Towards a Mathematical Theory of Super-Resolution

Emmanuel Candès

Optimization and Statisitical Learning, Les Houches, January 2013

Collaborator

Carlos Fernandez-Granda (Stanford, EE)

Prelude: Compressed Sensing

Some origin

Some origin

sample spectrum at random

$\min \ell_{1} \rightarrow$ exact interpolation

An early result

- $x \in \mathbb{C}^{N}$
- Discrete Fourier transform

$$
\hat{x}[\omega]=\sum_{t=0}^{N-1} x[t] e^{-i 2 \pi \omega t / N} \quad \omega=0,1, \ldots, N-1
$$

An early result

- $x \in \mathbb{C}^{N}$
- Discrete Fourier transform

$$
\hat{x}[\omega]=\sum_{t=0}^{N-1} x[t] e^{-i 2 \pi \omega t / N} \quad \omega=0,1, \ldots, N-1
$$

Theorem (C., Romberg and Tao (04))

- x : k-sparse
- n Fourier coefficients selected at random

$$
\ell_{1} \text { is exact if } n \gtrsim k \log N
$$

An early result

- $x \in \mathbb{C}^{N}$
- Discrete Fourier transform

$$
\hat{x}[\omega]=\sum_{t=0}^{N-1} x[t] e^{-i 2 \pi \omega t / N} \quad \omega=0,1, \ldots, N-1
$$

Theorem (C., Romberg and Tao (04))

- x : k-sparse
- n Fourier coefficients selected at random

$$
\ell_{1} \text { is exact if } n \gtrsim k \log N
$$

Extensions: C. and Plan (10)

- Can deal with noise (in essentially optimal way)
- Can deal with approximate sparsity

Other works: Donoho (04)

Extensions: reconstruction from undersampled freq. data

Minimize ℓ_{1} norm of gradient subject to data constraints

Naive Reconstruction

filtered backprojection

$\min \ell_{1} \rightarrow$ perfect

Magnetic resonance imaging

Acquire data by scanning in Fourier space

Impact on MR pediatrics

Lustig (UCB), Pauly, Vasanawala (Stanford)

Parallel imaging (PI)

Compressed sensing + PI

6 year old male abdomen: 8 X acceleration

Impact on MR pediatrics

Lustig (UCB), Pauly, Vasanawala (Stanford)

Parallel imaging (PI)

Compressed sensing + PI

6 year old male abdomen: 8 X acceleration

Agenda

Compressed sensing: Nyquist sampling is irrelevant

- Can sample at will/random
- Cvx opt. solves an interpolation problem exactly under sparsity constraints
- Robust to noise
- Essentially discrete and finite time theory: exceptions
- Eldar et al.
- Adcock, Hansen et al.

Agenda

Compressed sensing: Nyquist sampling is irrelevant

- Can sample at will/random
- Cvx opt. solves an interpolation problem exactly under sparsity constraints
- Robust to noise
- Essentially discrete and finite time theory: exceptions
- Eldar et al.
- Adcock, Hansen et al.

This lecture: super-resolution

- Can only sample low frequencies
- Cvx opt solves an extrapolation problem exactly under sparsity constraints
- Some robustness (sometimes) to noise
- Continuous time theory

Motivation

Diffraction limited systems

The physical phenomenon called diffraction is of the utmost importance in the theory of optical imaging systems

Joseph Goodman

Diffraction limited systems: canonical example

Object plane

Pupil
Fourier plane

Image plane

4f optical system
Mathematical model

$$
\begin{array}{lll}
f_{\text {obs }}(t)=(h * f)(t) & h: & \text { point spread function (PSF) } \\
\hat{f}_{\text {obs }}(\omega)=\hat{h}(\omega) \hat{f}(\omega) & \hat{h}: & \text { transfer function (TF) }
\end{array}
$$

Bandlimited imaging systems

Bandlimited system

$$
|\omega|>\Omega \quad \Rightarrow \quad|\hat{h}(\omega)|=0
$$

$\hat{f}_{\text {obs }}(\omega)=\hat{h}(\omega) \hat{f}(\omega) \rightarrow$ suppresses all high-frequency components

Bandlimited imaging systems

Bandlimited system

$$
|\omega|>\Omega \quad \Rightarrow \quad|\hat{h}(\omega)|=0
$$

$\hat{f}_{\text {obs }}(\omega)=\hat{h}(\omega) \hat{f}(\omega) \rightarrow$ suppresses all high-frequency components
Example: coherent imaging

$$
\hat{h}(\omega)=1_{P}(\omega) \quad \text { indicator of pupil element }
$$

TF
Pupil

PSF
Airy disk

cross-section (PSF)

Examples

TF

PSF

cross-section (PSF)

Image of point source

Rayleigh resolution limit

Lord Rayleigh

Incoherent imaging

$$
I_{\mathrm{obs}}=I * h_{\mathrm{inc}} \quad h_{\mathrm{inc}}(t)=\left|h_{\mathrm{coh}}(t)\right|^{2}
$$

2D TF

Other examples of low-pass data

$$
f_{\text {obs }}=f * h \quad h \text { bandlimited }
$$

- out-of-focus blur
- atmospheric turbulence blur
- motion blur
- near-field accoustic holography
- ...

The Super-Resolution Problem

Super-resolution: spatial viewpoint

ill-posed deconvolution to break the diffraction limit

Super-resolution: frequency viewpoint

Random vs. low-frequency sampling: 1D

Random sampling (CS)

Low-frequency sampling (SR)

Very different from compressive sensing (CS)

Random vs. low-frequency sampling: 2D

Very different from compressive sensing (CS)

A Mathematical Theory of Super-resolution

Mathematical model

- Signal:

$$
x=\sum_{j} a_{j} \delta_{\tau_{j}} \quad a_{j} \in \mathbb{C}, \tau_{j} \in T \subset[0,1]
$$

- Data: $n=2 f_{c}+1$ low-frequency coefficients (Nyquist sampling)

$$
\begin{aligned}
y(k) & =\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t)=\sum_{j} a_{j} e^{-i 2 \pi k t_{j}} \quad k \in \mathbb{Z},|k| \leq f_{c} \\
y & =\mathcal{F}_{n} x
\end{aligned}
$$

- Resolution limit: $\left(\lambda_{c} / 2\right.$ is Rayleigh distance $)$

$$
1 / f_{c}=\lambda_{c}
$$

Mathematical model

- Signal:

$$
x=\sum_{j} a_{j} \delta_{\tau_{j}} \quad a_{j} \in \mathbb{C}, \tau_{j} \in T \subset[0,1]
$$

- Data: $n=2 f_{c}+1$ low-frequency coefficients (Nyquist sampling)

$$
\begin{aligned}
y(k) & =\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t)=\sum_{j} a_{j} e^{-i 2 \pi k t_{j}} \quad k \in \mathbb{Z},|k| \leq f_{c} \\
y & =\mathcal{F}_{n} x
\end{aligned}
$$

- Resolution limit: $\left(\lambda_{c} / 2\right.$ is Rayleigh distance $)$

$$
1 / f_{c}=\lambda_{c}
$$

Question

Can we resolve the signal beyond this limit?

Equivalent problem: spectral estimation

Swap time and frequency

- Signal

$$
x(t)=\sum_{j} a_{j} e^{i 2 \pi \omega_{j} t} \quad a_{j} \in \mathbb{C}, \omega_{j} \in[0,1]
$$

- Observe samples $x(0), x(1), \ldots, x(n-1)$

Equivalent problem: spectral estimation

Swap time and frequency

- Signal

$$
x(t)=\sum_{j} a_{j} e^{i 2 \pi \omega_{j} t} \quad a_{j} \in \mathbb{C}, \omega_{j} \in[0,1]
$$

- Observe samples $x(0), x(1), \ldots, x(n-1)$

Question

Can we resolve the frequencies beyond the Heisenberg limit?

Recovery by minimum total-variation

Recover signal by solving

$$
\min \|\tilde{x}\|_{\mathrm{TV}} \quad \text { subject to } \quad \mathcal{F}_{n} \tilde{x}=y
$$

Total-variation norm: ' $\|x\|_{\mathrm{TV}}=\int|x(\mathrm{~d} t)|^{\prime}$

- Continuous analog of ℓ_{1} norm
- If $x=\sum_{j} a_{j} \delta_{\tau_{j}},\|x\|_{\mathrm{TV}}=\sum_{j}\left|a_{j}\right|$
- If x absolutely continuous wrt Lebesgue, $\|x\|_{\mathrm{TV}}=\int|x(t)| \mathrm{d} t$

Noiseless recovery: main result

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{c}
$$

Min distance

$$
\Delta(T)=\inf _{\left(t, t^{\prime}\right) \in T: t \neq t^{\prime}}\left|t-t^{\prime}\right|_{\infty}
$$

$$
T \subset[0,1]
$$

Noiseless recovery: main result

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{c}
$$

Min distance $\quad \Delta(T)=\inf _{\left(t, t^{\prime}\right) \in T: t \neq t^{\prime}} \mid t-$

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys

$$
\Delta(T) \geq 2 / f_{c}:=2 \lambda_{c}
$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87 \lambda_{c}$ suffices

- Infinite precision!

Noiseless recovery: main result

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{c}
$$

Min distance $\quad \Delta(T)=\inf _{\left(t, t^{\prime}\right) \in T: t \neq t^{\prime}}\left|t-t^{\prime}\right|$

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys

$$
\Delta(T) \geq 2 / f_{c}:=2 \lambda_{c}
$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87 \lambda_{c}$ suffices

- Infinite precision!
- Whatever the amplitudes!

Noiseless recovery: main result

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{c}
$$

Min distance $\quad \Delta(T)=\inf _{\left(t, t^{\prime}\right) \in T: t \neq t^{\prime}} \mid t-$

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys

$$
\Delta(T) \geq 2 / f_{c}:=2 \lambda_{c}
$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87 \lambda_{c}$ suffices

- Infinite precision!
- Whatever the amplitudes!
- Can recover $\left(2 \lambda_{c}\right)^{-1}=f_{c} / 2=n / 4$ spikes from n low-freq. samples!

Noiseless recovery: main result

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{c}
$$

Min distance

$$
\begin{aligned}
& \Delta(T)=\inf _{\left(t, t^{\prime}\right) \in T: t \neq t^{\prime}} \mid t- \\
& \text { ndez Granda (2012)) }
\end{aligned}
$$

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys

$$
\Delta(T) \geq 2 / f_{c}:=2 \lambda_{c}
$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87 \lambda_{c}$ suffices

- Infinite precision!
- Whatever the amplitudes!
- Can recover $\left(2 \lambda_{c}\right)^{-1}=f_{c} / 2=n / 4$ spikes from n low-freq. samples!
- Have a proof for $1.85 \lambda_{c}$
- Can be improved (but not much)

Flooded spikes

- Sparse spike train obeys min distance assumption
- Low-frequency data

Where are the spikes?

Flooded spikes

- Sparse spike train obeys min distance assumption
- Low-frequency data

Where are the spikes?

Lower bound

- Put $k=|T|$ spikes on an equispaced grid at fixed distance
- Search for amplitudes s. t. ℓ_{1} fails

Min distances at which exact recovery by ℓ_{1} min fails to occur against $\lambda_{c} / 2$
At red curve, min distance would be exactly equal to λ_{c} ℓ_{1} fails if distance is below λ_{c}

Super-resolution in higher dimensions

- Signal

$$
x=\sum_{j} a_{j} \delta_{\tau_{j}} \quad a_{j} \in \mathbb{C}, \tau_{j} \in T \subset[0,1]^{2}
$$

- Data: low-frequency coefficients (Nyquist sampling)

$$
y(k)=\int_{[0,1]^{2}} e^{-i 2 \pi\langle k, t\rangle} x(\mathrm{~d} t)=\sum_{j} a_{j} e^{-i 2 \pi\left\langle k, t_{j}\right\rangle} \quad \begin{aligned}
& k=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2} \\
& \left|k_{1}\right|,\left|k_{2}\right| \leq f_{c}
\end{aligned}
$$

- Resolution limit: $1 / f_{c}=\lambda_{c}$

Super-resolution in higher dimensions

- Signal

$$
x=\sum_{j} a_{j} \delta_{\tau_{j}} \quad a_{j} \in \mathbb{C}, \tau_{j} \in T \subset[0,1]^{2}
$$

- Data: low-frequency coefficients (Nyquist sampling)

$$
y(k)=\int_{[0,1]^{2}} e^{-i 2 \pi\langle k, t\rangle} x(\mathrm{~d} t)=\sum_{j} a_{j} e^{-i 2 \pi\left\langle k, t_{j}\right\rangle} \quad \begin{aligned}
& k=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2} \\
& \left|k_{1}\right|,\left|k_{2}\right| \leq f_{c}
\end{aligned}
$$

- Resolution limit: $1 / f_{c}=\lambda_{c}$

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys

$$
\Delta(T) \geq 2.38 \lambda_{c}
$$

then min TV solution is exact!

Extensions

- Signal x is periodic and piecewise smooth

$$
x(t)=\sum_{t_{j} \in T} \mathbf{1}_{\left(t_{j-1}, t_{j}\right)} p_{j}(t)
$$

- p_{j} polynomial of degree ℓ
- x is $\ell-1$ times continuously differentiable

- Data

$$
y=\mathcal{F}_{n} x \quad y_{k}=\int_{[0,1]} x(t) e^{-i 2 \pi k t} \mathrm{~d} t \quad|k| \leq f_{c}
$$

- Recovery

$$
\min \left\|\tilde{x}^{(\ell+1)}\right\|_{\mathrm{TV}} \quad \text { subject to } \quad \mathcal{F}_{n} \tilde{x}=y
$$

Extensions

- Signal x is periodic and piecewise smooth

$$
x(t)=\sum_{t_{j} \in T} \mathbf{1}_{\left(t_{j-1}, t_{j}\right)} p_{j}(t)
$$

- p_{j} polynomial of degree ℓ
- x is $\ell-1$ times continuously differentiable

- Data

$$
y=\mathcal{F}_{n} x \quad y_{k}=\int_{[0,1]} x(t) e^{-i 2 \pi k t} \mathrm{~d} t \quad|k| \leq f_{c}
$$

- Recovery

$$
\min \left\|\tilde{x}^{(\ell+1)}\right\|_{\mathrm{TV}} \quad \text { subject to } \quad \mathcal{F}_{n} \tilde{x}=y
$$

Corollary

Under same assumptions, min TV solution is exact

Surprise: extreme coherence

$$
\min \|\tilde{x}\|_{\left(\ell_{1}, \mathrm{TV}\right)} \quad \text { subject to } \quad y=\mathcal{F}_{n} x
$$

- \mathcal{F}_{n} is $n \times \infty$ matrix with (normalized) column vectors indexed by time/space

$$
f_{t}[k]=n^{-1 / 2} e^{i 2 \pi k t} \quad|k| \leq f_{c}
$$

- Coherence is one! $\left\langle f_{t}, f_{t}^{\prime}\right\rangle \rightarrow 1$ as $t^{\prime} \rightarrow t$
- Yet perfect recovery!

Completely unexplained by current sparse recovery literature (which cannot deal with more than one spike)

Kahane's result

- $x \in \mathbb{C}^{N}$ with spacing $1 / N$
- observe n low-frequency samples from DFT

Kahane (2011). Min ℓ_{1} is exact if min separation obeys

$$
\Delta(T) \geq 10 \frac{1}{n} \sqrt{\log (N / n)}
$$

Cannot pass to the continuum

Proof ideas

Recovery of x supported on $T \subset[0,1]$ exact if for any $v \in \mathbb{C}^{|T|}$ with $\left|v_{j}\right|=1 \exists$

$$
q(t)=\sum_{k=-f_{c}}^{f_{c}} c_{k} e^{i 2 \pi k t} \quad \begin{cases}q\left(t_{j}\right)=v_{j} & t_{j} \in T \\ |q(t)|<1, & t \in[0,1] \backslash T\end{cases}
$$

low-freq. trig. polynomial
interpolating

Figure: (a) separated spikes (b) clustered spikes

Construction of dual polynomial

- Squared Fejér kernel

$$
K(t)=\left[\frac{\sin \left(\frac{f_{c}}{2}+1\right) \pi t}{\left(\frac{f_{c}}{2}+1\right) \sin (\pi t)}\right]^{4}
$$

Fourier coefficients of K supported on $\left\{-f_{c},-f_{c}+1, \ldots, f_{c}\right\}$

- Dual polynomial

$$
q(t)=\sum_{t_{j} \in T} \alpha_{j} K\left(t-t_{j}\right)+\beta_{j} K^{\prime}\left(t-t_{j}\right)
$$

Fejér kernel

- Fit coefficients α, β so that for $t_{j} \in T$

$$
\left\{\begin{array}{l}
q\left(t_{j}\right)=v_{j} \\
q^{\prime}\left(t_{j}\right)=0
\end{array}\right.
$$

- Proof: show this is well defined and $|q(t)|<1$ on T^{c}

Other works and approaches to super-resolution

- Donoho ('89) [modulus of continuity under sparsity constraints]
- Eckhoff ('95) [algebraic approach to find singularities from first few freq. coeff.]
- Dragotti, Vetterli, Blu ('07) [algebraic approach, De Prony's method]
- Batenkov and Yomdin ('12) [algebraic approach]

Numerical Algorithms?

Formulation as a finite-dimensional problem

Dual problem

Primal problem

$$
\min \|x\|_{\mathrm{TV}} \text { s. t. } \mathcal{F}_{n} x=y
$$

- Infinite-dimensional variable x
- Finitely many constraints

$$
\max \operatorname{Re}\langle y, c\rangle \text { s. t. }\left\|\mathcal{F}_{n}^{*} c\right\|_{\infty} \leq 1
$$

- Finite-dimensional variable c
- Infinitely many constraints

$$
\left(\mathcal{F}_{n}^{*} c\right)(t)=\sum_{|k| \leq f_{c}} c_{k} e^{i 2 \pi k t}
$$

Formulation as a finite-dimensional problem

Dual problem

Primal problem

$$
\min \|x\|_{\mathrm{TV}} \text { s. t. } \mathcal{F}_{n} x=y
$$

- Infinite-dimensional variable x
- Finitely many constraints

$$
\max \operatorname{Re}\langle y, c\rangle \text { s. t. }\left\|\mathcal{F}_{n}^{*} c\right\|_{\infty} \leq 1
$$

- Finite-dimensional variable c
- Infinitely many constraints

$$
\left(\mathcal{F}_{n}^{*} c\right)(t)=\sum_{|k| \leq f_{c}} c_{k} e^{i 2 \pi k t}
$$

Semidefinite representability

$\left|\left(\mathcal{F}_{n}^{*} c\right)(t)\right| \leq 1$ for all $t \in[0,1]$ equivalent to
(1) there is Q Hermitian s. t.

$$
\left[\begin{array}{ll}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0
$$

(2) $\operatorname{trace}(Q)=1$
(3) sums along superdiagonals vanish, $\sum_{i=1}^{n-j} Q_{i, i+j}=0$ for $1 \leq j \leq n-1$

Semidefinite representability

$$
\left(\mathcal{F}_{n}^{*} c\right)(t)=\sum_{k=0}^{n-1} c_{k} e^{i 2 \pi k t}
$$

$$
\left\|\mathcal{F}_{n}^{*} c\right\|_{\infty} \leq 1 \quad \Longleftrightarrow \quad\left[\begin{array}{ll}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0, \quad \sum_{i=1}^{n-j} Q_{i, i+j}= \begin{cases}1 & j=0 \\
0 & j=1,2, \ldots, n-1\end{cases}
$$

Semidefinite representability

$$
\left(\mathcal{F}_{n}^{*} c\right)(t)=\sum_{k=0}^{n-1} c_{k} e^{i 2 \pi k t}
$$

$$
\left\|\mathcal{F}_{n}^{*} c\right\|_{\infty} \leq 1 \quad \Longleftrightarrow \quad\left[\begin{array}{ll}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0, \quad \sum_{i=1}^{n-j} Q_{i, i+j}= \begin{cases}1 & j=0 \\
0 & j=1,2, \ldots, n-1\end{cases}
$$

Why (one way)?

$$
\left[\begin{array}{ll}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0 \quad \Longleftrightarrow \quad Q-c c^{*} \succeq 0
$$

$z=\left(z_{0}, \ldots, z_{n-1}\right), z_{k}=e^{i 2 \pi k t}$

$$
z^{*} Q z=1 \quad z^{*} c c^{*} z=\left|c^{*} z\right|^{2}=\left|\left(\mathcal{F}_{n}^{*} c\right)(t)\right|^{2}
$$

SDP formulation

Dual as an SDP

$$
\begin{aligned}
\text { maximize } \quad \operatorname{Re}\langle y, c\rangle \quad \text { subject to } \quad & {\left[\begin{array}{cc}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0 } \\
& \sum_{i=1}^{n-j} Q_{i, i+j}=\delta_{j} \quad 0 \leq j \leq n-1
\end{aligned}
$$

Algorithm
(1) Solve dual
(2) Check when $\sum_{|k| \leq f_{c}} c_{k} e^{i 2 \pi k t}$ has magnitude $1 \rightarrow$ gives support T

SDP formulation

Dual as an SDP

$$
\begin{aligned}
\text { maximize } \quad \operatorname{Re}\langle y, c\rangle \quad \text { subject to } \quad & {\left[\begin{array}{cc}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0 } \\
& \sum_{i=1}^{n-j} Q_{i, i+j}=\delta_{j} \quad 0 \leq j \leq n-1
\end{aligned}
$$

Algorithm
(1) Solve dual
(2) Check when $\sum_{|k| \leq f_{c}} c_{k} e^{i 2 \pi k t}$ has magnitude $1 \rightarrow$ gives support T

Find roots (on unit circle) of polynomial of degree $2 n-2$

$$
p_{2 n-2}\left(e^{i 2 \pi t}\right)=1-\left|\left(\mathcal{F}_{n}^{*} c\right)(t)\right|^{2}=1-\sum_{k=-2 f_{c}}^{2 f_{c}} u_{k} e^{i 2 \pi k t}, \quad u_{k}=\sum_{j} c_{j} \bar{c}_{j-k}
$$

At most $n-1$ roots! \rightarrow Can solve for amplitudes
There is a solution with support size $n-1$. Not true in finite dimension!

Dual polynomial

Figure: Sign of a real atomic measure x (red) and dual trigonometric polynomial $\mathcal{F}_{n}^{*} c$. Here, $f_{c}=50$ so that we have $n=101$ low-frequency coefficients.

Accuracy

f_{c}	25	50	75	100
Average error	6.6610^{-9}	1.7010^{-9}	5.5810^{-10}	2.9610^{-10}
Maximum error	1.8310^{-7}	8.1410^{-8}	2.5510^{-8}	2.3110^{-8}

Table: Numerical recovery of the signal support. There are approximately $f_{c} / 4$ random locations in the unit interval.

Recovery example

Figure: There are 21 spikes situated at arbitrary locations separated by at least $2 \lambda_{c}$ and we observe 101 low-frequency coefficients $\left(f_{c}=50\right)$. In the plot, seven of the original spikes (black dots) are shown along with the corresponding low resolution data (blue line) and the estimated signal (red line).

Dual polynomial with random data

Figure: Trigonometric polynomial $1-\left|\left(\mathcal{F}_{n}^{*} c\right)(t)\right|^{2}$ with random data $y \in \mathbb{C}^{21}(n=21$ and $f_{c}=10$) with i.i.d. complex Gaussian entries. The polynomial has 16 roots.

Stability

The super-resolution factor (SRF): spatial viewpoint

- Have data at resolution λ_{c}
- Wish resolution λ_{f}

Super-resolution factor

$$
\mathrm{SRF}=\frac{\lambda_{c}}{\lambda_{f}}
$$

The super-resolution factor (SRF): frequency viewpoint

- Observe spectrum up to f_{c}
- Wish to extrapolate up to f

Super-resolution factor

$$
\mathrm{SRF}=\frac{f}{f_{c}}
$$

Stability

$$
\mathcal{F}_{n} x=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{c}
$$

Noisy data

$$
y=\mathcal{F}_{n} x+w \quad \Longleftrightarrow \quad \mathcal{F}_{n}^{*} y=\mathcal{F}_{n}^{*} \mathcal{F}_{n} x+\mathcal{F}_{n}^{*} w
$$

\mathcal{P}_{n} projection onto first n Fourier modes
Bounded noise $\|z\|_{\mathrm{TV}}=\|z\|_{L_{1}} \leq \delta$

Stability

$$
\mathcal{F}_{n} x=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{c}
$$

Noisy data

$$
\begin{aligned}
y=\mathcal{F}_{n} x+w \quad \Longleftrightarrow \quad \mathcal{F}_{n}^{*} y & =\mathcal{F}_{n}^{*} \mathcal{F}_{n} x+\mathcal{F}_{n}^{*} w \\
s & =\mathcal{P}_{n} x+z
\end{aligned}
$$

\mathcal{P}_{n} projection onto first n Fourier modes
Bounded noise $\|z\|_{\mathrm{TV}}=\|z\|_{L_{1}} \leq \delta$

Recover signal by solving

$$
\min \|\tilde{x}\|_{\mathrm{TV}} \quad \text { subject to }\left\|s-\mathcal{P}_{n} \tilde{x}\right\|_{\mathrm{TV}} \leq \delta
$$

Stability

$$
\mathcal{F}_{n} x=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{c}
$$

Noisy data

$$
\begin{aligned}
y=\mathcal{F}_{n} x+w \quad \Longleftrightarrow \quad \mathcal{F}_{n}^{*} y & =\mathcal{F}_{n}^{*} \mathcal{F}_{n} x+\mathcal{F}_{n}^{*} w \\
s & =\mathcal{P}_{n} x+z
\end{aligned}
$$

\mathcal{P}_{n} projection onto first n Fourier modes
Bounded noise $\|z\|_{\mathrm{TV}}=\|z\|_{L_{1}} \leq \delta$

Recover signal by solving

$$
\min \|\tilde{x}\|_{\text {TV }} \quad \text { subject to } \quad\left\|s-\mathcal{P}_{n} \tilde{x}\right\|_{\text {TV }} \leq \delta
$$

Theorem (C. and Fernandez Granda (2012))

If min dist. is at least $2 \lambda_{c}$

$$
\left\|(\hat{x}-x) * \varphi_{\lambda_{c}}\right\|_{\mathrm{TV}} \lesssim \delta
$$

Stability

$$
\mathcal{F}_{n} x=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{c}
$$

Noisy data

$$
\begin{aligned}
y=\mathcal{F}_{n} x+w \quad \Longleftrightarrow \quad \mathcal{F}_{n}^{*} y & =\mathcal{F}_{n}^{*} \mathcal{F}_{n} x+\mathcal{F}_{n}^{*} w \\
s & =\mathcal{P}_{n} x+z
\end{aligned}
$$

\mathcal{P}_{n} projection onto first n Fourier modes
Bounded noise $\|z\|_{\mathrm{TV}}=\|z\|_{L_{1}} \leq \delta$

Recover signal by solving

$$
\min \|\tilde{x}\|_{\mathrm{TV}} \quad \text { subject to }\left\|s-\mathcal{P}_{n} \tilde{x}\right\|_{\mathrm{TV}} \leq \delta
$$

Theorem (C. and Fernandez Granda (2012))
If min dist. is at least $2 \lambda_{c}$

$$
\left\|(\hat{x}-x) * \varphi_{\lambda_{f}}\right\|_{\mathrm{TV}} \lesssim \mathrm{SRF}^{2} \cdot \delta
$$

Limits of Super-resolution: Sparsity and Stability

Sparsity and stability

- Fixed grid of size $k=48$ with spacing Rayleigh distance/SRF
- Compute eigenvalues of \mathcal{P}_{n} with input on this grid

Analysis via Slepian's discrete prolate sequences

David Slepian

Analysis via Slepian's discrete prolate sequences (sketch)

$$
s=\mathcal{P}_{n}(x+z)
$$

(1) Distance is Rayleigh/4 \rightarrow there are eigenvalues/eigenvectors

$$
\begin{aligned}
\mathcal{P}_{n} x & \approx \lambda x
\end{aligned} \quad \lambda \approx 5.22 \sqrt{k+1} e^{-3.23(k+1)}
$$

Analysis via Slepian's discrete prolate sequences (sketch)

$$
s=\mathcal{P}_{n}(x+z)
$$

(3) Distance is Rayleigh/4 \rightarrow there are eigenvalues/eigenvectors

$$
\begin{aligned}
\mathcal{P}_{n} x & \approx \lambda x
\end{aligned} \quad \lambda \approx 5.22 \sqrt{k+1} e^{-3.23(k+1)}, ~ k=48 \quad \lambda \leq 7 \times 10^{-68}
$$

(2) Distance is Rayleigh/1.05 (only seek to extend the spectrum by 5%)

$$
\begin{aligned}
\mathcal{P}_{n} x & =\lambda x & & \lambda \approx 3.87 \sqrt{k+1} e^{-0.15(k+1)} \\
k & =256 & & \lambda \leq 1.2 \times 10^{-15}
\end{aligned}
$$

Analysis via Slepian's discrete prolate sequences (sketch)

$$
s=\mathcal{P}_{n}(x+z)
$$

(1) Distance is Rayleigh/4 \rightarrow there are eigenvalues/eigenvectors

$$
\begin{aligned}
& \mathcal{P}_{n} x \approx \lambda x \\
& k=48 \lambda \leq 5.22 \sqrt{k+1} e^{-3.23(k+1)} \\
& k \leq 7 \times 10^{-68}
\end{aligned}
$$

(2) Distance is Rayleigh $/ 1.05$ (only seek to extend the spectrum by 5%)

$$
\begin{aligned}
\mathcal{P}_{n} x & =\lambda x & & \lambda \approx 3.87 \sqrt{k+1} e^{-0.15(k+1)} \\
k & =256 & & \lambda \leq 1.2 \times 10^{-15}
\end{aligned}
$$

(3) (1) and (2) worse when spacing $\rightarrow 0$

Analysis via Slepian's discrete prolate sequences (sketch)

$$
s=\mathcal{P}_{n}(x+z)
$$

(1) Distance is Rayleigh/4 \rightarrow there are eigenvalues/eigenvectors

$$
\begin{aligned}
& \mathcal{P}_{n} x \approx \lambda x \\
& k=48 \quad \lambda \lambda \leq 5.22 \sqrt{k+1} e^{-3.23(k+1)} \\
& k+10^{-68}
\end{aligned}
$$

(2) Distance is Rayleigh $/ 1.05$ (only seek to extend the spectrum by 5%)

$$
\begin{aligned}
\mathcal{P}_{n} x & =\lambda x & & \lambda \approx 3.87 \sqrt{k+1} e^{-0.15(k+1)} \\
k & =256 & & \lambda \leq 1.2 \times 10^{-15}
\end{aligned}
$$

(3) (1) and (2) worse when spacing $\rightarrow 0$
(1) (1) approx holds for subspace of dimension $3 k / 4$

Application: Single Molecule Imaging in 3D Microscopy Joint with Moerner Lab and Veniamin Morgenshtern (Stanford)

Structure of interest contains molecules that are "blinking"

Frame 1

Frame 2

Frame 3

- Few molecules are active in each frame \Rightarrow sparsity!
- Multiple (~ 10000) frames are recorded and processed individually
- Results from all frames are combined to reveal the underlying structure

Optics acts as low-pass filter, detector adds noise

Low-pass, subsampled

Noisy

Original

$$
y=L x+z
$$

- x : signal
- y : output at the detector
- z : normal zero-mean noise
- L : models optics + subsampling (low-pass)

Noisy recovery

Original
Estimate

Recovery of 3D signals

- Double-helix (DH) point spread function has two lobes
- The angle defined by these lobes encodes z-position of the molecule
- Appropriately modifying L, we can use the same algorithm to reconstruct 3D signals from 2D data

Original 3D signal, projected onto XY plane

2D DH data

Estimated 3D signal, projected onto XY plane

Smooth background separation

Original

Data
minimize subject to
$\frac{1}{2}\|y-L(x+p)\|_{2}^{2}+\lambda \sigma\|x\|_{\mathrm{TV}}$
$x \geq 0$
p low freq. trig. polynomial (background)

Smooth background separation (Cont'd)

Original

LASSO estimate (speckles)

Polynomial separation estimate (clean)

Summary

Distance between events	$<$ Rayleigh	$>$ Rayleigh
Noiseless TV recovery	x	\checkmark
Stability	X	
no method is stable	min TV is stable	

- Can super-resolve signals by convex programming
- Need structural assumptions for stable recovery
- Ongoing applications in 3D microscopy
E. J. Candès, and C. Fernandez-Granda (2012). Towards a mathematical theory of super-resolution. To appear in Comm. Pure Appl. Math
E. J. Candès, and C. Fernandez-Granda (2012). Super-resolution from noisy data. http://arxiv.org/abs/XXXX. YYYY

The super-resolution factor (SRF)

$$
\text { SRF }:=\frac{\text { fine resolution }}{\text { coarse resolution }}:=\frac{N}{n}(\text { for discrete data })
$$

Wish to extend spectrum up until SRF $\times f_{c}$

Pictorial representation of SRF

