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cannot do confirmatory causal inference without
randomized intervention experiments...

but we can do better than proceeding naively



Goal

in genomics:
if we would make an intervention at a single gene, what would
be its effect on a phenotype of interest?

want to infer/predict such effects without actually doing the
intervention

i.e. from observational data

(from observations of a “steady-state system”)



Goal

in genomics:
if we would make an intervention at a single gene, what would
be its effect on a phenotype of interest?

want to infer/predict such effects without actually doing the
intervention

i.e. from observational data

(from observations of a “steady-state system”)

it doesn’t need to be genes
can generalize to intervention at more than one variable/gene



Genomics

1. Flowering of arabidopsis thaliana q

phenotype/response variable of interest:
Y = days to bolting (flowering)
“covariates” X = gene expressions from p = 21'326 genes

question: infer/predict the effect of knocking-out/knocking-down
(or enhancing) a single gene (expression) on the
phenotype/response variable Y?



2. Gene expressions of yeast

p = 5360 genes
phenotype of interest: Y = expression of first gene
“covariates” X = gene expressions from all other genes

and then
phenotype of interest: Y = expression of second gene
“covariates” X = gene expressions from all other genes

and so on

infer/predict the effects of a single gene knock-down on all
other genes



~» consider the framework of an

intervention effect = causal effect



Regression — the “statistical workhorse”: the wrong approach

we could use linear model (fitted from n observational data)

p

Y = Zﬁjx(/) T,
j=1

Var(X")) = 1 for all j

|3j| measures the effect of variable XU) in terms of “association”

i.e. change of Y as a function of XU) when keeping all other
variables X(¥) fixed



Regression — the “statistical workhorse”: the wrong approach

we could use linear model (fitted from n observational data)

p

Y = ZB/XU) T,
j=1

Var(X")) = 1 for all j

|8;| measures the effect of variable XU) in terms of “association’

i.e. change of Y as a function of XU) when keeping all other
variables X(¥) fixed

~> not very realistic for intervention problem
if we change e.g. one gene, some others will also change
and these others are not (cannot be) kept fixed



and indeed:
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and indeed:
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~» can do much better than (penalized) regression!



Effects of single gene knock-downs on all other genes (yeast)
(Maathuis, Colombo, Kalisch & PB, 2010)

e p = 5360 genes (expression of genes)
e 231 gene knock downs ~» 1.2 - 10% intervention effects
e the truth is “known in good approximation”

(thanks to intervention experiments)

goal: prediction of the true large intervention effects
based on observational data with no knock-downs
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DAGs and causal effects

» univariate response Y
» p-dimensional covariate X

question:

what is the effect of setting the jth component of X to a certain
value x:

do(XY) = x)

~» this is a question of intervention type

not the effect of X) on Y when keeping all other variables fixed
(regression effect)

Reichenbach, 1956; Suppes, 1970; Rubin, 1978; Dawid, 1979;
Holland, Pearl, Glymour, Scheines, Spirtes,...



... a substantial machinery... (e.g. Pearl)

two main assumptions
» causal influence diagram is a DAG

X1

N
N\

X4 X3

relaxation allowing for cycles:

e.g. Hyttinen, Eberhardt & Hoyer (2010, 2012)
» there are no hidden (relevant) variables

relaxation including hidden variables:

e.g. Spirtes, Glymour & Scheines (2000); Colombo, Maathuis &
Richardson (2012),...



it Y, XM, XP) ~ Ny (p, X)
~» intervention (or causal) effect is a real-valued parameter

b = (%]E[Hdo(x(j) = x)] constant w.r.t. x

and the intervention effect parameter can be characterized as:

for Y ¢ pa(j): 0; is the regression parameter in

Y = er(j) + Z ka(k) + error
kepa(j)
only need parental set and regression

j: 2, pa(j) - {3, 4} .\’—'/ \Y
NS

x@



when having no unmeasured confounder (variable):

intervention effect (as defined) = causal effect



when having no unmeasured confounder (variable):
intervention effect (as defined) = causal effect

causal effect = effect from a randomized trial
(but we want to infer it without a randomized study...
because often we cannot do it, or it is too expensive)



Inferring intervention effects from observational

distribution
main problem: inferring DAG or parental set(s) from
observational data

impossible! can only infer equivalence class of DAGs
(several DAGs can encode exactly the same conditional
independence relationships)

Example:
) HY) (X4 ®
X causes Y Y causes X

a lot of work about identifiability:

Verma & Pearl (1991); Spirtes, Glymour & Scheines (1993); Tian &

Pearl (2000-2002); Lauritzen & Richardson (2002); Shpitser & Pearl
(2006—2011); vanderWeele & Robins (2007—2011); Drton, Foygel &
Sullivant (2011);...



we cannot estimate causal/intervention effects from
observational distribution
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we cannot estimate causal/intervention effects from
observational distribution

but can estimate “informative” lower bounds of causal eff.
based on Markov equivalence class of DAGs

true causal effect |6;| > Q;
~—
identifiable
(Maathuis, Kalisch & PB, 2009)
R-package: pcalg

what we used in the yeast example to score importance of
genes according to size of &;
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Estimation of the Markov equivalence class of DAGs

notation: drop the Y-notation (Y = X("), x(@ .. x(p))



Estimation of the Markov equivalence class of DAGs

notation: drop the Y-notation (Y = X("), x(@ .. x(p))

goal: infer CPDAG (Markov equivalence class of DAGS)
~ “structure learning”

P=  CPDAG(P) ﬁ i@

equiv. class of DAGs

two main approaches:
» multiple testing of conditional (in-)dependences

» score-based methods: MLE as prime example



Faithfulness assumption
for inferring CPDAG via conditional (in-)dependences
(“essentially” necessary for conditional dependence testing approaches)

a distribution P is called faithful to a DAG D if all conditional
independences can be inferred from the graph

(can infer some conditional independences from a Markov
assumption; but we require here “all” conditional
independences)



Faithfulness assumption
for inferring CPDAG via conditional (in-)dependences
(“essentially” necessary for conditional dependence testing approaches)

a distribution P is called faithful to a DAG D if all conditional
independences can be inferred from the graph

(can infer some conditional independences from a Markov
assumption; but we require here “all” conditional
independences)

assuming faithfulness: ~» can infer the CPDAG from a list of
conditional (in-)dependence relations



What does it mean?

XM )
X®  axM 4 @)

X® — gX 44X 4 (),
M @ B)iid. ~N(0,1)

enforce marginal independence of X(!) and X
b+ay=0,e0.a=p=1, v=—1

1 1 0 3 -2 —1
y=(1 2 1|,z '=| 2 2 1].
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failure of faithfulness due to cancellation of coefficients



failure of exact faithfulness is “rare” (Lebesgue measure zero)

but for statistical estimation (in the Gaussian case):
“often” require strong faithfulness (Robins, Scheines, Spirtes &
Wasserman, 2003):

faithfulness &
min {1p(i,/1S)l; p(i,IS) #0, i #), S| < d} =,

T = y/log(p)/n



... strong faithfulness can be rather severe
(Uhler, Raskutii, PB & Yu, 2012)

3 nodes, full graph 8 nodes, varying sparsity

8 nodes

0.3

Proportion of unfaithful distributions
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unfaithful distributions
due to exact cancellation e
P[not strongly faithful]



Estimating the CPDAG: the PC-algorithm (Spirtes & Glymour, 1991)

» crucial assumption:
distribution P (strongly) faithful to the true underlying DAG

» less crucial but convenient:
Gaussian assumption for X(V)_ ... X(® ~. can work with
partial correlations

> input: iMLE
but we only need to consider many small sub-matrices of it
(assuming sparsity of the graph)

» output: based on a clever data-dependent (random)

sequence of multiple tests
estimated CPDAG



Statistical theory for PC-algorithm
(Kalisch & PB, 2007; Maathuis, Kalisch & PB, 2009)

ni.i.d. observational data points; p variables
high-dimensional setting where p > n
assumptions:
» X ... X(P) ~ Np(0, £) Markov and faithful to true DAG
» high-dimensionality: log(p) < n
» sparsity: maximal degree d = max; |ne(j)| < n
» “coherence”: maximal (partial) correlations < C < 1
max{|pi isl; i # j,|S| <d} < C <1

» signal strength/strong faithfulness:
min{|pisl; pijis # 0, I # J,|S| < d} > +/dlog(p)/n

Then, for some suitable tuning param. and 0 < § < 1:

P[CPDAG = true CPDAG] = 1 — O(exp(—Cn'~?))



(Restricted) strong-faithfulness (Uhler, Raskutti, PB & Yu, 2012)
strong-faithfulness: faithfulness &
min {1p(i,/1S)l; p(1,1S) #0, i #}J S| < d} >
7= +/dlog(p)/n, d= max. degree of DAG

sufficient and necessary for PC-/conservative PC-algorithm:
restricted strong-faithfulness

1. adjacency strong-faithfulness
min {1p(i,I1S)I; p(i,{1) #0, (ij) € E, |S| < d} > 7
2. orientation strong-faithfulness
min {|p(i7j|S)|; (i.],S) € neigh} > 7

neigh = {(/,j, S); /,j not adjacent, (/,, k) unshielded triple with
i,j not d-separated by S}



goal: understand
p(7) = P[failure of T restricted strong-faithfulness]
when edge weights g (for edge j — k) i.i.d. Uniform([—1, 1])

results (Uhler, Raskutti, PB & Yu, 2012):
» upper bound:
p(7)
< GG(E) &L 7Y deg(Cov(x® xOX)
maX,v’jysVar(X(")|X(s)) ’J’S

oftenvlarge
k depends on polynomials character. strict unfaithfulness

» lower bounds
» for trees
» for cycles
» for bi-partite graphs



p(r) >1—(1—7)P1 ;
:
Cycles: |
p(r) >1—(1—71)%2 ’ i
~> similar regime as trees p!
Bipartite graphs:

p(r) >1— (1 —7)P-2@7+1)

~» a “disaster”...!



“most favorable” case: trees

pr) 21— (1 =7~

with 7 = y/log(p)/n (for bounded degree trees) ~

PP[r restricted strong-faithfulness holds] — 1 = p = o(+/n)

e due to necessity of restricted strong-faithfulness

e assuming framework with i.i.d. sampling of edge weights
(Uniform, Gaussian, Laplace,...)

= cannot achieve high-dimensional consistency of

PC-algorithm (conditional independence testing approaches)

without further conditions

(e.g. saying that non-zero edge weights are “very” large)



Maximum likelihood estimation
without requiring strong faithfulness!

R.A. Fisher

Gaussian DAG is Gaussian linear structural equation model:

XM — 0
X® 3, x4 @

i’ XO® — By X 4 BeoX® 1 @)

p
X0 3" gy X® + 0 (j=1,...,p), Bk # 0« edge k — |
pa

X = BX +¢, £ ~ Np(0,diag(0%, . .., 05)) in matrix notation



X=BX+¢
non-zeroes of B =- knowledge of the corresponding DAG

if we would know the order of the variables

~» (high-dimensional) multivariate regression

but we don’t know the order of the variables:
» can only identify equivalence class of B’s — “obvious”
» neg. log-likelihood is non-convex fct.(B) — next slides
» learning of ordering has large complexity (in general p!)



{y-penalized MLE

B, {62} = argming, (,z, — (B, {07 }; data) + X  [Bllo
) N——
S (By#0)

under the non-convex constraint that B corresponds to “no
directed cycles”



Toy-example XM — 5 X2 4 &,
X® — XM 4 ey

beta2

00

X1 X2 betal

non-convex parameter Space!
(convex relaxation? — see discussion)



Why ¢y-penalty?

» ensures the same score for Markov-equivalent structures
(this would not be true when using ¢1-norm penalty)

» /p-penalty leads to decomposable score

score(D, X) Zg XU, x(Pap()))

~» dynamic programming for computation if p ~ 20 — 30
(not easily possible with ¢/1-norm penalization)
recall that the estimation problem is non-convex...



Statistical properties for {y-penalized MLE (van de Geer & PB, 2012)

the target:
Lo-penalized MLE estimates a DAG with fewest edges which
represents the true distribution: minimal edges I-MAP

in the Gaussian linear structural egn. model:

Cov(X) =% = (I-B)'Q(/ - B)~T, Q = diag(c?, ... ,UIZJ)
true Y0 of data-generating distribution

minimal edges I-MAP: a DAG and corresponding B°, Q° such
that ¥° = (/1 — B°)~'Q%(/ - B~ T

not unique (in general)

® € (2)= ©)

non-faithful distribution where o
Cov(X(U, X(3)) -0 minimal edges I-MAP



no faithfulness required for inferring minimal edges |-MAP
~» no strong-faithfulness required either

and when assuming faithfulness:

equivalence class of minimal edges I-MAP
= (usual) Markov equivalence class

without requiring strong-faithfulness!



main condition required for ¢y-penalized MLE:
permutation beta-min condition

for an ordering of the variables

i.e. permutation7: {1,...,p} — {1,...,p}
consider regressions of

X

T

(j) versus X _1y, ..., Xz1) (Gram-Schmidt)

~» coefficients B°(r)
(for a true ordering 7°: B%(7?) is most /y-sparse)

permutation beta-min condition:
for any 7, “most of non-zero” B/(.}((w)| are sulfficiently large

technically: for any =
(1-=n) s(m) edges (j, k) with
~~
no. of edges in B(x)

|Bi(m)| > /log(p)/n (v/p/So V 1) /0
~—_————
typically=1




example:
AR(1) (and AR(k) with fixed k) model satisfy the permutation

beta-min condition

AR(1) model is a chain, i.e., a tree with maximal degree = 2
~ still “bad” in terms of strong faithfulness



Main results (van de Geer & PB, 2012)

assume permutation beta-min condition (and other “mild
conditions”)

then:

» with high probability: for A2 < log(p)/n
1B - B°(#)|[Z + 12 — Q°(#)[|F = O(X°s0)
Sp = no. of edges in minimal edges I-MAP

» number of estimated edges is in the correct order of
magnitude

S X9

» exact edge recovery of minimal edges |I-MAP: our result
“essentially requires” p = o(+/n/log(n))
(which is the best case regime for strong faithfulness
condition)



Main results (van de Geer & PB, 2012)

assume permutation beta-min condition (and other “mild
conditions”)

then:

» with high probability: for A2 < log(p)/n
1B - B°(#)|[Z + 12 — Q°(#)[|F = O(X°s0)
Sp = no. of edges in minimal edges I-MAP

» number of estimated edges is in the correct order of
magnitude

S X9

» exact edge recovery of minimal edges I-MAP: our result
“essentially requires” p = o(+/n/log(n))
(which is the best case regime for strong faithfulness
condition)

no strong faithfulness condition!



improvement for linear structural equation model with same
error variances, for the regime p = o(n/log(n))

XU — 3k epaiy B + €0, Var(elD) = w? (i.e. Q = w2))

only “standard” beta-min condition instead of permutation
beta-min condition:
“most of non-zero” | B}, (°)| are sufficiently large

instead for all = ~» only for true ordering 7°

g

2 ° &)

2
e O SEM_SEV
g ¢ g ° E 8 o o o GES
2 - o 8 g T8 - = 2o 8, °2g ®mre
2 8- PT 1T P8 < DT T el 27+ 105 700
= § 4 g i i @ f 4 =44 T o i ig
E B - o 8 Mg = ! [ - L
i=1 N O -Em O Em COm N gom Cpe oge
= 8T 54T gr L gEn = L e ot = U T v
- = =+ E'A* - - - - - T Lt oL Los oL e
g ° L s e e e e e e e e e L A A e e s
3 0 0.4 02 03 04 05 06 07 08 09



improvement for linear structural equation model with same
error variances, for the regime p = o(n/log(n))

XU — 3 ycpay Bik + €0, Var(eW) = o? (i.e. @ =w?))
only “standard” beta-min condition instead of permutation

beta-min condition:
“most of non-zero” | B}, (°)| are sufficiently large

instead for all = ~» only for true ordering 7°

and we have supporting empirical results to quantify the
improvement if error variances are “approximately the same”
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Route via structural equation models: many
interesting extensions

full identifiability (card(Markov equivalence class) = 1): if

» same error variances:
X0) — Zke ij(k) i el Var(s(f)) =
Peters & PB (2012)



Route via structural equation models: many
interesting extensions

full identifiability (card(Markov equivalence class) = 1): if

» same error variances:
XU = 3 coaiiy BrXW + W), Var(eW) = w
Peters & PB (2012)
» nonlinear structural equation models with additive noise:
XU) — non-linear function (X)) 4 ¢0)
Mooij, Peters, Janzing & Schélkopf (2009-2012)

e.g- XV — 3 cagy fh(XK)) + £U) (additive strctl. eqns.)
Nowzohour & PB (in progress)
> linear structural egns. with non-Gaussian errors:
, at least one ) non-Gaussian
Shimizu (2006)



Observational-interventional data
increase identifiability from (randomized) interventional data
combination of observational-interventional data is common in
e.g. biology

yeast example:
63 observational and 231 interventional data

» MLE for Gaussian observational-interventional data
(Hauser & PB, 2012a)
» active learning by choosing sequentially the next best

intervention for identifying the true DAG
(and solving the Eberhardt conjecture) (Hauser & PB, 2012b)

Oracle estimates, p = 40




Concluding discussion

1. we have achieved some success in biology applications
(simple organisms: yeast and arabidopsis thaliana)
~» but there seems ample room for improvement

2. methods based on inferring conditional independences
necessarily require version of strong faithfulness

(e.g. PC-algorithm)

~» restrictive in term of dimensionality

3. route via structural equation models does not require strong
faithfulness;
and “natural restrictions” lead to full identifiability!



the price to pay with MLE (and other estimators?) for structural
equation models: computation!

re-consider (penalized) MLE for linear Gaussian case:

model: X=BX+¢
penalized MLE: B, Q) = argming o (B, Q; data) + Apen(B)

under non-convex constraint
of no directed cycles © 9 ‘

can we do efficient convex relaxation for
S = {N(/-B)~'Q(/-B)~TNT;N perm., B lower triang., Q}
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the price to pay with MLE (and other estimators?) for structural
equation models: computation!

re-consider (penalized) MLE for linear Gaussian case:

model: X=BX+¢
penalized MLE: B, Q) = argming o (B, Q; data) + Apen(B)

under non-convex constraint
of no directed cycles © 9 ‘

can we do efficient convex relaxation for
S = {N(/-B)~'Q(/-B)~TNT;N perm., B lower triang., Q} ?

so far, our solution:

e dynamic programming if p ~ 20 — 30

e greedy equivalence class search if p is large
(only ad-hoc... but reasonable results)



Thank you!

R-package: pcalg
(Kalisch, Machler, Colombo, Maathuis & PB, 2012)
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Non-equal error variances

SEV-method ~ D; completion to Markov-equivalence class
~ E(D)

performance of £(D) for true CPDAG
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