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Abstract to the difficulty of the node learning problem. The result is
a fully-automatic cascade learning algorithm which elimi-

Face detection methods based on a cascade architecturenates much of the ambiguity in building high-quality nodes.
have demonstrated fast and robust performance. Cascade Second, we introduce the concept of perturbation bias
learning is aided by the modularity of the architecture in which leverages statistical differences between the target
which nodes are chained together to form a cascade. In thiSand non-target classes in a detection problem to obtain
paper we present two new cascade learning results whichincreased performance. We derive necessary and suffi-
address the decoupled nature of the cascade learning taskcient conditions for the success of the perturbation method.
FirSt, we introduce a cascade indifference curve framework We demonstrate experimenta”y that training a face detec-
which connects the learning objectives for a node to the tion cascade with symmetric perturbations significantly im-
overall cascade performance. We derive a new cost funC-proves the detection performance_
tion for node learning which yields fully-automatic stop-
ping conditions and improved detection performance. Sec-
ond, we introduce the concept of perturbation bias which 2. Related Work
leverages the statistical differences between target and non-
target classes in a detection problem to obtain improved Robust and fast object detection is a difficult problem in
performance and robustness. We derive necessary and sufcomputer vision. One popular example is human face de-

ficient conditions for the success of the method and presentection. A recent survey can be found in [19]. Our approach
experimental results. is based on the cascade framework of [14], which uses a

feature selection method based on AdaBoost to form en-
; sembles of features in each node. Recently, several alter-
1. Introduction native node training methods have been proposed. Exam-

Cascade classifiers have shown great success in face ddles include Asymmetric AdaBoost [15], Float Boost [7],
tection by addressing the rare event nature of the detectiorKullback-Leibler Boost [9], Gentle Boost [8], and boost-
task. One strength of the cascade architecture is its moduing chain [18]. A computationally efficient node training
larity, which is achieved by decomposing the classifier into algorithm based on forward feature selection is described
a chain of nodes. In comparison to training a monolithic in [17].
classifier, the training task for each node is more tractable. In addition to the cascade framework, other methods for
The price of this decomposition, however, is the loss of a di- computationally efficient classification have been proposed.
rect relationship between the decisions taken at each stagdhe neural network-based detector of Rowley et. al. [11] in-
and the overall performance of the cascade. What is thecorporated a manually-designed two node cascade. Keren
relationship between node performance and cascade perforet. al. [5] is based on the sequential application of An-
mance? How do the statistical properties of the target clasdifaces to the input image. Other cascade structures have
affect our ability to learn good classifier nodes? been constructed for SVM classifiers [10, 4] and likelihood
In this paper we present two new cascade learning re-ratio tests [12].
sults which address these important questions. First, we in- In other related work, Carmichael and Hebert propose a
troduce a cascade indifference curve framework to reasorhierarchical strategy for detecting wiry objects at different
about the impact of individual node performance on overall orientations and scales [3]. Baker and Nayar described a
cascade performance, and we propose a novel cost functiopattern rejection theory for multi-class recognition in [2].
for relating them. We show that this cost function yields Leung et. al. use local feature detectors to avoid the brute
an optimal learning goal for each node (with respect to the force search over all image windows [6]. Amit et. al. ex-
overall cascade performance) and adjusts the goal accordinglore techniques for learning tree classifiers in [1].



3. Optimized Cascade Learning

By decomposing a monolithic face detector into a cascad
of nodes, the cascade architecture achieves computation
efficiency and a decoupled learning problem. With this de-
coupling, however, comes the danger that decisions taker.
in isolation for individual nodes will not be optimal with (@) (b) (c) (d)
respect to the overall performance of the cascade. positive . negative . reject

There are two important properties of the cascade archi-
tecture. First, there are many different ways to achieve the

same overall detection rateand false positive ratg. For Figure 1: Example of cascade training. (a) The distribu-

example, if we assume that cascade nodes make indepen,, of the target class (light gray) and the non-target class
dent errors, then a chain of two_nodes, each of which haV'ng(dark gray/blue) in a 2-D feature space. (b) A cascade that
h = 0.999 and f = 0.7, can achieve the same performance , pieves perfect classification. (c) The result of setting the

as a single node of = 0.998 and f = 0.49. Second, {150 nositive rate goal to 50%. (d) The result of setting a
while false rejects are generally nonrecoverable, false pos"higher false positive rate goal of 80%. As a consequence of
tives from early nodes can be rejected at later nodes. Thu he first two nodes, the third node is problematic.

it is preferable to postpone uncertain rejection. Ideally, the
learning goal for a node should reflect these two basic prop-
erties of the cascade architecture. gions.

In [14] it is suggested that each node be designed to  These examples suggest that the learning objectives for
achieve a fixed performance godl, f). Assuming that  each node should be adjustable: while aggressive objectives
the learner is successful and that the nodes make indepenare most appropriate for early nodes in the cascade, later
dent errors, a cascade of lengtiwould have performance  nodes should have relaxed objectives. A classical method

(h™, f™). However it is not practical to specify a fixed ob-  for flexible trade off between false positive and false nega-
jective for every node. Due to the increasing difficulty of tjve is the Bayes risk criterion:

the learning problem with the depth of the cascade, it is not

possible to learn a node that meets both/trend f goals. R=n(1-h)+f, (1)

An alternative is to specify for each node and when this

goal is met, select the highest possibléHowever, in prac-  wheren, is the Bayes cost. Several authors have explored

tice, this approach has serious problems, as we show in thehis idea in a cascade setting [15, 16, 18]. However, we will

following illustrative example. show that any single choice gfin this approach will not be
Figure 1(a) shows the 2-D feature space for a classifica-optimal in the cascade setting.

tion problem where the light grey squares belong to the tar-  |n order to address these problems, we introducesa

get class and the dark grey/blue squares belong to the noncade indifference curvamework. We design a new cost

target class. Further, we suppose that our training algorithmfunction such that the minimum cost corresponds to the op-

for each node can learn classifiers with a square boundarytimal node configuration with respect to the overall cascade

S(p,1), wherep is the position of the center of the square performance. Our cost function enables the training algo-

and! is the length of the side, such that the area inside therithm to reject the non-target class as effectively as possible

boundary is rejected. Under this experimental setting, thewhile maintaining a high detection rate. As a result, it can

cascade classifier rejects a square region at each node.  generate the optimal cascade illustrated in figure 1(b).
Figure 1(b) illustrates a cascade of 6 nodes that achieves

perfect classification. However, if we apply a stopping cri- .

terion with a predefined false positive rate= 50%, the 3.1. Cascade Indifference Curve

learner will make substantial false rejections even in the first A classifier node can be configured to achieve a desired

node, as illustrated in figure 1(c). The node learning goal (A, f) target by adjusting the decision parametérsin an

is too ambitious, and in order to achieve it, the detection ensemble classifier, for example,is the threshold in the

rate cannot exceed 79.3%. Choosing a higher fixed falsedecision rule) , a;b;(x) > 6. Each value of corresponds

positive rate goal is not necessarily any better, as shown into a particular operating poirit, ) on a ROC curve. If we

figure 1(d). The problem is that the learner does not adjustassign a cost to each possilfle f), then the optimal con-

its decision to obtain the best false positive rate, but usesfiguration for the node is attained by choosing #iewith

a predefinedf = 80%, which is unnecessarily high. As a the lowest cost.

consequence, the first two nodes leave the third node with A set of (h, f) points with the same cost value is known

a difficult classification task, as evidenced by the zigzag re- as an indifference curve. Specifying a fixgd f) target for




a node is equivalent to specifying an indifference region de- . Node Configration from Different Criterion .

fined by linear inequalities (e.gh > 0.99 and f < 0.5). . b=995 1=.6955

Using the Bayes risk from equation 1 as the cost leads to in-

difference curves that are lines with slobg,, as illustrated

in figure 2. Unfortunately, neither of these criteria applied

to a node can be optimal for the cascade as a whole, as we

will show in the following section. .
Now consider two nodes4 and B, with performance g

(h1, f1) and(he, f2), respectively. Suppose that integers

andm can be found such thab?, f*) = (h%*, f3*). This

equation can be viewed as defining two points on a cascade

indifference curve, which reflects the fact that the perfor-

mance of a chain ofi nodes of typed is equivalent to a

chain of m nodes of typeB. Eliminatingn andm from ‘ ‘ ‘ ‘

the relation yieldsog(h1)/log(f1) = log(hz)/log(f2). In e A

general the equatiolvg(h)/log(f) = t defines a family

of indifference curves indexed iy We will now use this Figure 2: Indifference curves for Cascade Risk (solid) vs.

observation to design a cost function for cascade learning. Node Bayes Risk (dashed) with caogt= 12.
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3.2. ARisk Formulation for Cascade Learning : .
cascade advances to later nodes. It is clear that no single

In order to compare the cost of two node configurations costy, in the conventional Bayes risk framework will pro-
from separate indifference curves, we relate the perfor-yjde the same flexibility.

mance of a single node to the expected hit rate for a cascade |n order to obtain the complete cost function for a node,

which has been designed to achieve a very small overallye augment;, to include the expected computational cost.
false positive rate. For a node with performance, f), let In an ensemble classifier, this is proportional to the number
n be the number of nodes required to meet the false positiveof features that need to be evaluated. This allows us to select
goal, n = log(e)/log(f). This results in an expected hit 3 single operating point on the cascade indifference curves,
rate for the cascade corresponding to the least expensive solution. The expected
computational cost for adding a node &f features to a

H = plos(e)/log(f) — Jog(h)/log(f) ) cascade is given by

We define the basic cost of a node in the cascade with " _
performanceh, f) to be: Co = NIP(E)Himy + (1 = P(EDF ]~ NEy (4)
whereP(F) is the probability that an input pattern is a face
andH;_, andF;_; are the hit rate and false positive rate of
the cascade evaluated through nédel. In the rare event
8aseP(F) << 1, justifying the approximation.

The final cost function can then be written

Cy = —elosh)/los(f) €)

This cost function gives an optimal trade-off between the
false positive and false negative rates, based on the desire
overall false positive rate for the cascade.

Figure 2 illustrates a comparison between our cascade ., [ —e°s(h=9)/loelf) L ANF, | if f € [f1, fo]
risk and the more conventional strategy of applying a stan- N 00 otherwise
dard Bayes risk at each node. Note that although the Bayes (5)

risk criterion with cost) = 12 selects the same point as our where X is a constant to balance accuracy and computa-
method on the ROC curve for node 9, its choice at node 1tional efficiency, and the small constanavoids a constant

is inferior, because the hit rate is unnecessarily low. The indifference curve in the case wheke= 1.> Minimiz-
difference is that our method adjusts the trade off betweening the cost function in equation 5 automatically determines
the false positive and false negative rates dynamically ac-the number of features in the cascade by providing a stop-
cording to the overall performance of the node. It tends ping criterion for the node learning algorithm. We limit the
to penalize false negatives more if a very high hit rate can false positive rate to the randg;, f-] so that the cascade
be achieved with a moderate false positive rate. At earlieris of reasonable length. The following pseudocode gives
nodes in the cascade, if a very high hit rate can be achievedthe node learning algorithnbased on the cascade risk cost
then our algorithm is willing to accept a relatively high false function:

positive rate and proceed to the next node. This favor to-  1note thatc is implicitly a function of N, the number of features, and
ward the hit rate is gradually reduced as the training of the 9, the threshold setting which determirieand f.




1. Set the current best cost,,,;,, to co. SetN = 1. N ROC Curves on Test Set
2. Select thevy;, feature for the ensemble.

3. Apply the ensemble witlv features on the validation
data set to create a ROC curve. Adjust the threshold to 0sl
0, which corresponds to the point on the ROC curve
with the smallest cost’y according to equation 5.

Hit Rate
o
%o
&

4. If Cn < Cpuin, then the best point on this ROC curve
is better than all points on all previous ROC curves.
Therefore setV,.,; = N andC,,,;,, = Cn /

0.751

0.8

—<— AdaBoost: fixed 50% falsepos
—S- AdaBoost: Cascade Risk
—A— FFS: fixed 60% falsepos

—#— FFS: Cascade Risk

5. f ANF;_1 > Cpin OF N = N4z, €nd with an en-
semble of the firsiV,.s; features with thresholéy, _ _, . 07l L L j
Otherwise, letN = N + 1 and go to step 2. ° ° ° *

False positive Rate on Log Scale

At later nodes in the cascadel;_; will approach 0 and
the cost value will not be sensitive f§. In this case, the
algorithm always terminates onéé,, ... features have been
selected. Early nodes, on the other hand, will terminate be-
fore N reachesV,,.., when the additional computational

cost cannot be compensated by a decreas im equa- ;- method tended to add more nodes to achieve a given

tion 3. This agrees with the intuition th‘f"t later nodes in the false positive rate, while preserving the high detection rate.

cascade require more features to obtain good performanceNote that practitioners commonly address this problem by

and this can be achieved without negatively impacting the ,,ing manual tradeoffs in performance for deeper nodes

computational efficiency in the testing phase. in the cascade. This introduces an unwanted level of non-
determinism into the learning process.

Figure 3: Training with cascade risk in comparison to a
fixed false positive rate. Cascade risk yields improved per-
formance using both AdaBoost and FFS.

3.3. Experimental Results for Face Detection

We performed two comparative face detection experiments. 4 Perturbation Bias for Improved
In each experiment, two cascade classifiers were trained on

the same data set, one using the fixed false positive rate tar- ~De€tection

get for each node, the other using the cost function in equa- i , ,
tion 5. We have described a relationship between node perfor-

In the first experiment, both cascades were trained usingMance and cascade performance that leads to an improved
the AdaBoost method and the feature set from [14]. Each cost function for cascade learning. We now examine the sta-
node has a maximum number of 100 features. They Weretistical properties that differentiate detection problems from
trained with 1000 face and 1000 non-face samples, andother pattern recognition problems. In pattern recognition,

the validation set contained another 1000 faces and 4000"€ Often have a multi-class problem in which each class
non-faces. The two cascades were tested on 9000 face and€fines & smooth manifold in some feature space. Further-
9,552,529 non-face samples. The ROC curves for the twoMOTe: We may require recognition to be invariant to cer-

cascades are shown in Figuré 3rhe ROC curve trained tain clgsses of transformations such f’iS rotations. In_ thl_s
using the cost function in equation 5 is consistently better scenario, methods such as Tangent Distance [13], which is

than the approach with the predefined fixed false positive based on calculating th? d'?“"”"? betweeln. twp manifolds,
rate of 0.5. can achieve transformation invariant classification. In con-
In the second experiment, we used the forward featuretrast, patterrdetectionis the problem of discriminating a

selection (FFS) algorithm described in [17]. We obtained target pattern against all others. The non-target “class” fre-

similar improvement, suggesting that our method is appli- quently do_es not lie ona smooth mamfold in the feature”
cable to general cascade learning. In these experiments, wepace. Typically, the existence of such a "none of the above

observed that for the difficult, deeper levels in the cascade,C31€90ry complicates the pattern detection task requiring
not only a likelihood test but also some absolute threshold.

2Each point in the plot corresponds to iteratively removing the last node Normally, we have some prior knowledge of perturba-

from the cascade. . . . . .
3The ROC curve for FFS (without weight setting) in this experiment is tion invariance for the target class, i.e. the perturbat|on does

not representative of the best performance of the method, due to a greatiyOt affect our perception of whether an instance belongs to
reduced training set. the target class or not. For example, suppose we have a de-




tector that accepts faces. Noting that symmetrically flifjped Thus we have:

versions of face images are still valid face images, it should

be the case that the symmetrically flipped versions of anyp(z € F|D(z),D(g(z))) = wp(x € F|D(z))
face input should likewise be accepted. l—a+tka ®)

Now consider a negative example that is incorrectly ac- ¢ ha condition in equation 6 holds, thén> 1 and
cepted by the classifier -false positive What is the proba- '

bility that the symmetrically flipped version of this negative p(z € F|D(x), D(g(x))) > p(z € F|D(x)).  (9)
example will also be accepted as a face? Clearly this quan-

tity depends upon the particular classifier. For example, if This implies that an additional positive test result on the
the classifier is designed to be transformation invariant, thenperturbed input can reduce the risk of false positives.
flipping the input will have no effect. If this is not the case,

however, then it is quitenlikely that the flipped version of 4 1. Necessary and Sufficient Conditions for
an arbitrarily chosen negative example will also be accepted Improvement

as a face. We refer to this statistical difference asptbe
turbation bias In the Appendix, we derive some necessary and sufficient

Let us begin to formalize this insight for some pertur- conditions such that perturbation bias can be exploited.
bationg of an image. Let’™*" be the space of all image Here we describe the implications of these conditions for
windows of widthw and height.. A perturbation is defined ~ constructing a more effective classifier.
as a transformation of the input, such that the perturbed is  TO Proceed, let us redefine the detection everagr)
still a valid input; g : T@*h — Juxh whered represents the decision parameters of the detector.

Let D() represent the event that the detector evaluatesOn® Naive approach to apply equation 9 is to make a new
positively on an input image; letz € F denote that the in- F:Ias§|f|erD (x), D (g(x))’_Wh'Ch requires b(,)th the orig-
putis indeed an image of the target class (in this case faces)iNa! input and its perturbation to pass the original test. We
and letg(x) be the perturbation of the input image Then can show however, this does not always improves the over-

the perturbation bias can be described probabilistically as &l Performance. Lek’ and /* be the new hit rate and false
positive rate respectively. Each new rate is clearly the prod-

p(D(g(2))|D(x), x € F) > p(D(g(z))|D(z),z ¢ F). uD(:J(of thg original rate and the conditional probabilities of
(6) g9(z)):
When is this bias likely to be present? If the classifier
does notinherently enforce perturbation invariance and both 1,/ — ,,(D?(2))|2 € F)) - p(D? (g(x))|D? (2), 2 € F)
z andg(x) are present in the positive training set, then the ¢/ _ p(DY(z)|x ¢ F)) - p(D?(g(z))|D?(z),x ¢ F)

perturbation bias should exist. For face detection, for exam- (10)
ple, existing training algorithms usually do not inherently  since the conditional probabilities are usually less than
enforce symmetric invariance. 1, both the hit rate and the false positive rate will be reduced.

Let us now consider a new joint detector that classi- Therefore, the potential benefit of this approach hinges on
fies an input as a face if and only if both the original and the specific trade-off between the hit rate and the false pos-
the symmetrically flipped images are assigned a positiveitive rate. In some cases, the performance of the new clas-
label by the base classifier. We can get an estimate ofsifier could be worse than before.
the improved detection performance. Suppose originally,  Figure 4 illustrates a case where the straightforward con-
p(z € F|D(z)) = a, then with an additional test on the  struction of a joint classifier is not effective. In this example

perturbed input: we took a trained cascade and make a new detector by du-
plicating each node in the original cascade to obtain two
p(z € F|D(x), D(g9(x))) nodes: one that testsand another that testgz). The in-
p(x ¢ F|D(z), D(g(z))) put is rejected if it fails either test. As the figure illustrates,
this strategy does not result in significant improvement.
p(D(g(z))|D(x),z € F) p(xz € F|D(x)) ko The appendix contains the conditions under which
~ p(D(g(x)|D(z),z ¢ F) p(z ¢ F|D(z)) (1—a) D?(z) - D?(g(x)) improves the performance @i’ (z). We
@) show that in addition to the condition in equation 6, the
where value ofp(D(g(x))|D?(x),x € F) should also be above
b p(D(g(z))|D(z),z € F) a certain threshold. Note that this analysis assumes that the
~ p(D(g(x))|D(x),z ¢ F)’ same thresholib used in botD? (z)-D?(¢(z)) andD? (z).

However, the freedom to adjust the classifier thresh-
“Reflection about the vertical axis of symmetry (i.e. the mirrorimage). old during training would allow us to bias the learner and
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Figure 4. Failure of the naive approach to exploiting sym-
metry, in which a new cascade classifief(z) - D(g(z))
is formed from a previously-traineB?’ ().

achieve improved performance. For example, we can ad-
just the threshold té’, such that the joint detectdp?’ () -

DY (g(x)) has the same hit rate as the previa$(z),
while the false positive rate, under certain reasonable con-
ditions, is reduced. In general, we use a cost function to
identify the threshold that results in best trade off between
the new hit ratéh’ and the false positive ratg.

In particular, for cascade learning, we use the cost func-
tion from equation 5. The training of a node proceeds as
follows: each super node is a sequence of two identical sub
nodes, with one of them testing the input image and the
other testing the symmetric transformation. Training a su-
per node consists of adjustirgg for the two subnodes to
minimize the cost.

4.2. Training with Input Perturbation
A general algorithm for adding input perturbation to an ex-
isting training algorithmA is as follows:

1. Find a perturbation that satisfies the following condi-
tions:

(a) It is known a priori that a perturbed instance of
the target class still belongs to that class.

(b) The training algorithnm4 does not enforce the in-
variance, i.e. it does not guarantee that a per-

3. Use algorithmA to train a classifielD, and adjust the
threshold tof’” such that the final classified? (x) -
DY (g(x)) gives the best performance.

With the cascade framework in particular, such train-
ing is done for each node individually. Note that standard
node training algorithms and feature sets [14] do not en-
force symmetric invariance. We therefore choose symmet-
ric transformation as our perturbation, which is defined as:

g: [vxh — Jwxh guchthat/(z,y) = I(w — z,v).

A detailed cascade training algorithm which incorpo-

rates both the cascade risk criterion and symmetrical input
perturbation can be found in figure 5:

1. Given atraining set witd/» faces and/y non-faces,
include the symmetric transformation of the positive
samples, giving a total a2M faces andMy non-
faces.

2. Use a node training algorithm (such as AdaBoost) to
select a maximum number of featuré§,, ...

3. For everyN < N,,qz, identify the thresholdy for
the ensemble that achieves the minimum c@gtac-
cording to equation 5.

The cost is measured on a validation set. In this step,
an inputx is considered positive if and only if both
and its symmetric transforg(z) pass the test.

4. Identify the firstV,.; features, where

Npest = argmin Cy .
NSN’VY]QI

The final ensemble uses thé,.,; features and the
thresholdy;,, ., .

5. Bootstrap to get a new non-face training data set,
where each new non-face sample and its symmetric
transformation pass all previous nodes.

6. Estimate the false positive rate of the current cascade
in step 5. If the overall cascade false positive rate goal
is not met, go to step 1; otherwise exit.

Figure 5: Cascade training algorithm, incorporating input
perturbation and cascade risk.

4.3. Experimental Results and Discussion

turbed image has the same classification result asWe performed two experiments to assess the benefit of train-

the original image.

ing with input perturbation. In the first experiment, we

2. For every positive training sample add its perturba-
tion g(z) to the training set.

trained a cascade using the algorithm from figure 5 (where
step 2 employed the FFS method from [17]) along with the
datasets described in Section 3.3. We compared the result to
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Figure 6: The ROC curve from figure 3 (triangles), using Figure 7: Evaluation using CMU-MIT test set.

cascade risk only, is significantly improved by incorporat-
ing perturbation bias (circles). 5. Conclusions

We have described two new results for cascade learning
] ) ) ) which address the consequences of decoupling in the cas-
the cascade from figure 3, which was trained with the Cas-5qe architecture. Our first set of results connect the learn-
cade risk criterion alone. The only difference between the ing objectives for a node to the overall performance of
two cascades is the use of input perturbation during train-yhe cascade. We present a new cascade indifference curve
ing; all other factors are the same. Figure 6 illustrates thenich leads to improved cascade performance and fully-
substantial improvement that resulted from using the input 5 tomatic stopping conditions for node learning.

perturbation method. Our second set of results explore the concept of pertur-

In our second experiment, we Compared the performancebation bias for detection problems in which the target class
of our method to a baseline classification result on a stan-(such as faces) is highly structured while the non-target
dard test set. We used the a|gorithm in figure 5 in con- class (aII non—faces) is not. We show that this statistical
junction with AdaBoost to train a frontal face detector. The difference can be exploited through perturbations of the in-
training set at each node consisted of 2000 faces and 200@®ut patterns. We demonstrate that significant improvements
non-faces, all of which were9 x 19 image patches. While  in detection performance can be obtained through perturba-
the face training Samp|es were the same for each node, Wéion bias. We derive necessary and sufficient conditions for
used bootstrapping to obtain new non-face samples. Thethe success of the method.
validation set contained another 2000 faces and 2000 non- In future work, we plan to explore other classes of pertur-
faces. The final 38 node cascade was evaluated on thdations beyond the symmetric transform and investigate the
CMU-MIT test set, following the procedure in [14]. Fig- application of perturbation bias in other problem domains.
ure 7 shows a comparison between the ROC curve produced
by our method and the ROC curve from [14], which serves
as a baseline. This result, in combination with figure 6, es- Acknowledgements
tablishes the benefit of our method. Another important ad-
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