# Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions

Alekh Agarwal Microsoft Research

Joint work with Sahand Negahban and Martin Wainwright

Workshop on Optimization and Statistical Learning 2013, Les Houches, France

#### Introduction

• Sparse optimization:

$$heta^* = \arg\min_{ heta \in \mathbb{R}^d} \mathbb{E}_{P}[\ell( heta;z)] = \arg\min_{ heta} ar{\mathcal{L}}( heta),$$
 such that  $heta^*$  is s-sparse

#### Introduction

Sparse optimization:

$$heta^* = rg\min_{ heta \in \mathbb{R}^d} \mathbb{E}_P[\ell( heta;z)] = rg\min_{ heta} ar{\mathcal{L}}( heta),$$

- such that  $\theta^*$  is s-sparse
- Loss function  $\ell$  is convex
- P unknown, can sample from it
- High dimensional setup:  $n \ll d$

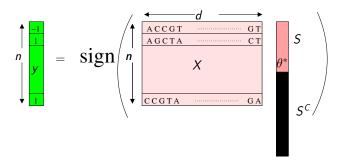
#### Introduction

Sparse optimization:

$$egin{aligned} heta^* &= \arg\min_{ heta \in \mathbb{R}^d} \mathbb{E}_P[\ell( heta; z)] = \arg\min_{ heta} ar{\mathcal{L}}( heta), \ & ext{such that } heta^* ext{ is s-sparse} \end{aligned}$$

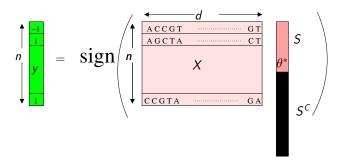
- Loss function  $\ell$  is convex
- P unknown, can sample from it
- High dimensional setup:  $n \ll d$
- Want linear time and statistically (near) optimal algorithm

#### Example 1 : Computational genomics



- Predict disease susceptibility from genome
- ullet Depends on very few genes,  $\theta^*$  is sparse

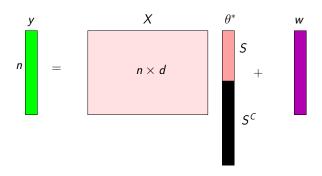
## Example 1 : Computational genomics



- Predict disease susceptibility from genome
- Depends on very few genes,  $\theta^*$  is sparse
- Sparse logistic regression:

$$heta^* = \arg\min_{ heta} \mathbb{E}_P[\log(1 + \exp(-y heta^T x))].$$

## Example 2: Compressed sensing



- ullet Recover unknown signal  $\theta^*$  from noisy measurements
- Sparse linear regression:

$$\theta^* = \arg\min_{\theta} \mathbb{E}_P[(y - \theta^T x)^2].$$

# Approach 1: *M*-estimation (batch optimization)

- Draw *n* i.i.d. samples
- Obtain  $\widehat{\theta}_n$

$$\widehat{\theta}_n = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n \ell(\theta; z_i) + \lambda_n \|\theta\|_1$$

# Approach 1: *M*-estimation (batch optimization)

- Draw *n* i.i.d. samples
- Obtain  $\widehat{\theta}_n$

$$\widehat{\theta}_n = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n \ell(\theta; z_i) + \lambda_n \|\theta\|_1$$

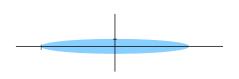
- Statistical arguments for consistency,  $\widehat{\theta}_{\mathbf{n}} \to \theta^*$
- Convex optimization to compute  $\widehat{\theta}_n$

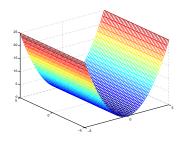
#### Batch optimization

• Convergence depends on properties of

$$\frac{1}{n}\sum_{i=1}^n \ell(\theta;z_i) + \frac{\lambda_n}{\|\theta\|_1}$$

- Sample loss not (globally) strongly convex for n < d
- Poor smoothness when  $n \ll d$



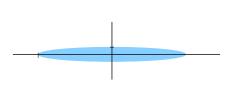


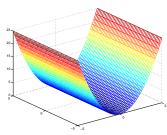
#### Batch optimization

Convergence depends on properties of

$$\frac{1}{n}\sum_{i=1}^n \ell(\theta;z_i) + \frac{\lambda_n}{\|\theta\|_1}$$

- Sample loss not (globally) strongly convex for n < d
- Poor smoothness when  $n \ll d$

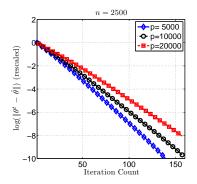




- But, smooth and strongly convex in sparse directions
  - Example: Least-squares loss with random design

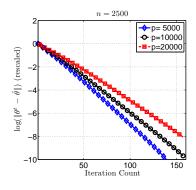
## Fast convergence of gradient descent

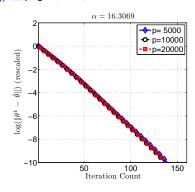
• We prove (global) linear convergence of gradient descent based on sparse condition number of  $\frac{1}{n}\sum_{i=1}^{n}\ell(\theta;z_i)$ 



## Fast convergence of gradient descent

• We prove (global) linear convergence of gradient descent based on sparse condition number of  $\frac{1}{n}\sum_{i=1}^{n} \ell(\theta; z_i)$ 





## Computational complexity of batch optimization

- Convergence rate captures number of iterations
- Each iteration has complexity  $\mathcal{O}(nd)$
- One pass over data at each iteration

## Computational complexity of batch optimization

- Convergence rate captures number of iterations
- Each iteration has complexity  $\mathcal{O}(nd)$
- One pass over data at each iteration
- But we wanted linear time algorithm!

## Approach 2: Stochastic optimization

- Directly minimize  $\mathbb{E}_P[\ell(\theta;z)]$
- Use samples to obtain gradient estimates

$$\theta^{t+1} = \theta^t - \alpha_t \nabla \ell(\theta^t; z_t)$$

## Approach 2: Stochastic optimization

- Directly minimize  $\mathbb{E}_P[\ell(\theta;z)]$
- Use samples to obtain gradient estimates

$$\theta^{t+1} = \theta^t - \alpha_t \nabla \ell(\theta^t; z_t)$$

- Stop after one pass over data
- Statistically, often competitive with batch (that is,  $\|\theta^n \theta^*\|^2 \approx \|\widehat{\theta}_n \theta^*\|^2$ )
- Precise rates depend on the problem structure

## Structural assumptions

- $\theta^*$  is **s**-sparse
- ullet Make additional structural assumptions on  $ar{\mathcal{L}}( heta) = \mathbb{E}_P[\ell( heta;z)]$ 
  - ullet is Locally Lipschitz
  - $\bar{\mathcal{L}}$  is Locally strongly convex (LSC)

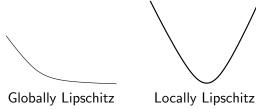
#### Locally Lipschitz functions

#### Definition (Locally Lipschitz function)

 $\overline{\mathcal{L}}$  is locally G-Lipschitz in  $\ell_1$ -norm, meaning that

$$|\bar{\mathcal{L}}(\theta) - \bar{\mathcal{L}}(\tilde{\theta})| \leq G\|\theta - \tilde{\theta}\|_1,$$

if  $\|\theta - \theta^*\|_1 \le R$  and  $\|\tilde{\theta} - \theta^*\|_1 \le R$ .



#### Locally strongly convex functions

#### Definition (Locally strongly convex function)

There is a constant  $\gamma > 0$  such that

$$\bar{\mathcal{L}}(\tilde{\theta}) \geq \bar{\mathcal{L}}(\theta) + \langle \nabla \bar{\mathcal{L}}(\theta), \tilde{\theta} - \theta \rangle + \frac{\gamma}{2} \|\theta - \tilde{\theta}\|_2^2,$$

if  $\|\theta\|_1 \leq R$  and  $\|\tilde{\theta}\|_1 \leq R$ 



Locally Strongly convex



Globally strongly convex

#### Stochastic optimization and structural conditions

| Method                         | Sparsity | LSC | Convergence                                               |
|--------------------------------|----------|-----|-----------------------------------------------------------|
| SGD                            | ×        | 1   | $\mathcal{O}\left(\frac{d}{T}\right)$                     |
| Mirror descent/RDA/FOBOS/COMID | 1        | ×   | $\mathcal{O}\left(\sqrt{\frac{s^2\log d}{T}}\right)$      |
| Our Method                     | 1        | 1   | $\mathcal{O}\left(\frac{\operatorname{slog} d}{T}\right)$ |

#### Some previous methods

- All methods based on observing  $g^t$  such that  $\mathbb{E}[g^t] \in \partial \bar{\mathcal{L}}(\theta^t)$
- Stochastic gradient descent: based on  $\ell_2$  distances, exploits LSC

$$\theta^{t+1} = \arg\min_{\theta} \langle g^t, \theta \rangle + \frac{1}{2\alpha_t} \|\theta - \theta^t\|_2^2$$

#### Some previous methods

- All methods based on observing  $g^t$  such that  $\mathbb{E}[g^t] \in \partial \bar{\mathcal{L}}(\theta^t)$
- Stochastic gradient descent: based on  $\ell_2$  distances, exploits LSC

$$\theta^{t+1} = \arg\min_{\theta} \langle g^t, \theta \rangle + \frac{1}{2\alpha_t} \|\theta - \theta^t\|_2^2$$

• Stochastic dual averaging: based on  $\ell_p$  distances, exploits sparstity when  $p\approx 1$ 

$$\theta^{t+1} = \arg\min_{\theta} \sum_{s=1}^{t} \langle g^s, \theta \rangle + \frac{1}{2\alpha_t} \|\theta\|_{p}^2$$

Need to reconcile the geometries for exploiting both structures

#### RADAR algorithm: outline

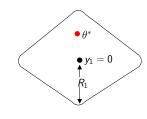
- Based on Juditsky and Nesterov (2011)
- Recall the minimization problem:  $\min_{\theta} \mathbb{E}[\ell(\theta; z)]$
- Algorithm proceeds over K epochs
- At epoch *i*, solve the regularized problem:

$$\min_{\theta \in \Omega_i} \mathbb{E}[\ell(\theta; z)] + \frac{\lambda_i}{\|\theta\|_1}$$

• where  $\Omega_i = \theta \in \mathbb{R}^d$  :  $\|\theta - y_i\|_p^2 \le R_i^2$ 

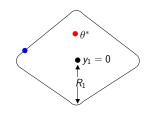
- Require:  $R_1$  such that  $\|\theta^*\|_1 \leq R_1$
- Perform stochastic dual averaging with  $p = rac{2\log d}{2\log d 1} pprox 1$ 
  - Initialize  $\theta^1 = 0$ ,  $y_1 = 0$
  - Observe  $g^t$  where  $\mathbb{E}[g^t] \in \partial \bar{\mathcal{L}}(\theta^t)$  and  $\nu^t \in \partial \|\theta^t\|_1$
  - Update

$$\begin{array}{lcl} \boldsymbol{\mu}^{t+1} & = & \boldsymbol{\mu}^t + \boldsymbol{g}^t + \frac{\mathbf{\lambda_1}}{\mathbf{\nu}^t} \\ \boldsymbol{\theta}^{t+1} & = & \arg\min_{\|\boldsymbol{\theta}\|_{\boldsymbol{\rho}} \leq R_1} \langle \boldsymbol{\theta}, \boldsymbol{\mu}^{t+1} \rangle + \frac{1}{2\alpha_t} \|\boldsymbol{\theta}\|_{\boldsymbol{\rho}}^2 \end{array}$$



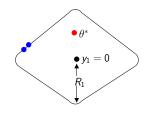
- Require:  $R_1$  such that  $\|\theta^*\|_1 \leq R_1$
- Perform stochastic dual averaging with  $p = rac{2\log d}{2\log d 1} pprox 1$ 
  - Initialize  $\theta^1 = 0$ ,  $y_1 = 0$
  - Observe  $g^t$  where  $\mathbb{E}[g^t] \in \partial \bar{\mathcal{L}}(\theta^t)$  and  $\nu^t \in \partial \|\theta^t\|_1$
  - Update

$$\begin{array}{lcl} \boldsymbol{\mu}^{t+1} & = & \boldsymbol{\mu}^t + \boldsymbol{g}^t + \frac{\mathbf{\lambda_1}}{\mathbf{\nu}^t} \\ \boldsymbol{\theta}^{t+1} & = & \arg\min_{\|\boldsymbol{\theta}\|_p \leq R_1} \langle \boldsymbol{\theta}, \boldsymbol{\mu}^{t+1} \rangle + \frac{1}{2\alpha_t} \|\boldsymbol{\theta}\|_p^2 \end{array}$$



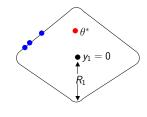
- Require:  $R_1$  such that  $\|\theta^*\|_1 \leq R_1$
- Perform stochastic dual averaging with  $p = rac{2\log d}{2\log d 1} pprox 1$ 
  - Initialize  $\theta^1 = 0$ ,  $y_1 = 0$
  - Observe  $g^t$  where  $\mathbb{E}[g^t] \in \partial \bar{\mathcal{L}}(\theta^t)$  and  $\nu^t \in \partial \|\theta^t\|_1$
  - Update

$$\begin{array}{lcl} \boldsymbol{\mu}^{t+1} & = & \boldsymbol{\mu}^t + \boldsymbol{g}^t + \frac{\mathbf{\lambda_1}}{\mathbf{\nu}^t} \\ \boldsymbol{\theta}^{t+1} & = & \arg\min_{\|\boldsymbol{\theta}\|_p \leq R_1} \langle \boldsymbol{\theta}, \boldsymbol{\mu}^{t+1} \rangle + \frac{1}{2\alpha_t} \|\boldsymbol{\theta}\|_p^2 \end{array}$$



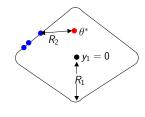
- Require:  $R_1$  such that  $\|\theta^*\|_1 \leq R_1$
- Perform stochastic dual averaging with  $p = rac{2\log d}{2\log d 1} pprox 1$ 
  - Initialize  $\theta^1 = 0$ ,  $y_1 = 0$
  - Observe  $g^t$  where  $\mathbb{E}[g^t] \in \partial \bar{\mathcal{L}}(\theta^t)$  and  $\nu^t \in \partial \|\theta^t\|_1$
  - Update

$$\begin{array}{lcl} \boldsymbol{\mu}^{t+1} & = & \boldsymbol{\mu}^t + \boldsymbol{g}^t + \frac{\mathbf{\lambda_1}}{\mathbf{\nu}^t} \\ \boldsymbol{\theta}^{t+1} & = & \arg\min_{\|\boldsymbol{\theta}\|_p \leq R_1} \langle \boldsymbol{\theta}, \boldsymbol{\mu}^{t+1} \rangle + \frac{1}{2\alpha_t} \|\boldsymbol{\theta}\|_p^2 \end{array}$$



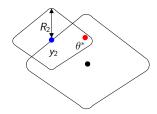
- Require:  $R_1$  such that  $\|\theta^*\|_1 \leq R_1$
- Perform stochastic dual averaging with  $p = \frac{2\log d}{2\log d 1} pprox 1$ 
  - Initialize  $\theta^1 = 0$ ,  $y_1 = 0$
  - Observe  $g^t$  where  $\mathbb{E}[g^t] \in \partial \bar{\mathcal{L}}(\theta^t)$  and  $\nu^t \in \partial \|\theta^t\|_1$
  - Update

$$\begin{array}{lcl} \boldsymbol{\mu}^{t+1} & = & \boldsymbol{\mu}^t + \boldsymbol{g}^t + \frac{\mathbf{\lambda_1}}{\mathbf{\nu}^t} \\ \boldsymbol{\theta}^{t+1} & = & \arg\min_{\|\boldsymbol{\theta}\|_{\boldsymbol{p}} \leq R_1} \langle \boldsymbol{\theta}, \boldsymbol{\mu}^{t+1} \rangle + \frac{1}{2\alpha_t} \|\boldsymbol{\theta}\|_{\boldsymbol{p}}^2 \end{array}$$



#### Initializing next epoch

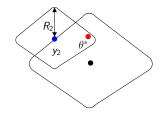
- Update  $y_2 = \bar{\theta}_T$
- Update  $R_2^2 = R_1^2/2$
- Update  $\lambda_2 = \lambda_1/\sqrt{2}$
- Initialize  $\theta^1 = y_2$  for next epoch



#### Initializing next epoch

- Update  $y_2 = \bar{\theta}_T$
- Update  $R_2^2 = R_1^2/2$
- Update  $\lambda_2 = \lambda_1/\sqrt{2}$
- Initialize  $\theta^1 = y_2$  for next epoch
- Now use updates

$$\begin{array}{lcl} \boldsymbol{\mu}^{t+1} & = & \boldsymbol{\mu}^t + \boldsymbol{g}^t + \frac{\lambda_2}{2} \boldsymbol{\nu}^t \\ \boldsymbol{\theta}^{t+1} & = & \arg \min_{\|\boldsymbol{\theta} - \mathbf{y_2}\|_{\rho} \leq R_2} \langle \boldsymbol{\theta}, \boldsymbol{\mu}^{t+1} \rangle + \frac{1}{2\alpha_t} \|\boldsymbol{\theta} - \mathbf{y_2}\|_{\rho}^2 \end{array}$$



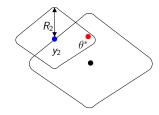
#### Initializing next epoch

- Update  $y_2 = \bar{\theta}_T$
- Update  $R_2^2 = R_1^2/2$
- Update  $\lambda_2 = \lambda_1/\sqrt{2}$
- Initialize  $\theta^1 = y_2$  for next epoch
- Now use updates

$$\mu^{t+1} = \mu^t + g^t + \frac{\lambda_2}{2} \nu^t$$

$$\theta^{t+1} = \arg \min_{\|\theta - y_2\|_p \le R_2} \langle \theta, \mu^{t+1} \rangle + \frac{1}{2\alpha_t} \|\theta - y_2\|_p^2$$

Each step still  $\mathcal{O}(d)$ 



## Convergence rate for exact sparsity

#### Theorem

Suppose the expected loss is G-Lipschitz and  $\gamma$ -strongly convex. Suppose  $\theta^*$  has at most s non-zero entries. With probability at least  $1-6\exp(-\delta\log d/12)$ 

$$\|\bar{\theta}_T - \theta^*\|_2^2 \le c \frac{G^2 + \sigma^2(1+\delta)}{\gamma^2} \frac{\operatorname{slog} d}{T}.$$

- Logarithmic scaling in d
- Error decays as 1/T
- Results extend to approximately sparse problems

## Convergence rate for exact sparsity

#### Theorem

Suppose the expected loss is G-Lipschitz and  $\gamma$ -strongly convex. Suppose  $\theta^*$  has at most s non-zero entries. With probability at least  $1-6\exp(-\delta\log d/12)$ 

$$\|\bar{\theta}_T - \theta^*\|_2^2 \le c \frac{G^2 + \sigma^2(1+\delta)}{\gamma^2} \frac{\operatorname{slog} d}{T}.$$

- Logarithmic scaling in d
- Error decays as 1/T
- Results extend to approximately sparse problems
- $\bullet$  Similar result for the method of Juditsky and Nesterov (2011) applied with a fixed  $\lambda$

#### Optimality of results

- Error of  $\mathcal{O}\left(\frac{\log d}{\gamma^2 T}\right)$  after T iterations
- Stochastic gradients computed with one sample
- ullet T iterations  $\equiv$  T samples
- Information-theoretic limit: Error  $\Omega\left(\frac{\log d}{\gamma^2 T}\right)$  after observing T samples for any possible method

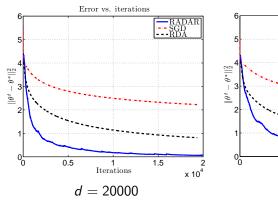
#### Optimality of results

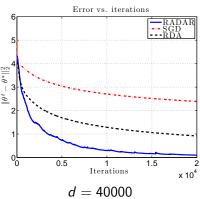
- Error of  $\mathcal{O}\left(\frac{\operatorname{slog} d}{\gamma^2 T}\right)$  after T iterations
- Stochastic gradients computed with one sample
- T iterations  $\equiv T$  samples
- Information-theoretic limit: Error  $\Omega\left(\frac{\log d}{\gamma^2 T}\right)$  after observing T samples for any possible method
- We obtain the best possible error in linear time

#### Simulation results

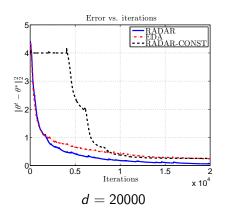
- Performed simulations for sparse linear regression
- Compared to classical benchmarks: RDA, SGD
- Evaluated several versions: RADAR, EDA, RADAR-Const
- Results averaged over 5 random trials

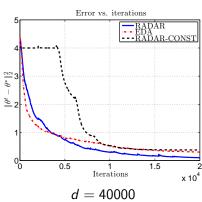
#### Simulation results





#### Simulation results





#### Intuition

- Convergence rate of  $1/\sqrt{t}$  within each epoch
- Re-centering and shrinking of set boosts convergence speed at each epoch
- Error halved after each epoch
- Epoch lengths double— initial epochs negligible
- Fast convergence at later epochs due to small set
- High regularization initially, little at the end leads to (aprpox.) sparsity all along

#### Conclusions

- Stochastic optimization algorithm for sparse, high-dimensional problems
- Simultaneously exploits sparsity and strong convexity of the problem
- Optimal rate of convergence
- Updates computed in closed form for common problems
- Extends to group sparsity, low-rank etc.
- Similar extensions for mirror descent, accelerated methods (Hazan and Kale (2011), Ghadimi and Lan (2012))
- Possible extensions to distributed settings

#### More details can be found in

- Fast global convergence of gradient methods for high dimensional statistical recovery, A., Negahban and Wainwright, http://arxiv.org/abs/1104.4824.
- Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions, A., Negahban and Wainwright, http://arxiv.org/abs/1207.4421.

Thank You