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Introduction

Sparse optimization:

θ∗ = arg min
θ∈Rd

EP [`(θ; z)] = arg min
θ
L(θ),

such that θ∗ is s-sparse

Loss function ` is convex

P unknown, can sample from it

High dimensional setup: n� d

Want linear time and statistically (near) optimal algorithm
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Example 1 : Computational genomics
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Example 2 : Compressed sensing
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Recover unknown signal θ∗ from noisy measurements

Sparse linear regression:

θ∗ = arg min
θ

EP [(y − θT x)2].



Approach 1: M-estimation (batch optimization)

Draw n i.i.d. samples

Obtain θ̂n

θ̂n = arg min
θ

1

n

n∑
i=1

`(θ; zi ) + λn‖θ‖1

Statistical arguments for consistency, θ̂n → θ∗

Convex optimization to compute θ̂n
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Batch optimization

Convergence depends on properties of
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`(θ; zi ) + λn‖θ‖1

Sample loss not (globally) strongly convex for n < d

Poor smoothness when n� d
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Example: Least-squares loss with random design
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Fast convergence of gradient descent

We prove (global) linear convergence of gradient descent based on
sparse condition number of 1

n

∑n
i=1 `(θ; zi )
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Computational complexity of batch optimization

Convergence rate captures number of iterations

Each iteration has complexity O(nd)

One pass over data at each iteration

But we wanted linear time algorithm!
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Approach 2: Stochastic optimization

Directly minimize EP [`(θ; z)]

Use samples to obtain gradient estimates

θt+1 = θt − αt∇`(θt ; zt)

Stop after one pass over data

Statistically, often competitive with batch (that is,
‖θn − θ∗‖2 ≈ ‖θ̂n − θ∗‖2)

Precise rates depend on the problem structure
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Structural assumptions

θ∗ is s-sparse

Make additional structural assumptions on L(θ) = EP [`(θ; z)]

L is Locally Lipschitz
L is Locally strongly convex (LSC)



Locally Lipschitz functions

Definition (Locally Lipschitz function)

L is locally G -Lipschitz in `1-norm, meaning that

|L(θ)− L(θ̃)| ≤ G‖θ − θ̃‖1,

if ‖θ − θ∗‖1 ≤ R and ‖θ̃ − θ∗‖1 ≤ R.

Globally Lipschitz Locally Lipschitz



Locally strongly convex functions

Definition (Locally strongly convex function)

There is a constant γ > 0 such that

L(θ̃) ≥ L(θ) + 〈∇L(θ), θ̃ − θ〉+
γ

2
‖θ − θ̃‖2

2,

if ‖θ‖1 ≤ R and ‖θ̃‖1 ≤ R

Locally Strongly convex Globally strongly convex



Stochastic optimization and structural conditions

Method Sparsity LSC Convergence

SGD O
(
d
T

)
Mirror descent/RDA/FOBOS/COMID O

(√
s2log d

T

)
Our Method O

(
s log d
T

)



Some previous methods

All methods based on observing g t such that E[g t ] ∈ ∂L(θt)

Stochastic gradient descent: based on `2 distances, exploits LSC

θt+1 = arg min
θ
〈g t , θ〉+

1

2αt
‖θ − θt‖2

2

Stochastic dual averaging: based on `p distances, exploits
sparstity when p ≈ 1

θt+1 = arg min
θ

t∑
s=1

〈g s , θ〉+
1

2αt
‖θ‖2

p

Need to reconcile the geometries for exploiting both structures
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RADAR algorithm: outline

Based on Juditsky and Nesterov (2011)

Recall the minimization problem: minθ E[`(θ; z)]

Algorithm proceeds over K epochs

At epoch i , solve the regularized problem:

min
θ∈Ωi

E[`(θ; z)] + λi‖θ‖1

where Ωi = θ ∈ Rd : ‖θ − yi‖2
p ≤ R2

i



RADAR algorithm: First epoch

Require: R1 such that ‖θ∗‖1 ≤ R1

Perform stochastic dual averaging with p = 2log d
2log d−1 ≈ 1

Initialize θ1 = 0, y1 = 0

Observe g t where E[g t ] ∈ ∂L(θt) and
νt ∈ ∂‖θt‖1

Update

µt+1 = µt + g t + λ1ν
t

θt+1 = arg min
‖θ‖p≤R1

〈θ, µt+1〉+
1

2αt
‖θ‖2

p

θ∗

y1 = 0

R1
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Initializing next epoch

Update y2 = θ̄T
Update R2

2 = R2
1/2

Update λ2 = λ1/
√

2

Initialize θ1 = y2 for next epoch

Now use updates

µt+1 = µt + g t + λ2ν
t

θt+1 = arg min
‖θ−y2‖p≤R2

〈θ, µt+1〉+
1

2αt
‖θ − y2‖2

p

Each step still O(d)

θ∗y2

R2
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Convergence rate for exact sparsity

Theorem

Suppose the expected loss is G-Lipschitz and γ-strongly convex. Suppose
θ∗ has at most s non-zero entries. With probability at least
1− 6 exp(−δlog d/12)

‖θ̄T − θ∗‖2
2 ≤ c

G 2 + σ2(1 + δ)

γ2

s log d

T
.

Logarithmic scaling in d

Error decays as 1/T

Results extend to approximately sparse problems

Similar result for the method of Juditsky and Nesterov (2011)
applied with a fixed λ
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Optimality of results

Error of O
(
s log d
γ2T

)
after T iterations

Stochastic gradients computed with one sample

T iterations ≡ T samples

Information-theoretic limit: Error Ω
(
s log d
γ2T

)
after observing T

samples for any possible method

We obtain the best possible error in linear time
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Simulation results

Performed simulations for sparse linear regression

Compared to classical benchmarks: RDA, SGD

Evaluated several versions: RADAR, EDA, RADAR-Const

Results averaged over 5 random trials



Simulation results
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Intuition

Convergence rate of 1/
√
t within each epoch

Re-centering and shrinking of set boosts convergence speed at each
epoch

Error halved after each epoch

Epoch lengths double— initial epochs negligible

Fast convergence at later epochs due to small set

High regularization initially, little at the end leads to (aprpox.)
sparsity all along



Conclusions

Stochastic optimization algorithm for sparse, high-dimensional
problems

Simultaneously exploits sparsity and strong convexity of the problem

Optimal rate of convergence

Updates computed in closed form for common problems

Extends to group sparsity, low-rank etc.

Similar extensions for mirror descent, accelerated methods (Hazan
and Kale (2011), Ghadimi and Lan (2012))

Possible extensions to distributed settings



More details can be found in

Fast global convergence of gradient methods for high dimensional
statistical recovery, A., Negahban and Wainwright,
http://arxiv.org/abs/1104.4824.

Stochastic optimization and sparse statistical recovery: An optimal
algorithm for high dimensions, A., Negahban and Wainwright,
http://arxiv.org/abs/1207.4421.
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