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e Sinc interpolators have poor noise resistance owing to their large L2 norm.
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e Optimal interpolators have small gradient discontinuities at zero crossings.
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Real images have high-frequency spectra dominated by step edges. They are not exagidyion error (d) is concentrated along stro
band-limited, and abrupt bandwidth truncation causes Nyquist frequency ringing that coseges, in phase with the jaggies. A m
fuses the signal near edges. Blurring before subsampling reduces this, but even then sinwothly subsampled image (e) has no visi
interpolation is not optimal for realistic images. jaggies and can be reconstructed with far |
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