp (-\rho(h))$, and which is independent of x.

MAP estimation of h

$$
\underset{h \in \mathbb{R}^{N P}}{\operatorname{minimize}} \varphi(F(z-R h))+\rho(h) .
$$

- φ : data fidelity term taking into account the statistical properties of the basis coefficients
- ρ : prior informations that are available on h.

CONVEX CONSTRAINTS ON THE FILTERS

Assumption: filters are varying along the time index n.

$$
(\forall(n, p)) \quad\left|h^{(n+1)}(p)-h^{(n)}(p)\right| \leq \varepsilon_{p}
$$

The associated closed convex set is defined as

$$
C=\left\{h \in \mathbb{R}^{N P}|\forall(n, p)| h^{(n+1)}(p)-h^{(n)}(p) \mid \leq \varepsilon_{p}\right\}
$$

CONVEX CONSTRAINTS ON THE FILTERS

Assumption: filters are varying along the time index n.

$$
(\forall(n, p)) \quad\left|h^{(n+1)}(p)-h^{(n)}(p)\right| \leq \varepsilon_{p}
$$

The associated closed convex set is defined as

$$
C=\left\{h \in \mathbb{R}^{N P}|\forall(n, p)| h^{(n+1)}(p)-h^{(n)}(p) \mid \leq \varepsilon_{p}\right\}
$$

Minimization problem to be solved

$$
\underset{h \in \mathbb{R}^{N P}}{\operatorname{minimize}} \varphi(F(z-R h))+\widetilde{\rho}(h)+\iota_{C_{1}}(h)+\iota_{C_{2}}(h) .
$$

Use of PPXA+ to perform the minimization.

Results: CONTEXT

- $N=2048$; filter length: $P=14$ (noise-free case), $P=10$ (noisy case)
- PPXA+ parameters: $\lambda_{i} \equiv 1.5$, $\omega_{1}=10000 / N, \omega_{2}=\omega_{1} / P, \omega_{3}=\omega_{4}=10 \omega_{2} ;$
- Iteration number: 10000 (stopping criterion at iteration i if $\left.\left\|h^{[i+1]}-h^{[i]}\right\|<10^{-5}\right)$;
- Functions choice: $\varphi_{k} \equiv|\cdot|$ and $\widetilde{\rho}=\mu\|\cdot\|^{2}, \mu=0.01$;
- Basis choice: Symlet wavelets of length 8 over 3 resolution levels.

Results: Non Noisy case

> Observed signal z Original signal y Model r
> Original multiple s Estimated signal \widehat{y} Estimated multiples \widehat{s}

NoISY CASE

Reference signal y and estimated signal \widehat{y}

Multiples s and estimated multiples \widehat{s}

CONCLUSION

- Proximity operators and proximal methods are shown to be very flexible tools for solving variational problems encountered in inverse problems.
- The convex criterion can be composed of various terms modelizing data fidelity (often linked to noise statictics) and also prior information, possibly formulated under convex (hard) constraints.
- Frames can be used to introduce prior information.
- Many other applications have been investigated (pMRI, compressive sensing, satellite imaging, stereovision, microcopy imaging,...).
Future work:
- Use of these methods in statistical learning.
- Extension to the non convex case.

CONCLUSION

- Proximity operators and proximal methods are shown to be very flexible tools for solving variational problems encountered in inverse problems.
- The convex criterion can be composed of various terms modelizing data fidelity (often linked to noise statictics) and also prior information, possibly formulated under convex (hard) constraints.
- Frames can be used to introduce prior information.
- Many other applications have been investigated (pMRI, compressive sensing, satellite imaging, stereovision, microcopy imaging,...).
Future work:
- Use of these methods in statistical learning.
- Extension to the non convex case.

SOME REFERENCES

L. Condat, "A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms," J. Optimization Theory and Applications, to appear, 2013.
G. Chierchia, N. Pustelnik, J.-C. Pesquet, B. Pesquet-Popescu, "Epigraphical Projection and Proximal Tools for Solving Constrained Convex Optimization Problems: Part I", arXiv:1210.5844, 2012.
F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, "Optimization with sparsity-inducing penalties", Foundations and Trends in Machine Learning, vol. 4, no. 1, pp. 1-106, 2012.
P. L. Combettes and J.-C. Pesquet, "Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators," Set-Valued and Variational Analysis, vol. 20, no. 2, pp. 307-330, Jun. 2012.
J.-C. Pesquet and N. Pustelnik, "A Parallel Inertial Proximal Optimization Method", Pacific Journal of Optimization, Vol. 8, No. 2, pp. 273-305, Apr. 2012.
N. Pustelnik, J.-C. Pesquet, C. Chaux, "Relaxing Tight Frame Condition in Parallel Proximal Methods for Signal Restoration," IEEE Trans. on Sig. Proc., vol. 60, no. 2, pp. 968-973, Feb. 2012.
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer-Verlag, New York, 2011.
H. Raguet, J. Fadili, G. Peyré, "Generalized forward-backward splitting", Preprint, arXiv:1108.4404, 2011.
B. C. Vũ, "A splitting algorithm for dual monotone inclusions involving cocoercive operators", Advances in Computational Mathematics, Nov. 2011.
L. M. Briceño-Arias and P. L. Combettes, "A monotone+skew splitting model for composite monotone inclusions in duality," SIAM Journal on Optimization, vol. 21, no. 4, pp. 1230-1250, Oct. 2011.
P. L. Combettes and J.-C. Pesquet, "Proximal splitting methods in signal processing," in: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, (H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, Editors), pp. 185-212. Springer-Verlag, New York, 2011.
A. Chambolle, T. Pock, "A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging", Journal of Mathematical Imaging and Vision, Vol. 40, No. 1, pp. 120-145, May 2011.
P. L. Combettes and J.-C. Pesquet, "A proximal decomposition method for solving convex variational inverse problems," Inverse Problems, vol. 24, no. 6, article ID 065014, 27 pp., Dec. 2008.
P. L. Combettes and J.-C. Pesquet, "A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery," IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 564-574, Dec. 2007.
C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, "A variational formulation for frame-based inverse problems," Inverse Problems, vol. 23, no. 4, pp. 1495-1518, Aug. 2007.

