
Automatic Cascade Training with Perturbation Bias

Jie Sun James M. Rehg Aaron Bobick
GVU Center / College of Computing

Georgia Institute of Technology
{sun, rehg, afb}@cc.gatech.edu

Abstract

Face detection methods based on a cascade architecture
have demonstrated fast and robust performance. Cascade
learning is aided by the modularity of the architecture in
which nodes are chained together to form a cascade. In this
paper we present two new cascade learning results which
address the decoupled nature of the cascade learning task.
First, we introduce a cascade indifference curve framework
which connects the learning objectives for a node to the
overall cascade performance. We derive a new cost func-
tion for node learning which yields fully-automatic stop-
ping conditions and improved detection performance. Sec-
ond, we introduce the concept of perturbation bias which
leverages the statistical differences between target and non-
target classes in a detection problem to obtain improved
performance and robustness. We derive necessary and suf-
ficient conditions for the success of the method and present
experimental results.

1. Introduction
Cascade classifiers have shown great success in face de-
tection by addressing the rare event nature of the detection
task. One strength of the cascade architecture is its modu-
larity, which is achieved by decomposing the classifier into
a chain of nodes. In comparison to training a monolithic
classifier, the training task for each node is more tractable.
The price of this decomposition, however, is the loss of a di-
rect relationship between the decisions taken at each stage
and the overall performance of the cascade. What is the
relationship between node performance and cascade perfor-
mance? How do the statistical properties of the target class
affect our ability to learn good classifier nodes?

In this paper we present two new cascade learning re-
sults which address these important questions. First, we in-
troduce a cascade indifference curve framework to reason
about the impact of individual node performance on overall
cascade performance, and we propose a novel cost function
for relating them. We show that this cost function yields
an optimal learning goal for each node (with respect to the
overall cascade performance) and adjusts the goal according

to the difficulty of the node learning problem. The result is
a fully-automatic cascade learning algorithm which elimi-
nates much of the ambiguity in building high-quality nodes.

Second, we introduce the concept of perturbation bias
which leverages statistical differences between the target
and non-target classes in a detection problem to obtain
increased performance. We derive necessary and suffi-
cient conditions for the success of the perturbation method.
We demonstrate experimentally that training a face detec-
tion cascade with symmetric perturbations significantly im-
proves the detection performance.

2. Related Work

Robust and fast object detection is a difficult problem in
computer vision. One popular example is human face de-
tection. A recent survey can be found in [19]. Our approach
is based on the cascade framework of [14], which uses a
feature selection method based on AdaBoost to form en-
sembles of features in each node. Recently, several alter-
native node training methods have been proposed. Exam-
ples include Asymmetric AdaBoost [15], Float Boost [7],
Kullback-Leibler Boost [9], Gentle Boost [8], and boost-
ing chain [18]. A computationally efficient node training
algorithm based on forward feature selection is described
in [17].

In addition to the cascade framework, other methods for
computationally efficient classification have been proposed.
The neural network-based detector of Rowley et. al. [11] in-
corporated a manually-designed two node cascade. Keren
et. al. [5] is based on the sequential application of An-
tifaces to the input image. Other cascade structures have
been constructed for SVM classifiers [10, 4] and likelihood
ratio tests [12].

In other related work, Carmichael and Hebert propose a
hierarchical strategy for detecting wiry objects at different
orientations and scales [3]. Baker and Nayar described a
pattern rejection theory for multi-class recognition in [2].
Leung et. al. use local feature detectors to avoid the brute
force search over all image windows [6]. Amit et. al. ex-
plore techniques for learning tree classifiers in [1].

1

3. Optimized Cascade Learning
By decomposing a monolithic face detector into a cascade
of nodes, the cascade architecture achieves computational
efficiency and a decoupled learning problem. With this de-
coupling, however, comes the danger that decisions taken
in isolation for individual nodes will not be optimal with
respect to the overall performance of the cascade.

There are two important properties of the cascade archi-
tecture. First, there are many different ways to achieve the
same overall detection rateh and false positive ratef . For
example, if we assume that cascade nodes make indepen-
dent errors, then a chain of two nodes, each of which having
h = 0.999 andf = 0.7, can achieve the same performance
as a single node ofh = 0.998 and f = 0.49. Second,
while false rejects are generally nonrecoverable, false posi-
tives from early nodes can be rejected at later nodes. Thus
it is preferable to postpone uncertain rejection. Ideally, the
learning goal for a node should reflect these two basic prop-
erties of the cascade architecture.

In [14] it is suggested that each node be designed to
achieve a fixed performance goal(h, f). Assuming that
the learner is successful and that the nodes make indepen-
dent errors, a cascade of lengthn would have performance
(hn, fn). However it is not practical to specify a fixed ob-
jective for every node. Due to the increasing difficulty of
the learning problem with the depth of the cascade, it is not
possible to learn a node that meets both theh andf goals.
An alternative is to specifyf for each node and when this
goal is met, select the highest possibleh. However, in prac-
tice, this approach has serious problems, as we show in the
following illustrative example.

Figure 1(a) shows the 2-D feature space for a classifica-
tion problem where the light grey squares belong to the tar-
get class and the dark grey/blue squares belong to the non-
target class. Further, we suppose that our training algorithm
for each node can learn classifiers with a square boundary
S(p, l), wherep is the position of the center of the square
andl is the length of the side, such that the area inside the
boundary is rejected. Under this experimental setting, the
cascade classifier rejects a square region at each node.

Figure 1(b) illustrates a cascade of 6 nodes that achieves
perfect classification. However, if we apply a stopping cri-
terion with a predefined false positive ratef = 50%, the
learner will make substantial false rejections even in the first
node, as illustrated in figure 1(c). The node learning goalf
is too ambitious, and in order to achieve it, the detection
rate cannot exceed 79.3%. Choosing a higher fixed false
positive rate goal is not necessarily any better, as shown in
figure 1(d). The problem is that the learner does not adjust
its decision to obtain the best false positive rate, but uses
a predefinedf = 80%, which is unnecessarily high. As a
consequence, the first two nodes leave the third node with
a difficult classification task, as evidenced by the zigzag re-

(a) (b) (c) (d)

Figure 1: Example of cascade training. (a) The distribu-
tion of the target class (light gray) and the non-target class
(dark gray/blue) in a 2-D feature space. (b) A cascade that
achieves perfect classification. (c) The result of setting the
false positive rate goal to 50%. (d) The result of setting a
higher false positive rate goal of 80%. As a consequence of
the first two nodes, the third node is problematic.

gions.
These examples suggest that the learning objectives for

each node should be adjustable: while aggressive objectives
are most appropriate for early nodes in the cascade, later
nodes should have relaxed objectives. A classical method
for flexible trade off between false positive and false nega-
tive is the Bayes risk criterion:

R = η(1− h) + f, (1)

whereη is the Bayes cost. Several authors have explored
this idea in a cascade setting [15, 16, 18]. However, we will
show that any single choice ofη in this approach will not be
optimal in the cascade setting.

In order to address these problems, we introduce acas-
cade indifference curveframework. We design a new cost
function such that the minimum cost corresponds to the op-
timal node configuration with respect to the overall cascade
performance. Our cost function enables the training algo-
rithm to reject the non-target class as effectively as possible
while maintaining a high detection rate. As a result, it can
generate the optimal cascade illustrated in figure 1(b).

3.1. Cascade Indifference Curve
A classifier node can be configured to achieve a desired
(h, f) target by adjusting the decision parameters,θ. In an
ensemble classifier, for example,θ is the threshold in the
decision rule

∑
i αibi(x) > θ. Each value ofθ corresponds

to a particular operating point(h, f) on a ROC curve. If we
assign a cost to each possible(h, f), then the optimal con-
figuration for the node is attained by choosing theθ∗ with
the lowest cost.

A set of(h, f) points with the same cost value is known
as an indifference curve. Specifying a fixed(h, f) target for

2

a node is equivalent to specifying an indifference region de-
fined by linear inequalities (e.g.h > 0.99 andf < 0.5).
Using the Bayes risk from equation 1 as the cost leads to in-
difference curves that are lines with slope1/η, as illustrated
in figure 2. Unfortunately, neither of these criteria applied
to a node can be optimal for the cascade as a whole, as we
will show in the following section.

Now consider two nodes,A andB, with performance
(h1, f1) and(h2, f2), respectively. Suppose that integersn
andm can be found such that(hn

1 , fn
1) = (hm

2 , fm
2). This

equation can be viewed as defining two points on a cascade
indifference curve, which reflects the fact that the perfor-
mance of a chain ofn nodes of typeA is equivalent to a
chain ofm nodes of typeB. Eliminating n andm from
the relation yieldslog(h1)/ log(f1) = log(h2)/ log(f2). In
general the equationlog(h)/ log(f) = t defines a family
of indifference curves indexed byt. We will now use this
observation to design a cost function for cascade learning.

3.2. A Risk Formulation for Cascade Learning
In order to compare the cost of two node configurations
from separate indifference curves, we relate the perfor-
mance of a single node to the expected hit rate for a cascade
which has been designed to achieve a very small overall
false positive rateε. For a node with performance(h, f), let
n be the number of nodes required to meet the false positive
goal, n = log(ε)/ log(f). This results in an expected hit
rate for the cascade

H = hlog(ε)/ log(f) = εlog(h)/ log(f). (2)

We define the basic cost of a node in the cascade with
performance(h, f) to be:

Cb = −εlog(h)/ log(f) (3)

This cost function gives an optimal trade-off between the
false positive and false negative rates, based on the desired
overall false positive rate for the cascade.

Figure 2 illustrates a comparison between our cascade
risk and the more conventional strategy of applying a stan-
dard Bayes risk at each node. Note that although the Bayes
risk criterion with costη = 12 selects the same point as our
method on the ROC curve for node 9, its choice at node 1
is inferior, because the hit rate is unnecessarily low. The
difference is that our method adjusts the trade off between
the false positive and false negative rates dynamically ac-
cording to the overall performance of the node. It tends
to penalize false negatives more if a very high hit rate can
be achieved with a moderate false positive rate. At earlier
nodes in the cascade, if a very high hit rate can be achieved,
then our algorithm is willing to accept a relatively high false
positive rate and proceed to the next node. This favor to-
ward the hit rate is gradually reduced as the training of the

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.94

0.95

0.96

0.97

0.98

0.99

1

h=.9885 f=.5385

h=.9725 f=.5465

h=.995 f=.6955

h=.9725 f=.5465

Node Configration from Different Criterion

False Positive Rate

H
it

R
at

e

Best Node Configuration from:

Node Bayes Risk

Cascade Risk

ROC curve at Node 1

ROC curve at Node 9

Figure 2: Indifference curves for Cascade Risk (solid) vs.
Node Bayes Risk (dashed) with costη = 12.

cascade advances to later nodes. It is clear that no single
costη in the conventional Bayes risk framework will pro-
vide the same flexibility.

In order to obtain the complete cost function for a node,
we augmentCb to include the expected computational cost.
In an ensemble classifier, this is proportional to the number
of features that need to be evaluated. This allows us to select
a single operating point on the cascade indifference curves,
corresponding to the least expensive solution. The expected
computational cost for adding a node ofN features to a
cascade is given by

Cc = N [P (F)Hi−1 + (1− P (F))Fi−1] ≈ NFi−1 (4)

whereP (F) is the probability that an input pattern is a face
andHi−1 andFi−1 are the hit rate and false positive rate of
the cascade evaluated through nodei− 1. In the rare event
caseP (F) << 1, justifying the approximation.

The final cost function can then be written

C =
{ −εlog(h−δ)/ log(f) + λNFi−1 if f ∈ [f1, f2]

∞ otherwise
(5)

whereλ is a constant to balance accuracy and computa-
tional efficiency, and the small constantδ avoids a constant
indifference curve in the case whereh = 1.1 Minimiz-
ing the cost function in equation 5 automatically determines
the number of features in the cascade by providing a stop-
ping criterion for the node learning algorithm. We limit the
false positive rate to the range[f1, f2] so that the cascade
is of reasonable length. The following pseudocode gives
thenode learning algorithmbased on the cascade risk cost
function:

1Note thatC is implicitly a function ofN , the number of features, and
θ, the threshold setting which determinesh andf .

3

1. Set the current best cost,Cmin, to∞. SetN = 1.

2. Select theNth feature for the ensemble.

3. Apply the ensemble withN features on the validation
data set to create a ROC curve. Adjust the threshold to
θN , which corresponds to the point on the ROC curve
with the smallest costCN according to equation 5.

4. If CN < Cmin, then the best point on this ROC curve
is better than all points on all previous ROC curves.
Therefore setNbest = N andCmin = CN

5. If λNFi−1 > Cmin or N = Nmax, end with an en-
semble of the firstNbest features with thresholdθNbest

.
Otherwise, letN = N + 1 and go to step 2.

At later nodes in the cascade,λFi−1 will approach 0 and
the cost value will not be sensitive toN . In this case, the
algorithm always terminates onceNmax features have been
selected. Early nodes, on the other hand, will terminate be-
fore N reachesNmax, when the additional computational
cost cannot be compensated by a decrease inCb in equa-
tion 3. This agrees with the intuition that later nodes in the
cascade require more features to obtain good performance,
and this can be achieved without negatively impacting the
computational efficiency in the testing phase.

3.3. Experimental Results for Face Detection
We performed two comparative face detection experiments.
In each experiment, two cascade classifiers were trained on
the same data set, one using the fixed false positive rate tar-
get for each node, the other using the cost function in equa-
tion 5.

In the first experiment, both cascades were trained using
the AdaBoost method and the feature set from [14]. Each
node has a maximum number of 100 features. They were
trained with 1000 face and 1000 non-face samples, and
the validation set contained another 1000 faces and 4000
non-faces. The two cascades were tested on 9000 face and
9,552,529 non-face samples. The ROC curves for the two
cascades are shown in Figure 3.2 The ROC curve trained
using the cost function in equation 5 is consistently better
than the approach with the predefined fixed false positive
rate of 0.5.

In the second experiment, we used the forward feature
selection (FFS) algorithm described in [17]. We obtained
similar improvement,3 suggesting that our method is appli-
cable to general cascade learning. In these experiments, we
observed that for the difficult, deeper levels in the cascade,

2Each point in the plot corresponds to iteratively removing the last node
from the cascade.

3The ROC curve for FFS (without weight setting) in this experiment is
not representative of the best performance of the method, due to a greatly
reduced training set.

10
−3

10
−2

10
−1

10
0

0.7

0.75

0.8

0.85

0.9

0.95

1
ROC Curves on Test Set

False positive Rate on Log Scale

H
it

R
at

e

AdaBoost: fixed 50% falsepos
AdaBoost: Cascade Risk
FFS: fixed 60% falsepos
FFS: Cascade Risk

Figure 3: Training with cascade risk in comparison to a
fixed false positive rate. Cascade risk yields improved per-
formance using both AdaBoost and FFS.

our method tended to add more nodes to achieve a given
false positive rate, while preserving the high detection rate.
Note that practitioners commonly address this problem by
making manual tradeoffs in performance for deeper nodes
in the cascade. This introduces an unwanted level of non-
determinism into the learning process.

4. Perturbation Bias for Improved
Detection

We have described a relationship between node perfor-
mance and cascade performance that leads to an improved
cost function for cascade learning. We now examine the sta-
tistical properties that differentiate detection problems from
other pattern recognition problems. In pattern recognition,
we often have a multi-class problem in which each class
defines a smooth manifold in some feature space. Further-
more, we may require recognition to be invariant to cer-
tain classes of transformations such as rotations. In this
scenario, methods such as Tangent Distance [13], which is
based on calculating the distance between two manifolds,
can achieve transformation invariant classification. In con-
trast, patterndetectionis the problem of discriminating a
target pattern against all others. The non-target “class” fre-
quently does not lie on a smooth manifold in the feature
space. Typically, the existence of such a “none of the above”
category complicates the pattern detection task requiring
not only a likelihood test but also some absolute threshold.

Normally, we have some prior knowledge of perturba-
tion invariance for the target class, i.e. the perturbation does
not affect our perception of whether an instance belongs to
the target class or not. For example, suppose we have a de-

4

tector that accepts faces. Noting that symmetrically flipped4

versions of face images are still valid face images, it should
be the case that the symmetrically flipped versions of any
face input should likewise be accepted.

Now consider a negative example that is incorrectly ac-
cepted by the classifier - afalse positive. What is the proba-
bility that the symmetrically flipped version of this negative
example will also be accepted as a face? Clearly this quan-
tity depends upon the particular classifier. For example, if
the classifier is designed to be transformation invariant, then
flipping the input will have no effect. If this is not the case,
however, then it is quiteunlikely that the flipped version of
an arbitrarily chosen negative example will also be accepted
as a face. We refer to this statistical difference as theper-
turbation bias.

Let us begin to formalize this insight for some pertur-
bationg of an image. LetIw×h be the space of all image
windows of widthw and heighth. A perturbation is defined
as a transformation of the input, such that the perturbed is
still a valid input:g : Iw×h → Jw×h

Let D(x) represent the event that the detector evaluates
positively on an input imagex; let x ∈ F denote that the in-
put is indeed an image of the target class (in this case faces);
and letg(x) be the perturbation of the input imagex. Then
the perturbation bias can be described probabilistically as

p(D(g(x))|D(x), x ∈ F) > p(D(g(x))|D(x), x /∈ F).
(6)

When is this bias likely to be present? If the classifier
does not inherently enforce perturbation invariance and both
x andg(x) are present in the positive training set, then the
perturbation bias should exist. For face detection, for exam-
ple, existing training algorithms usually do not inherently
enforce symmetric invariance.

Let us now consider a new joint detector that classi-
fies an input as a face if and only if both the original and
the symmetrically flipped images are assigned a positive
label by the base classifier. We can get an estimate of
the improved detection performance. Suppose originally,
p(x ∈ F |D(x)) = α, then with an additional test on the
perturbed input:

p(x ∈ F |D(x), D(g(x)))
p(x /∈ F |D(x), D(g(x)))

=
p(D(g(x))|D(x), x ∈ F)
p(D(g(x))|D(x), x /∈ F)

· p(x ∈ F |D(x))
p(x /∈ F |D(x))

=
kα

(1− α)
(7)

where

k =
p(D(g(x))|D(x), x ∈ F)
p(D(g(x))|D(x), x /∈ F)

.

4Reflection about the vertical axis of symmetry (i.e. the mirror image).

Thus we have:

p(x ∈ F |D(x), D(g(x))) =
k(1− α) + kα

1− α + kα
p(x ∈ F |D(x))

(8)
If the condition in equation 6 holds, thenk > 1 and

p(x ∈ F |D(x), D(g(x))) > p(x ∈ F |D(x)). (9)

This implies that an additional positive test result on the
perturbed input can reduce the risk of false positives.

4.1. Necessary and Sufficient Conditions for
Improvement

In the Appendix, we derive some necessary and sufficient
conditions such that perturbation bias can be exploited.
Here we describe the implications of these conditions for
constructing a more effective classifier.

To proceed, let us redefine the detection event asDθ(x)
whereθ represents the decision parameters of the detector.
One naive approach to apply equation 9 is to make a new
classifierDθ(x) · Dθ(g(x)), which requires both the orig-
inal input and its perturbation to pass the original test. We
can show however, this does not always improves the over-
all performance. Leth′ andf ′ be the new hit rate and false
positive rate respectively. Each new rate is clearly the prod-
uct of the original rate and the conditional probabilities of
Dθ(g(x)):

h′ = p(Dθ(x)|x ∈ F)) · p(Dθ(g(x))|Dθ(x), x ∈ F)
f ′ = p(Dθ(x)|x /∈ F)) · p(Dθ(g(x))|Dθ(x), x /∈ F)

(10)
Since the conditional probabilities are usually less than

1, both the hit rate and the false positive rate will be reduced.
Therefore, the potential benefit of this approach hinges on
the specific trade-off between the hit rate and the false pos-
itive rate. In some cases, the performance of the new clas-
sifier could be worse than before.

Figure 4 illustrates a case where the straightforward con-
struction of a joint classifier is not effective. In this example
we took a trained cascade and make a new detector by du-
plicating each node in the original cascade to obtain two
nodes: one that testsx and another that testsg(x). The in-
put is rejected if it fails either test. As the figure illustrates,
this strategy does not result in significant improvement.

The appendix contains the conditions under which
Dθ(x) ·Dθ(g(x)) improves the performance ofDθ(x). We
show that in addition to the condition in equation 6, the
value ofp(Dθ(g(x))|Dθ(x), x ∈ F) should also be above
a certain threshold. Note that this analysis assumes that the
same thresholdis used in bothDθ(x)·Dθ(g(x)) andDθ(x).

However, the freedom to adjust the classifier thresh-
old during training would allow us to bias the learner and

5

10
−4

10
−3

10
−2

10
−1

10
0

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
ROC Curves on Test Set

False positive Rate on Log Scale

H
it

R
at

e

Original Cascade
Naive Symmetric Constraint

Figure 4: Failure of the naive approach to exploiting sym-
metry, in which a new cascade classifierDθ(x) ·Dθ(g(x))
is formed from a previously-trainedDθ(x).

achieve improved performance. For example, we can ad-
just the threshold toθ′, such that the joint detectorDθ′(x) ·
Dθ′(g(x)) has the same hit rate as the previousDθ(x),
while the false positive rate, under certain reasonable con-
ditions, is reduced. In general, we use a cost function to
identify the threshold that results in best trade off between
the new hit rateh′ and the false positive ratef ′.

In particular, for cascade learning, we use the cost func-
tion from equation 5. The training of a node proceeds as
follows: each super node is a sequence of two identical sub
nodes, with one of them testing the input image and the
other testing the symmetric transformation. Training a su-
per node consists of adjustingθ′ for the two subnodes to
minimize the cost.

4.2. Training with Input Perturbation

A general algorithm for adding input perturbation to an ex-
isting training algorithmA is as follows:

1. Find a perturbation that satisfies the following condi-
tions:

(a) It is known a priori that a perturbed instance of
the target class still belongs to that class.

(b) The training algorithmA does not enforce the in-
variance, i.e. it does not guarantee that a per-
turbed image has the same classification result as
the original image.

2. For every positive training samplex, add its perturba-
tion g(x) to the training set.

3. Use algorithmA to train a classifierD, and adjust the
threshold toθ′ such that the final classifierDθ′(x) ·
Dθ′(g(x)) gives the best performance.

With the cascade framework in particular, such train-
ing is done for each node individually. Note that standard
node training algorithms and feature sets [14] do not en-
force symmetric invariance. We therefore choose symmet-
ric transformation as our perturbation, which is defined as:
g : Iw×h → Jw×h such thatJ(x, y) = I(w − x, y).

A detailed cascade training algorithm which incorpo-
rates both the cascade risk criterion and symmetrical input
perturbation can be found in figure 5:

1. Given a training set withMF faces andMN non-faces,
include the symmetric transformation of the positive
samples, giving a total of2MF faces andMN non-
faces.

2. Use a node training algorithm (such as AdaBoost) to
select a maximum number of features,Nmax.

3. For everyN ≤ Nmax, identify the thresholdθN for
the ensemble that achieves the minimum costCN ac-
cording to equation 5.

The cost is measured on a validation set. In this step,
an inputx is considered positive if and only if bothx
and its symmetric transformg(x) pass the test.

4. Identify the firstNbest features, where

Nbest = arg min
N≤Nmax

CN .

The final ensemble uses theNbest features and the
thresholdθNbest

.

5. Bootstrap to get a new non-face training data set,
where each new non-face sample and its symmetric
transformation pass all previous nodes.

6. Estimate the false positive rate of the current cascade
in step 5. If the overall cascade false positive rate goal
is not met, go to step 1; otherwise exit.

Figure 5: Cascade training algorithm, incorporating input
perturbation and cascade risk.

4.3. Experimental Results and Discussion
We performed two experiments to assess the benefit of train-
ing with input perturbation. In the first experiment, we
trained a cascade using the algorithm from figure 5 (where
step 2 employed the FFS method from [17]) along with the
datasets described in Section 3.3. We compared the result to

6

10
−3

10
−2

10
−1

10
0

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate on Log Scale

H
it

R
at

e
ROC curve on Test Set

FFS: Cascade Risk
FFS: Cascade Risk and Input Perturbation

Figure 6: The ROC curve from figure 3 (triangles), using
cascade risk only, is significantly improved by incorporat-
ing perturbation bias (circles).

the cascade from figure 3, which was trained with the Cas-
cade risk criterion alone. The only difference between the
two cascades is the use of input perturbation during train-
ing; all other factors are the same. Figure 6 illustrates the
substantial improvement that resulted from using the input
perturbation method.

In our second experiment, we compared the performance
of our method to a baseline classification result on a stan-
dard test set. We used the algorithm in figure 5 in con-
junction with AdaBoost to train a frontal face detector. The
training set at each node consisted of 2000 faces and 2000
non-faces, all of which were19× 19 image patches. While
the face training samples were the same for each node, we
used bootstrapping to obtain new non-face samples. The
validation set contained another 2000 faces and 2000 non-
faces. The final 38 node cascade was evaluated on the
CMU-MIT test set, following the procedure in [14]. Fig-
ure 7 shows a comparison between the ROC curve produced
by our method and the ROC curve from [14], which serves
as a baseline. This result, in combination with figure 6, es-
tablishes the benefit of our method. Another important ad-
vantage of our approach is that it is fully automatic.

We note that although the class of face images possesses
symmetric invariance, most existing face detectors fail to
enforce this property. In fact, our perturbation bias method
results in a classifier that is invariant to symmetric perturba-
tions, sinceg(g(x)) = x in the case of symmetric flipping.
In general, our input perturbation approach leverages the
absence of perturbation invariance in a detector and yields
improved performance with only minor modifications to the
training algorithm.

0 20 40 60 80 100 120 140 160 180 200 220
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Number of False positives

H
it

ra
te

ROC Curves on CMU−MIT Test Set

ROC curve from [14]
Training with cascade risk and input pururbation

Figure 7: Evaluation using CMU-MIT test set.

5. Conclusions

We have described two new results for cascade learning
which address the consequences of decoupling in the cas-
cade architecture. Our first set of results connect the learn-
ing objectives for a node to the overall performance of
the cascade. We present a new cascade indifference curve
which leads to improved cascade performance and fully-
automatic stopping conditions for node learning.

Our second set of results explore the concept of pertur-
bation bias for detection problems in which the target class
(such as faces) is highly structured while the non-target
class (all non-faces) is not. We show that this statistical
difference can be exploited through perturbations of the in-
put patterns. We demonstrate that significant improvements
in detection performance can be obtained through perturba-
tion bias. We derive necessary and sufficient conditions for
the success of the method.

In future work, we plan to explore other classes of pertur-
bations beyond the symmetric transform and investigate the
application of perturbation bias in other problem domains.

Acknowledgements

This work was funded in part by NSF CAREER grant IIS-
0133779. The authors would like to thank Charlie Brubaker
and Howard Zhou for useful discussions about this work.

References

[1] Y. Amit, D. Geman, and K. Wilder. Joint induction of
shape features and tree classifiers.IEEE Trans. PAMI,
19(11):1300–1305, 1997.

7

[2] S. Baker and S.K. Nayar. Pattern rejection. InProc. CVPR,
pages 544–549, 1996.

[3] O. Carmichael and M. Hebert. Shape-based recognition of
wiry objects. InProc. CVPR, 2003.

[4] B. Heisele, T. Serre, S. Mukherjee, and T. Poggio. Feature
reduction and hierarchy of classifiers for fast object detection
in video images. InProc. CVPR, volume 2, pages 18–24,
2001.

[5] D. Keren, M. Osadchy, and C. Gotsman. Antifaces: A novel,
fast method for image detection.IEEE Trans. on PAMI,
23(7):747–761, 2001.

[6] T. Leung, M. Burl, and P. Perona. Finding faces in cluttered
scenes using random labeled graph matching. InProc. ICCV,
pages 637–644, 1995.

[7] S.Z. Li, Z.Q. Zhang, H. Shum, and H.-J. Zhang. FloatBoost
learning for classification. InNIPS 15, December 2003.

[8] R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical anal-
ysis of detection cascades of boosted classifiers for rapid ob-
ject detection. Technical report, MRL, Intel Labs, 2002.

[9] C. Liu and H. Shum. Kullback-leibler boosting. InProc.
CVPR, volume I, pages 587–594, 2003.

[10] S. Romdhani, P. Torr, B. Schoelkopf, and A. Blake. Com-
putationally efficient face detection. InProc. ICCV, pages
695–700, 2001.

[11] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-
based face detection.IEEE Trans. on PAMI, 20(1):23–38,
1998.

[12] H. Schneiderman and T. Kanade. A statistical method for 3d
object detection applied to faces and cars. InProc. CVPR,
pages 746–751, 2000.

[13] P. Y. Simard, Y. A. LeCun, J. S. Denker, and B. Victorri.
Transformation invariance in pattern recognition-tangent dis-
tance and tangent propagation.International Journal of
Imaging System and Technology, 11(3):181–194, 2001.

[14] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. InProc. CVPR, pages 511–518,
2001.

[15] P. Viola and M. Jones. Fast and robust classification using
asymmetric AdaBoost and a detector cascade. InNIPS 14,
2002.

[16] J. Wu, J. M. Rehg, and M. D. Mullin. Direct feature selection
for face detection. InProc. of Intl. Workshop on Statistical
and Computational Theories of Vision, 2003.

[17] J. Wu, J. M. Rehg, and M. D. Mullin. Learning a rare event
detection cascade by direct feature selection. InNIPS 16,
2004.

[18] R. Xiao, L. Zhu, and H.-J. Zhang. Boosting chain learning
for object detection. InProc. ICCV, volume I, pages 709–
715, 2003.

[19] M.-H. Yang, D. J. Kriegman, and N. Ahujua. Detecting faces
in images: a survey.IEEE Trans. on PAMI, 24(1):34–58,
2002.

Appendix

We derive the necessary and sufficient conditions under
which the joint classifierD(x) · D(g(x)) yields improved
performance overD(x). Following the notation from equa-
tion 10, we can express the hit rate and false positive rate of
the joint classifier as

h′

f ′
=

p(D(x), D(g(x))|x ∈ F)
p(D(x), D(g(x))|x /∈ F)

=
p(D(x)|x ∈ F)
p(D(x)|x /∈ F)

· p(D(g(x))|D(x), x ∈ F)
p(D(g(x))|D(x), x /∈ F)

= k
h

f
(11)

We consider two cases. The first case is a single (mono-
lithic) classifier using Bayes risk to measure performance.
From equation 1, an improvement in performance requires
that

∆R = η(1− h′) + f ′ − [η(1− h) + f] < 0, (12)

resulting in

p(D(g(x))|D(x), x ∈ F) · (ηh− f

k
) > ηh− f. (13)

Since0 < p(D(g(x))|D(x), x ∈ F) ≤ 1, equation 13
requires that:

{
p(D(g(x))|D(x), x ∈ F) > kηh−kf

kηh−f

kηh− f > 0
(14)

This is the necessary and sufficient condition for improv-
ing performance in the Bayes risk metric. And for a classi-
fier of moderate performance,kηh− f > 0 is usually true,
becausekη is greater than 1, andh is greater thanf .

The second case is a node in a cascade classifier. In this
situation the cascade risk from equation 3 (without consid-
ering computational efficiency) is used to measure perfor-
mance. The necessary and sufficient condition for a perfor-
mance improvement from the joint classifier is:

∆C < 0 ⇔ log(h′)
log(f ′)

<
log(h)
log(f)

(15)

which leads to:

p(D(g(x))|D(x), x ∈ F) > exp(
log(h) log(k)

log(h)− log(f)
). (16)

The above derivation assumes the same threshold is used
for both Dθ(x) andDθ(x) · Dθ(g(x)). Although there is
no direct comparison of performance betweenDθ(x) and
Dθ′(x) ·Dθ′(g(x)) without knowing more about the whole
ROC curve andD(x), in order forDθ′(x) · Dθ′(g(x)) to
have smaller cost than anyDθ(x), equation 14 or equa-
tion 16 is only a necessary condition atθ′.

8

