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cannot do confirmatory causal inference without
randomized intervention experiments...

but we can do better than proceeding naively



Goal

in genomics:
if we would make an intervention at a single gene, what would
be its effect on a phenotype of interest?

want to infer/predict such effects without actually doing the
intervention
i.e. from observational data
(from observations of a “steady-state system”)

it doesn’t need to be genes
can generalize to intervention at more than one variable/gene
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Genomics

1. Flowering of arabidopsis thaliana

phenotype/response variable of interest:
Y = days to bolting (flowering)
“covariates” X = gene expressions from p = 21′326 genes

question: infer/predict the effect of knocking-out/knocking-down
(or enhancing) a single gene (expression) on the
phenotype/response variable Y?



2. Gene expressions of yeast

p = 5360 genes
phenotype of interest: Y = expression of first gene
“covariates” X = gene expressions from all other genes

and then
phenotype of interest: Y = expression of second gene
“covariates” X = gene expressions from all other genes

and so on

infer/predict the effects of a single gene knock-down on all
other genes



; consider the framework of an

intervention effect = causal effect



Regression – the “statistical workhorse”: the wrong approach

we could use linear model (fitted from n observational data)

Y =

p∑
j=1

βjX (j) + ε,

Var(X (j)) ≡ 1 for all j

|βj | measures the effect of variable X (j) in terms of “association”

i.e. change of Y as a function of X (j) when keeping all other
variables X (k) fixed

; not very realistic for intervention problem
if we change e.g. one gene, some others will also change
and these others are not (cannot be) kept fixed
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and indeed:
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Effects of single gene knock-downs on all other genes (yeast)

(Maathuis, Colombo, Kalisch & PB, 2010)

• p = 5360 genes (expression of genes)
• 231 gene knock downs ; 1.2 · 106 intervention effects
• the truth is “known in good approximation”

(thanks to intervention experiments)

goal: prediction of the true large intervention effects
based on observational data with no knock-downs

n = 63
observational data
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DAGs and causal effects

I univariate response Y
I p-dimensional covariate X

question:
what is the effect of setting the j th component of X to a certain
value x :

do(X (j) = x)

; this is a question of intervention type

not the effect of X (j) on Y when keeping all other variables fixed
(regression effect)
Reichenbach, 1956; Suppes, 1970; Rubin, 1978; Dawid, 1979;
Holland, Pearl, Glymour, Scheines, Spirtes,...



... a substantial machinery... (e.g. Pearl)

two main assumptions
I causal influence diagram is a DAG

X1

X2

X3X4

Y

relaxation allowing for cycles:
e.g. Hyttinen, Eberhardt & Hoyer (2010, 2012)

I there are no hidden (relevant) variables

relaxation including hidden variables:
e.g. Spirtes, Glymour & Scheines (2000); Colombo, Maathuis &
Richardson (2012),...



if Y ,X (1), . . . ,X (p) ∼ Np+1(µ,Σ)
; intervention (or causal) effect is a real-valued parameter

θj ≡
∂

∂x
E[Y |do(X (j) = x)] constant w.r.t. x

and the intervention effect parameter can be characterized as:

for Y /∈ pa(j): θj is the regression parameter in

Y = θjX (j) +
∑

k∈pa(j)

γkX (k) + error

only need parental set and regression
X(1)

X(2)

X(3)X(4)

Y
j = 2, pa(j) = {3,4}



when having no unmeasured confounder (variable):

intervention effect (as defined) = causal effect

causal effect = effect from a randomized trial
(but we want to infer it without a randomized study...
because often we cannot do it, or it is too expensive)
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Inferring intervention effects from observational
distribution

main problem: inferring DAG or parental set(s) from
observational data

impossible! can only infer equivalence class of DAGs
(several DAGs can encode exactly the same conditional
independence relationships)

Example:

X XY Y

X causes Y Y causes X

a lot of work about identifiability:
Verma & Pearl (1991); Spirtes, Glymour & Scheines (1993); Tian &
Pearl (2000–2002); Lauritzen & Richardson (2002); Shpitser & Pearl
(2006–2011); vanderWeele & Robins (2007–2011); Drton, Foygel &
Sullivant (2011);...



we cannot estimate causal/intervention effects from
observational distribution

but can estimate “informative” lower bounds of causal eff.
based on Markov equivalence class of DAGs

true causal effect |θj | ≥ αj︸︷︷︸
identifiable

(Maathuis, Kalisch & PB, 2009)

R-package: pcalg
what we used in the yeast example to score importance of
genes according to size of α̂j
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Estimation of the Markov equivalence class of DAGs

notation: drop the Y -notation (Y = X (1), X (2), . . . ,X (p))

goal: infer CPDAG (Markov equivalence class of DAGs)
; “structure learning”

P ⇒ CPDAG(P)︸ ︷︷ ︸
equiv. class of DAGs

pcAlgo(dm = d, alpha = 0.05)
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two main approaches:
I multiple testing of conditional (in-)dependences
I score-based methods: MLE as prime example
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Faithfulness assumption
for inferring CPDAG via conditional (in-)dependences
(“essentially” necessary for conditional dependence testing approaches)

a distribution P is called faithful to a DAG D if all conditional
independences can be inferred from the graph

(can infer some conditional independences from a Markov
assumption; but we require here “all” conditional
independences)

assuming faithfulness: ; can infer the CPDAG from a list of
conditional (in-)dependence relations
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What does it mean?

1

2 3

X (1) ← ε(1),

X (2) ← αX (1) + ε(2),

X (3) ← βX (1) + γX (2) + ε(3),

ε(1), ε(2), ε(3) i.i.d. ∼ N (0,1)

enforce marginal independence of X (1) and X (3)

β + αγ = 0, e.g. α = β = 1, γ = −1

Σ =

 1 1 0
1 2 −1
0 −1 2

 , Σ−1 =

 3 −2 −1
−2 2 1
−1 1 1

 .

failure of faithfulness due to cancellation of coefficients



failure of exact faithfulness is “rare” (Lebesgue measure zero)

but for statistical estimation (in the Gaussian case):
“often” require strong faithfulness (Robins, Scheines, Spirtes &
Wasserman, 2003):

faithfulness &

min
{
|ρ(i , j |S)|; ρ(i , j |S) 6= 0, i 6= j , |S| ≤ d

}
≥ τ,

τ �
√

log(p)/n



... strong faithfulness can be rather severe
(Uhler, Raskutii, PB & Yu, 2012)

3 nodes, full graph

unfaithful distributions
due to exact cancellation

8 nodes, varying sparsity
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Estimating the CPDAG: the PC-algorithm (Spirtes & Glymour, 1991)

I crucial assumption:
distribution P (strongly) faithful to the true underlying DAG

I less crucial but convenient:
Gaussian assumption for X (1), . . . ,X (p) ; can work with
partial correlations

I input: Σ̂MLE
but we only need to consider many small sub-matrices of it
(assuming sparsity of the graph)

I output: based on a clever data-dependent (random)
sequence of multiple tests

estimated CPDAG



Statistical theory for PC-algorithm
(Kalisch & PB, 2007; Maathuis, Kalisch & PB, 2009)

n i.i.d. observational data points; p variables
high-dimensional setting where p � n

assumptions:
I X (1), . . . ,X (p) ∼ Np(0,Σ) Markov and faithful to true DAG
I high-dimensionality: log(p)� n
I sparsity: maximal degree d = maxj |ne(j)| � n
I “coherence”: maximal (partial) correlations ≤ C < 1

max{|ρi,j|S |; i 6= j , |S| ≤ d} ≤ C < 1

I signal strength/strong faithfulness:
min{|ρi,j|S |; ρi,j|S 6= 0, i 6= j , |S| ≤ d} �

p
d log(p)/n

Then, for some suitable tuning param. and 0 < δ < 1:

P[ĈPDAG = true CPDAG] = 1−O(exp(−Cn1−δ))



(Restricted) strong-faithfulness (Uhler, Raskutti, PB & Yu, 2012)

strong-faithfulness: faithfulness &

min
{
|ρ(i , j |S)|; ρ(i , j |S) 6= 0, i 6= j , |S| ≤ d

}
≥ τ

τ �
p

d log(p)/n, d = max. degree of DAG

sufficient and necessary for PC-/conservative PC-algorithm:
restricted strong-faithfulness

1. adjacency strong-faithfulness

min
{
|ρ(i , j |S)|; ρ(i , j |S) 6= 0, (i , j) ∈ E , |S| ≤ d

}
≥ τ

2. orientation strong-faithfulness

min
{
|ρ(i , j |S)|; (i , j ,S) ∈ neigh} ≥ τ

neigh = {(i , j ,S); i , j not adjacent, (i , j , k) unshielded triple with
i , j not d-separated by S}



goal: understand

p(τ) = P[failure of τ restricted strong-faithfulness]

when edge weights βjk (for edge j → k ) i.i.d. Uniform([−1,1])

results (Uhler, Raskutti, PB & Yu, 2012):
I upper bound:

p(τ)

≤ C1C2(|E |) κk︸︷︷︸
maxi,j,S Var(X (i)|X (S))

τ k
∑
i,j,S

deg(Cov(X(i),X(j)|X(S)))

︸ ︷︷ ︸
often large

k depends on polynomials character. strict unfaithfulness

I lower bounds
I for trees
I for cycles
I for bi-partite graphs



Trees:

p(τ) ≥ 1− (1− τ)p−1

� �

�

� �

�

Cycles:

p(τ) ≥ 1− (1− τ)3p−2

; similar regime as trees
� �

� �

���

�

Bipartite graphs:

p(τ) ≥ 1− (1− τ)(p−2)(2p−3+1)

; a “disaster”...!
� �

� � ���

�

�



“most favorable” case: trees

p(τ) ≥ 1− (1− τ)p−1

with τ =
√

log(p)/n (for bounded degree trees) ;

P[τ restricted strong-faithfulness holds]→ 1 ⇒ p = o(
√

n)

• due to necessity of restricted strong-faithfulness
• assuming framework with i.i.d. sampling of edge weights
(Uniform, Gaussian, Laplace,...)
⇒ cannot achieve high-dimensional consistency of
PC-algorithm (conditional independence testing approaches)
without further conditions
(e.g. saying that non-zero edge weights are “very” large)



Maximum likelihood estimation
without requiring strong faithfulness!

R.A. Fisher

Gaussian DAG is Gaussian linear structural equation model:

1

2 3

X (1) ← ε(1)

X (2) ← β21X (1) + ε(2)

X (3) ← β31X (1) + β32X (2) + ε(3)

X (j) ←
p∑

k=1

βjkX (k) + ε(j) (j = 1, . . . ,p), βjk 6= 0⇔ edge k → j

X = BX + ε, ε ∼ Np(0, diag(σ2
1, . . . , σ

2
p)) in matrix notation



X = BX + ε

non-zeroes of B ⇒ knowledge of the corresponding DAG

if we would know the order of the variables
; (high-dimensional) multivariate regression

but we don’t know the order of the variables:
I can only identify equivalence class of B’s → “obvious”
I neg. log-likelihood is non-convex fct.(B) → next slides

I learning of ordering has large complexity (in general p!)



`0-penalized MLE

B̂, {σ̂2
j } = argminB; {σ2

j }
− `(B, {σ2

j }; data) + λ ‖B‖0︸ ︷︷ ︸P
jk I(Bjk 6=0)

under the non-convex constraint that B corresponds to “no
directed cycles”



Toy-example X (1) ← β1X (2) + ε1

X (2) ← β2X (1) + ε2

X1 X2

(0,0)

beta1

beta2

non-convex parameter space!
(convex relaxation? → see discussion)



Why `0-penalty?

I ensures the same score for Markov-equivalent structures
(this would not be true when using `1-norm penalty)

I `0-penalty leads to decomposable score

score(D,X) =

p∑
j=1

gj(X(j),X(paD(j)))

; dynamic programming for computation if p ≈ 20− 30
(not easily possible with `1-norm penalization)
recall that the estimation problem is non-convex...



Statistical properties for `0-penalized MLE (van de Geer & PB, 2012)

the target:
`0-penalized MLE estimates a DAG with fewest edges which
represents the true distribution: minimal edges I-MAP

in the Gaussian linear structural eqn. model:
Cov(X ) = Σ = (I − B)−1Ω(I − B)−T , Ω = diag(σ2

1, . . . , σ
2
p)

true Σ0 of data-generating distribution
minimal edges I-MAP: a DAG and corresponding B0, Ω0 such
that Σ0 = (I − B0)−1Ω0(I − B0)−T

not unique (in general)
1

2 3

non-faithful distribution where
Cov(X (1),X (3)) = 0

1

2 3

minimal edges I-MAP



no faithfulness required for inferring minimal edges I-MAP
; no strong-faithfulness required either

and when assuming faithfulness:

equivalence class of minimal edges I-MAP
= (usual) Markov equivalence class

without requiring strong-faithfulness!



main condition required for `0-penalized MLE:
permutation beta-min condition
for an ordering of the variables
i.e. permutation π : {1, . . . ,p} → {1, . . . ,p}
consider regressions of

Xπ(j) versus Xπ(j−1), . . . ,Xπ(1) (Gram-Schmidt)

; coefficients B0(π)
(for a true ordering π0: B0(π0) is most `0-sparse)

permutation beta-min condition:
for any π, “most of non-zero” |B0

jk (π)| are sufficiently large

technically: for any π
(1− η) s(π)︸︷︷︸

no. of edges in B0(π)

edges (j , k) with

|B0
jk (π)| >

√
log(p)/n (

√
p/s0 ∨ 1)︸ ︷︷ ︸

typically�1

/η0



example:
AR(1) (and AR(k ) with fixed k ) model satisfy the permutation
beta-min condition

AR(1) model is a chain, i.e., a tree with maximal degree = 2
; still “bad” in terms of strong faithfulness



Main results (van de Geer & PB, 2012)
assume permutation beta-min condition (and other “mild
conditions”)
then:

I with high probability: for λ2 � log(p)/n

‖B̂ − B0(π̂)‖2F + ‖Ω̂− Ω0(π̂)‖2F = O(λ2s0)

s0 = no. of edges in minimal edges I-MAP

I number of estimated edges is in the correct order of
magnitude

ŝ � s0

I exact edge recovery of minimal edges I-MAP: our result
“essentially requires” p = o(

√
n/ log(n))

(which is the best case regime for strong faithfulness
condition)

no strong faithfulness condition!
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improvement for linear structural equation model with same
error variances, for the regime p = o(n/ log(n))

X (j) ←
∑

k∈pa(j) Bjk + ε(j), Var(ε(j)) ≡ ω2 (i.e. Ω = ω2I)

only “standard” beta-min condition instead of permutation
beta-min condition:
“most of non-zero” |B0

jk (π0)| are sufficiently large
instead for all π ; only for true ordering π0

and we have supporting empirical results to quantify the
improvement if error variances are “approximately the same”
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Route via structural equation models: many
interesting extensions

full identifiability (card(Markov equivalence class) = 1): if

I same error variances:
X (j) ←

∑
k∈pa(j) BjkX (k) + ε(j), Var(ε(j)) ≡ ω2

Peters & PB (2012)
I nonlinear structural equation models with additive noise:

X (j) ← non-linear function f (X (pa(j))) + ε(j)

Mooij, Peters, Janzing & Schölkopf (2009-2012)

e.g. X (j) ←
∑

k∈pa(j) fk (X (k)) + ε(j) (additive strctl. eqns.)
Nowzohour & PB (in progress)

I linear structural eqns. with non-Gaussian errors:
. . . , at least one ε(j) non-Gaussian
Shimizu (2006)
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Observational-interventional data
increase identifiability from (randomized) interventional data
combination of observational-interventional data is common in
e.g. biology

yeast example:
63 observational and 231 interventional data

I MLE for Gaussian observational-interventional data
(Hauser & PB, 2012a)

I active learning by choosing sequentially the next best
intervention for identifying the true DAG
(and solving the Eberhardt conjecture) (Hauser & PB, 2012b)
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Concluding discussion

1. we have achieved some success in biology applications
(simple organisms: yeast and arabidopsis thaliana)
; but there seems ample room for improvement

2. methods based on inferring conditional independences
necessarily require version of strong faithfulness
(e.g. PC-algorithm)
; restrictive in term of dimensionality

3. route via structural equation models does not require strong
faithfulness;
and “natural restrictions” lead to full identifiability!



the price to pay with MLE (and other estimators?) for structural
equation models: computation!

re-consider (penalized) MLE for linear Gaussian case:

model: X = BX + ε

penalized MLE: B̂, Ω̂ = argminB,Ω`(B,Ω; data) + λpen(B)

under non-convex constraint
of no directed cycles X1 X2

(0,0)

beta1

beta2

can we do efficient convex relaxation for

S = {Π(I −B)−1Ω(I −B)−T ΠT ; Π perm., B lower triang., Ω}?
so far, our solution:
• dynamic programming if p ≈ 20− 30
• greedy equivalence class search if p is large

(only ad-hoc... but reasonable results)
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Thank you!

R-package: pcalg
(Kalisch, Mächler, Colombo, Maathuis & PB, 2012)
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I Hauser, A. and Bühlmann, P. (2012). Two optimal strategies for active learning of causal models from
interventions. Proc. of the 6th European Workshop on Probabilistic Graphical Models (PGM 2012), pp.
123-130, 2012.
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Non-equal error variances

SEV-method ; D̂; completion to Markov-equivalence class
; E(D̂)

performance of E(D̂) for true CPDAG
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