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Spectral Clustering – Cheeger Inequality

G =
(
V,E, (W )ij = wij

)
Cheeger Constant:

hG = min
S⊂V

hG(S)

hG(S) =
cut(S, Sc)

min{vol(S), vol(Sc)}

Graph Laplacian D = diag(di)

L0 = D −W and L0 = I −D−1/2WD−1/2

xTL0x

xTDx
=

1

2

∑
ij wij |xi − xj |2∑

i dix
2
i

Theorem (Cheeger Inequality (Alon 86))

1

2
λ2(L0) ≤ hG ≤

√
2λ2(L0)
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Problem Relaxation

f a function that takes values in [0, 1].

Want to minimize it over a (discrete) set “comb”.

Relax the problem to a continuous set “relax” that contains “comb”
and on which minimizing f is easier.

“rounding” procedure ( that takes elements in “relax” and sends them
to “comb”) on which, say, the value of f never more than doubles.

opt relax ≤ opt comb ≤ 2 ( opt relax )
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The Synchronization Problem

Problem

Determine a potential on the set V of vertices of a graph, with values on a
group G

g : V → G
i → gi

given a few, possibly noisy, of the pairwise offset measurements
(corresponding to the edges E of the graph)

ρ : E → G
(i, j) → ρij ≈ gig−1j .
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Examples... G = O(1) = Z2

When all edges are red this is essentially Max-Cut
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Examples... G = O(1) = Z2

Orientation of a Manifold.

ρij = det(Oij)
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Examples... G = SO(2)
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Solution to the “frustration free” case
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The Angular Synchronization Problem

Problem

Determine an angular potential on the set V of vertices of a graph,

θ· : V → [0, 2π)
i → θi

eiθ· = v : V → T ⊂ C
i → vi

given a few, possibly noisy, of the relative angle measurements
(corresponding to the edges E of the graph)

θ·· : E → [0, 2π)
(i, j) → θij ≈ θi − θj .

eiθ·· = ρ : E → T ⊂ C
(i, j) → ρij≈viv−1j .
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Minimize:

ηG = min
v:V→T

η(v) =

∑
ij wij |vi − ρijvj |2∑

i di|vi|2
=

1

vol(G)

∑
ij

wij |vi − ρijvj |2.
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The Graph Connection Laplacian

W1 ∈ Cn×n
(W1)ij = wijρij ∈ C.

The Graph Connection Laplacian is L1 ∈ Cn×n L1 = D −W1

The Normalized Graph Connection Laplacian is L1 ∈ Cn×n

L1 = D−1/2L1D
−1/2 = In −D−1/2W1D

−1/2.

Under certain conditions L1 converges to the Connection Laplacian in Riemannian
Geometry.

xTL1x

xTDx
=

1

2

∑
ij wij |xi − ρijxj |2∑

i di|xi|2
= η(x)
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Partial Frustration Constants

xTL1x

xTDx
=

1

2

∑
ij wij |xi − ρijxj |2∑

i di|xi|2
= η(x)

λ1(L1) = min
x∈Cn

η(x) = min
x:V→C

η(x)

ηG = min
v:V→T

η(v)

Question

Can we relate ηG to λ1(L1)? NO!

Fix – Consider instead:

η∗G = min
v:V→T∪{0}

η(v).

Theorem

λ1(L1) ≤ η∗G ≤
√

10λ1(L1)
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Global Synchronization – What about ηG?

Problematic case:

If G has a large spectral gap λ2(L0)
(or, equivalently a large Cheeger
Constant), this should not be a
problem.

η(v) =
1

2

∑
ij wij |vi − ρijvj |2∑

i di|vi|2

≥ 1

2

∑
ij wij (|vi| − |vj |)

2∑
i di|vi|2

Theorem

λ1(L1) ≤ ηG ≤
1

λ2(L0)
O
(
λ1(L1)

)
.
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Examples... G = SO(3)

What about beyond Z/2Z = O(1) and SO(2) Synchronization?
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Higher-Order Rotation Groups

We want to globally estimate O : V → O(d) such that Oi ≈ ρijOj .
Minimize:

ν(O) =
1

vol(G)

∑
ij

wij‖Oi − ρijOj‖2F .

Many eigenvalues/eigenvectors are needed

Theorem

Let λi(L1) and λi(L0) denote the i-th smallest eigenvalue of, respectively,
the normalized Connection Laplacian L1 and the normalized graph
Laplacian L0. Let νG denote the O(d) frustration constant of G. Then,

1

d

d∑
i=1

λi(L1) ≤ νG ≤ poly(d)
1

λ2(L0)

d∑
i=1

λi(L1).

The proof is constructive – the Algorithm achieves this!
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The Unique Games Conjecture

Let opt be the minimum
fraction of edges the
coloring gets wrong.

Conjecture (U.G.C.)

For every ε∼ 0 and δ∼ 1 there exists
k and an assignement of the edges
(with k colors) such that deciding
whether

opt < ε or opt > δ

is NP–hard.

Corresponds to localization in Sk.
One can represent Sk as permutation matrices in O(k).

There seems to be NO good “rounding procedure”.
e.g.: all-ones vector is a perfect localization for relaxed problem
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PART II:

Reconstruction without phase
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Reconstruction without phase

A signal x ∈ CM is measured using a linear system but only the
absolute value of the measurements is obtained

|〈x, ϕn〉|, n = 1, . . . , N

Motivation: X-ray Crystallography and inversion of spectrograms.

Question

When and how can we reconstruct x from these phaseless measurements?
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State of the art

Balan et al., 2006: For a generic system, phaseless measurements are
injective whenever N ≥ 4M − 2
. The right injectivity bound is believed to be 4M − 4

Phaselift (Candès et al., 2011) and Phasecut (Waldspurger et al.,
2012): For a random system, stable recovery by Semi-Definite
Programming for N = Õ(M).

Question

Can we design a measurement matrix such that it is possible to efficiently
and stably recovery from only N = Õ(M) measurements avoiding the
SDP computational cost?
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Polarization

Synchronization allows to recover the phases of the measurements
from the relative phases

ωij :=
( 〈x, ϕi〉
|〈x, ϕi〉|

)−1 〈x, ϕj〉
|〈x, ϕj〉|

=
〈x, ϕi〉〈x, ϕj〉
|〈x, ϕi〉||〈x, ϕj〉|

We can determine ωij from other phaseless measurements:

〈x, ϕi〉〈x, ϕj〉 =
1

4

4∑
k=1

ik|〈x, ϕi + ikϕj〉|2

each ϕi corresponds to vertex i

each set {ϕi + ikϕj}4k=1 to an
edge between i and j.

We need a sparse graph!
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Instability of near orthogonality

The measurements are noisy
(
|〈x, ϕi〉|+ εi

)
.

If x is nearly orthogonal to ϕi the noise in the relative phase blows-up

ωij =
〈x, ϕi〉〈x, ϕj〉+ εij∣∣∣〈x, ϕi〉〈x, ϕj〉+ εij

∣∣∣

Vertices i for which 〈ϕi, x〉 ∼ 0 should be removed.

To succeed...
1 FRAME DESIGN - do not delete too many vertices

2 GRAPH DESIGN - still be able to perform synchronization

Solution:

1 Gaussian Measurements

2 Expander graphs
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(
|〈x, ϕi〉|+ εi

)
.

If x is nearly orthogonal to ϕi the noise in the relative phase blows-up

ωij =
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∣∣∣
Vertices i for which 〈ϕi, x〉 ∼ 0 should be removed.

To succeed...
1 FRAME DESIGN - do not delete too many vertices

2 GRAPH DESIGN - still be able to perform synchronization

Solution:

1 Gaussian Measurements

2 Expander graphs
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Stability of Phaseless reconstruction

Theorem (Alexeev-Bandeira-Fickus-M, 2012)

Take N ∼ CM logM with C sufficiently large. Then the following holds
for all x ∈ CM with overwhelming probability:

Given noisy intensity measurements

z` := |〈x, ϕ`〉|2 + ν`,

if the noise-to-signal ratio satisfies SNR :=
‖x‖22
‖ν‖2 ≥

√
M
C′ , then our phase

retrieval procedure produces x̃ with squared relative error

‖x̃− eiθx‖22
‖x‖22

≤ K

√
M

logM
SNR−1,

for some phase θ ∈ [0, 2π).
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Polarization with Fourier Masks - Ongoing (with D. Mixon and Y. Chen)

We were able to design O(logM) Fourier Masks providing measurements
that allow for reconstruction with the polarization algorithm,

both the vertex and edge measurements are contained in those O(logM)
designed Fourier Masks.
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Thank You
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