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Prelude: Compressed Sensing
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An early result

x ∈ CN

Discrete Fourier transform

x̂[ω] =

N−1∑
t=0

x[t]e−i2πωt/N ω = 0, 1, . . . , N − 1

Theorem (C., Romberg and Tao (04))

x: k-sparse

n Fourier coefficients selected at random

`1 is exact if n & k logN

Extensions: C. and Plan (10)

Can deal with noise (in essentially optimal way)

Can deal with approximate sparsity

Other works: Donoho (04)
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Extensions: reconstruction from undersampled freq. data

Minimize `1 norm of gradient subject to data constraints

Original Phantom (Logan−Shepp)
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Magnetic resonance imagingBody Examples

Abdominal Blood Vessels Knee
*K. Pauly, G. Gold, RAD220

Acquire data by scanning in Fourier space



Impact on MR pediatrics
Lustig (UCB), Pauly, Vasanawala (Stanford)

Parallel imaging (PI) Compressed sensing + PI

6 year old male abdomen: 8X acceleration
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Agenda

Compressed sensing: Nyquist sampling is irrelevant

Can sample at will/random

Cvx opt. solves an interpolation problem exactly under sparsity constraints

Robust to noise

Essentially discrete and finite time theory: exceptions

Eldar et al.
Adcock, Hansen et al.

This lecture: super-resolution

Can only sample low frequencies

Cvx opt solves an extrapolation problem exactly under sparsity constraints

Some robustness (sometimes) to noise

Continuous time theory
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Motivation



Diffraction limited systems

The physical phenomenon called diffraction is of the utmost
importance in the theory of optical imaging systems

Joseph Goodman



Diffraction limited systems: canonical example

4f optical system

Mathematical model

fobs(t) = (h ∗ f)(t)

f̂obs(ω) = ĥ(ω)f̂(ω)

h : point spread function (PSF)

ĥ : transfer function (TF)



Bandlimited imaging systems

Bandlimited system

|ω| > Ω ⇒ |ĥ(ω)| = 0

f̂obs(ω) = ĥ(ω) f̂(ω)→ suppresses all high-frequency components

Example: coherent imaging

ĥ(ω) = 1P (ω) indicator of pupil element

TF PSF cross-section (PSF)
Pupil Airy disk
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Examples

TF PSF cross-section (PSF)



Image of point source



Rayleigh resolution limit

Lord Rayleigh



Incoherent imaging

Iobs = I ∗ hinc hinc(t) = |hcoh(t)|2Iout = |H|2 � Iin

−kmax kmax0
0

0.5

1

Optical Transfer Function

Widefield microscope

2D TF cross section (TF)



Other examples of low-pass data

fobs = f ∗ h h bandlimited

out-of-focus blur

atmospheric turbulence blur

motion blur

near-field accoustic holography

...



The Super-Resolution Problem



Super-resolution: spatial viewpoint

⇐

objective data

ill-posed deconvolution to break the diffraction limit



Super-resolution: frequency viewpoint

⇐

objective data

ill-posed extrapolation



Random vs. low-frequency sampling: 1D

Random sampling (CS) Low-frequency sampling (SR)

Very different from compressive sensing (CS)



Random vs. low-frequency sampling: 2D

Random sampling (CS) Low-frequency sampling (SR)

Very different from compressive sensing (CS)



A Mathematical Theory of Super-resolution



Mathematical model

Signal:

x =
∑
j

ajδτj aj ∈ C, τj ∈ T ⊂ [0, 1]

Data: n = 2fc + 1 low-frequency coefficients (Nyquist sampling)

y(k) =

∫ 1

0

e−i2πktx(dt) =
∑
j

aje
−i2πktj k ∈ Z, |k| ≤ fc

y = Fnx

Resolution limit: (λc/2 is Rayleigh distance)

1/fc = λc

Question
Can we resolve the signal beyond this limit?
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Equivalent problem: spectral estimation

Swap time and frequency

Signal

x(t) =
∑
j

aje
i2πωjt aj ∈ C, ωj ∈ [0, 1]

Observe samples x(0), x(1), . . . , x(n− 1)

Question
Can we resolve the frequencies beyond the Heisenberg limit?
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Recovery by minimum total-variation

Recover signal by solving

min ‖x̃‖TV subject to Fn x̃ = y

Total-variation norm: ‘‖x‖TV =
∫
|x(dt)|’

Continuous analog of `1 norm

If x =
∑
j ajδτj , ‖x‖TV =

∑
j |aj |

If x absolutely continuous wrt Lebesgue, ‖x‖TV =
∫
|x(t)|dt



Noiseless recovery: main result

y(k) =

∫ 1

0

e−i2πktx(dt) |k| ≤ fc

Min distance ∆(T ) = inf
(t,t′)∈T : t6=t′

|t− t′|∞ T ⊂ [0, 1]

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys
∆(T ) ≥ 2 /fc := 2λc

then min TV solution is exact! For real-valued x, a min dist. of 1.87λc suffices

Infinite precision!

Whatever the amplitudes!

Can recover (2λc)
−1 = fc/2 = n/4

spikes from n low-freq. samples!

Have a proof for 1.85λc

Can be improved (but not much)
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Flooded spikes

Sparse spike train obeys min distance assumption

Low-frequency data

Where are the spikes?



Flooded spikes

Sparse spike train obeys min distance assumption

Low-frequency data

Where are the spikes?



Lower bound

Put k = |T | spikes on an equispaced grid at fixed distance

Search for amplitudes s. t. `1 fails

5 10 15 20 25 30

10
20

30
40

50
60

|T|=50
|T|=20
|T|=10
|T|=5
|T|=2

Min distances at which exact recovery by `1 min fails to occur against λc/2
At red curve, min distance would be exactly equal to λc

`1 fails if distance is below λc



Super-resolution in higher dimensions

Signal

x =
∑
j

ajδτj aj ∈ C, τj ∈ T ⊂ [0, 1]2

Data: low-frequency coefficients (Nyquist sampling)

y(k) =

∫
[0,1]2

e−i2π〈k,t〉x(dt) =
∑
j

aje
−i2π〈k,tj〉 k = (k1, k2) ∈ Z2

|k1|, |k2| ≤ fc

Resolution limit: 1/fc = λc

Theorem (C. and Fernandez Granda (2012))

If support T of x obeys
∆(T ) ≥ 2.38λc

then min TV solution is exact!
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Extensions

Signal x is periodic and piecewise smooth

x(t) =
∑
tj∈T

1(tj−1,tj)pj(t)

pj polynomial of degree `
x is `− 1 times continuously differentiable

Data

y = Fnx yk =

∫
[0,1]

x(t) e−i2πktdt |k| ≤ fc

Recovery
min ‖x̃(`+1)‖TV subject to Fnx̃ = y

Corollary

Under same assumptions, min TV solution is exact
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Surprise: extreme coherence

min ‖x̃‖(`1,TV) subject to y = Fnx

Fn is n×∞ matrix with (normalized) column vectors indexed by time/space

ft[k] = n−1/2ei2πkt |k| ≤ fc

Coherence is one! 〈ft, f ′t〉 → 1 as t′ → t

Yet perfect recovery!

Completely unexplained by current sparse recovery literature (which cannot deal
with more than one spike)



Kahane’s result

x ∈ CN with spacing 1/N

observe n low-frequency samples from DFT

Kahane (2011). Min `1 is exact if min separation obeys

∆(T ) ≥ 10
1

n

√
log(N/n)

Cannot pass to the continuum



Proof ideas

Recovery of x supported on T ⊂ [0, 1] exact if for any v ∈ C|T | with |vj | = 1 ∃

q(t) =
∑fc
k=−fc cke

i2πkt

low-freq. trig. polynomial

{
q(tj) = vj tj ∈ T
|q(t)| < 1, t ∈ [0, 1] \ T

interpolating

+1

1

(a)

+1

1

(b)

Figure: (a) separated spikes (b) clustered spikes



Construction of dual polynomial

Squared Fejér kernel

K(t) =

 sin
(
fc
2 + 1

)
πt(

fc
2 + 1

)
sin(πt)

4

Fourier coefficients of K supported on
{−fc,−fc + 1, . . . , fc}
Dual polynomial

q(t) =
∑
tj∈T

αjK(t− tj) + βjK
′(t− tj)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fejér kernel

Fit coefficients α, β so that for tj ∈ T{
q(tj) = vj

q′(tj) = 0

Proof: show this is well defined and |q(t)| < 1 on T c



Other works and approaches to super-resolution

Donoho (’89) [modulus of continuity under sparsity constraints]

Eckhoff (’95) [algebraic approach to find singularities from first few freq.
coeff.]

Dragotti, Vetterli, Blu (’07) [algebraic approach, De Prony’s method]

Batenkov and Yomdin (’12) [algebraic approach]



Numerical Algorithms?



Formulation as a finite-dimensional problem

Primal problem

min ‖x‖TV s. t. Fnx = y

Infinite-dimensional variable x

Finitely many constraints

Dual problem

max Re〈y, c〉 s. t. ‖F∗nc‖∞ ≤ 1

Finite-dimensional variable c

Infinitely many constraints

(F∗n c)(t) =
∑
|k|≤fc

cke
i2πkt

Semidefinite representability

|(F∗n c)(t)| ≤ 1 for all t ∈ [0, 1] equivalent to

(1) there is Q Hermitian s. t. [
Q c
c∗ 1

]
� 0

(2) trace(Q) = 1

(3) sums along superdiagonals vanish,
∑n−j
i=1 Qi,i+j = 0 for 1 ≤ j ≤ n− 1
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Semidefinite representability

(F∗n c)(t) =
∑n−1
k=0 cke

i2πkt

‖F∗nc‖∞ ≤ 1 ⇐⇒
[
Q c
c∗ 1

]
� 0,

n−j∑
i=1

Qi,i+j =

{
1 j = 0

0 j = 1, 2, . . . , n− 1

Why (one way)? [
Q c
c∗ 1

]
� 0 ⇐⇒ Q− cc∗ � 0

z = (z0, . . . , zn−1), zk = ei2πkt

z∗Qz = 1 z∗cc∗z = |c∗z|2 = |(F∗n c)(t)|2
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SDP formulation

Dual as an SDP

maximize Re〈y, c〉 subject to

[
Q c
c∗ 1

]
� 0∑n−j

i=1 Qi,i+j = δj 0 ≤ j ≤ n− 1

Algorithm

(1) Solve dual

(2) Check when
∑
|k|≤fc cke

i2πkt has magnitude 1 → gives support T

Find roots (on unit circle) of polynomial of degree 2n− 2

p2n−2(ei2πt) = 1− |(F∗nc)(t)|2 = 1−
2fc∑

k=−2fc

uke
i2πkt, uk =

∑
j

cj c̄j−k

At most n− 1 roots! → Can solve for amplitudes

There is a solution with support size n− 1. Not true in finite dimension!
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Dual polynomial

Figure: Sign of a real atomic measure x (red) and dual trigonometric polynomial F∗
nc.

Here, fc = 50 so that we have n = 101 low-frequency coefficients.



Accuracy

fc 25 50 75 100
Average error 6.66 10−9 1.70 10−9 5.58 10−10 2.96 10−10

Maximum error 1.83 10−7 8.14 10−8 2.55 10−8 2.31 10−8

Table: Numerical recovery of the signal support. There are approximately fc/4 random
locations in the unit interval.



Recovery example

Figure: There are 21 spikes situated at arbitrary locations separated by at least 2λc and
we observe 101 low-frequency coefficients (fc = 50). In the plot, seven of the original
spikes (black dots) are shown along with the corresponding low resolution data (blue
line) and the estimated signal (red line).



Dual polynomial with random data

1

0

Figure: Trigonometric polynomial 1− |(F∗
nc)(t)|2 with random data y ∈ C21 (n = 21

and fc = 10) with i.i.d. complex Gaussian entries. The polynomial has 16 roots.



Stability



The super-resolution factor (SRF): spatial viewpoint

Have data at resolution λc Wish resolution λf

Super-resolution factor

SRF =
λc
λf



The super-resolution factor (SRF): frequency viewpoint

Observe spectrum up to fc
Wish to extrapolate up to f

Super-resolution factor

SRF =
f

fc



Stability

Fnx =

∫ 1

0

e−i2πkt x(dt) |k| ≤ fc

Noisy data

y = Fnx+ w ⇐⇒ F∗ny = F∗nFnx+ F∗nw
s = Pnx+ z

Pn projection onto first n Fourier modes

Bounded noise ‖z‖TV = ‖z‖L1
≤ δ

Recover signal by solving

min ‖x̃‖TV subject to ‖s− Pnx̃‖TV ≤ δ
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‖TV . δ
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Limits of Super-resolution: Sparsity and Stability



Sparsity and stability

Fixed grid of size k = 48 with spacing Rayleigh distance/SRF

Compute eigenvalues of Pn with input on this grid

0 10 20 30 401e
−3
4

1e
−2
6

1e
−1
8

1e
−1
0

1e
−0
2

SRF=2
SRF=4
SRF=8
SRF=16



Analysis via Slepian’s discrete prolate sequences

David Slepian



Analysis via Slepian’s discrete prolate sequences (sketch)

s = Pn(x+ z)

1 Distance is Rayleigh/4 → there are eigenvalues/eigenvectors

Pnx ≈ λx
k = 48

λ ≈ 5.22
√
k + 1 e−3.23(k+1)

λ ≤ 7× 10−68

2 Distance is Rayleigh/1.05 (only seek to extend the spectrum by 5%)

Pnx = λx

k = 256

λ ≈ 3.87
√
k + 1 e−0.15(k+1)

λ ≤ 1.2× 10−15

3 (1) and (2) worse when spacing → 0

4 (1) approx holds for subspace of dimension 3k/4
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Application: Single Molecule Imaging in 3D Microscopy
Joint with Moerner Lab and Veniamin Morgenshtern (Stanford)



Structure of interest contains molecules that are “blinking”

Frame 1 Frame 2 Frame 3

Few molecules are active in each frame ⇒ sparsity!

Multiple (∼ 10000) frames are recorded and processed individually

Results from all frames are combined to reveal the underlying structure



Optics acts as low-pass filter, detector adds noise

Original

Low-pass, subsampled Noisy

y = Lx+ z

x: signal

y: output at the detector

z: normal zero-mean noise

L: models optics + subsampling (low-pass)



Noisy recovery

Original Estimate



Recovery of 3D signals

Double-helix (DH) point spread function has two lobes

The angle defined by these lobes encodes z-position of the molecule

Appropriately modifying L, we can use the same algorithm to reconstruct
3D signals from 2D data

Original 3D signal,
projected onto XY plane

2D DH data Estimated 3D signal,
projected onto XY plane



Smooth background separation

Original Data

minimize 1
2‖y − L(x+ p)‖22 + λσ‖x‖TV

subject to x ≥ 0
p low freq. trig. polynomial (background)



Smooth background separation (Cont’d)

Original LASSO estimate (speckles) Polynomial separation
estimate (clean)



Summary

Distance between events < Rayleigh > Rayleigh

Noiseless TV recovery 7 3

Stability 7 3
no method is stable min TV is stable

Can super-resolve signals by convex programming

Need structural assumptions for stable recovery

Ongoing applications in 3D microscopy

E. J. Candès, and C. Fernandez-Granda (2012). Towards a mathematical theory of

super-resolution. To appear in Comm. Pure Appl. Math

E. J. Candès, and C. Fernandez-Granda (2012). Super-resolution from noisy data.

http://arxiv.org/abs/XXXX.YYYY

http://arxiv.org/abs/XXXX.YYYY


The super-resolution factor (SRF)

SRF :=
fine resolution

coarse resolution
:=

N

n
(for discrete data)

Wish to extend spectrum up until SRF× fc

1/N

1/n

λc

Pictorial representation of SRF


