Towards a Mathematical Theory of Super-Resolution

Emmanuel Candès

Optimization and Statisitical Learning, Les Houches, January 2013

Collaborator

Carlos Fernandez-Granda (Stanford, EE)

Prelude: Compressed Sensing

Some origin

sample spectrum at random

Some origin

An early result

- $\bullet \ x \in \mathbb{C}^N$
- Discrete Fourier transform

$$\hat{x}[\omega] = \sum_{t=0}^{N-1} x[t] e^{-i2\pi\omega t/N} \quad \omega = 0, 1, \dots, N-1$$

An early result

- $\bullet \ x \in \mathbb{C}^N$
- Discrete Fourier transform

$$\hat{x}[\omega] = \sum_{t=0}^{N-1} x[t] e^{-i2\pi\omega t/N} \quad \omega = 0, 1, \dots, N-1$$

Theorem (C., Romberg and Tao (04))

- x: k-sparse
- *n* Fourier coefficients selected at random

 ℓ_1 is exact if $n \gtrsim k \log N$

An early result

- $\bullet \ x \in \mathbb{C}^N$
- Discrete Fourier transform

$$\hat{x}[\omega] = \sum_{t=0}^{N-1} x[t] e^{-i2\pi\omega t/N} \quad \omega = 0, 1, \dots, N-1$$

Theorem (C., Romberg and Tao (04))

• x: k-sparse

• *n* Fourier coefficients selected at random

 ℓ_1 is exact if $n \gtrsim k \log N$

Extensions: C. and Plan (10)

- Can deal with noise (in essentially optimal way)
- Can deal with approximate sparsity

Other works: Donoho (04)

Extensions: reconstruction from undersampled freq. data

Minimize ℓ_1 norm of gradient subject to data constraints

Magnetic resonance imaging

Acquire data by scanning in Fourier space

Impact on MR pediatrics

Lustig (UCB), Pauly, Vasanawala (Stanford)

Parallel imaging (PI)

Compressed sensing + PI

6 year old male abdomen: 8X acceleration

Impact on MR pediatrics

Lustig (UCB), Pauly, Vasanawala (Stanford)

Compressed sensing + PI

6 year old male abdomen: 8X acceleration

Agenda

Compressed sensing: Nyquist sampling is irrelevant

- Can sample at will/random
- Cvx opt. solves an interpolation problem exactly under sparsity constraints
- Robust to noise
- Essentially discrete and finite time theory: exceptions
 - Eldar et al.
 - Adcock, Hansen et al.

Agenda

Compressed sensing: Nyquist sampling is irrelevant

- Can sample at will/random
- Cvx opt. solves an interpolation problem exactly under sparsity constraints
- Robust to noise
- Essentially discrete and finite time theory: exceptions
 - Eldar et al.
 - Adcock, Hansen et al.

This lecture: super-resolution

- Can only sample low frequencies
- Cvx opt solves an extrapolation problem exactly under sparsity constraints
- Some robustness (sometimes) to noise
- Continuous time theory

Motivation

Diffraction limited systems

The physical phenomenon called diffraction is of the utmost importance in the theory of optical imaging systems

Joseph Goodman

Diffraction limited systems: canonical example

Mathematical model

$$\begin{split} f_{\mathsf{obs}}(t) &= (h * f)(t) & h: \text{ point spread function (PSF)} \\ \hat{f}_{\mathsf{obs}}(\omega) &= \hat{h}(\omega)\hat{f}(\omega) & \hat{h}: \text{ transfer function (TF)} \end{split}$$

Bandlimited imaging systems

Bandlimited system

$$|\omega| > \Omega \quad \Rightarrow \quad |\hat{h}(\omega)| = 0$$

 $\hat{f}_{\sf obs}(\omega) = \hat{h}(\omega)\,\hat{f}(\omega) \rightarrow {\rm suppresses}~{\it all}$ high-frequency components

Bandlimited imaging systems

Bandlimited system

$$|\omega| > \Omega \quad \Rightarrow \quad |\hat{h}(\omega)| = 0$$

 $\hat{f}_{\rm obs}(\omega)=\hat{h}(\omega)\,\hat{f}(\omega)\to {\rm suppresses}\,\, {\it all}$ high-frequency components

Example: coherent imaging

 $\hat{h}(\omega) = 1_P(\omega)$ indicator of pupil element

Examples

ΤF

Image of point source

Rayleigh resolution limit

Lord Rayleigh

Incoherent imaging

$$I_{\text{obs}} = I * h_{\text{inc}}$$
 $h_{\text{inc}}(t) = |h_{\text{coh}}(t)|^2$

Other examples of low-pass data

$$f_{\sf obs} = f * h$$
 h bandlimited

- out-of-focus blur
- atmospheric turbulence blur
- motion blur
- near-field accoustic holography

• ...

The Super-Resolution Problem

Super-resolution: spatial viewpoint

ill-posed deconvolution to break the diffraction limit

Super-resolution: frequency viewpoint

ill-posed extrapolation

Random vs. low-frequency sampling: 1D

Very different from compressive sensing (CS)

Random vs. low-frequency sampling: 2D

Random sampling (CS)

Low-frequency sampling (SR)

Very different from compressive sensing (CS)

A Mathematical Theory of Super-resolution

Mathematical model

• Signal:

• Data: $n = 2f_c + 1$ low-frequency coefficients (Nyquist sampling)

$$\begin{aligned} y(k) &= \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) = \sum_j a_j e^{-i2\pi kt_j} \quad k \in \mathbb{Z}, \, |k| \le f_c \\ y &= \mathcal{F}_n x \end{aligned}$$

• Resolution limit: $(\lambda_c/2 \text{ is Rayleigh distance})$

 $1/f_c = \lambda_c$

Mathematical model

• Signal:

• Data: $n = 2f_c + 1$ low-frequency coefficients (Nyquist sampling)

$$\begin{aligned} y(k) &= \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) = \sum_j a_j e^{-i2\pi kt_j} \quad k \in \mathbb{Z}, \, |k| \le f_c \\ y &= \mathcal{F}_n x \end{aligned}$$

• Resolution limit: $(\lambda_c/2 \text{ is Rayleigh distance})$

$$1/f_c = \lambda_c$$

Question

Can we resolve the signal beyond this limit?

Equivalent problem: spectral estimation

Swap time and frequency

Signal

$$x(t) = \sum_{j} a_{j} e^{i2\pi\omega_{j}t} \qquad a_{j} \in \mathbb{C}, \, \omega_{j} \in [0,1]$$

• Observe samples $x(0), x(1), \ldots, x(n-1)$

Equivalent problem: spectral estimation

Swap time and frequency

Signal

$$x(t) = \sum_{j} a_{j} e^{i2\pi\omega_{j}t} \qquad a_{j} \in \mathbb{C}, \, \omega_{j} \in [0, 1]$$

• Observe samples $x(0), x(1), \ldots, x(n-1)$

Question

Can we resolve the frequencies beyond the Heisenberg limit?

Recovery by minimum total-variation

Recover signal by solving

min $\|\tilde{x}\|_{\mathsf{TV}}$ subject to $\mathcal{F}_n \, \tilde{x} = y$

Total-variation norm: ' $||x||_{TV} = \int |x(dt)|$ '

- Continuous analog of ℓ_1 norm
- If $x = \sum_j a_j \delta_{\tau_j}$, $\|x\|_{\mathsf{TV}} = \sum_j |a_j|$
- If x absolutely continuous wrt Lebesgue, $||x||_{TV} = \int |x(t)| dt$

Noiseless recovery: main result

$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) \qquad |k| \le f_c$$

Min distance	$\Delta(T) = \inf_{(t,t')\in T: t\neq t'} t-t' _{\infty}$	$T \subset [0,1]$
$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) \qquad |k| \le f_c$$

$$\text{Min distance} \qquad \Delta(T) = \inf_{\substack{(t,t') \in T : t \neq t'}} |t - t'|_{\infty} \qquad T \subset [0,1]$$

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys

$$\Delta(T) \ge 2/f_c := 2\,\lambda_c$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87\lambda_c$ suffices

• Infinite precision!

$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) \qquad |k| \le f_c$$

$$\text{Min distance} \qquad \Delta(T) = \inf_{\substack{(t,t') \in T : t \neq t'}} |t - t'|_{\infty} \qquad T \subset [0,1]$$

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys

$$\Delta(T) \ge 2/f_c := 2\,\lambda_c$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87\lambda_c$ suffices

- Infinite precision!
- Whatever the amplitudes!

$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) \qquad |k| \le f_c$$

$$\text{Min distance} \qquad \Delta(T) = \inf_{\substack{(t,t') \in T : t \neq t'}} |t - t'|_{\infty} \qquad T \subset [0,1]$$

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys

$$\Delta(T) \ge 2/f_c := 2\,\lambda_c$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87\lambda_c$ suffices

- Infinite precision!
- Whatever the amplitudes!
- Can recover $(2\lambda_c)^{-1} = f_c/2 = n/4$ spikes from n low-freq. samples!

$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) \qquad |k| \le f_c$$

$$\text{Min distance} \qquad \Delta(T) = \inf_{\substack{(t,t') \in T : t \neq t'}} |t - t'|_{\infty} \qquad T \subset [0,1]$$

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys

$$\Delta(T) \ge 2/f_c := 2\,\lambda_c$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87\lambda_c$ suffices

- Infinite precision!
- Whatever the amplitudes!
- Can recover $(2\lambda_c)^{-1} = f_c/2 = n/4$ spikes from *n* low-freq. samples!
- Have a proof for $1.85\lambda_c$
- Can be improved (but not much)

Flooded spikes

- Sparse spike train obeys min distance assumption
- Low-frequency data

Where are the spikes?

Flooded spikes

- Sparse spike train obeys min distance assumption
- Low-frequency data

Where are the spikes?

Lower bound

- Put k = |T| spikes on an equispaced grid at fixed distance
- \bullet Search for amplitudes s. t. ℓ_1 fails

Min distances at which exact recovery by ℓ_1 min fails to occur against $\lambda_c/2$ At red curve, min distance would be exactly equal to λ_c ℓ_1 fails if distance is below λ_c

Super-resolution in higher dimensions

Signal

$$x = \sum_{j} a_{j} \delta_{\tau_{j}} \qquad a_{j} \in \mathbb{C}, \, \tau_{j} \in T \subset [0, 1]^{2}$$

• Data: low-frequency coefficients (Nyquist sampling)

$$y(k) = \int_{[0,1]^2} e^{-i2\pi \langle k,t \rangle} x(\mathsf{d}t) = \sum_j a_j e^{-i2\pi \langle k,t_j \rangle} \quad \begin{array}{l} k = (k_1,k_2) \in \mathbb{Z}^2 \\ |k_1|,|k_2| \le f_c \end{array}$$

• Resolution limit: $1/f_c = \lambda_c$

Super-resolution in higher dimensions

Signal

$$x = \sum_{j} a_{j} \delta_{\tau_{j}} \qquad a_{j} \in \mathbb{C}, \, \tau_{j} \in T \subset [0, 1]^{2}$$

• Data: low-frequency coefficients (Nyquist sampling)

$$y(k) = \int_{[0,1]^2} e^{-i2\pi \langle k,t\rangle} x(\mathrm{d}t) = \sum_j a_j e^{-i2\pi \langle k,t_j\rangle} \quad \begin{array}{l} k = (k_1,k_2) \in \mathbb{Z}^2 \\ |k_1|,|k_2| \leq f_c \end{array}$$

• Resolution limit: $1/f_c = \lambda_c$

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys

$$\Delta(T) \ge 2.38 \,\lambda_c$$

then min TV solution is exact!

Extensions

• Signal x is periodic and piecewise smooth

$$x(t) = \sum_{t_j \in T} \mathbf{1}_{(t_{j-1}, t_j)} p_j(t)$$

- p_j polynomial of degree ℓ
- x is $\ell 1$ times continuously differentiable

Data

$$y = \mathcal{F}_n x$$
 $y_k = \int_{[0,1]} x(t) e^{-i2\pi kt} \mathrm{d}t$ $|k| \le f_c$

Recovery

min $\|\tilde{x}^{(\ell+1)}\|_{\mathsf{TV}}$ subject to $\mathcal{F}_n \tilde{x} = y$

Extensions

• Signal x is periodic and piecewise smooth

$$x(t) = \sum_{t_j \in T} \mathbf{1}_{(t_{j-1}, t_j)} p_j(t)$$

- p_j polynomial of degree ℓ
- x is $\ell 1$ times continuously differentiable

Data

$$y = \mathcal{F}_n x \quad y_k = \int_{[0,1]} x(t) e^{-i2\pi kt} \mathrm{d}t \quad |k| \le f_c$$

Recovery

min
$$\|\tilde{x}^{(\ell+1)}\|_{\mathsf{TV}}$$
 subject to $\mathcal{F}_n \tilde{x} = y$

Corollary

Under same assumptions, min TV solution is exact

Surprise: extreme coherence

min
$$\|\tilde{x}\|_{(\ell_1,\mathsf{TV})}$$
 subject to $y = \mathcal{F}_n x$

• \mathcal{F}_n is $n imes \infty$ matrix with (normalized) column vectors indexed by time/space

$$f_t[k] = n^{-1/2} e^{i2\pi kt} \qquad |k| \le f_c$$

• Coherence is one!
$$\langle f_t, f'_t \rangle \to 1$$
 as $t' \to t$

• Yet perfect recovery!

Completely unexplained by current sparse recovery literature (which cannot deal with more than one spike)

Kahane's result

- $x \in \mathbb{C}^N$ with spacing 1/N
- $\bullet\,$ observe n low-frequency samples from DFT

Kahane (2011). Min ℓ_1 is exact if min separation obeys

$$\Delta(T) \ge 10 \, \frac{1}{n} \sqrt{\log(N/n)}$$

Cannot pass to the continuum

Proof ideas

Recovery of x supported on $T \subset [0,1]$ exact if for any $v \in \mathbb{C}^{|T|}$ with $|v_j| = 1 \exists$

$$q(t) = \sum_{k=-f_c}^{f_c} c_k e^{i2\pi kt} \begin{cases} q(t_j) = v_j & t_j \in T \\ |q(t)| < 1, & t \in [0,1] \setminus T \end{cases}$$

low-freq. trig. polynomial

interpolating

Figure: (a) separated spikes (b) clustered spikes

Construction of dual polynomial

• Squared Fejér kernel

$$K(t) = \left[\frac{\sin\left(\frac{f_c}{2} + 1\right)\pi t}{\left(\frac{f_c}{2} + 1\right)\sin(\pi t)}\right]^4$$

Fourier coefficients of K supported on $\{-f_c,-f_c+1,\ldots,f_c\}$

Dual polynomial

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j) + \beta_j K'(t - t_j)$$

• Fit coefficients α , β so that for $t_j \in T$

$$\begin{cases} q(t_j) = v_j \\ q'(t_j) = 0 \end{cases}$$

 \bullet Proof: show this is well defined and |q(t)|<1 on T^c

Other works and approaches to super-resolution

- Donoho ('89) [modulus of continuity under sparsity constraints]
- Eckhoff ('95) [algebraic approach to find singularities from first few freq. coeff.]
- Dragotti, Vetterli, Blu ('07) [algebraic approach, De Prony's method]
- Batenkov and Yomdin ('12) [algebraic approach]

Numerical Algorithms?

Formulation as a finite-dimensional problem

Dual problem

Primal problem

min $||x||_{\mathsf{TV}}$ s. t. $\mathcal{F}_n x = y$

- Infinite-dimensional variable x
- Finitely many constraints

 $\max \ \operatorname{Re}\langle y,c\rangle \text{ s. t. } \|\mathcal{F}_n^*c\|_\infty \leq 1$

- Finite-dimensional variable c
- Infinitely many constraints

$$(\mathcal{F}_n^* c)(t) = \sum_{|k| \le f_c} c_k e^{i2\pi kt}$$

Formulation as a finite-dimensional problem

Dual problem

Primal problem

min $||x||_{\mathsf{TV}}$ s. t. $\mathcal{F}_n x = y$

- Infinite-dimensional variable x
- Finitely many constraints

$$\max \ \operatorname{Re}\langle y,c\rangle \text{ s. t. } \|\mathcal{F}_n^*c\|_\infty \leq 1$$

- Finite-dimensional variable c
- Infinitely many constraints

$$(\mathcal{F}_n^* c)(t) = \sum_{|k| \le f_c} c_k e^{i2\pi kt}$$

Semidefinite representability

 $|(\mathcal{F}_n^* c)(t)| \leq 1$ for all $t \in [0,1]$ equivalent to

(1) there is Q Hermitian s. t.

$$\begin{bmatrix} Q & c \\ c^* & 1 \end{bmatrix} \succeq 0$$

(2) trace(Q) = 1

(3) sums along superdiagonals vanish, $\sum_{i=1}^{n-j} Q_{i,i+j} = 0$ for $1 \le j \le n-1$

Semidefinite representability

$$(\mathcal{F}_{n}^{*} c)(t) = \sum_{k=0}^{n-1} c_{k} e^{i2\pi kt}$$

$$\|\mathcal{F}_n^* c\|_{\infty} \le 1 \quad \Longleftrightarrow \quad \begin{bmatrix} Q & c \\ c^* & 1 \end{bmatrix} \succeq 0, \quad \sum_{i=1}^{n-j} Q_{i,i+j} = \begin{cases} 1 & j=0 \\ 0 & j=1,2,\dots,n-1 \end{cases}$$

Semidefinite representability

$$(\mathcal{F}_{n}^{*} c)(t) = \sum_{k=0}^{n-1} c_{k} e^{i2\pi kt}$$

$$\|\mathcal{F}_n^* c\|_{\infty} \le 1 \quad \Longleftrightarrow \quad \begin{bmatrix} Q & c \\ c^* & 1 \end{bmatrix} \succeq 0, \quad \sum_{i=1}^{n-j} Q_{i,i+j} = \begin{cases} 1 & j=0 \\ 0 & j=1,2,\dots,n-1 \end{cases}$$

Why (one way)?

$$\begin{bmatrix} Q & c \\ c^* & 1 \end{bmatrix} \succeq 0 \iff Q - cc^* \succeq 0$$
$$z = (z_0, \dots, z_{n-1}), \ z_k = e^{i2\pi kt}$$
$$z^*Qz = 1 \qquad z^*cc^*z = |c^*z|^2 = |(\mathcal{F}_n^*c)(t)|^2$$

SDP formulation

Algorithm

- (1) Solve dual
- (2) Check when $\sum_{|k| \leq f_c} c_k e^{i 2 \pi k t}$ has magnitude $1 \rightarrow$ gives support T

SDP formulation

Algorithm

(1) Solve dual

(2) Check when $\sum_{|k| \leq f_c} c_k e^{i 2\pi k t}$ has magnitude $1 \rightarrow$ gives support T

Find roots (on unit circle) of polynomial of degree 2n-2

$$p_{2n-2}(e^{i2\pi t}) = 1 - |(\mathcal{F}_n^*c)(t)|^2 = 1 - \sum_{k=-2f_c}^{2f_c} u_k e^{i2\pi kt}, \qquad u_k = \sum_j c_j \bar{c}_{j-k}$$

At most n-1 roots! \rightarrow Can solve for amplitudes

There is a solution with support size n-1. Not true in finite dimension!

Dual polynomial

Figure: Sign of a real atomic measure x (red) and dual trigonometric polynomial \mathcal{F}_n^*c . Here, $f_c = 50$ so that we have n = 101 low-frequency coefficients.

Accuracy

f_c	25	50	75	100
Average error	6.6610^{-9}	1.7010^{-9}	5.5810^{-10}	2.9610^{-10}
Maximum error	1.8310^{-7}	8.1410^{-8}	2.5510^{-8}	2.3110^{-8}

Table: Numerical recovery of the signal support. There are approximately $f_c/4$ random locations in the unit interval.

Recovery example

Figure: There are 21 spikes situated at arbitrary locations separated by at least $2\lambda_c$ and we observe 101 low-frequency coefficients ($f_c = 50$). In the plot, seven of the original spikes (black dots) are shown along with the corresponding low resolution data (blue line) and the estimated signal (red line).

Dual polynomial with random data

Figure: Trigonometric polynomial $1 - |(\mathcal{F}_n^*c)(t)|^2$ with random data $y \in \mathbb{C}^{21}$ (n = 21 and $f_c = 10$) with i.i.d. complex Gaussian entries. The polynomial has 16 roots.

The super-resolution factor (SRF): spatial viewpoint

The super-resolution factor (SRF): frequency viewpoint

- Observe spectrum up to f_c
- $\bullet\,$ Wish to extrapolate up to f

Super-resolution factor

$$\mathsf{SRF} = \frac{f}{f_c}$$

$$\mathcal{F}_n x = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) \qquad |k| \le f_c$$

Noisy data

$$y = \mathcal{F}_n x + w \quad \Longleftrightarrow \quad \begin{array}{c} \mathcal{F}_n^* y = \mathcal{F}_n^* \mathcal{F}_n x + \mathcal{F}_n^* w \\ s = \mathcal{P}_n x + z \end{array}$$

 \mathcal{P}_n projection onto first n Fourier modes Bounded noise $\|z\|_{\mathsf{TV}} = \|z\|_{L_1} \leq \delta$

$$\mathcal{F}_n x = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) \qquad |k| \le f_c$$

Noisy data

$$y = \mathcal{F}_n x + w \quad \Longleftrightarrow \quad \begin{array}{c} \mathcal{F}_n^* y = \mathcal{F}_n^* \mathcal{F}_n x + \mathcal{F}_n^* w \\ s = \mathcal{P}_n x + z \end{array}$$

 \mathcal{P}_n projection onto first n Fourier modes Bounded noise $\|z\|_{\mathsf{TV}} = \|z\|_{L_1} \leq \delta$

Recover signal by solving

min
$$\|\tilde{x}\|_{\mathsf{TV}}$$
 subject to $\|s - \mathcal{P}_n \tilde{x}\|_{\mathsf{TV}} \le \delta$

$$\mathcal{F}_n x = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) \qquad |k| \le f_c$$

Noisy data

$$y = \mathcal{F}_n x + w \quad \Longleftrightarrow \quad \begin{array}{c} \mathcal{F}_n^* y = \mathcal{F}_n^* \mathcal{F}_n x + \mathcal{F}_n^* w \\ s = \mathcal{P}_n x + z \end{array}$$

 \mathcal{P}_n projection onto first n Fourier modes Bounded noise $\|z\|_{\mathsf{TV}} = \|z\|_{L_1} \leq \delta$

Recover signal by solving

min
$$\|\tilde{x}\|_{\mathsf{TV}}$$
 subject to $\|s - \mathcal{P}_n \tilde{x}\|_{\mathsf{TV}} \leq \delta$

Theorem (C. and Fernandez Granda (2012))

If min dist. is at least $2\lambda_c$

 $\|(\hat{x}-x)\ast\varphi_{\pmb{\lambda_c}}\|_{\mathsf{TV}}\lesssim\delta$

$$\mathcal{F}_n x = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) \qquad |k| \le f_c$$

Noisy data

$$y = \mathcal{F}_n x + w \quad \Longleftrightarrow \quad \begin{array}{c} \mathcal{F}_n^* y = \mathcal{F}_n^* \mathcal{F}_n x + \mathcal{F}_n^* w \\ s = \mathcal{P}_n x + z \end{array}$$

 \mathcal{P}_n projection onto first n Fourier modes Bounded noise $\|z\|_{\mathsf{TV}} = \|z\|_{L_1} \leq \delta$

Recover signal by solving

min
$$\|\tilde{x}\|_{\mathsf{TV}}$$
 subject to $\|s - \mathcal{P}_n \tilde{x}\|_{\mathsf{TV}} \leq \delta$

Theorem (C. and Fernandez Granda (2012))

If min dist. is at least $2\lambda_c$

 $\|(\hat{x} - x) * \varphi_{\lambda_f}\|_{\mathsf{TV}} \lesssim \mathsf{SRF}^2 \cdot \delta$

Limits of Super-resolution: Sparsity and Stability

Sparsity and stability

- Fixed grid of size k = 48 with spacing Rayleigh distance/SRF
- Compute eigenvalues of \mathcal{P}_n with input on this grid

David Slepian

$$s = \mathcal{P}_n(x+z)$$

() Distance is Rayleigh/4 \rightarrow there are eigenvalues/eigenvectors

$$\begin{aligned} \mathcal{P}_n x &\approx \lambda \, x \quad \lambda \approx 5.22 \, \sqrt{k+1} \, e^{-3.23(k+1)} \\ k &= 48 \quad \lambda \leq 7 \times 10^{-68} \end{aligned}$$

$$s = \mathcal{P}_n(x+z)$$

O Distance is Rayleigh/4 \rightarrow there are eigenvalues/eigenvectors

$$\begin{aligned} \mathcal{P}_n x &\approx \lambda \, x \quad \lambda \approx 5.22 \, \sqrt{k+1} \, e^{-3.23(k+1)} \\ k &= 48 \quad \lambda \leq 7 \times 10^{-68} \end{aligned}$$

2 Distance is Rayleigh/1.05 (only seek to extend the spectrum by 5%)

$$\mathcal{P}_n x = \lambda x \qquad \lambda \approx 3.87 \sqrt{k+1} e^{-0.15(k+1)} \\ k = 256 \qquad \lambda \le 1.2 \times 10^{-15}$$

$$s = \mathcal{P}_n(x+z)$$

() Distance is Rayleigh/4 \rightarrow there are eigenvalues/eigenvectors

$$\begin{aligned} \mathcal{P}_n x &\approx \lambda \, x \quad \lambda \approx 5.22 \, \sqrt{k+1} \, e^{-3.23(k+1)} \\ k &= 48 \quad \lambda \leq 7 \times 10^{-68} \end{aligned}$$

2 Distance is Rayleigh/1.05 (only seek to extend the spectrum by 5%)

$$\mathcal{P}_n x = \lambda x \qquad \lambda \approx 3.87 \sqrt{k+1} e^{-0.15(k+1)}$$
$$k = 256 \qquad \lambda \le 1.2 \times 10^{-15}$$

(1) and (2) worse when spacing $\rightarrow 0$

$$s = \mathcal{P}_n(x+z)$$

() Distance is Rayleigh/4 \rightarrow there are eigenvalues/eigenvectors

$$\begin{aligned} \mathcal{P}_n x &\approx \lambda \, x \quad \lambda \approx 5.22 \, \sqrt{k+1} \, e^{-3.23(k+1)} \\ k &= 48 \quad \lambda \leq 7 \times 10^{-68} \end{aligned}$$

2 Distance is Rayleigh/1.05 (only seek to extend the spectrum by 5%)

$$\mathcal{P}_n x = \lambda x \qquad \lambda \approx 3.87 \sqrt{k+1} e^{-0.15(k+1)}$$
$$k = 256 \qquad \lambda \le 1.2 \times 10^{-15}$$

- (1) and (2) worse when spacing $\rightarrow 0$
- (1) approx holds for subspace of dimension 3k/4

Application: Single Molecule Imaging in 3D Microscopy Joint with Moerner Lab and Veniamin Morgenshtern (Stanford)

Structure of interest contains molecules that are "blinking"

- Few molecules are active in each frame \Rightarrow sparsity!
- Multiple (~ 10000) frames are recorded and processed individually
- Results from all frames are combined to reveal the underlying structure

Optics acts as low-pass filter, detector adds noise

Low-pass, subsampled

Original

$$y = Lx + z$$

- x: signal
- z: normal zero-mean noise
- y: output at the detector L: models optics + subsampling (low-pass)

Noisy recovery

Original

Estimate

Recovery of 3D signals

- Double-helix (DH) point spread function has two lobes
- The angle defined by these lobes encodes z-position of the molecule
- Appropriately modifying *L*, we can use the same algorithm to **reconstruct 3D signals from 2D data**

Original 3D signal, projected onto XY plane 2D DH data

Estimated 3D signal, projected onto XY plane

Smooth background separation

Data

minimize subject to

$$\begin{array}{l} \frac{1}{2} \|y - L(x + p)\|_2^2 + \lambda \sigma \|x\|_{\mathsf{TV}} \\ x \geq 0 \\ p \text{ low freq. trig. polynomial (background)} \end{array}$$

Smooth background separation (Cont'd)

Original

LASSO estimate (speckles)

Polynomial separation estimate (clean)

Summary

Distance between events	< Rayleigh	> Rayleigh
Noiseless TV recovery	×	1
Stability	× no method is stable	✓ min TV is stable

- Can super-resolve signals by convex programming
- Need structural assumptions for stable recovery
- Ongoing applications in 3D microscopy

E. J. Candès, and C. Fernandez-Granda (2012). *Towards a mathematical theory of super-resolution*. To appear in Comm. Pure Appl. Math

E. J. Candès, and C. Fernandez-Granda (2012). Super-resolution from noisy data. http://arxiv.org/abs/XXXX.YYYY

The super-resolution factor (SRF)

 $SRF := \frac{\text{fine resolution}}{\text{coarse resolution}} := \frac{N}{n} \text{ (for discrete data)}$ Wish to extend spectrum up until SRF × f_c

Pictorial representation of SRF