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Direct problem

z = Dα(Ly)

• z: observations (e.g. 2D signal of size M = M1 × M2)
• y: original signal (unknown of size N)
• L: linear operator (matrix of size M × N)
• Dα: perturbation of parameter α

Objective: inverse problem

Find an estimation ŷ of y from observations z.
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FRAME REPRESENTATION

F∗

Frame coefficients (x) Original (y)

◮ x ∈ R
K : Frame coefficients of original image y ∈ R

N

◮ F∗ : RK → R
N : Frame synthesis operator such that

∃(ν, ν) ∈]0,+∞[2, νId ≤ F∗ ◦ F ≤ νId
(tight frame when ν = ν = ν)

ȳ = F∗x

[L. Jacques et al., 2011]
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VARIATIONAL APPROACH

minimizex∈H

J∑

j=1

fj(Ljx)

where (fj)1≤j≤J: functions in the class Γ0(Gj) (class of l.s.c. proper convex
functions on Gj taking their values in ]−∞,+∞]) and where, for every
j ∈ {1, . . . , J}, Lj : H → Gj is a bounded linear operator (where (Gj)1≤j≤J

denote Hilbert spaces).

This criterion can be non differentiable.
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ANALYSIS APPROACH VS. SYNTHESIS

When frame decompositions are considered, the problem can
be formulated under a:
Synthesis Form (SF):

minimize
x∈RK

R∑

r=1

fr(LrF
∗x) +

S∑

s=1

gs(x)

Analysis Form (AF):

minimize
y∈RN

R∑

r=1

fr(Lry) +
S∑

s=1

gs(Fy).

Inclusion

AF is a particular case of SF [Chaâri et al., 2009].

Equivalence

Equivalence when F is an orthonormal transform.
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PROXIMAL APPROACHES

The proximity operator of φ ∈ Γ0(H) is defined as

proxφ : H → H : u 7→ arg min
v∈H
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2
‖v − u‖2 + φ(v).
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denotes the indicator function of C, i.e., (∀u ∈ H) ιC(u) = 0 if
u ∈ C, +∞ otherwise, then, proxιC

reduces to the projection ΠC

onto C.
• Let φ ∈ Γ0(G), L : H → G a bounded linear operator. Suppose
LL∗ = χ I , for some χ ∈ ]0,+∞[. Then

proxφ◦L = I +χ−1L∗(proxχφ− I )L .
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Minimize
x

∑J
j fj(x)

◮ When J = 2: Forward-Backward algorithm [Figueiredo and

Nowak, 2003][Bect et al., 2004][Daubechies et al., 2004][Combettes and Wajs,

2005][Chaux et al., 2007][Beck and Teboulle, 2009], Douglas-Rachford
algorithm [Lions and Mercier, 1979][Combettes and Pesquet, 2007]

◮ When J > 2: Parallel ProXimal Algorithm (PPXA) [Combettes

and Pesquet, 2008]
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PPXA+: minimize
u∈H

∑J
j=1 fj(Lju)

Initialization

(ǫj)1≤j≤J ∈ [0, 1[J, (ωj)1≤j≤J ∈ ]0,+∞[
J
,

(λn)n∈N a sequence of reals,

(z
[0]
j )1≤j≤J ∈ (Gj)

J, (p
[−1]
j )1≤j≤J ∈ (Gj)

J,

u[0] = arg minu∈H

∑J
j=1 ωj‖Lju − z

[0]
j ‖

2

For every j ∈ {1, . . . , J}, (a
[n]
j )n∈N a sequence of reals,

For n = 0, 1, . . .

For j = 1, . . . , J

⌊ p
[n]
j = prox (1−ǫj)fj

ωj

(
(1 − ǫj)z

[n]
j + ǫjp

[n−1]
j

)
+ a

[n]
j

c[n] = arg minu∈H
∑J

j=1 ωj‖Lju − p
[n]
j ‖

2

For j = 1, . . . , J

⌊ z
[n+1]
j = z

[n]
j + λn

(
Lj(2c[n] − u[n])− p

[n]
j

)

u[n+1] = u[n] + λn(c
[n] − u[n])
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PPXA+ CONVERGENCE

Proposition [Pesquet and Pustelnik, 2012]

The weak convergence of the sequence (u[n])n∈N to a minimizer

of
∑J

j=1 fj ◦ Lj is established under the following assumptions:

1. 0 ∈ sri {(L1v − w1, . . . , LJv − wJ) | v ∈ H,w1 ∈ dom f1, . . . ,wJ ∈

dom fJ},

2. There exists λ ∈]0, 2[ such that (∀n ∈ N), λ ≤ λn+1 ≤ λn,

3. For every j ∈ {1, . . . , J}, a
[n]
j are absolutely summable

sequences in H.

4.
∑J

j=1 ωjL
∗
j Lj is an isomorphism. (PPXA+ iterations can be

slightly modified to avoid this assumption)
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PPXA+: A GENERAL FRAMEWORK

1. PPXA [Combettes, Pesquet, 2008, Algorithm 3.1] is a special case of
PPXA+ corresponding to the case when ǫ1 = · · · = ǫJ = 0,
G1 = · · · = GJ = H, and L1 = · · · = LJ = Id.

2. The SDMM algorithm derived from DR in [Setzer et al., 2010] is
a special case of PPXA+ corresponding to the case when
ǫ1 = · · · = ǫJ = 0, ω1 = · · · = ωJ, λn ≡ 1 and

(a
[n]
j )1≤j≤J ≡ (0, · · · , 0).

3. Algorithm introduced in [Attouch and Soueycatt, 2009] is a special
case of PPXA+ corresponding to the case when

ǫ1 = · · · = ǫJ =
α

1 + α
, (a

[n]
j )1≤j≤J ≡ (0, · · · , 0).
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OTHER PROXIMAL APPROACHES: Minimize
x

∑J
j fj(Ljx)

◮ Parallel ProXimal Algorithm + (PPXA+) [Pesquet, Pustelnik, 2012]

In the same spirit as PPXA, requires to compute each
proxfj . Quadratic minimizations need to be performed in
the initialization step and in the computation of one
intermediate variables ⇔ invert a large-size linear
operator.

◮ Generalized Forward-Backward [Raguet et al., 2012]

◮ Primal-Dual approaches:
◮ M+SFBF [Briceño-Arias, Combettes, 2011]

Requires to compute each proxfj and algorithm stepsize
dependent on ‖Lj‖.

◮ M+LFBF [Combettes, Pesquet, 2011]

Possibility that one function fj0 is Lipschitz gradient;
requires to compute the gradient of fj0 and each proxfj for
j 6= j0. The algorithm stepsize is dependent on ‖Lj‖.

◮ FB based algorithms [Chambolle, Pock,

2011],[Vũ,2013],[Condat,2013]
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CONSTRAINED FORMULATION

Minimize
x∈H

R∑

r=1

gr(Trx) s.t.





H1x ∈ C1,
...

HSx ∈ CS,

where

◮ H: real Hilbert space,

◮ Γ0(H): class of proper, l.s.c, convex functions from H to
]−∞,+∞],

◮ (∀s ∈ {1, . . . , S}), Hs : H → R
Qs is a bounded linear operator,

◮ (∀s ∈ {1, . . . , S}), Cs is a nonempty closed convex subset of RQs ,

◮ (∀r ∈ {1, . . . ,R}), Tr : H → R
Nr is a bounded linear operator,

◮ (∀r ∈ {1, . . . ,R}), gr ∈ Γ0(R
Nr).
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CONSTRAINED FORMULATION
For n = 0, 1, . . .










































































































x[n] =
∑R

r=1 ωru
[n]
r +

∑S
s=1 ωsu

[n]
s ←− Under technical assumptions, (x[n])n∈N generated by

For r = 1, . . . , R M+SFBF [Combettes,Briceño-Arias,2011] converge to x̂








w
[n]
1,r

= u
[n]
r − γnT∗

r v
[n]
r

w
[n]
2,r

= v
[n]
r + γnTru

[n]
r

For s = 1, . . . , S








w
[n]
1,s

= u
[n]
s − γnH∗

s v
[n]
s

w
[n]
2,s

= u
[n]
s + γnHsu

[n]
s

p
[n]
1

=
∑R

r=1 ωrw
[n]
1,r

+
∑S

s=1 ωsw
[n]
1,s

For r = 1, . . . , R


























p
[n]
2,r = w

[n]
2,r −

γn

ωr
prox ωr

γn
gr

(

ωr

γn
w
[n]
2,r

)

←− Proximity operator computation

q
[n]
1,r

= p
[n]
1
− γn(T∗

r p
[n]
2,r

)

q
[n]
2,r

= p
[n]
2,r

+ γn(Trp
[n]
1

)

Update u
[n+1]
1

and v
[n+1]
1

For s = 1, . . . , S


























p
[n]
2,s

= w
[n]
2,s
−

γn

ωs
ΠCs

(

ωs

γn
w
[n]
2,s

)

←− Projection computation

q
[n]
1,s

= p
[n]
1
− γn(H∗

s p
[n]
2,s

)

q
[n]
2,s

= p
[n]
2,s

+ γn(Hsp
[n]
1

)

Update u
[n+1]
1

and v
[n+1]
1
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L∑

ℓ=1

h(ℓ)(u(ℓ)) ≤ η

→ Any closed convex subset C can be expressed in this way by
setting η = 0, L = 1 and h = dC.

Question: What can we do if ΠC does not have a closed form ?
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EPIGRAPHICAL PROJECTION

For every u = [(u(1))⊤︸ ︷︷ ︸
size Q(1)

, . . . , (u(L))⊤︸ ︷︷ ︸
size Q(L)

]⊤ ∈ R
Q,

u ∈ C ⇔
L∑

ℓ=1

h(ℓ)(u(ℓ)) ≤ η.

By introducing now the auxiliary vector ζ =
(
ζ(ℓ)

)
1≤ℓ≤L

∈ R
L,

u ∈ C ⇔

{∑L
ℓ=1 ζ

(ℓ) ≤ η,

(∀ℓ ∈ {1, . . . ,L}) h(ℓ)(u(ℓ)) ≤ ζ(ℓ).
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EPIGRAPHICAL PROJECTION

u ∈ C ⇔

{
ζ ∈ V

(u, ζ) ∈ E

where

◮ V denotes a closed half-space such that:

V =
{
ζ ∈ R

L
∣∣ 1⊤

L ζ ≤ η
}

◮ E is the closed convex set associated to the epigraphical
constraint:

E =
{
(u, ζ) ∈ R

Q × R
L
∣∣ (∀ℓ ∈ {1, . . . ,L}) (u(ℓ), ζ(ℓ)) ∈ epi h(ℓ)

}

16 / 34



GENERAL CONTEXT PROXIMAL TOOLS APPLICATIONS CONCLUSION

EPIGRAPHICAL PROJECTION

u ∈ C ⇔

{
ζ ∈ V

(u, ζ) ∈ E

where

◮ V denotes a closed half-space such that:

V =
{
ζ ∈ R

L
∣∣ 1⊤

L ζ ≤ η
}

→ ΠV has a closed form: projection onto an half-space.

◮ E is the closed convex set associated to the epigraphical
constraint:

E =
{
(u, ζ) ∈ R

Q × R
L
∣∣ (∀ℓ ∈ {1, . . . ,L}) (u(ℓ), ζ(ℓ)) ∈ epi h(ℓ)

}

→ ΠE has a closed form for specific choice of h(ℓ).
16 / 34



GENERAL CONTEXT PROXIMAL TOOLS APPLICATIONS CONCLUSION

EPIGRAPHICAL PROJECTION

◮ Euclidean norm functions defined as:

(
∀ℓ ∈ {1, . . . ,L}

)(
∀u(ℓ) ∈ R

Q(ℓ))
h(ℓ)(u(ℓ)) = τ (ℓ)‖u(ℓ)‖

where τ (ℓ) ∈ ]0,+∞[.
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EPIGRAPHICAL PROJECTION

◮ Euclidean norm functions defined as:

(
∀ℓ ∈ {1, . . . ,L}

)(
∀u(ℓ) ∈ R

Q(ℓ))
h(ℓ)(u(ℓ)) = τ (ℓ)‖u(ℓ)‖

where τ (ℓ) ∈ ]0,+∞[.

◮ Epigraphical projection: for every (u(ℓ), ζ(ℓ)) ∈ R
Q(ℓ)

× R

Πepi h(ℓ)(u
(ℓ), ζ(ℓ)) =





(u(ℓ), ζ(ℓ)), if ‖u(ℓ)‖ < ζ(ℓ)

τ (ℓ)
,

(0, 0), if ‖u(ℓ)‖ < −τ (ℓ)ζ(ℓ),

α(ℓ)
(
u(ℓ), τ (ℓ)‖u(ℓ)‖

)
, otherwise,

where α(ℓ) =
1

1 + (τ (ℓ))2

(
1 +

τ (ℓ)ζ(ℓ)

‖u(ℓ)‖

)
.
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EPIGRAPHICAL PROJECTION

◮ Infinity norms defined as:(
∀ℓ ∈ {1, . . . ,L}

)(
∀u(ℓ) = (u(ℓ,m))1≤m≤Q(ℓ) ∈ R

Q(ℓ)
)

h(ℓ)(u(ℓ)) = max

{
|u(ℓ,m)|

τ (ℓ,m)
| 1 ≤ m ≤ Q(ℓ)

}

where (τ (ℓ,m))1≤m≤Q(ℓ) ∈ ]0,+∞[Q
(ℓ)

.

Πepi h(ℓ)(u
(ℓ), ζ(ℓ)) has a closed form [G. Chierchia et al., 2012].
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RECONSTRUCTION PROBLEM: PET

◮ High level of noise

◮ Large amount of data
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RECONSTRUCTION PROBLEM

z = Pα(Ay)

where

◮ Pα: Poisson noise of scale parameter α

◮ A: projection matrix
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RECONSTRUCTION PROBLEM

Our objective is:

min
x∈RK

T∑

t=1

DKL(AF∗
t x, z) + κ tv(F∗

t x) + ιC(x) + ϑ ‖x‖ℓ1

y = F∗x = (F∗
t x)1≤t≤T

where κ > 0, ϑ > 0 and

◮ DKL is the Kullback-Leibler divergence

◮ tv represents a total variation term

◮ ιC is the indicator function of a closed convex set C

◮ ‖x‖ℓ1
denotes the ℓ1-norm.

20 / 34



GENERAL CONTEXT PROXIMAL TOOLS APPLICATIONS CONCLUSION

RECONSTRUCTION PROBLEM

Our objective is:

min
x∈RK

T∑

t=1

DKL(AF∗
t x, z) + κ tv(F∗

t x) + ιC(x) + ϑ ‖x‖ℓ1

y = F∗x = (F∗
t x)1≤t≤T

where κ > 0, ϑ > 0 and

◮ DKL is the Kullback-Leibler divergence ⇒ split into several
proximable functions

◮ tv represents a total variation term ⇒ closed form in [Combettes

and Pesquet, 2008]

◮ ιC is the indicator function of a closed convex set C ⇒ projection
onto C

◮ ‖x‖ℓ1
denotes the ℓ1-norm. ⇒ soft thresholding [Chaux et al., 2007]
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PET RECONSTRUCTION RESULTS

Slice n
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PET RECONSTRUCTION RESULTS

Original SIEVES PPXA
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IMAGE RESTORATION WITH MISSING SAMPLES

Original: y ∈ R
N Degraded: z ∈ R

M

z = Ay + b

◮ y: original image in [0, 255]N

→ assumed to be sparse after some appropriate transform,
◮ A ∈ R

M×N: randomly decimated convolution,
◮ b ∈ R

M: realization of a zero-mean white Gaussian noise,
◮ z: degraded image of size M.
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IMAGE RESTORATION WITH MISSING SAMPLES

ŷ ∈ Argmin
y∈[0,255]N

‖Ay − z‖2 s.t.
N∑

ℓ=1

‖Y(ℓ)‖p ≤ η

where
◮ Y(ℓ) =

(
ωℓ,n(y

(ℓ) − y(n))
)

n∈Nℓ

◮ p ≥ 1 and η > 0.

Particular cases:
◮ ℓ2 − TV: p = 2, ωℓ,n = 1, and Nℓ horizontal and vertical

neighbours,
◮ ℓ∞ − TV: p = ∞, ωℓ,n = 1, and Nℓ horizontal and vertical

neighbours,
◮ ℓ2 − NLTV: p = 2, ωℓ,n as in [Foi, Boracchi, 2012] and Nℓ as in

[Gilboa, Osher, 2007],
◮ ℓ∞ − NLTV: p = ∞, ωℓ,n as in [Foi, Boracchi, 2012] and Nℓ as in

[Gilboa, Osher, 2007].
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IMAGE RESTORATION WITH MISSING SAMPLES

Argmin
y

‖Ay − z‖2 s.t.

{∑N
ℓ=1 ‖Y(ℓ)‖p ≤ η

y ∈ [0, 255]N

•
•
•

Argmin
y,ζ

‖Ay − z‖2 s.t.





(∀ℓ ∈ {1, . . . ,N}) ‖Y(ℓ)‖p ≤ ζ(ℓ)∑N
ℓ=1 ζ

(ℓ) ≤ η

y ∈ [0, 255]N
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IMAGE RESTORATION WITH MISSING SAMPLES
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Figure: Comparison between epigraphical method (solid line) and

direct method (dashed line):
‖y[n]−y[∞]‖

‖y[∞]‖
in dB vs time.
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IMAGE RESTORATION WITH MISSING SAMPLES

Culicoidae Degraded Zoom GPSR
SNR: 17.03 dB

ℓ2-TV ℓ∞-TV ℓ2-NLTV ℓ∞-NLTV
SNR: 20.80 dB SNR: 20.25 dB SNR: 22.62 dB SNR: 22.38 dB
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IMAGE RESTORATION WITH MISSING SAMPLES

Culicoidae Degraded Zoom GPSR
SNR: 20.26 dB

ℓ2-TV ℓ∞-TV ℓ2-NLTV ℓ∞-NLTV
SNR: 23.18 dB SNR: 22.77 dB SNR: 24.18 dB SNR: 24.14 dB
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SEISMIC DATA ACQUISITION

Figure: Principles of seismic wave propagation, with reflections on
different layers, and data acquisition. Solid blue: primary; dashed
red: multiple.
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OBSERVATION MODEL

z(n) = s(n) + y(n)

where

◮ n ∈ {0, · · · ,N − 1}: the time index

◮ z = (z(n))0≤n<N: the observed data combining

1. the primary y = (y(n))0≤n<N (signal of interest, unknown)
2. the multiples (s(n))0≤n<N (sum of undesired reflected

signals). We assume that a template (r(n))0≤n<N (for the
disturbance signal) is available and that

s(n) =
∑p′+P−1

p=p′ h(n)(p)r(n−p)

We can rewrite the problem as

z = Rh + y
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MAP ESTIMATION - FILTERS h

Assumptions:

1. x = Fy (where F ∈ R
N×N denotes the analysis operator) is a

realization of a random vector, whose probability density
function (pdf) is given by (∀x ∈ R

N) fX(x) ∝ exp(−ϕ(x))

2. h is a realization of a random vector, whose pdf is
expressed as (∀h ∈ R

NP) fH(h) ∝ exp(−ρ(h)), and which
is independent of x.

MAP estimation of h

minimize
h∈RNP

ϕ
(
F(z − Rh)

)
+ ρ(h).

• ϕ: data fidelity term taking into account the statistical
properties of the basis coefficients
• ρ: prior informations that are available on h.
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CONVEX CONSTRAINTS ON THE FILTERS

Assumption: filters are varying along the time index n.

(
∀(n, p)

)
|h(n+1)(p)− h(n)(p)| ≤ εp

The associated closed convex set is defined as

C =
{

h ∈ R
NP | ∀(n, p) |h(n+1)(p) − h(n)(p)| ≤ εp

}
.
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CONVEX CONSTRAINTS ON THE FILTERS

Assumption: filters are varying along the time index n.

(
∀(n, p)

)
|h(n+1)(p)− h(n)(p)| ≤ εp

The associated closed convex set is defined as

C =
{

h ∈ R
NP | ∀(n, p) |h(n+1)(p) − h(n)(p)| ≤ εp

}
.

Minimization problem to be solved

minimize
h∈RNP

ϕ
(
F(z − Rh)

)
+ ρ̃(h) + ιC1

(h) + ιC2
(h).

Use of PPXA+ to perform the minimization.

29 / 34



GENERAL CONTEXT PROXIMAL TOOLS APPLICATIONS CONCLUSION

RESULTS: CONTEXT

◮ N = 2048; filter length: P = 14 (noise-free case), P = 10
(noisy case)

◮ PPXA+ parameters: λi ≡ 1.5,
ω1 = 10000/N, ω2 = ω1/P, ω3 = ω4 = 10ω2;

◮ Iteration number: 10000 (stopping criterion at iteration i if
‖h[i+1] − h[i]‖ < 10−5);

◮ Functions choice: ϕk ≡ | · | and ρ̃ = µ‖ · ‖2, µ = 0.01;

◮ Basis choice: Symlet wavelets of length 8 over 3 resolution
levels.
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RESULTS: NON NOISY CASE
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Estimated signal ŷ
Estimated multiples ŝ
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NOISY CASE
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CONCLUSION

◮ Proximity operators and proximal methods are shown to
be very flexible tools for solving variational problems
encountered in inverse problems.

◮ The convex criterion can be composed of various terms
modelizing data fidelity (often linked to noise statictics)
and also prior information, possibly formulated under
convex (hard) constraints.

◮ Frames can be used to introduce prior information.
◮ Many other applications have been investigated (pMRI,

compressive sensing, satellite imaging, stereovision,
microcopy imaging,...).
Future work:

◮ Use of these methods in statistical learning.
◮ Extension to the non convex case.
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CONCLUSION

◮ Proximity operators and proximal methods are shown to
be very flexible tools for solving variational problems
encountered in inverse problems.

◮ The convex criterion can be composed of various terms
modelizing data fidelity (often linked to noise statictics)
and also prior information, possibly formulated under
convex (hard) constraints.

◮ Frames can be used to introduce prior information.
◮ Many other applications have been investigated (pMRI,

compressive sensing, satellite imaging, stereovision,
microcopy imaging,...).
Future work:

◮ Use of these methods in statistical learning.
◮ Extension to the non convex case.

Thank you !
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