Angular Synchronization and its application in Phase Retrieval

Afonso S. Bandeira
PACM, Princeton University
joint work with
Amit Singer (Princeton), Daniel A. Spielman (Yale), Boris Alexeev (Princeton), Matthew Fickus (AFIT), and Dustin G. Mixon (AFIT)

OSL 2013, Les Houches. January 11, 2013
http//www.math.princeton.edu/~ajsb

Spectral Clustering - Cheeger Inequality

$$
G=\left(V, E,(W)_{i j}=w_{i j}\right)
$$

Cheeger Constant:

$$
\begin{gathered}
h_{G}=\min _{S \subset V} h_{G}(S) \\
h_{G}(S)=\frac{\operatorname{cut}\left(S, S^{c}\right)}{\min \left\{\operatorname{vol}(S), \operatorname{vol}\left(S^{c}\right)\right\}}
\end{gathered}
$$

Spectral Clustering - Cheeger Inequality

$$
G=\left(V, E,(W)_{i j}=w_{i j}\right)
$$

Cheeger Constant:

$$
\begin{gathered}
h_{G}=\min _{S \subset V} h_{G}(S) \\
h_{G}(S)=\frac{\operatorname{cut}\left(S, S^{c}\right)}{\min \left\{\operatorname{vol}(S), \operatorname{vol}\left(S^{c}\right)\right\}}
\end{gathered}
$$

Graph Laplacian

$$
D=\operatorname{diag}\left(d_{i}\right)
$$

$$
\begin{gathered}
L_{0}=D-W \quad \text { and } \quad \mathcal{L}_{0}=I-D^{-1 / 2} W D^{-1 / 2} \\
\frac{x^{T} L_{0} x}{x^{T} D x}=\frac{1}{2} \frac{\sum_{i j} w_{i j}\left|x_{i}-x_{j}\right|^{2}}{\sum_{i} d_{i} x_{i}^{2}}
\end{gathered}
$$

Spectral Clustering - Cheeger Inequality

$$
G=\left(V, E,(W)_{i j}=w_{i j}\right)
$$

Cheeger Constant:

$$
\begin{gathered}
h_{G}=\min _{S \subset V} h_{G}(S) \\
h_{G}(S)=\frac{\operatorname{cut}\left(S, S^{c}\right)}{\min \left\{\operatorname{vol}(S), \operatorname{vol}\left(S^{c}\right)\right\}}
\end{gathered}
$$

Graph Laplacian

$$
D=\operatorname{diag}\left(d_{i}\right)
$$

$$
\begin{gathered}
L_{0}=D-W \quad \text { and } \quad \mathcal{L}_{0}=I-D^{-1 / 2} W D^{-1 / 2} \\
\qquad \frac{x^{T} L_{0} x}{x^{T} D x}=\frac{1}{2} \frac{\sum_{i j} w_{i j}\left|x_{i}-x_{j}\right|^{2}}{\sum_{i} d_{i} x_{i}^{2}}
\end{gathered}
$$

Theorem (Cheeger Inequality (Alon 86))

$$
\frac{1}{2} \lambda_{2}\left(\mathcal{L}_{0}\right) \leq h_{G} \leq \sqrt{2 \lambda_{2}\left(\mathcal{L}_{0}\right)}
$$

Problem Relaxation

f a function that takes values in $[0,1]$.

- Want to minimize it over a (discrete) set "comb".

Problem Relaxation

f a function that takes values in $[0,1]$.

- Want to minimize it over a (discrete) set "comb".
- Relax the problem to a continuous set "relax" that contains "comb" and on which minimizing f is easier.

f a function that takes values in $[0,1]$.
- Want to minimize it over a (discrete) set "comb".
- Relax the problem to a continuous set "relax" that contains "comb" and on which minimizing f is easier.
- "rounding" procedure (that takes elements in "relax" and sends them to "comb") on which, say, the value of f never more than doubles.

f a function that takes values in $[0,1]$.
- Want to minimize it over a (discrete) set "comb".
- Relax the problem to a continuous set "relax" that contains "comb" and on which minimizing f is easier.
- "rounding" procedure (that takes elements in "relax" and sends them to "comb") on which, say, the value of f never more than doubles.

$$
\text { opt relax } \leq \text { opt comb } \leq 2(\text { opt relax })
$$

The Synchronization Problem

Problem

Determine a potential on the set V of vertices of a graph, with values on a group \mathcal{G}

$$
\begin{aligned}
g: V & \rightarrow \mathcal{G} \\
i & \rightarrow g_{i}
\end{aligned}
$$

given a few, possibly noisy, of the pairwise offset measurements (corresponding to the edges E of the graph)

$$
\begin{aligned}
\rho: E & \rightarrow \mathcal{G} \\
(i, j) & \rightarrow \rho_{i j} \approx g_{i} g_{j}^{-1}
\end{aligned}
$$

Examples... $\mathcal{G}=O(1)=\mathbb{Z}_{2}$

Examples... $\mathcal{G}=O(1)=\mathbb{Z}_{2}$

Examples... $\mathcal{G}=O(1)=\mathbb{Z}_{2}$

When all edges are red this is essentially Max-Cut

Examples... $\mathcal{G}=O(1)=\mathbb{Z}_{2}$

Orientation of a Manifold.

$$
\rho_{i j}=\operatorname{det}\left(O_{i j}\right)
$$

Examples... $\mathcal{G}=S O(2)$

Examples... $\mathcal{G}=S O(2)$

Examples... $\mathcal{G}=S O(2)$

Examples... $\mathcal{G}=S O(2)$

The Angular Synchronization Problem

Problem

Determine an angular potential on the set V of vertices of a graph,

$$
\begin{aligned}
\theta .: V & \rightarrow[0,2 \pi) \\
i & \rightarrow \theta_{i}
\end{aligned}
$$

given a few, possibly noisy, of the relative angle measurements (corresponding to the edges E of the graph)

$$
\begin{aligned}
\theta \ldots: E & \rightarrow[0,2 \pi) \\
(i, j) & \rightarrow \theta_{i j} \approx \theta_{i}-\theta_{j} .
\end{aligned}
$$

The Angular Synchronization Problem

Problem

Determine an angular potential on the set V of vertices of a graph,

$$
\begin{array}{rlrl}
\theta .: V & \rightarrow[0,2 \pi) & e^{i \theta .}=v: V & \rightarrow \mathbb{T} \subset \mathbb{C} \\
i & \rightarrow \theta_{i} & i & \rightarrow v_{i}
\end{array}
$$

given a few, possibly noisy, of the relative angle measurements (corresponding to the edges E of the graph)

$$
\begin{aligned}
\theta \ldots: E & \rightarrow[0,2 \pi) & e^{i \theta \ldots}=\rho: E & \rightarrow \mathbb{T} \subset \mathbb{C} \\
(i, j) & \rightarrow \theta_{i j} \approx \theta_{i}-\theta_{j} . & (i, j) & \rightarrow \rho_{i j} \approx v_{i} v_{j}^{-1} .
\end{aligned}
$$

The Angular Synchronization Problem

Problem

Determine an angular potential on the set V of vertices of a graph,

$$
\begin{array}{rlrl}
\theta .: V & \rightarrow[0,2 \pi) & e^{i \theta .}=v: V & \rightarrow \mathbb{T} \subset \mathbb{C} \\
i & \rightarrow \theta_{i} & i & \rightarrow v_{i}
\end{array}
$$

given a few, possibly noisy, of the relative angle measurements (corresponding to the edges E of the graph)

$$
\left.\begin{array}{rlrl}
\theta \ldots: E & \rightarrow[0,2 \pi) & e^{i \theta . .}=\rho: E & \rightarrow \mathbb{T} \subset \mathbb{C} \\
(i, j) & \rightarrow \theta_{i j} \approx \theta_{i}-\theta_{j} . & & (i, j)
\end{array}\right) \rightarrow \rho_{i j} \approx v_{i} v_{j}^{-1}
$$

Minimize:

$$
\eta(v)=\frac{\sum_{i j} w_{i j}\left|v_{i}-\rho_{i j} v_{j}\right|^{2}}{\sum_{i} d_{i}\left|v_{i}\right|^{2}}=\frac{1}{\operatorname{vol}(G)} \sum_{i j} w_{i j}\left|v_{i}-\rho_{i j} v_{j}\right|^{2}
$$

The Angular Synchronization Problem

Problem

Determine an angular potential on the set V of vertices of a graph,

$$
\begin{array}{rlrl}
\theta .: V & \rightarrow[0,2 \pi) & e^{i \theta .}=v: V & \rightarrow \mathbb{T} \subset \mathbb{C} \\
i & \rightarrow \theta_{i} & i & \rightarrow v_{i}
\end{array}
$$

given a few, possibly noisy, of the relative angle measurements (corresponding to the edges E of the graph)

$$
\left.\begin{array}{rlrl}
\theta . .: E & \rightarrow[0,2 \pi) & e^{i \theta . .}=\rho: E & \rightarrow \mathbb{T} \subset \mathbb{C} \\
(i, j) & \rightarrow \theta_{i j} \approx \theta_{i}-\theta_{j} . & & (i, j)
\end{array}\right) \rightarrow \rho_{i j} \approx v_{i} v_{j}^{-1}
$$

The Frustration Constant:

$$
\eta_{G}=\min _{v: V \rightarrow \mathbb{T}} \eta(v)=\frac{\sum_{i j} w_{i j}\left|v_{i}-\rho_{i j} v_{j}\right|^{2}}{\sum_{i} d_{i}\left|v_{i}\right|^{2}}=\frac{1}{\operatorname{vol}(G)} \sum_{i j} w_{i j}\left|v_{i}-\rho_{i j} v_{j}\right|^{2}
$$

The Graph Connection Laplacian

$$
W_{1} \in \mathbb{C}^{n \times n} \quad\left(W_{1}\right)_{i j}=w_{i j} \rho_{i j} \in \mathbb{C}
$$

The Graph Connection Laplacian is $L_{1} \in \mathbb{C}^{n \times n}$

$$
L_{1}=D-W_{1}
$$

The Graph Connection Laplacian

$W_{1} \in \mathbb{C}^{n \times n}$

$$
\left(W_{1}\right)_{i j}=w_{i j} \rho_{i j} \in \mathbb{C} .
$$

The Graph Connection Laplacian is $L_{1} \in \mathbb{C}^{n \times n}$

$$
L_{1}=D-W_{1}
$$

The Normalized Graph Connection Laplacian is $\mathcal{L}_{1} \in \mathbb{C}^{n \times n}$

$$
\mathcal{L}_{1}=D^{-1 / 2} L_{1} D^{-1 / 2}=I_{n}-D^{-1 / 2} W_{1} D^{-1 / 2} .
$$

- Under certain conditions \mathcal{L}_{1} converges to the Connection Laplacian in Riemannian Geometry.

The Graph Connection Laplacian

$W_{1} \in \mathbb{C}^{n \times n}$

$$
\left(W_{1}\right)_{i j}=w_{i j} \rho_{i j} \in \mathbb{C} .
$$

The Graph Connection Laplacian is $L_{1} \in \mathbb{C}^{n \times n}$

$$
L_{1}=D-W_{1}
$$

The Normalized Graph Connection Laplacian is $\mathcal{L}_{1} \in \mathbb{C}^{n \times n}$

$$
\mathcal{L}_{1}=D^{-1 / 2} L_{1} D^{-1 / 2}=I_{n}-D^{-1 / 2} W_{1} D^{-1 / 2} .
$$

- Under certain conditions \mathcal{L}_{1} converges to the Connection Laplacian in Riemannian Geometry.

$$
\frac{x^{T} L_{1} x}{x^{T} D x}=\frac{1}{2} \frac{\sum_{i j} w_{i j}\left|x_{i}-\rho_{i j} x_{j}\right|^{2}}{\sum_{i} d_{i}\left|x_{i}\right|^{2}}=\eta(x)
$$

Partial Frustration Constants

$$
\frac{x^{T} L_{1} x}{x^{T} D x}=\frac{1}{2} \frac{\sum_{i j} w_{i j}\left|x_{i}-\rho_{i j} x_{j}\right|^{2}}{\sum_{i} d_{i}\left|x_{i}\right|^{2}}=\eta(x)
$$

Partial Frustration Constants

$$
\begin{array}{r}
\frac{x^{T} L_{1} x}{x^{T} D x}=\frac{1}{2} \frac{\sum_{i j} w_{i j}\left|x_{i}-\rho_{i j} x_{j}\right|^{2}}{\sum_{i} d_{i}\left|x_{i}\right|^{2}}=\eta(x) \\
\lambda_{1}\left(\mathcal{L}_{1}\right)=\min _{x \in \mathbb{C}^{n}} \eta(x)=\min _{x: V \rightarrow \mathbb{C}} \eta(x) \\
\eta_{G}=\min _{v: V \rightarrow \mathbb{T}} \eta(v)
\end{array}
$$

Question

Can we relate η_{G} to $\lambda_{1}\left(\mathcal{L}_{1}\right)$?

Partial Frustration Constants

$$
\begin{array}{r}
\frac{x^{T} L_{1} x}{x^{T} D x}=\frac{1}{2} \frac{\sum_{i j} w_{i j}\left|x_{i}-\rho_{i j} x_{j}\right|^{2}}{\sum_{i} d_{i}\left|x_{i}\right|^{2}}=\eta(x) \\
\lambda_{1}\left(\mathcal{L}_{1}\right)=\min _{x \in \mathbb{C}^{n}} \eta(x)=\min _{x: V \rightarrow \mathbb{C}} \eta(x) \\
\eta_{G}=\min _{v: V \rightarrow \mathbb{T}} \eta(v)
\end{array}
$$

Question

Can we relate η_{G} to $\lambda_{1}\left(\mathcal{L}_{1}\right)$?

Partial Frustration Constants

$$
\begin{array}{r}
\frac{x^{T} L_{1} x}{x^{T} D x}=\frac{1}{2} \frac{\sum_{i j} w_{i j}\left|x_{i}-\rho_{i j} x_{j}\right|^{2}}{\sum_{i} d_{i}\left|x_{i}\right|^{2}}=\eta(x) \\
\lambda_{1}\left(\mathcal{L}_{1}\right)=\min _{x \in \mathbb{C}^{n}} \eta(x)=\min _{x: V \rightarrow \mathbb{C}} \eta(x) \\
\eta_{G}=\min _{v: V \rightarrow \mathbb{T}} \eta(v)
\end{array}
$$

Question

Can we relate η_{G} to $\lambda_{1}\left(\mathcal{L}_{1}\right)$?

NO!

Fix - Consider instead:

$$
\eta_{G}^{*}=\min _{v: V \rightarrow \mathbb{T} \cup\{0\}} \eta(v)
$$

Partial Frustration Constants

$$
\begin{array}{r}
\frac{x^{T} L_{1} x}{x^{T} D x}=\frac{1}{2} \frac{\sum_{i j} w_{i j}\left|x_{i}-\rho_{i j} x_{j}\right|^{2}}{\sum_{i} d_{i}\left|x_{i}\right|^{2}}=\eta(x) \\
\lambda_{1}\left(\mathcal{L}_{1}\right)=\min _{x \in \mathbb{C}^{n}} \eta(x)=\min _{x: V \rightarrow \mathbb{C}} \eta(x) \\
\eta_{G}=\min _{v: V \rightarrow \mathbb{T}} \eta(v)
\end{array}
$$

Question

Can we relate η_{G} to $\lambda_{1}\left(\mathcal{L}_{1}\right)$?

NO!
Fix - Consider instead:

$$
\eta_{G}^{*}=\min _{v: V \rightarrow \mathbb{T} \cup\{0\}} \eta(v) .
$$

Theorem

$$
\lambda_{1}\left(\mathcal{L}_{1}\right) \leq \eta_{G}^{*} \leq \sqrt{10 \lambda_{1}\left(\mathcal{L}_{1}\right)}
$$

Global Synchronization - What about η_{G} ?

Problematic case:

Global Synchronization - What about η_{G} ?

If G has a large spectral gap $\lambda_{2}\left(\mathcal{L}_{0}\right)$ (or, equivalently a large Cheeger Constant), this should not be a problem.

Global Synchronization - What about η_{G} ?

If G has a large spectral gap $\lambda_{2}\left(\mathcal{L}_{0}\right)$ (or, equivalently a large Cheeger Constant), this should not be a problem.

$$
\begin{aligned}
\eta(v) & =\frac{1}{2} \frac{\sum_{i j} w_{i j}\left|v_{i}-\rho_{i j} v_{j}\right|^{2}}{\sum_{i} d_{i}\left|v_{i}\right|^{2}} \\
& \geq \frac{1}{2} \frac{\sum_{i j} w_{i j}\left(\left|v_{i}\right|-\left|v_{j}\right|\right)^{2}}{\sum_{i} d_{i}\left|v_{i}\right|^{2}}
\end{aligned}
$$

Global Synchronization - What about η_{G} ?

If G has a large spectral gap $\lambda_{2}\left(\mathcal{L}_{0}\right)$ (or, equivalently a large Cheeger Constant), this should not be a problem.

$$
\begin{aligned}
\eta(v) & =\frac{1}{2} \frac{\sum_{i j} w_{i j}\left|v_{i}-\rho_{i j} v_{j}\right|^{2}}{\sum_{i} d_{i}\left|v_{i}\right|^{2}} \\
& \geq \frac{1}{2} \frac{\sum_{i j} w_{i j}\left(\left|v_{i}\right|-\left|v_{j}\right|\right)^{2}}{\sum_{i} d_{i}\left|v_{i}\right|^{2}}
\end{aligned}
$$

Theorem

$$
\lambda_{1}\left(\mathcal{L}_{1}\right) \leq \eta_{G} \leq \frac{1}{\lambda_{2}\left(\mathcal{L}_{0}\right)} \mathcal{O}\left(\lambda_{1}\left(\mathcal{L}_{1}\right)\right)
$$

Examples... $\mathcal{G}=S O(3)$

What about beyond $\mathbb{Z} / 2 \mathbb{Z}=O(1)$ and $S O(2)$ Synchronization?

Examples... $\mathcal{G}=S O(3)$

What about beyond $\mathbb{Z} / 2 \mathbb{Z}=O(1)$ and $S O(2)$ Synchronization?

Examples... $\mathcal{G}=S O(3)$

What about beyond $\mathbb{Z} / 2 \mathbb{Z}=O(1)$ and $S O(2)$ Synchronization?

Higher-Order Rotation Groups

We want to globally estimate $O: V \rightarrow O(d)$ such that $O_{i} \approx \rho_{i j} O_{j}$. Minimize:

$$
\nu(O)=\frac{1}{\operatorname{vol}(G)} \sum_{i j} w_{i j}\left\|O_{i}-\rho_{i j} O_{j}\right\|_{F}^{2}
$$

Higher-Order Rotation Groups

We want to globally estimate $O: V \rightarrow O(d)$ such that $O_{i} \approx \rho_{i j} O_{j}$. Minimize:

$$
\nu(O)=\frac{1}{\operatorname{vol}(G)} \sum_{i j} w_{i j}\left\|O_{i}-\rho_{i j} O_{j}\right\|_{F}^{2}
$$

Many eigenvalues/eigenvectors are needed

Theorem

Let $\lambda_{i}\left(\mathcal{L}_{1}\right)$ and $\lambda_{i}\left(\mathcal{L}_{0}\right)$ denote the i-th smallest eigenvalue of, respectively, the normalized Connection Laplacian \mathcal{L}_{1} and the normalized graph Laplacian \mathcal{L}_{0}. Let ν_{G} denote the $O(d)$ frustration constant of G. Then,

$$
\frac{1}{d} \sum_{i=1}^{d} \lambda_{i}\left(\mathcal{L}_{1}\right) \leq \nu_{G} \leq \operatorname{poly}(d) \frac{1}{\lambda_{2}\left(\mathcal{L}_{0}\right)} \sum_{i=1}^{d} \lambda_{i}\left(\mathcal{L}_{1}\right)
$$

The proof is constructive - the Algorithm achieves this!

The Unique Games Conjecture

Let opt be the minimum
fraction of edges the coloring gets wrong.

The Unique Games Conjecture

Let opt be the minimum fraction of edges the coloring gets wrong.

Conjecture (U.G.C.)

For every $\epsilon \sim 0$ and $\delta \sim 1$ there exists k and an assignement of the edges (with k colors) such that deciding whether

$$
\begin{aligned}
\text { opt }<\epsilon \quad \text { or } \quad \text { opt } & >\delta \\
& \text { is NP-hard. }
\end{aligned}
$$

The Unique Games Conjecture

Let opt be the minimum fraction of edges the coloring gets wrong.

Conjecture (U.G.C.)

For every $\epsilon \sim 0$ and $\delta \sim 1$ there exists k and an assignement of the edges (with k colors) such that deciding whether

$$
\begin{aligned}
\text { opt }<\epsilon \quad \text { or } \quad \text { opt } & >\delta \\
& \text { is } \mathrm{NP} \text {-hard. } .
\end{aligned}
$$

- Corresponds to localization in S_{k}.

One can represent S_{k} as permutation matrices in $O(k)$.

The Unique Games Conjecture

Let opt be the minimum fraction of edges the coloring gets wrong.

Conjecture (U.G.C.)

For every $\epsilon \sim 0$ and $\delta \sim 1$ there exists k and an assignement of the edges (with k colors) such that deciding whether

$$
\begin{aligned}
\text { opt }<\epsilon & \text { or } \quad \text { opt } & >\delta \\
& & \text { is NP-hard. }
\end{aligned}
$$

- Corresponds to localization in S_{k}.

One can represent S_{k} as permutation matrices in $O(k)$.

- There seems to be NO good "rounding procedure". e.g.: all-ones vector is a perfect localization for relaxed problem

PART II:

Reconstruction without phase

Reconstruction without phase

- A signal $x \in \mathbb{C}^{M}$ is measured using a linear system but only the absolute value of the measurements is obtained

$$
\left|\left\langle x, \varphi_{n}\right\rangle\right|, \quad n=1, \ldots, N
$$

Reconstruction without phase

- A signal $x \in \mathbb{C}^{M}$ is measured using a linear system but only the absolute value of the measurements is obtained

$$
\left|\left\langle x, \varphi_{n}\right\rangle\right|, \quad n=1, \ldots, N
$$

Motivation: X-ray Crystallography and inversion of spectrograms.

Reconstruction without phase

- A signal $x \in \mathbb{C}^{M}$ is measured using a linear system but only the absolute value of the measurements is obtained

$$
\left|\left\langle x, \varphi_{n}\right\rangle\right|, \quad n=1, \ldots, N
$$

Motivation: X-ray Crystallography and inversion of spectrograms.

Question

When and how can we reconstruct x from these phaseless measurements?

State of the art

- Balan et al., 2006: For a generic system, phaseless measurements are injective whenever $N \geq 4 M-2$

The right injectivity bound is believed to be $4 M-4$

- Phaselift (Candès et al., 2011) and Phasecut (Waldspurger et al., 2012): For a random system, stable recovery by Semi-Definite Programming for $N=\tilde{O}(M)$.

State of the art

- Balan et al., 2006: For a generic system, phaseless measurements are injective whenever $N \geq 4 M-2$

The right injectivity bound is believed to be $4 M-4$

- Phaselift (Candès et al., 2011) and Phasecut (Waldspurger et al., 2012): For a random system, stable recovery by Semi-Definite Programming for $N=\tilde{O}(M)$.

Question

Can we design a measurement matrix such that it is possible to efficiently and stably recovery from only $N=\tilde{O}(M)$ measurements avoiding the SDP computational cost?

Polarization

- Synchronization allows to recover the phases of the measurements from the relative phases

$$
\omega_{i j}:=\left(\frac{\left\langle x, \varphi_{i}\right\rangle}{\left|\left\langle x, \varphi_{i}\right\rangle\right|}\right)^{-1} \frac{\left\langle x, \varphi_{j}\right\rangle}{\left|\left\langle x, \varphi_{j}\right\rangle\right|}=\frac{\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle}{\left|\left\langle x, \varphi_{i}\right\rangle\right|\left|\left\langle x, \varphi_{j}\right\rangle\right|}
$$

Polarization

- Synchronization allows to recover the phases of the measurements from the relative phases

$$
\omega_{i j}:=\left(\frac{\left\langle x, \varphi_{i}\right\rangle}{\left|\left\langle x, \varphi_{i}\right\rangle\right|}\right)^{-1} \frac{\left\langle x, \varphi_{j}\right\rangle}{\left|\left\langle x, \varphi_{j}\right\rangle\right|}=\frac{\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle}{\left|\left\langle x, \varphi_{i}\right\rangle\right|\left|\left\langle x, \varphi_{j}\right\rangle\right|}
$$

- We can determine $\omega_{i j}$ from other phaseless measurements:

$$
\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle=\frac{1}{4} \sum_{k=1}^{4} \mathrm{i}^{k}\left|\left\langle x, \varphi_{i}+\mathrm{i}^{k} \varphi_{j}\right\rangle\right|^{2}
$$

Polarization

- Synchronization allows to recover the phases of the measurements from the relative phases

$$
\omega_{i j}:=\left(\frac{\left\langle x, \varphi_{i}\right\rangle}{\left|\left\langle x, \varphi_{i}\right\rangle\right|}\right)^{-1} \frac{\left\langle x, \varphi_{j}\right\rangle}{\left|\left\langle x, \varphi_{j}\right\rangle\right|}=\frac{\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle}{\left|\left\langle x, \varphi_{i}\right\rangle\right|\left|\left\langle x, \varphi_{j}\right\rangle\right|}
$$

- We can determine $\omega_{i j}$ from other phaseless measurements:

$$
\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle=\frac{1}{4} \sum_{k=1}^{4} \mathrm{i}^{k}\left|\left\langle x, \varphi_{i}+\mathrm{i}^{k} \varphi_{j}\right\rangle\right|^{2}
$$

- each φ_{i} corresponds to vertex i
- each set $\left\{\varphi_{i}+\mathrm{i}^{k} \varphi_{j}\right\}_{k=1}^{4}$ to an edge between i and j.

Polarization

- Synchronization allows to recover the phases of the measurements from the relative phases

$$
\omega_{i j}:=\left(\frac{\left\langle x, \varphi_{i}\right\rangle}{\left|\left\langle x, \varphi_{i}\right\rangle\right|}\right)^{-1} \frac{\left\langle x, \varphi_{j}\right\rangle}{\left|\left\langle x, \varphi_{j}\right\rangle\right|}=\frac{\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle}{\left|\left\langle x, \varphi_{i}\right\rangle\right|\left|\left\langle x, \varphi_{j}\right\rangle\right|}
$$

- We can determine $\omega_{i j}$ from other phaseless measurements:

$$
\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle=\frac{1}{4} \sum_{k=1}^{4} \mathrm{i}^{k}\left|\left\langle x, \varphi_{i}+\mathrm{i}^{k} \varphi_{j}\right\rangle\right|^{2}
$$

- each φ_{i} corresponds to vertex i
- each set $\left\{\varphi_{i}+\mathrm{i}^{k} \varphi_{j}\right\}_{k=1}^{4}$ to an edge between i and j.
- We need a sparse graph!

Instability of near orthogonality

- The measurements are noisy $\left(\left|\left\langle x, \varphi_{i}\right\rangle\right|+\epsilon_{i}\right)$.
- If x is nearly orthogonal to φ_{i} the noise in the relative phase blows-up

$$
\omega_{i j}=\frac{\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle+\epsilon_{i j}}{\left|\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle+\epsilon_{i j}\right|}
$$

Instability of near orthogonality

- The measurements are noisy $\left(\left|\left\langle x, \varphi_{i}\right\rangle\right|+\epsilon_{i}\right)$.
- If x is nearly orthogonal to φ_{i} the noise in the relative phase blows-up

$$
\omega_{i j}=\frac{\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle+\epsilon_{i j}}{\left|\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle+\epsilon_{i j}\right|}
$$

- Vertices i for which $\left\langle\varphi_{i}, x\right\rangle \sim 0$ should be removed.

Instability of near orthogonality

- The measurements are noisy $\left(\left|\left\langle x, \varphi_{i}\right\rangle\right|+\epsilon_{i}\right)$.
- If x is nearly orthogonal to φ_{i} the noise in the relative phase blows-up

$$
\omega_{i j}=\frac{\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle+\epsilon_{i j}}{\left|\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle+\epsilon_{i j}\right|}
$$

- Vertices i for which $\left\langle\varphi_{i}, x\right\rangle \sim 0$ should be removed.
- To succeed...
(1) FRAME DESIGN - do not delete too many vertices
(2) GRAPH DESIGN - still be able to perform synchronization

Instability of near orthogonality

- The measurements are noisy $\left(\left|\left\langle x, \varphi_{i}\right\rangle\right|+\epsilon_{i}\right)$.
- If x is nearly orthogonal to φ_{i} the noise in the relative phase blows-up

$$
\omega_{i j}=\frac{\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle+\epsilon_{i j}}{\left|\overline{\left\langle x, \varphi_{i}\right\rangle}\left\langle x, \varphi_{j}\right\rangle+\epsilon_{i j}\right|}
$$

- Vertices i for which $\left\langle\varphi_{i}, x\right\rangle \sim 0$ should be removed.
- To succeed...
(1) FRAME DESIGN - do not delete too many vertices
(2) GRAPH DESIGN - still be able to perform synchronization

Solution:
(1) Gaussian Measurements
(2) Expander graphs

Stability of Phaseless reconstruction

Theorem (Alexeev-Bandeira-Fickus-M, 2012)

Take $N \sim C M \log M$ with C sufficiently large. Then the following holds for all $x \in \mathbb{C}^{M}$ with overwhelming probability:

Given noisy intensity measurements

$$
z_{\ell}:=\left|\left\langle x, \varphi_{\ell}\right\rangle\right|^{2}+\nu_{\ell}
$$

if the noise-to-signal ratio satisfies SNR $:=\frac{\|x\|_{2}^{2}}{\|\nu\|_{2}} \geq \frac{\sqrt{M}}{C^{\prime}}$, then our phase retrieval procedure produces \tilde{x} with squared relative error

$$
\frac{\left\|\tilde{x}-\mathrm{e}^{\mathrm{i} \theta} x\right\|_{2}^{2}}{\|x\|_{2}^{2}} \leq K \sqrt{\frac{M}{\log M}} \mathrm{SNR}^{-1}
$$

for some phase $\theta \in[0,2 \pi)$.

Polarization with Fourier Masks - Ongoing (with D. Mixon and Y. Chen)

We were able to design $\mathcal{O}(\log M)$ Fourier Masks providing measurements that allow for reconstruction with the polarization algorithm, both the vertex and edge measurements are contained in those $\mathcal{O}(\log M)$ designed Fourier Masks.

Thank You

A. S. Bandeira, A. Singer and D. A. Spielman, "A Cheeger Inequality for the Graph Connection Laplacian" arXiv:1204.3873

B. Alexeev, A. S. Bandeira, D. G. Mixon, and M. Fickus, "Phase retrieval with polarization" arXiv:1210.7752

