
Towards Optimal Training of Cascaded
Detectors

S. Charles Brubaker, Matthew D. Mullin, and James M. Rehg

College of Computing and GVU Center, Georgia Institute of Technology
Atlanta, GA 30332

{brubaker, mdmullin, rehg}@cc.gatech.edu

Abstract. Cascades of boosted ensembles have become popular in the
object detection community following their highly successful introduc-
tion in the face detector of Viola and Jones [1]. In this paper, we explore
several aspects of this architecture that have not yet received adequate
attention: decision points of cascade stages, faster ensemble learning, and
stronger weak hypotheses. We present a novel strategy to determine the
appropriate balance between false positive and detection rates in the
individual stages of the cascade based on a probablistic model of the
overall cascade’s performance. To improve the training time of individ-
ual stages, we explore the use of feature filtering before the application
of Adaboost. Finally, we show that the use of stronger weak hypothe-
ses based on CART can significantly improve upon the standard face
detection results on the CMU-MIT data set.

1 Introduction

Object detection is one of the classic problems in computer vision, having ap-
plications to surveillance, robotics, multimedia processing, and HCI. Developing
a generic object detection system is still an open problem, but there have been
important successes over the past several years for some visual patterns such as
faces [1], pedestrians [2], and cars [3]. Among the most influential systems is the
face detector of Viola and Jones [1], which can be credited with the widespread
popularity of cascaded detectors. We refer to detectors conforming to this general
system architecture as cascades of boosted ensembles, or CoBEs.

The key elements of Viola and Jones’ approach are:

– The cascade structure, which enables the detector to be simultaneously fast
and accurate.

– The use of Adaboost [4] to combine weak hypotheses into a strong ensemble.
– Thresholding on single feature values to form weak hypotheses (threshold-

based hypotheses).
– Feature selection from a large set of features, each of which might be only

weakly discriminative in itself.

The large body of literature spawned by this seminal work has tended to focus
on alternatives to Adaboost and on alternative feature sets, while other aspects

2

of the architecture have not received adequate attention. Here we focus on the
false positive vs. detection trade-off in the individual stages of the cascade, faster
ensemble learning, and the combination of Adaboost with CART [5] to improve
detection performance.

The stages of the cascade are trained sequentially, as the output of one stage
affects the training examples given to the next. Deciding when to stop training
one stage and move on to the next and knowing the appropriate operating point
on a stage’s ROC curve are critical steps in the training of a cascade. Despite
the guidelines provided in [1] and [6], however, obtaining state-of-the-art per-
formance requires that these decisions be made by hand. We present a novel
method for cascade learning, which uses a statistical model to predict the final
cascade’s performance and chooses the detection and false positive rates for the
individual stages to meet a performance goal for the entire cascade. We show
that the method is robust in the sense that a single set of parameters yields ex-
cellent performance over a variety of detection strategies and that it is capable
of producing state of the art results.

One of the greatest obstacles to wider use of the CoBE architecture is that
the detectors take a long time to train. We explore the use of feature filtering to
reduce the feature pool available to Adaboost. Although this idea would seem
to hold significant promise for speeding up the training process, we found it to
be only moderately effective.

A remarkable aspect of the original Viola-Jones face detector is that it relies
so heavily on Adaboost to produce the stage classifiers from such weakly dis-
criminative individual features. We show that although this approach may be
computationally efficient, combining Adaboost with CART-based weak learning
can significantly improve the final detector’s output.

In summary, we

– introduce a new criterion for cascade training, which provides a principled
and robust mechanism for choosing stage thresholds and deciding when to
stop training one stage and move onto the next,

– evaluate several feature filtering methods as ways to speed up the training
process, and

– show that combining Adaboost with slightly stronger CART-based weak
classifiers can improve the detector’s performance over the standard practice
of using threshold-based weak classifiers.

2 Previous Work

To make our discussion of previous work clear, we present a general framework
for training a cascade of boosted ensembles in the Learn-CoBE procedure. The
subroutines should be understood as placeholders for any number of solutions
to the subproblem in question. Although not all changes made to the original
Viola and Jones implementation strictly fit into this architecture, we believe it
provides a useful abstraction of the CoBE approach.

3

Let F be the set of features and E the set of examples. We denote the weights for E
as W . No more than L iterations of Adaboost are permitted. G refers to the goal cost
for the cascade, and 〈f̂i, d̂i〉 denotes the false positive and detection rate pair for the
ith stage.

procedure Learn-CoBE()

C ← ∅ {Initialize an empty cascade.}
for each stage i do

E ← Bootstrap() {Acquire examples accepted by the current cascade.}
F ′ ← Filter-Features() {Reduce feature pool available to Adaboost.}
si ← ∅ {Initialize current stage.}
W ← Initialize-Weights() {Initialize example weights.}
repeat

h←Weak-Learn() {Learn a new hypothesis based on W .}
W ← Reweigh-Examples() {Reweigh examples based on h.}
si ← si ∪ h {Add the new hypothesis to the ensemble.}
θi ← Find-Best-Threshold() {Choose a threshold for the ensemble.}
〈f̂i, d̂i〉 ← Validate() {Evaluate current ensemble on validation data.}

until |si| > L or Predict-Cost() ≤ G {Is performance good enough?}
C ← C ∪ 〈si, θi〉 {Add the stage to the cascade.}

end for

Despite the critical importance of the Find-Best-Threshold and Predict-
Cost functions to the performance of the final detector, they have received little
attention. Our earlier work [7], is the only paper that addresses these questions
directly in the CoBE context. In comparison, our new method of section 3.2
treats the actual cascade performance as a random variable, which is re-estimated
during training stages.

Huitao Luo has recently published a method for adjusting the stage thresh-
olds after the full cascade has been trained [8]. While the success of this method
illustrates the importance of the stage thresholds for classification performance,
it does not address how the thresholds should be chosen in the cascade train-
ing phase (Find-Best-Threshold) – something that critically influences the
bootstrapped data – or when it is appropriate to begin training a new stage
(Predict-Cost).

Šochman and Matas [15] use Waldboost to build a single boosted ensemble.
When applying the detector to an instance, they decide whether to accept, reject,
or continue evalutation after each weak hypothesis is calculated. This decision
is based on an adaptation of Wald’s sequential probability ratio test. Their test
does not apply directly to our detectors, because each of our stage decisions is
based on a new ensemble. In constrast to their method, we build an explicit
probabilistic model of cascade performance based on validation data.

To improve the ensemble training time, we [9] showed how Adaboost with
threshold-based weak learners can be replaced with Forward Feature Selection
(FFS). Without any loss in detection performance, we were able to improve the
training time of an ensemble over the original implementation of Adaboost. The

4

key to the improved training time is that in FFS the best feature thresholds can
be precomputed.

Leo Brieman once famously called Adaboost with trees “the best off-the-shelf
classifier in the world” (NIPS workshop, 1996). Lienhart et al [10] explored the
use of CART as a weak learner in the CoBE framework, but trees only produced
moderate improvements over stumps in their experiments and did so only for
low false positive rates, where the corresponding detection rate is less than 85%.
In contrast, we find that CART trees result in significant improvements to the
classification performance at all false positive rates. We hypothesize that this
may be due in part to our strategy of adjusting both stage thresholds and post-
processing when producing our ROC curves.

Much of the early research on the CoBE architecture focused on the boosting
algorithm. In their 2002 paper, Viola and Jones observe that the goal of a stage
in the cascade is not to minimize error, but to retain very high detection rates,
while accepting modest false positive rates if necessary [6]. They propose Asym-
metric Adaboost, which changes the Reweigh-Examples routine to keep most
of the weight on the positive examples (instead of treating positive and negative
examples equally), ensuring that a high percentage is detected by each weak
classifier. The problem of asymmetric learning is also addressed in [11], which
introduces the Linear Asymmetric Classifier algorithm, a method to re-weigh
hypotheses after they have been selected by other means.

Li and Zhang have applied another alternative boosting algorithm to face
detection in their paper on FloatBoost [12], which instead of greedily adding
hypotheses to the ensemble allows backtracking to eliminate the less useful or
even hurtful hypotheses. In other respects, the algorithm proceeds as RealBoost.

Liu and Shum [13] found that using KL-boost combined with weak classifiers
based on histograms of 1D projections in feature space improved detection per-
formance over the original approach. However, it is not clear whether it is the
changes to the weighing scheme or the means of forming the weak hypotheses
that is critical to the improvement.

A more radical departure from the Learn-CoBE routine is due to Xiao
et al [14]. Inspired by the observation that the operating point of a stage may
not minimize error, they allow the hypothesis formed by the minimum error
threshold of the previous stage to play the role of a weak hypothesis in the next
stage of the cascade. Having thus produced a cascaded detector, they convert it
to a single weighted voting scheme and train an SVM to relearn the confidence
(vote) weights.

Others have changed the feature set while keeping the other key aspects
of the CoBE architecture[10, 16]. A more detailed description of our work can
be found in our technical report [17]. For a more comprehensive survey of face
detection see [18].

5

3 Cascade Learning

Two of the most important decisions in building a cascade of boosted ensembles
are:

1. When to stop training a stage and move on to the next one.
2. How to balance the detection versus false positive trade-off within a stage.

In terms of our Learn-CoBE algorithm, these decisions are determined by the
function Find-Best-Threshold, which chooses θi, fixing the stage’s operating
point, and by the function Predict-Cost which determines when to move on
to the next stage of the cascade.

3.1 Fixed Stage Goal

The standard approach outlined in [1, 6] is to choose a goal operating point
〈Fg, Dg〉 (a false positive and detection rate pair) and then take its Lth root to
obtain 〈fg, dg〉, where L is the intended number of stages in the cascade. Each
stage is constrained to achieve one of fg or dg (typically fg works better) on a
set of validation examples that have been accepted by all previous stages of the
cascade. The training of the stage terminates when either the other goal criterion
is achieved or the maximum number of boosting iterations is exceeded.

This goal-based strategy leaves something to be desired, however. First, it
rigidly fixes the number of stages in the cascade before any training is done.
Second, it does not permit any trade-off between the detection and false positive
rates within the stages. For instance, when selecting the threshold of a stage, one
might be able to significantly improve the false positive rate at a small expense
to the detection rate, improving the chances of meeting the goal criteria. The
extra leeway on the false positive criterion might also be used at a later stage to
improve a stage’s detection at the expense of the false positive rate. By fixing
one element of the operating point, this strategy precludes taking advantage of
such trade-offs.

3.2 Cascade Learning with Beta Variables

A key element of our approach is that the algorithm views the performance of the
cascade 〈F,D〉 as a random variable and treats the empirical results on validation
data for the individual stages, {f̂i} and {d̂i}, as evidence. A statistical model
estimates the distribution of full cascade operating points, and each stage is
trained to use the minimum number of features that ensure that the probability
of meeting the performance goals is sufficiently high.

The key assumption underlying the statistical model is that the results on the
validation data for the current stage can be repeated at all subsequent stages.
That is, for any 〈f̂i, d̂i〉 pair obtained by varying θi, it is possible to train the
(i + 1)th stage and choose θi+1 such 〈f̂i+1, d̂i+1〉 = 〈f̂i, d̂i〉. We call this the
“repeatability assumption”. It is important to note that a similar assumption is

6

implied in the fixed stage goal framework, where it is assumed that a particu-
lar operating point will be achieved in each stage. Although, the repeatability
assumption is not strictly true in practice, it provides a guiding principle for
applying our statistical model during training. The advantage of this model is
that it affords a principled and practical way to make detection and false positive
rate trade-offs in the individual stages.

The inputs to our new method are:

1. A goal operating point for the entire cascade 〈Fg, Dg〉.
2. A ratio η that reflects the relative importance of the false positive and de-

tection criteria.
3. A maximum number of stages L.

The cascade learner then builds the fastest detector it can while achieving the
goal performance with high probability.

Cost Function Because a reasonable goal might not be known a priori, the
algorithm must be robust to unattainable goals and produce results that are as
close as possible. Depending on the attainability of the goal, therefore, we adjust
our cost function. For simplicity, assume that η > 1.0, meaning that the false
positive criterion is more important. We consider the following cases

1. If Pr[D < Dg] < γ and Pr[F > Fg] < γ,

cost = Pr[D < Dg] + η Pr[F > Fg].

2. Else, if Pr[F > Fg] < γ, then cost = 2 + η − D.
3. Otherwise, cost = 2 + η + F .

The first cost function is suitable when both goals are attainable with some
substantial probability γ (0.95 was used our experiments). However, when this is
not possible, then the function provides no incentive to trade a small decrease in
the false positive rate for a large improvement in the detection rate (an analogous
statement holds if η < 1.0, giving detection greater importance). Therefore, if
both criteria cannot be met with probability γ, then we constrain the false
positive rate to be met with probability γ and maximize the detection rate.
Finally, if the criterion for false positive rate cannot be met with probability γ,
we simply minimize the false positive rate. Typically, this means that the false
positive rate is reduced to zero, effectively terminating the training process.

Cost Prediction Minimizing this cost function requires the ability to compute
Pr[D > Dg] and Pr[F < Fg]. We will only treat the detection criterion, because
the false positive one is analogous. Consider the likelihood Pr[d̂i|di], where d̂i is
the measured detection rate over M positive examples. Given the true detection
rate di, the probability of m out of M examples being detected is just the
binomial distribution (

M
m

)
(1 − di)M−mdm

i .

7

Assume that the cascade has already been trained through stage i and that we are
predicting the cost if the measured operating point of the next stage is 〈f̂i+1, d̂i+1〉.

Predict-Cost-Sample maintains a set of sampled operating points for the currently
trained cascade {〈F k

i , Dk
i 〉}Kk=1. All measurements are made with validation sets of M

negative examples and the same number of positive examples.

procedure Predict-Cost-Sample()

for j = i + 1 to N do
for k = 1 to K do

F k
j ← F k

j−1 · βf̂i
, where βf̂i

is a random beta deviate with parameters f̂iM + 1

and (1− f̂i)M + 1.
Dk

j ← Dk
j−1 · βd̂i

, where βd̂i
is a random beta deviate with parameters d̂iM + 1

and (1− d̂i)M + 1.
end for
Gf ← |{k : F k

j > Fg}|/M
Gd ← |{k : Dk

j < Dg}|/M
costj ← Cost(Gf , Gd).

end for
return minj costj .

Taking a uniform prior Pr[di] over [0, 1] and applying Bayes rule gives

Pr[di|m,M] =
Pr[m|di,M] Pr[di]∫ 1

0
Pr[m|p, M] Pr[p]dp

=
(1 − di)M−mdm

i∫ 1

0
(1 − p)M−mpmdp

,

which is precisely the beta distribution with parameters m + 1 and M − m + 1.
Therefore, conditioned on the validation measurements, D is the product of

beta variables. The exact distribution only admits a clean analytic form in a
few specialized cases [19], but it can easily be approximated. One strategy is
to sample from the distribution for D by taking a sample from the distribution
di for each stage and taking their product. The quantity Pr[D > Dg] can be
estimated by counting the fraction of samples greater than Dg. This method is
used in the Predict-Cost-Sample procedure. A final set of samples for a fully
trained cascade is shown in Fig. 1.

Given the ability to estimate the cost for a (partially) trained cascade, we
now describe its use in stage training. It is here that we apply the repeatability
assumption; i.e., if we can achieve 〈f̂i, d̂i〉 on a validation set for the current
stage, then we assume that we can achieve the same result for all subsequent
stages. Therefore, as we are training the ith stage, we use the results on the
validation set to estimate 〈f̂j , d̂j〉 for all previous stages (j < i), but we use the
results for the ith stage on validation data for any subsequent stages (j > i).
The operating point having the lowest cost according to this estimate is chosen
for each stage, as shown in the Find-Best-Threshold procedure.

8

Fig. 1. Samples generated by Predict-Cost-Sample of the operating point for a fully
trained twenty-stage cascade. One thousand validation examples were used for both
the positive and negative classes in every stage. Notice that the accumulation of error
is significant even with this large validation set.

3.3 Discussion

The main advantage of our new approach over the fixed stage goal approach is
that it allows subtle tradeoffs between detection and false positive rates in the
stages. Moreover, it can “remember” past trade-offs to help decide whether a
new trade-off will improve the chances of achieving the cascade’s goal operating
point. Note that though we specify a maximum number of stages, we do not
specify a minimum. If the learner predicts better performance with fewer stages,
then it will plan for fewer stages.

As shown in Fig. 1, the variances in the distributions of F and D are signif-
icant for a twenty-stage cascade, even when one thousand examples are used at
every stage. It is possible to account for this effect in the fixed stage goal ap-
proach simply by setting more ambitious goals than are necessary, so that even
if the validation results are too optimistic, the desired performance may nev-
ertheless be achieved. If forty stages are used instead of twenty, however, then
the additional accumulation of error will change the distribution, and a new set
of more ambitious goals may be required. Because we explicitly model the ac-
cumulation of errors, no such parameter retuning is necessary in our approach,
making it well-suited for comparative studies.

To demonstrate the effectiveness and robustness of our improved cascade
learning algorithm, we have conducted a set of experiments in which we auto-
matically trained 35 detectors using a single set of parameters. This set of ex-
periments ranges from a cascade using four level deep CART trees that achieves
state of the art performance (see Sect. 5) to a cascade where the feature pool
was reduced to 200 randomly selected features (see Sect. 4). Results for all of
our experiments can be found in [17].

9

4 Feature Selection

The primary computational cost in training the stage classifiers is that in every
round of boosting the Weak-Learn routine examines every example for every
feature. Since reducing the example corpus weakens the generalization, the al-
ternative of reducing the feature pool via the Filter-Features routine is an
attractive option.

To actually improve the training time, however, the filtering algorithm itself
must be faster than Adaboost. Unfortunately, few filtering algorithms offer an
asymptotic improvement in training time. Nevertheless, asymptotically equiv-
alent methods often admit implementation speed-ups, which make the actual
run-time faster than the worst-case analysis time would indicate. Moreover, be-
cause Adaboost’s greedy selection of features is not optimal, limiting the feature
pool available to Adaboost may actually improve the results. The idea is that
Adaboost may produce a better classifier when it is presented with a small set
of features, all of which are good, rather than a large set containing these same
good features in addition to many spurious ones.

For purposes of this discussion, therefore, we divide filtering techniques into
two broad categories:

Fast Filters: This category consists primarily of ranking schemes which exam-
ine each feature once and sort according to some measure of the feature’s
discriminative power. These filters are typically much faster than Adaboost
and run in O(|F | log |F |) time. From this category, we test random selec-
tion and ranking by mutual information. For the latter, we choose a feature
threshold that maximizes the mutual information between the resulting bi-
narized feature and the class label, and then select the features that have
the most mutual information with the class label as individual features.

Slow Filters: This category includes methods that examine each feature in
F before choosing the next feature to add to the selected pool F ′. These
filters run in O(|F ′||F ||E|) time and are about as fast as Adaboost with
a thresholding weak learner. From this category, we use the Conditional
Mutual Information Maximization method of [20, 21] and Forward Feature
Selection [9].

Notice that the running times given above assume that the examples have been
sorted by their feature value for every feature in a precomputation step.1 With
this strategy, the evaluation of a feature, either for selection or for use in a weak
classifier, can be performed in O(|E|) time, where E is the set of examples. It is
also important to realize that although these filtering methods sometimes choose
a threshold value for the feature during the selection, the original feature values
are retained for the boosting or ensemble learning phase of the training process.

In this context, our hope would be that filters from the first category would
improve the training time significantly without diminishing the quality of the
1 This pre-sorting strategy has been previously noted in [22] and is explained in more

detail in [23] and [17].

10

Table 1. Feature filtering results grouped by the number of features made available
to the weak learner (Final Pool). Notice that the random filtering outperforms the
ranking filter. Although CMIM and FFS are better than random filtering, they do not
outperform the inherent feature selection strategy of Adaboost.

Filter Initial Pool Final Pool Avg. Detection rate for [0-130]
False Positives on CMU-MIT

RND 134736 13473 0.889
RANK 134736 13473 0.872

RND 134736 1347 0.874
RANK 134736 1347 0.834

RND 13473 200 0.829
CMIM 13473 200 0.870
FFS 13473 200 0.860

results and that filters from the second category would improve the quality of
the results and offer a modest improvement in training time.

4.1 Analysis

We evaluate these methods by training a full cascade using the learning algo-
rithm of Sect. 3.2 with a fixed set of parameters. To evaluate the classification
performance, we apply the detector to the CMU-MIT data set and average the
detection rate over a range of 0-130 false positives.2 This roughly corresponds
to the area under curve measure used for traditional ROC curves.

Fast Filters Each of the fast methods was used to reduce the feature pool by
90% and 99% during the training of several detectors. As shown in table 1, in
both cases random selection (RND) gives comparable performance to the ranking
method (RANK). At first, this may seem counter-intuitive. The ranking method
does, after all, include the most discriminative features. How can a random
selection of features produce detectors that perform just as well or better? The
answer is the well known redundancy problem [24]. The “best” features tend
to misclassify the same examples, making it difficult for Adaboost to learn an
ensemble of hypotheses that classifies these examples correctly. We discuss this
phenomenon in greater detail in [17].

Slow Filters To assess the asymptotically slower methods, Conditional Mutual
Information Maximization (CMIM) and Forward Feature Selection (FFS), we
first randomly selected 10% of the features and then used the methods to filter
down to 200 features. For a baseline comparison we also trained a detector with
200 randomly selected features. Both the FFS and CMIM cascades produce ROC
curves comparable to the one produced by a random 10% selection of features.

2 This upper bound of 130 false positives represents an average of one false positive
per image.

11

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120

D
et

ec
tio

n
R

at
e

Number of False Positives

THRESHOLD
CART-2
CART-4
CART-6

Fig. 2. CART depths up to 4 significantly and consistently improve performance.

That is, the detectors perform as well as they would if no filtering had been
applied at all. Thus, although these methods offer a modest (factors of 2 or
3) improvement in training time, they do not outperform the greedy selection
naturally employed by Adaboost.

5 Weak Learning

Although thresholding on a single feature has been the dominant practice in
CoBEs for object detection, Adaboost does not restrict how the weak learning
takes place. The thresholding strategy may be efficient in terms of training or
execution time, but it seems doubtful that such a simple weak learner would give
the best results. We therefore explore the use of CART-based weak hypotheses,
which we found to significantly improve the cascade performance.

Our experiments show that CART-based detectors offer improved detection
rates with only small drops in speed. The ROC curve of Fig. 2 shows the im-
provement coming from using CART trees of depth 2, 4, and 6, as opposed
to stumps (i.e. threshold-based hypotheses) when discrete Adaboost is used. A
more comprehensive set of results for RealBoost and GentleBoost can be found
in [17]. These results are consistent with our findings for discrete Adaboost.

Table 2 gives a comparison to several other published cascade training meth-
ods. While a comprehensive comparison would include testing speed as well as
classification performance, these numbers suggest that the current method pro-
duces results which are comparable to published work that is based on substan-
tial modifications to the basic Adaboost learning method. Our results show that
the basic method can yield excellent performance if stronger weak hypotheses are
employed. Moreover these results can be obtained without hand-tweaking cas-
cade parameters during training, as a consequence of our automatic global train-
ing method. Promising directions for future studies include an evaluation of these

12

Table 2. A comparison of detection rates on the CMU-MIT data set for several stan-
dard detectors.

False Positives
Detector 6 10 31 46 50 65 78 95

Viola-Jones [1] – 0.761 0.884 – 0.914 0.920 0.921 0.929
Viola-Jones [1] (voting) – 0.811 0.897 – 0.921 0.931 0.931 0.932
Luo [8] 0.866 0.874 0.903 – 0.911 – – –
Li-Zhang [12] – 0.836 0.902 – – – – –
Schneiderman [25] 0.897 – – 0.957 – – – –
CART-4 w/ Realboost 0.891 0.905 0.931 0.935 0.935 0.943 0.948 0.951

methods from the standpoint of testing speed and the use of our global train-
ing method of Sect. 3.2 in conjunction with previously-published stage learning
algorithms.

6 Conclusion

We have described a novel algorithm for fully-automatic cascade training based
on a probabilistic prediction of cascade performance. This method can take ad-
vantage of favorable trade-offs of detection and false positive rates for the in-
dividual stage and removes much of the guess-work associated with training
cascades of boosted ensembles in the past. Because it takes into account the
accumulation of error in the estimates of the overall cascade performance, it is
well-suited for controlled experiments comparing cascaded detectors which are
trained using a wide variety of stage learning algorithms.

A major barrier to the wider use of cascades of boosted ensembles is that
they take a long time to train. We explore feature filters which can produce
a moderate speed-up by reducing the set of features available to the ensemble
learner.

Finally, we show that although thresholding on single features to form weak
hypotheses may reduce training time and produce a faster detector, combining
Adaboost with CART-based weak learning can significantly improve the detec-
tor’s performance.

Acknowledments

This material is based upon work which was supported in part by the National
Science Foundation under NSF Award IIS-0133779.

References

1. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision
57(2) (2004) 137–154

13

2. Viola, P.A., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion
and appearance. In: Proc. ICCV. Volume 2. (2003) 734–741

3. Schneiderman, H., Kanade, T.: Object detection using the statistics of parts. Int.
J. Comput. Vision 56(3) (2004) 151–177

4. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1) (1997) 119–139

5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA (1984)

6. Viola, P., Jones, M.: Fast and robust classification using asymmetric AdaBoost
and a detector cascade. In: NIPS 14. (2002) 1311–1318

7. Sun, J., Rehg, J.M., Bobick, A.F.: Automatic cascade training with perturbation
bias. In: CVPR (2). (2004) 276–283

8. Luo, H.: Optimization design of cascaded classifiers. In: CVPR (1). (2005) 480–485
9. Wu, J., Rehg, J.M., Mullin, M.D.: Learning a rare event detection cascade by

direct feature selection. In: NIPS 16. (2004) 1523–1530
10. Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical analysis of detection cascades

of boosted classifiers for rapid object detection. In: Pattern Recognition LNCS
2781. (2003) 297–304

11. Wu, J., Mullin, M., Rehg, J.: Linear asymmetric classifier for cascade detectors.
In: Proc. 22nd International Conference on Machine Learning. (2005) 993–1000

12. Li, S.Z., Zhang, Z.Q.: Floatboost learning and statistical face detection. IEEE
Trans. on PAMI 26(9) (2004) 1112–1123

13. Liu, C., Shum, H.Y.: Kullback-leibler boosting. In: CVPR (1). (2003) 587–594
14. Xiao, R., Zhu, L., Zhang, H.J.: Boosting chain learning for object detection. In:

Proc. ICCV. Volume 1. (2003) 709–715
15. Sochman, J., Matas, J.: Waldboost-learning for time constrained sequential detec-

tion. In: CVPR (2). (2005) 150–157
16. Levi, K., Weiss, Y.: Learning object detection from a small number of examples:

The importance of good features. In: CVPR (2). (2004) 53–60
17. Brubaker, S.C., Wu, J., Sun, J., Mullin, M.D., Rehg, J.M.: On the design of

cascades of boosted ensembles for face detection. Technical Report GIT-GVU-05-
28, Georgia Institute of Technology (2005)

18. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE
Trans. on PAMI 24(1) (2002) 34–58

19. Gupta, A.K., Nadarajah, S., eds.: Handbook of Beta Distribution and its applica-
tions. Marcel Dekker, Inc. (2004)

20. Vidal-Naquet, M., Ullman, S.: Object recognition with informative features and
linear classification. In: Proc. ICCV. (2003) 281–288

21. Fleuret, F.: Fast binary feature selection with conditional mutual information.
Journal of Machine Learning Research 5 (2004) 1531–1555

22. Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for
generic object detection and recognition. In: ECCV (2). (2004) 71–84

23. Grossmann, E., Kale, A., Jaynes, C.: Towards interactive generation of ”ground-
truth” in background subtraction from partially labeled examples. In: Proc. ICCV
VS-PETS workshop. (2005)

24. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3 (2003) 1157–1182

25. Schneiderman, H.: Feature-centric evaluation for efficient cascaded object detec-
tion. In: CVPR (2). (2004) 29–36

