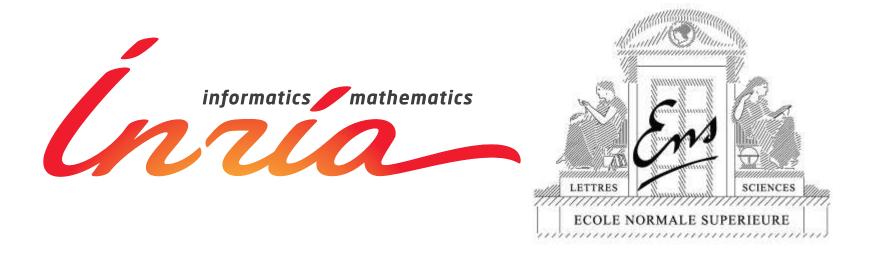
Stochastic gradient methods for machine learning

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France



Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - January 2013

Context Machine learning for "big data"

- Large-scale machine learning: large p, large n, large k
 - -p: dimension of each observation (input)
 - -k: number of tasks (dimension of outputs)
 - -n: number of observations
- Examples: computer vision, bioinformatics, signal processing
- Ideal running-time complexity: O(pn + kn)

Context Machine learning for "big data"

- Large-scale machine learning: large p, large n, large k
 - -p: dimension of each observation (input)
 - -k: number of tasks (dimension of outputs)
 - -n: number of observations
- Examples: computer vision, bioinformatics, signal processing
- Ideal running-time complexity: O(pn + kn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins and Monro, 1951)
 - Mixing statistics and optimization
 - It is possible to improve on the sublinear convergence rate?

Outline

Introduction

- Supervised machine learning and convex optimization
- Beyond the separation of statistics and optimization
- Stochastic approximation algorithms (Bach and Moulines, 2011)
 - Stochastic gradient and averaging
 - Strongly convex vs. non-strongly convex
- Going beyond stochastic gradient (Le Roux, Schmidt, and Bach, 2012)
 - More than a single pass through the data
 - Linear (exponential) convergence rate for strongly convex functions

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- ullet Prediction as a linear function $\theta^{\top}\Phi(x)$ of features $\Phi(x)\in\mathcal{F}=\mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$$

convex data fitting term + regularizer

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top}\Phi(x)$ of features $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathcal{F}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i)) \quad + \quad \mu \Omega(\theta)$$

convex data fitting term + regularizer

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top}\Phi(x)$ of features $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$$

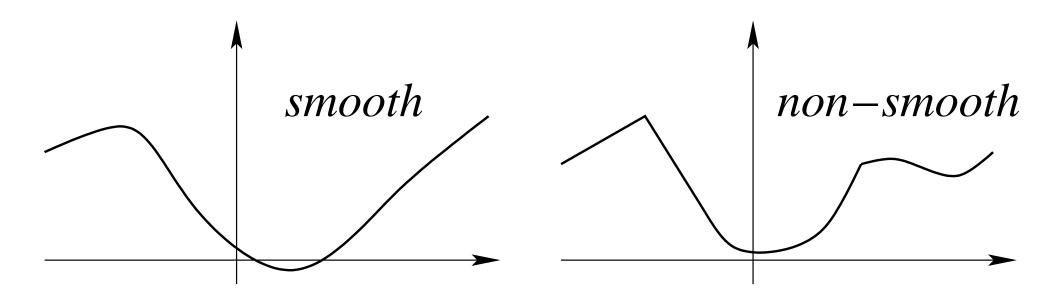
convex data fitting term + regularizer

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
 - May be tackled simultaneously

ullet A function $g:\mathbb{R}^p o \mathbb{R}$ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-continuous

$$\forall \theta_1, \theta_2 \in \mathbb{R}^p, \|g'(\theta_1) - g'(\theta_2)\| \le L \|\theta_1 - \theta_2\|$$

• If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \leq L \cdot Id$



ullet A function $g:\mathbb{R}^p o \mathbb{R}$ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-continuous

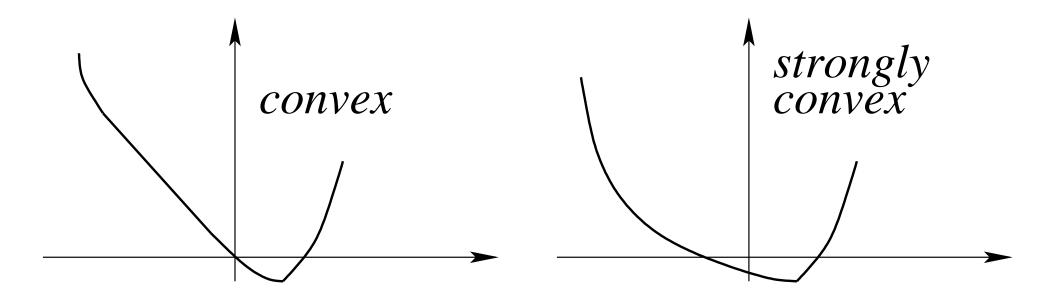
$$\forall \theta_1, \theta_2 \in \mathbb{R}^p, \|g'(\theta_1) - g'(\theta_2)\| \le L \|\theta_1 - \theta_2\|$$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \leq L \cdot Id$
- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$
 - Bounded data

ullet A function $g:\mathbb{R}^p o \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \geqslant g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$$

- Equivalent definition: $\theta \mapsto g(\theta) \frac{\mu}{2} \|\theta\|^2$ is convex
- If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \succcurlyeq \mu \cdot Id$



ullet A function $g:\mathbb{R}^p o \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \geqslant g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$$

- Equivalent definition: $\theta \mapsto g(\theta) \frac{\mu}{2} \|\theta\|^2$ is convex
- If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \succcurlyeq \mu \cdot Id$

Machine learning

- with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
- Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$
- Data with invertible covariance matrix (low correlation/dimension)
- ... or with added regularization by $\frac{\mu}{2} \|\theta\|^2$

Stochastic approximation

- ullet Goal: Minimizing a function f defined on a Hilbert space ${\mathcal H}$
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathcal{H}$

Stochastic approximation

- Observation of $f'_n(\theta_n) = f'(\theta_n) + \varepsilon_n$, with $\varepsilon_n = \text{i.i.d.}$ noise
- Non-convex problems

Stochastic approximation

- Goal: Minimizing a function f defined on a Hilbert space \mathcal{H}
 - given only unbiased estimates $f'_n(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathcal{H}$

Stochastic approximation

- Observation of $f'_n(\theta_n) = f'(\theta_n) + \varepsilon_n$, with $\varepsilon_n = \text{i.i.d. noise}$
- Non-convex problems

Machine learning - statistics

– loss for a single pair of observations: $|f_n(\theta) = \ell(y_n, \theta^{\top} \Phi(x_n))|$

$$f_n(\theta) = \ell(y_n, \theta^{\top} \Phi(x_n))$$

- $-f(\theta) = \mathbb{E} f_n(\theta) = \mathbb{E} \ell(y_n, \theta^{\top} \Phi(x_n)) =$ generalization error
- Expected gradient: $f'(\theta) = \mathbb{E} f'_n(\theta) = \mathbb{E} \left\{ \ell'(y_n, \theta^\top \Phi(x_n)) \Phi(x_n) \right\}$

Convex smooth stochastic approximation

- Key properties of f and/or f_n
 - Smoothness: f_n L-smooth
 - Strong convexity: $f \mu$ -strongly convex

Convex smooth stochastic approximation

- Key properties of f and/or f_n
 - Smoothness: f_n L-smooth
 - Strong convexity: $f \mu$ -strongly convex
- **Key algorithm:** Stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $| \gamma_n = Cn^{-\alpha} |$

$$\gamma_n = C n^{-\alpha}$$

Convex smooth stochastic approximation

- Key properties of f and/or f_n
 - Smoothness: f_n L-smooth
 - Strong convexity: $f \mu$ -strongly convex
- **Key algorithm:** Stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $| \gamma_n = Cn^{-\alpha} |$

$$\gamma_n = C n^{-\alpha}$$

Desirable practical behavior

- Applicable (at least) to least-squares and logistic regression
- Robustness to (potentially unknown) constants (L, μ)
- Adaptivity to difficulty of the problem (e.g., strong convexity)

Convex stochastic approximation Related work

Machine learning/optimization

- Known minimax rates of convergence (Nemirovski and Yudin, 1983;
 Agarwal et al., 2010)
 - Strongly convex: $O(n^{-1})$
 - Non-strongly convex: $O(n^{-1/2})$
- Achieved with and/or without averaging (up to log terms)
- Non-asymptotic analysis (high-probability bounds)
- Online setting and regret bounds
- Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009)
- Nesterov and Vial (2008); Nemirovski et al. (2009)

Convex stochastic approximation Related work

• Stochastic approximation

- Asymptotic analysis
- Non convex case with strong convexity around the optimum
- $-\gamma_n=Cn^{-\alpha}$ with $\alpha=1$ is not robust to the choice of C
- $-\alpha \in (1/2,1)$ is robust with averaging
- Broadie et al. (2009); Kushner and Yin (2003); Kul'chitskii and Mozgovoi (1991); Fabian (1968)
- Polyak and Juditsky (1992); Ruppert (1988)

Problem set-up - General assumptions

- Unbiased gradient estimates:
 - $-f_n(\theta)$ is of the form $h(z_n,\theta)$, where z_n is an i.i.d. sequence
 - e.g., $f_n(\theta) = h(z_n, \theta) = \ell(y_n, \theta^\top \Phi(x_n))$ with $z_n = (x_n, y_n)$
 - NB: can be generalized
- Variance of estimates: There exists $\sigma^2 \geqslant 0$ such that for all $n \geqslant 1$, $\mathbb{E}(\|f_n'(\theta^*) f'(\theta^*)\|^2) \leqslant \sigma^2$, where θ^* is a global minimizer of f

Problem set-up - Smoothness/convexity assumptions

- Smoothness of f_n : For each $n \ge 1$, the function f_n is a.s. convex, differentiable with L-Lipschitz-continuous gradient f'_n :
 - Bounded data

Problem set-up - Smoothness/convexity assumptions

- Smoothness of f_n : For each $n \ge 1$, the function f_n is a.s. convex, differentiable with L-Lipschitz-continuous gradient f'_n :
 - Bounded data
- Strong convexity of f: The function f is strongly convex with respect to the norm $\|\cdot\|$, with convexity constant $\mu > 0$:
 - Invertible population covariance matrix
 - or regularization by $\frac{\mu}{2} \|\theta\|^2$

• Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$

Strongly convex smooth objective functions

- Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
- New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants
- Forgetting of initial conditions
- Robustness to the choice of C

• Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$

Strongly convex smooth objective functions

- Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
- New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants
- Forgetting of initial conditions
- Robustness to the choice of C

Proof technique

- Derive deterministic recursion for $\delta_n = \mathbb{E} \|\theta_n - \theta^*\|^2$

$$\delta_n \leqslant (1 - 2\mu\gamma_n + 2L^2\gamma_n^2)\delta_{n-1} + 2\sigma^2\gamma_n^2$$

Mimic SA proof techniques in a non-asymptotic way

- Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$
- Strongly convex smooth objective functions
 - Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
 - New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 - Non-asymptotic analysis with explicit constants
 - Forgetting of initial conditions
 - Robustness to the choice of C
- ullet Convergence rates for $\mathbb{E}\|\theta_n-\theta^*\|^2$ and $\mathbb{E}\|ar{\theta}_n-\theta^*\|^2$
 - no averaging: $O\left(\frac{\sigma^2 \gamma_n}{\mu}\right) + O(e^{-\mu n \gamma_n}) \|\theta_0 \theta^*\|^2$
 - $-\text{ averaging: } \frac{\operatorname{tr} H(\theta^*)^{-1}}{n} + \mu^{-1} O(n^{-2\alpha} + n^{-2+\alpha}) + O\Big(\frac{\|\theta_0 \theta^*\|^2}{\mu^2 n^2}\Big)$

- Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$
- Strongly convex smooth objective functions
 - Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
 - New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 - Non-asymptotic analysis with explicit constants

• Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$

Strongly convex smooth objective functions

- Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
- New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants

Non-strongly convex smooth objective functions

- Old: $O(n^{-1/2})$ rate achieved with averaging for $\alpha = 1/2$
- New: $O(\max\{n^{1/2-3\alpha/2},n^{-\alpha/2},n^{\alpha-1}\})$ rate achieved without averaging for $\alpha\in[1/3,1]$

Take-home message

- Use $\alpha = 1/2$ with averaging to be adaptive to strong convexity

Conclusions / Extensions Stochastic approximation for machine learning

- Mixing convex optimization and statistics
 - Non-asymptotic analysis through moment computations
 - Averaging with longer steps is (more) robust and adaptive

Conclusions / Extensions Stochastic approximation for machine learning

Mixing convex optimization and statistics

- Non-asymptotic analysis through moment computations
- Averaging with longer steps is (more) robust and adaptive

• Future/current work - open problems

- High-probability through all moments $\mathbb{E}\|\theta_n-\theta^*\|^{2d}$
- Analysis for logistic regression using self-concordance (Bach, 2010)
- Including a non-differentiable term (Xiao, 2010; Lan, 2010)
- Non-random errors (Schmidt, Le Roux, and Bach, 2011)
- Line search for stochastic gradient
- Non-parametric stochastic approximation
- Online estimation of uncertainty
- Going beyond a single pass through the data

Going beyond a single pass over the data

Stochastic approximation

- Assumes infinite data stream
- Observations are used only once
- Directly minimizes testing cost $\mathbb{E}_z h(\theta, z) = \mathbb{E}_{(x,y)} \ell(y, \theta^\top \Phi(x))$

Going beyond a single pass over the data

Stochastic approximation

- Assumes infinite data stream
- Observations are used only once
- Directly minimizes testing cost $\mathbb{E}_z h(\theta, z) = \mathbb{E}_{(x,y)} \ell(y, \theta^\top \Phi(x))$

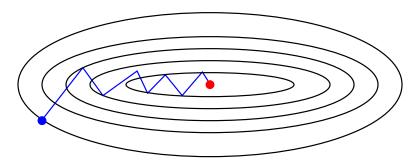
Machine learning practice

- Finite data set (z_1, \ldots, z_n)
- Multiple passes
- Minimizes training cost $\frac{1}{n} \sum_{i=1}^{n} h(\theta, z_i) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
- Need to regularize (e.g., by the ℓ_2 -norm) to avoid overfitting

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ with $f_i(\theta) = \ell \left(y_i, \theta^\top \Phi(x_i) \right) + \mu \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^{n} f_i'(\theta_{t-1})$
 - Linear (e.g., exponential) convergence rate
 - Iteration complexity is linear in n

• Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$

• Batch gradient descent: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$



- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ with $f_i(\theta) = \ell \left(y_i, \theta^\top \Phi(x_i) \right) + \mu \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^{n} f_i'(\theta_{t-1})$
 - Linear (e.g., exponential) convergence rate
 - Iteration complexity is linear in n

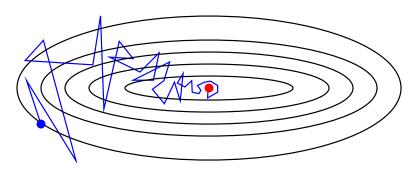
- Stochastic gradient descent: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1,\ldots,n\}$
 - Convergence rate in O(1/t)
 - Iteration complexity is independent of n

• Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ with $f_i(\theta) = \ell \left(y_i, \theta^\top \Phi(x_i) \right) + \mu \Omega(\theta)$

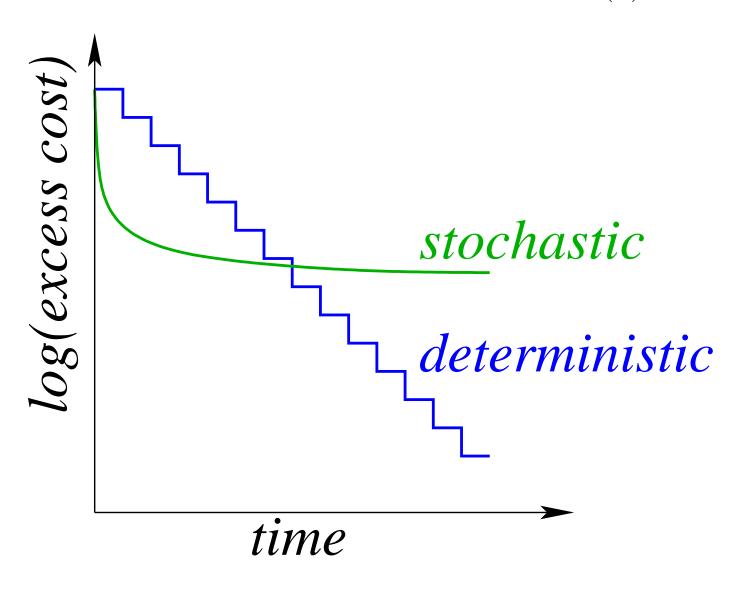
• Batch gradient descent: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$



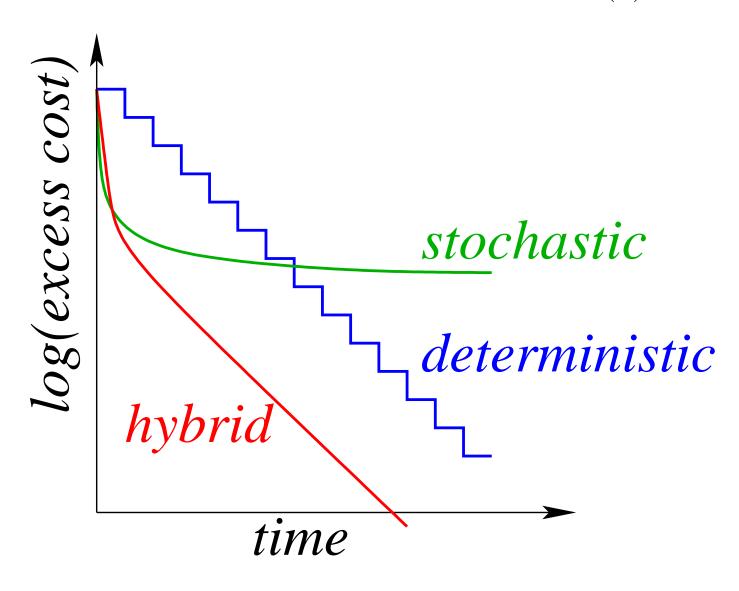
• Stochastic gradient descent: $\theta_t = \theta_{t-1} - \gamma_t f'_{i(t)}(\theta_{t-1})$



• Goal = best of both worlds: linear rate with O(1) iteration cost



• Goal = best of both worlds: linear rate with O(1) iteration cost



Accelerating gradient methods - Related work

Nesterov acceleration

- Nesterov (1983, 2004)
- Better linear rate but still O(n) iteration cost
- Hybrid methods, incremental average gradient, increasing batch size
 - Bertsekas (1997); Blatt et al. (2008); Friedlander and Schmidt (2011)
 - Linear rate, but iterations make full passes through the data.

Accelerating gradient methods - Related work

- Momentum, gradient/iterate averaging, stochastic version of accelerated batch gradient methods
 - Polyak and Juditsky (1992); Tseng (1998); Sunehag et al. (2009);
 Ghadimi and Lan (2010); Xiao (2010)
 - Can improve constants, but still have sublinear O(1/t) rate
- Constant step-size stochastic gradient (SG), accelerated SG
 - Kesten (1958); Delyon and Juditsky (1993); Solodov (1998); Nedic and Bertsekas (2000)
 - Linear convergence, but only up to a fixed tolerance.
- Stochastic methods in the dual
 - Shalev-Shwartz and Zhang (2012)
 - Linear rate but limited choice for the f_i 's

Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

- Iteration:
$$\theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t$$
 with $y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$

Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

$$- \text{ Iteration: } \theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$$

- Stochastic version of incremental average gradient (Blatt et al., 2008)
- Extra memory requirement
 - Supervised machine learning
 - If $f_i(\theta) = \ell_i(y_i, \Phi(x_i)^\top \theta)$, then $f_i'(\theta) = \ell_i'(y_i, \Phi(x_i)^\top \theta) \Phi(x_i)$
 - Only need to store n real numbers

Stochastic average gradient Convergence analysis - I

- Assume each f_i is L-smooth and $\hat{f} = \frac{1}{n} \sum_{i=1}^n f_i$ is μ -strongly convex
- Constant step size $\gamma_t = \frac{1}{2nL}$:

$$\mathbb{E}[\|\theta_t - \theta^*\|^2] \leqslant \left(1 - \frac{\mu}{8Ln}\right)^t \left[3\|\theta_0 - \theta^*\|^2 + \frac{9\sigma^2}{4L^2}\right]$$

- Linear rate with iteration cost independent of n ...
- ... but, same behavior as batch gradient and IAG (cyclic version)

Proof technique

– Designing a quadratic Lyapunov function for a n-th order non-linear stochastic dynamical system

Stochastic average gradient Convergence analysis - II

- Assume each f_i is L-smooth and $\hat{f} = \frac{1}{n} \sum_{i=1}^n f_i$ is μ -strongly convex
- Constant step size $\gamma_t = \frac{1}{2n\mu}$, if $\frac{\mu}{L} \geqslant \frac{8}{n}$

$$\mathbb{E}\left[\hat{f}(\theta_t) - \hat{f}(\theta^*)\right] \leqslant C\left(1 - \frac{1}{8n}\right)^t$$

with
$$C = \left[\frac{16L}{3n} \|\theta_0 - \theta^*\|^2 + \frac{4\sigma^2}{3n\mu} \left(8\log\left(1 + \frac{\mu n}{4L}\right) + 1 \right) \right]$$

- Linear rate with iteration cost independent of n
- Linear convergence rate "independent" of the condition number
- After each pass through the data, constant error reduction

Rate of convergence comparison

- \bullet Assume that L=100, $\mu=.01$, and n=80000
 - Full gradient method has rate

$$\left(1 - \frac{\mu}{L}\right) = 0.9999$$

Accelerated gradient method has rate

$$(1 - \sqrt{\frac{\mu}{L}}) = 0.9900$$

- Running n iterations of SAG for the same cost has rate

$$\left(1 - \frac{1}{8n}\right)^n = 0.8825$$

- Fastest possible first-order method has rate

$$\left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.9608$$

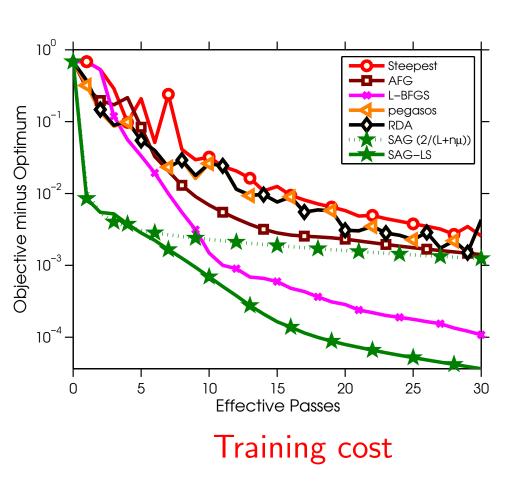
- Beating two lower bounds (with additional assumptions)
 - (1) stochastic gradient and (2) full gradient

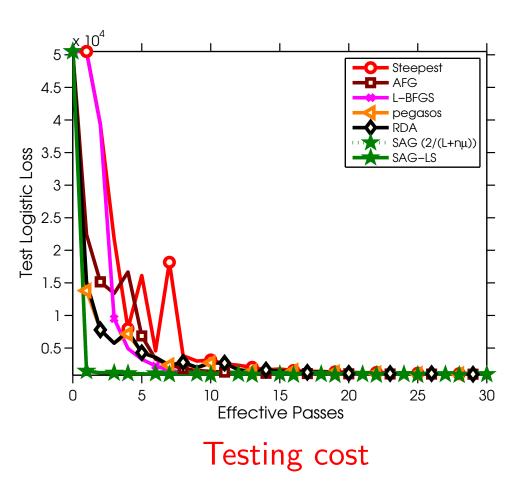
Stochastic average gradient Implementation details and extensions

- The algorithm can use sparsity in the features to reduce the storage and iteration cost
- Grouping functions together can further reduce the memory requirement
- ullet We have obtained good performance when L is not known with a heuristic line-search
- Algorithm allows non-uniform sampling
- Possibility of making proximal, coordinate-wise, and Newton-like variants

Stochastic average gradient Simulation experiments

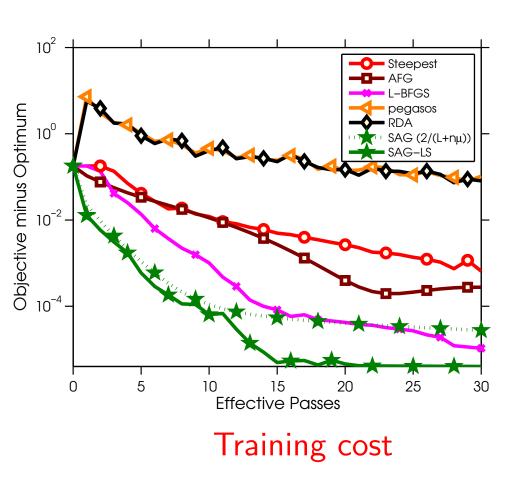
- protein dataset (n = 145751, p = 74)
- Dataset split in two (training/testing)

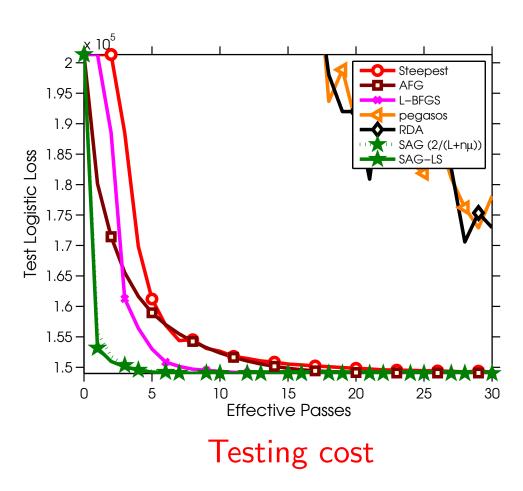




Stochastic average gradient Simulation experiments

- cover type dataset (n = 581012, p = 54)
- Dataset split in two (training/testing)





Conclusions / Extensions Stochastic average gradient

- Going beyond a single pass through the data
 - Keep memory of all gradients for finite training sets
 - Linear convergence rate with O(1) iteration complexity
 - Randomization leads to easier analysis and faster rates
 - Beyond machine learning

Conclusions / Extensions Stochastic average gradient

Going beyond a single pass through the data

- Keep memory of all gradients for finite training sets
- Linear convergence rate with O(1) iteration complexity
- Randomization leads to easier analysis and faster rates
- Beyond machine learning

• Future/current work - open problems

- Including a non-differentiable term
- Line search
- Using second-order information or non-uniform sampling
- Going beyond finite training sets (bound on testing cost)
- Non strongly-convex case

References

- A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds on the oracle complexity of convex optimization, 2010. Tech. report, Arxiv 1009.0571.
- F. Bach. Self-concordant analysis for logistic regression. *Electronic Journal of Statistics*, 4:384–414, 2010. ISSN 1935-7524.
- F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine learning, 2011.
- D. P. Bertsekas. A new class of incremental gradient methods for least squares problems. *SIAM Journal on Optimization*, 7(4):913–926, 1997.
- D. Blatt, A.O. Hero, and H. Gauchman. A convergent incremental gradient method with a constant step size. 18(1):29–51, 2008.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In *Advances in Neural Information Processing Systems (NIPS)*, 20, 2008.
- L. Bottou and Y. Le Cun. On-line learning for very large data sets. *Applied Stochastic Models in Business and Industry*, 21(2):137–151, 2005.
- M. N. Broadie, D. M. Cicek, and A. Zeevi. General bounds and finite-time improvement for stochastic approximation algorithms. Technical report, Columbia University, 2009.
- B. Delyon and A. Juditsky. Accelerated stochastic approximation. *SIAM Journal on Optimization*, 3: 868–881, 1993.

- J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. *Journal of Machine Learning Research*, 10:2899–2934, 2009. ISSN 1532-4435.
- V. Fabian. On asymptotic normality in stochastic approximation. *The Annals of Mathematical Statistics*, 39(4):1327–1332, 1968.
- M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting. *Arxiv* preprint arXiv:1104.2373, 2011.
- S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization. *Optimization Online*, July, 2010.
- E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning*, 69(2):169–192, 2007.
- H. Kesten. Accelerated stochastic approximation. Ann. Math. Stat., 29(1):41–59, 1958.
- O. Yu. Kul'chitskii and A. È. Mozgovoi. An estimate for the rate of convergence of recurrent robust identification algorithms. *Kibernet. i Vychisl. Tekhn.*, 89:36–39, 1991. ISSN 0454-9910.
- H. J. Kushner and G. G. Yin. *Stochastic approximation and recursive algorithms and applications*. Springer-Verlag, second edition, 2003.
- G. Lan. An optimal method for stochastic composite optimization. *Mathematical Programming*, pages 1–33, 2010.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. Technical Report -, HAL, 2012.
- A. Nedic and D. Bertsekas. Convergence rate of incremental subgradient algorithms. *Stochastic Optimization: Algorithms and Applications*, pages 263–304, 2000.

- A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on Optimization*, 19(4):1574–1609, 2009.
- A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. 1983.
- Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.
- Y. Nesterov. *Introductory lectures on convex optimization: a basic course*. Kluwer Academic Publishers, 2004.
- Y. Nesterov and J. P. Vial. Confidence level solutions for stochastic programming. *Automatica*, 44(6): 1559–1568, 2008. ISSN 0005-1098.
- B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. *SIAM Journal on Control and Optimization*, 30(4):838–855, 1992.
- H. Robbins and S. Monro. A stochastic approximation method. *Ann. Math. Statistics*, 22:400–407, 1951. ISSN 0003-4851.
- D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report 781, Cornell University Operations Research and Industrial Engineering, 1988.
- M. Schmidt, N. Le Roux, and F. Bach. Optimization with approximate gradients. Technical report, HAL, 2011.
- S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set size. In *Proc. ICML*, 2008.
- S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. Technical Report 1209.1873, Arxiv, 2012.

- S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In *Proc. ICML*, 2007.
- S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In *Conference on Learning Theory (COLT)*, 2009.
- M.V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. *Computational Optimization and Applications*, 11(1):23–35, 1998.
- P. Sunehag, J. Trumpf, SVN Vishwanathan, and N. Schraudolph. Variable metric stochastic approximation theory. *International Conference on Artificial Intelligence and Statistics*, 2009.
- P. Tseng. An incremental gradient(-projection) method with momentum term and adaptive stepsize rule. SIAM Journal on Optimization, 8(2):506–531, 1998.
- L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. *Journal of Machine Learning Research*, 9:2543–2596, 2010. ISSN 1532-4435.