
INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

Monocular Human
Motion Capture

And Other Works, 2000–2004

Collected Scientific Publications
in support of the degree of

Habilitation à Diriger des Recherches

presented and defended by

William Triggs
the 7th January 2005 at GRAVIR, Montbonnot, France

Jury

Prof. Roger Mohr (INP, Grenoble) chairman
Prof. Philippe Cinquin (U. Joseph Fourier, Grenoble) reporters
Prof. Jean Ponce (Beckman Institute & U. Illinois)
Prof. Luc Van Gool (KU Leuven & ETH Zürich) (apologies)
Prof. Olivier Faugeras (INRIA, Sophia-Antipolis) examiners
Prof. Andrew Zisserman (U. Oxford)





To my students and colleagues.





Contents

I Monocular Human Motion Capture 2

1 3D Model Based Motion Capture 3
Summary, paper 1: Estimating Articulated Human Motion... — IJRR’03 . . . . . . . . . 3
Summary, paper 2: Building Roadmaps of Minima and Transitions... — IJCV’05 . . . . 4
Summary, paper 3: Fast Mixing Hyperdynamic Sampling — IVC’04 . . . . . . . . . . . 4
Summary, paper 4: Kinematic Jump Processes... — CVPR’03 . . . . . . . . . . . . . . 5

Paper 1: Estimating Articulated Human Motion... — IJRR’03 . . . . . . . . . . . . . . 7
Paper 2: Building Roadmaps of Minima and Transitions... — IJCV’05 . . . . . . . . . . 29
Paper 3: Fast Mixing Hyperdynamic Sampling — IVC’04 . . . . . . . . . . . . . . . . 55
Paper 4: Kinematic Jump Processes... — CVPR’03 . . . . . . . . . . . . . . . . . . . . 73

2 2D Model Based Human Detection and Motion Capture 81
Summary, paper 5: Learning to Parse Pictures of People — ECCV’02 . . . . . . . . . . 81
Summary, paper 6: Tracking Articulated Motion... — ECCV’04 . . . . . . . . . . . . . 81

Paper 5: Learning to Parse Pictures of People — ECCV’02 . . . . . . . . . . . . . . . . 83
Paper 6: Tracking Articulated Motion... — ECCV’04 . . . . . . . . . . . . . . . . . . . 99

3 3D Learning Based Motion Capture 109
Summary, paper 7: Recovering 3D Human Pose from Monocular Silhouettes — PAMI’05 109

Paper 7: Recovering 3D Human Pose from Monocular Silhouettes — PAMI’05 . . . . . 111

II Other Works 2000–2004 128

4 Low-Level Vision 129
Summary, paper 8: Empirical Filter Estimation for Subpixel Interpolation... — ICCV’01 129
Summary, paper 9: Boundary Conditions for Young - van Vliet Filtering — TIP’04 . . . 129
Summary, paper 10: Detecting Keypoints with Stable Position, ... — ECCV’04 . . . . . 130
Summary, paper 11: Joint Feature Distributions for Image Correspondence — ICCV’01 . 130

Paper 8: Empirical Filter Estimation for Subpixel Interpolation... — ICCV’01 . . . . . . 133
Paper 9: Boundary Conditions for Young - van Vliet Filtering — TIP’04 . . . . . . . . . 143
Paper 10: Detecting Keypoints with Stable Position, ... — ECCV’04 . . . . . . . . . . . 145
Paper 11: Joint Feature Distributions for Image Correspondence — ICCV’01 . . . . . . 159

iii



5 Geometric Vision & Scene Reconstruction 169
Summary, paper 12: Critical Motions for Auto-Calibration... — JMIV’00 . . . . . . . . 169
Summary, paper 13: Le Calcul de Pose: de nouvelles méthodes matricielles — RFIA’02 169
Summary, paper 14: Plane + Parallax, Tensors and Factorization — ECCV’00 . . . . . . 170
Summary, paper 15: Bundle Adjustment — A Modern Synthesis — VisAlgs’99 . . . . . 170

Paper 12: Critical Motions for Auto-Calibration... — JMIV’00 . . . . . . . . . . . . . . 171
Paper 13: Le Calcul de Pose: de nouvelles méthodes matricielles — RFIA’02 . . . . . . 193
Paper 14: Plane + Parallax, Tensors and Factorization — ECCV’00 . . . . . . . . . . . 203
Paper 15: Bundle Adjustment — A Modern Synthesis — VisAlgs’99 . . . . . . . . . . . 219

6 Pattern Recognition & Statistics 291
Summary, paper 16: The Generative-Discriminative Trade-Off . . . . . . . . . . . . . . 291
Summary, paper 17: Hierarchical Part-Based Visual Object Categorization — CVPR’05 291

Paper 16: The Generative-Discriminative Trade-Off . . . . . . . . . . . . . . . . . . . . 293
Paper 17: Hierarchical Part-Based Visual Object Categorization — CVPR’05 . . . . . . 301

References 308

iv



Preface

This is a supporting document for my application for the French post-doctoral diploma « Habil-
itation à Diriger des Recherches » (HDR). It contains the fullest existing versions of most of the
articles that I have written or co-authored between January 2000 and August 2004. See my PhD
thesis for a similar collection of papers written between 1995 and November 1999.

Organization

The papers are organized thematically rather than chronologically. Each chapter contains a short
introduction and executive summary listing the main contributions of each paper, followed by the
papers themselves. To avoid unnecessary duplication, only the most complete existing version of
each work is included: the final or submitted journal version if one exists, otherwise the (possibly
extended) conference paper. The paper summaries mention any previously published versions that
have not been included. Barring a few extensions made at the time, the papers are reproduced
essentially in the form in which they originally appeared. None are perfect, but I have resisted the
temptation to update them.

The research presented here spans several different thematic areas. For convenience it is divided
into two parts.

The first part contains 7 papers on monocular uninstrumented “motion capture” — the detec-
tion, tracking and reconstruction of human pose and motion from monocular images and image
sequences — divided into 3 chapters, respectively on 3D motion capture using a model based ap-
proach, 2D detection and tracking, and 3D motion capture using a learning based approach.

The second part contains 10 papers on various other topics: low-level vision and image process-
ing; vision geometry and scene reconstruction; and statistical modelling and object recognition.

Roughly speaking, the work on vision geometry dates from the period immediately after my
thesis and is no longer my principal focus, while the work on machine learning and visual object
recognition is a (slowly!) emerging theme. The work on human motion and on low-level vision,
features & descriptors runs throughout the period and is likely to continue for the foreseeable future.
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Monocular Human Motion Capture



Chapter 1

3D Model Based Motion Capture

This chapter contains four papers that adopt a 3D model based approach to recovering 3D human
pose and motion from monocular image sequences. Each paper offers a different approach to
the important problem of searching for nearby local minima of a complex cost function in a high-
dimensional parameter space, and applies it to the human tracking problem. Only the last method is
tied to the special structure of this problem — the other three methods are generic. All four papers
were written jointly with my then PhD student Christian Sminchisescu, whose PhD thesis [Smi02]
can be consulted for further details.

Summary of paper 1, “Estimating Articulated Human Motion With
Covariance Scaled Sampling”

This paper appeared in a special issue on human motion published by the International Journal
of Robotics Research (IJRR) [ST03a]. Earlier versions of the work were published as an INRIA
technical report [ST01b] and in the 2001 International Conference on Computer Vision and Pattern
Recognition (CVPR) [ST01a]. After giving details of our overall model and our multi-feature
model-image matching cost function, the paper describes a quasi-local random search method called
“Covariance Scaled Sampling”. This is probably best seen as an effort to make Markov Chain
Monte Carlo samplers such as particle filter trackers (‘Condensation’) feasible in high-dimensional
multi-modal problems. The three key insights are:

1. Shaped sampling: For ill-conditioned problems in many dimensions, isotropic sampling is
not enough. Samples should be distributed in a way that is sensitive to the local shape of the
cost function, otherwise most are wasted in high cost regions. For example, for an isotropic
sampler in a long narrow ‘trough’ or ‘tube’ in a high dimensional cost surface, most samples
will fall on the steep sidewalls of the trough, and only a few will fall along the long axis. The
workaround proposed is to use the local curvature of the cost function as a covariance model
to scale the sampler.

2. Long tailed sampling: Adjacent local minima are often separated by tens or even hundreds
of standard deviations, so shaped sampling is not enough. To reach the basins of attraction of
other minima with reasonable probability, one needs to sample from a deliberately broadened
(“long tailed”) distribution.

3



4 Chapter 1. 3D Model Based Motion Capture

3. Optimized samples: Sampling alone is not enough. In high dimensions, volume increases
very rapidly with distance, so the low-cost ‘cores’ of minima are tiny compared to the volume
occupied by their surrounding basins of attraction. Hence, even if a random sample falls in
the basin of attraction, it is very likely to fall at a high-cost point and thus be rejected by
the MCMC sampler. The work-around proposed is to perform several steps of optimization
starting from the initial sample, before deciding whether to accept or reject the sample.

Given these three insights, it is easy to make a sampler with the required properties. In practice this
method works quite well, but it still can not achieve very deep ‘penetration’ into the space of other
possible minima within a reasonable number of samples.

Summary of paper 2, “Building Roadmaps of Minima and Transitions
in Visual Models”

This paper has been accepted by the International Journal of Computer Vision and is scheduled for
publication in early 2005. An earlier version of the work appeared in the 2002 European Confer-
ence on Computer Vision [ST02b]. It returns to the local minimum problem by noting that any
path between two minima must necessarily have a maximum value somewhere. If this maximum is
minimized, the path necessarily crosses a ‘col’ or ‘mountain pass’ between the two minima. There
is a “transition state” — a stationary point with one negative curvature direction — at the top of the
path, and if we can locate this, it is easy to slide downhill to find the next minima. Hence finding
adjacent minima is reduced to climbing uphill while searching for nearby transition states. It turns
out that there are several heuristic methods for doing this, originally developed by computational
chemists for molecular configuration and surface adsorption calculations, but previously unknown
in vision and even in optimization. In this paper we present generalizations of two of these meth-
ods, and apply them to the human pose problem. Both are variants on damped-Newton-based local
descent minimization, modified to climb uphill towards a transition state saddle point. Eigenvec-
tor tracking explicitly flips the sign of one eigenvalue of the Hessian matrix, so that the damped
optimization moves uphill in that direction while still trying to descend in all the others. This is sim-
ple and it works quite well, but it can also be rather erratic as there is no global progress criterion.
Hypersurface sweeping sweeps a hypersurface through the space (a moving plane or expanding el-
lipsoid), tracking a local minimum within the surface. This gives better global guarantees, however
it is ‘blind’ to transition states that are oriented transversally to the sweeping surface. Both methods
work rather well in the human pose problem, in each case finding hundreds of local minima with a
comparatively modest amount of computation.

Summary of paper 3, “Fast Mixing Hyperdynamic Sampling”

This paper has been accepted for a special issue of the Journal of Image and Vision Computing
containing extended versions of selected ECCV 2002 papers, and should be published in late 2004
or early 2005. An earlier version appeared in the 2002 European Conference on Computer Vision
[ST02a]. It applies another computational chemistry method, “hyperdynamics”, to the problem of
finding transition regions in human pose spaces. In contrast to the approaches studied in the pre-
vious paper, hyperdynamics is a randomized method, using Markov Chain Monte Carlo sampling
in a modified potential designed to promote stochastic drift away from the original cost minimum
towards regions containing codimension 1 saddle points. The eigendecomposition of the Hessian is
again needed, to create this potential.
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Summary of paper 4, “Kinematic Jump Processes For Monocular 3D
Human Tracking”

This paper was presented at the 2003 International Conference on Computer Vision and Pattern
Recognition [ST03b]. A journal version is currently under preparation. The main idea is to exploit
the specific, known structure of the kinematic local minima in the human pose problem, exploring
the space of kinematically possible pose solutions by explicitly generating forwards-backwards
‘flips’ of limbs to jump between linked minima. These “kinematic jump” methods turn out to be
very efficient at exploring the kinematic ambiguities of the problem, significantly enhancing the
practical tracking reliability. However a complementary search method such as Covariance Scaled
Sampling is still needed to handle image matching ambiguities.





Estimating Articulated Human Motion With Covariance Scaled Sampling

Cristian Sminchisescu Bill Triggs
INRIA Rhône-Alpes, GRAVIR-CNRS, 655 avenue de l’Europe, 38330 Montbonnot, France

{Cristian.Sminchisescu,Bill.Triggs}@inrialpes.fr, www.inrialpes.fr/movi/people/{Sminchisescu,Triggs}

Abstract
We present a method for recovering 3D human body motion

from monocular video sequences based on a robust image match-
ing metric, incorporation of joint limits and non-self-intersection
constraints, and a new sample-and-refine search strategy guided
by rescaled cost-function covariances. Monocular 3D body track-
ing is challenging: besides the difficulty of matching an imperfect,
highly flexible, self-occluding model to cluttered image features,
realistic body models have at least 30 joint parameters subject
to highly nonlinear physical constraints, and at least a third of
these degrees of freedom are nearly unobservable in any given
monocular image. For image matching we use a carefully de-
signed robust cost metric combining robust optical flow, edge en-
ergy, and motion boundaries. The nonlinearities and matching
ambiguities make the parameter-space cost surface multi-modal,
ill-conditioned and highly nonlinear, so searching it is difficult.
We discuss the limitations of CONDENSATION-like samplers, and
describe a novel hybrid search algorithm that combines inflated-
covariance-scaled sampling and robust continuous optimization
subject to physical constraints and model priors. Our experiments
on challenging monocular sequences show that robust cost mod-
eling, joint and self-intersection constraints, and informed sam-
pling are all essential for reliable monocular 3D motion estima-
tion.

Keywords: 3D human body tracking, particle filtering, high-
dimensional search, constrained optimization, robust matching.

1 Introduction
Extracting 3D human motion from natural monocular
video sequences poses difficult modeling and computation
problems:
(i) Even a minimal human model is very complex, with
at least 30 joint parameters and many more body shape
ones, subject to highly nonlinear joint limits and non-self-
intersection constraints.
(ii) Matching a complex, imperfectly known, self-
occluding model to a cluttered scene is inherently difficult.
Typical loose clothing only complicates matters.
(iii) In contrast to simplified 2D approaches (Cham and
Rehg, 1999; Ju et al., 1996) and the multi-camera 3D case
(Kakadiaris and Metaxas, 1996; Gavrila and Davis, 1996;

Published in Int. J. Robotics Research special issue on Visual Analysis of
Human Movement, 22:371–391, June 2003. c© 2003 Sage Publications

Bregler and Malik, 1998; Delamarre and Faugeras, 1999;
Plankers and Fua, 2001; Drummond and Cipolla, 2001),
the estimation problem is extremely ill-conditioned, with
at least 1/3 of the 30+ degrees of freedom remaining very
nearly unobservable in any given monocular image. The
most important non-observabilities are motions of major
body segments in depth (i.e. towards or away from the cam-
era — these account for 1/3 of the 3D d.o.f.), but others
include rotations of near-cylindrical limbs about their axes,
and internal motions of compound joints like the spine or
shoulder that are difficult to observe even with 3D data.
(iv) In addition to being ill-conditioned, the monocular es-
timation problem is highly multi-modal. In particular, for
any given set of image projections of the 3D joint centers,
there are typically some thousands of possible inverse kine-
matics solutions for the 3D body configuration . Under
any reasonable model-image matching cost metric, each
kinematic solution produces a corresponding local mini-
mum in configuration space, and correspondence ambigu-
ities only compound this number of minima. In practice,
choosing the wrong minimum rapidly leads to mistracking,
so reliable tracking requires a powerful multiple hypoth-
esis tracker capable of finding and following a significant
number of minima. The development of such a tracker is
one of the main contributions of this paper. Some more
recent work, not reported here, further enhances tracking
reliability by explicitly enumerating the possible kinematic
minima (Sminchisescu and Triggs, 2003).

Also note that these four difficulties interact strongly in
practice. For example, minor modeling or matching er-
rors tend to lead to large compensatory biases in hard-
to-estimate depth parameters, which in turn cause mis-
prediction and tracking failure. Hence, we believe that a
successful monocular 3D body tracking system must pay
attention to all of them.

Organisation: §1.1 discusses several existing ap-

For each body segment, for any given depth for its top (innermost)
endpoint, the bottom endpoint can be aligned with its image projection
either in a ‘sloped forwards’ configuration, or in a ‘sloped backwards’
one. A full body model contains at least 10 main body segments, and
hence has at least 210 = 1024 possible inverse kinematics solutions (sets
of forwards/backwards segment configurations). See Lee and Chen (1985)
and the empirical confirmations in Sminchisescu and Triggs (2002a,b).
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8 Chapter 1. 3D Model Based Motion Capture

proaches to human articular tracking, explaining why we
believe that they are not suitable for the difficult 3D-from-
monocular case and informally motivating our new tracker.
§2 briefly describes our 3D body model, which includes
full 3D occlusion prediction, joint angle limits and body
non-self-intersection constraints. §3 discusses our robust
model-image matching framework, which combines robust
optical flow, edge energy, and motion boundaries. §4 de-
tails our hybrid search / tracking scheme, which combines
a mixture density propagation tracker with carefully shaped
cost-sensitive sampling, with robust constraint-respecting
local optimization. §5 briefly describes the local optimiza-
tion schedule we use to find initial 3D body poses and in-
ternal body proportions from model/image joint correspon-
dence input. §7 details some experiments on challenging
monocular sequences. These illustrate the need for each
of robust cost modeling, joint and self-intersection con-
straints, and well-controlled sampling plus local optimiza-
tion. We end the paper with discussions of the effect of the
sampling regime on search efficiency (§7) and approxima-
tion accuracy (§8), and ideas for future work.

1.1 High-Dimensional Tracking Strategies

Locating good poses in a high-dimensional body config-
uration space is intrinsically difficult. Three main classes
of search strategies exist: local descent incrementally im-
proves an existing estimate, e.g. using local Newton strate-
gies to predict good search directions (Bregler and Malik,
1998; Rehg and Kanade, 1995; Kakadiaris and Metaxas,
1996; Wachter and Nagel, 1999); regular sampling eval-
uates the cost function at a predefined pattern of points
in (a slice of) parameter space, e.g. a local rectangular
grid (Gavrila and Davis, 1996); and stochastic sampling
generates random sampling points according to some hy-
pothesis distribution encoding “good places to look”, e.g.
(Deutscher et al., 2000; Sidenbladh et al., 2000). Densely
sampling the entire parameter space would in principle
guarantee a good solution, but it is infeasible in more than
2–3 dimensions. In 30 dimensions any feasible sample
must be extremely sparse, and hence likely to miss sig-
nificant cost minima. Local descent does at least find a
local minimum, but with multimodality there is no guar-
antee that the globally most representative ones are found.
Whichever method is used, effective focusing is the key to
high-dimensional search. This is an active research area
(Deutscher et al., 2000; Heap and Hogg, 1998; Cham and
Rehg, 1999; Merwe et al., 2000), but no existing method
can guarantee global minima.

During tracking the search method is applied time-
recursively, the starting point(s) for the current search be-
ing obtained from the results at the previous time step, per-
haps according to some noisy dynamical model. To the

(often limited!) extent that the dynamics and the image
matching cost are statistically realistic, Bayes-law propa-
gation of a probability density for the true state is possible.
For linearized unimodal dynamics and observation mod-
els under least squares / Gaussian noise, this leads to Ex-
tended Kalman Filtering. For likelihood-weighted random
sampling under general multimodal dynamics and obser-
vation models, bootstrap filters (Gordon et al., 1993; Gor-
don and Salmond, 1995) or CONDENSATION (Isard and
Blake, 1998) result. In either case various model param-
eters must be tuned and it sometimes happens that physi-
cally implausible settings are needed for acceptable perfor-
mance. In particular, to control mistracking caused by cor-
respondence errors, selection of slightly incorrect inverse
kinematics solutions, and similar model identification er-
rors, visual trackers often require exaggerated levels of dy-
namical noise. The problem is that even quite minor errors
can pull the state estimate a substantial distance from its
true value, especially if they persist over several time steps.
Recovering from such an error requires a state space jump
greater than any that a realistic random dynamics is likely
to provide, whereas using an exaggeratedly noisy dynamics
provides an easily controllable degree of local randomiza-
tion that often allows the mistracked estimate to jump back
onto the right track. Boosting the dynamical noise does
have the side effect of reducing the information propagated
from past observations, and hence increasing the local un-
certainty associated with each mode. But this is a small
penalty to pay for reliable tracking lock, and in any case
the loss of accuracy is often minor in visual tracking, where
weak dynamical models (i.e. short integration times: most
of the state information comes from current observations
and dynamical details are unimportant) are common.

In summary, in multi-modal problems, sample based
Bayesian trackers often get trapped into following incorrect
local minima, and some form of explicit local (but not too
local!) search must be included to rescue them. For track-
ers operating in this “memoryless step and search” regime,
the machinery of Bayes-law propagation is superfluous —
the dynamical model is not correct in any case — and it is
simpler to think in terms of sequential local search rather
than tracking and noisy dynamics. It seems that many, if
not most, existing Bayesian trackers in vision operate es-
sentially in this regime, and the current paper is no excep-
tion. Hence, we will assume only weak zeroth order dy-
namical models and use the language of search rather than
tracking. But this is largely a matter of terminology, and
more elaborate dynamical models are trivial to incorporate
if desired.

Many existing human trackers silently inflate the dynam-
ical noise as a local search mechanism, e.g. (Cham and
Rehg, 1999; Heap and Hogg, 1998; Deutscher et al., 2000).
But in each of these papers, it is only one component of
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the overall search strategy. The randomization provided by
noise inflation is an effective search strategy only for rel-
atively low-dimensional problems, where the samples can
cover the surrounding neighborhood fairly densely. In high
dimensions, volume increases very rapidly with radius, so
any sample that is spread widely enough to reach nearby
minima must necessarily be extremely sparse. Hence, the
samples are most unlikely to hit the small core of low cost
values surrounding another minimum: if they fall into its
basin of attraction at all, they are much more likely do so
at a high cost point, simply because high cost points are
far more common. This is fatal for CONDENSATION-style
weighted resampling: high cost points are very unlikely
to be resampled, so the new minimum is almost certain to
be missed even though an independent track started at the
sample would eventually condense to the minimum. The
moral is that in high dimensions, random sampling alone
does not suffice: some form of local optimization of the
samples, or at least a delayed decision about whether they
are viable or not, is essential to prevent mistracking. Cham
and Rehg (1999); Heap and Hogg (1998) and the current
work use explicit descent-based local optimization for this,
while (Deutscher et al., 2000) use a simulated annealing
like process (which is usually less efficient, although better
aligned with the point-based sample-and-evaluate philoso-
phy of pure particle tracking).

The 3D-from-monocular problem has characteristic ill-
conditioning associated with depth degrees of freedom,
whereas transverse degrees of freedom are directly observ-
able and hence relatively well conditioned. It also has
large numbers of kinematic local minima related by mo-
tions in depth, in addition to the minima in transversal di-
rections produced by correspondence ambiguities. Hence,
we would like to ensure a thorough, perhaps even a pref-
erential, search along the hard-to-estimate depth degrees
of freedom. The problem is that the two sets of directions
have very different properties and scales. Precisely because
they have such similar image appearances, related kine-
matic minima may cause confusion even if they are sep-
arated by significant distances in parameter space, whereas
false-correspondence minima only cause confusion if they
are relatively nearby. In other words, the natural metric for
tracker confusion — and hence for the sampling distribu-
tion of the randomized local search — is perceptual image
distance, not parameter space distance. This holds notwith-
standing the fact that large jumps in configuration (depth)
are improbable under natural human dynamics: the tracker
may have been gradually mislead over a period of time, and
it is essential that it should be able to jump far enough to
recover before tracking fails entirely.

Ideally, a subsequent smoothing process would push the corrective
jump back in time to where the error first occurred (where the jump pre-
sumably becomes small). But whether or not this is done, the likelihood

This suggests that we need to inflate the dynamical noise
preferentially along the depth directions. But these depend
strongly on where the model is viewed from, so no con-
stant (configuration or camera-position independent) noise
inflation suffices here. The simplest way to adapt the noise
to the configuration/camera-position is to estimate the co-
variance of the posterior likelihood and use this for noise
scaling. (In fact, we advocate inflating the prior covariance
— the previous posterior after dynamics with physically
realistic noise levels — i.e. there should be both realistic
dynamics and some degree of deliberate random search).
Evaluating covariances might be burdensome in a conven-
tional particle tracking framework where we only had point
samples of likelihoods, but we have already seen that some
form of local refinement of the samples is practically essen-
tial in high dimensions, and efficient local optimizers re-
quire (and in the case of quasi-Newton style methods, even
provide) information equivalent to covariance estimates.

The emphasize how much difference covariance scaling
can make, consider the 32 d.o.f. cost spectrum in fig. 5 on
page 17, which has a 2000:1 range of principal standard de-
viations. For inflation large enough to double the sampling
radius along the most uncertain direction (e.g., for a mod-
est search for local minima along this cost valley), a scaling
based on uniform dynamical noise would produce a search
volume 1054 times larger than that of our prior-based one,
and an overwhelming fraction of these samples would have
extremely high cost and images implausibly different from
the source image (see also fig. 1 on page 12). Such wastage
factors are clearly untenable. In practice, samplers based
on inflating non-covariance-based dynamical noises sim-
ply can not sample deeply enough along the most uncer-
tain (depth) directions to find the local minima there, and
frequent mistracking is the result.

Finally, given that we are including a component of
covariance-scaled but inflated noise expressly as a local
search mechanism, what kinds of noise distributions will
give the most efficient search? Basically, we need to keep
a reasonably large proportion of the samples focused on
the current track, while scattering the others fairly widely
in the hope of finding other good tracks. Also, volume
increases very rapidly with radius in high dimensions, so
(even with local optimization) we can not hope to sam-
ple densely enough to provide effective search coverage at
large inflation factors. It is preferable to choose a moder-
ate inflation level, even though this only provides access to
relatively nearby local minima.

In summary, owing to its high dimensionality and the
ill-conditioning and multi-modality associated with unob-
servable depth degrees of freedom, we believe that reliable

penalty for following an incorrect path arbitrarily far forwards in time is
likely to be greater than that for any single corrective jump, bad as this
may be.
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3D-from-monocular human body tracking requires deliber-
ate sampling (or some other form of local search) in a re-
gion shaped by, but significantly larger than, the local state
covariance, followed by local optimization of the samples
before any resampling step.

1.2 Previous Work

Below we will compare our method to several existing
ones, which we briefly summarize here without attempt-
ing a full literature review. 3D body tracking from monoc-
ular sequences is significantly harder than 2D (Cham and
Rehg, 1999; Ju et al., 1996) or multi-camera 3D (Kakadi-
aris and Metaxas, 1996; Gavrila and Davis, 1996; Bregler
and Malik, 1998; Delamarre and Faugeras, 1999; Plankers
and Fua, 2001; Drummond and Cipolla, 2001) tracking,
and surprisingly few works have addressed it (Deutscher
et al., 2000; Sidenbladh et al., 2000; Wachter and Nagel,
1999; Gonglaves et al., 1995; Howe et al., 1999; Brand,
1999).

Deutscher et al. (2000) uses a sophisticated ‘annealed
sampling’ strategy and a cross-over operator (Deutscher
et al., 2001) to speed up CONDENSATION. He reports very
good results for unconstrained full-body motion, but for his
main sequence he uses 3 cameras and a black background
to limit the impact of the alternative minima produced by
clutter and depth ambiguities. Sidenbladh et al. (2000)
uses a similar importance sampling technique with a strong
learned prior walking model or a database of motion snip-
pets (Sidenbladh et al., 2002) to track a walking person in
an outdoor monocular sequence. Subsequent work (Siden-
bladh and Black, 2001) integrates flow, edge and ridge cues
using Laplace like error distributions learned from train-
ing data, and shows improved upper body tracking for a
subject performing planar motion in a cluttered scene, ac-
quired with a moving camera. Our current method uses no
motion model — we optimize static poses — but it is true
that when they hold, prior motion models are very effec-
tive tracking stabilizers. It is possible, but expensive, to
track using a bank of motion models (Blake et al., 1999).
Partitioned sampling (MacCormick and Isard, 2000) is an-
other notable sampling technique for articulated models,
under certain labeling assumptions (MacCormick and Is-
ard, 2000; Deutscher et al., 2000).

Several authors address the difficulty that the sampling-
based searches of pure particle filtering converge rather
slowly to modes (Pitt and Shephard, 1997; Heap and Hogg,
1998; Cham and Rehg, 1999; Merwe et al., 2000; Choo
and Fleet, 2001), especially when the observation likeli-
hood peaks deep in the tail of the prior. This is espe-
cially problematic in high dimensions, where prohibitively
long sampling runs are often required for convergence.
Heap and Hogg (1998); Cham and Rehg (1999); Merwe

et al. (2000) all combine CONDENSATION-style sampling
with either local optimization or Kalman filtering, while
Pitt and Shephard (1997) samples discretely using the cur-
rent observation likelihood (and not the transition prior).
The visual trackers of Heap and Hogg (1998) and Cham
and Rehg (1999) combine CONDENSATION-style sampling
with least-squares optimization, but they only consider the
simpler (and much better conditioned) case of 2D tracking.
Cham & Rehg combine their heuristic 2D Scaled Prismatic
Model (SPM) body representation with a first order mo-
tion model and a piecewise Gaussian resampling method
for the CONDENSATION step. The Gaussian covariances
are estimated from the Gauss-Newton approximation at the
fitted optima, but the search region widths are controlled
by the traditional method of adding a large dynamical noise
((Cham and Rehg, 1999) section 3.2).

Choo and Fleet (2001) use a stick model (without any
shape model) for which 3D-2D joint to image correspon-
dences from motion capture data are available and pro-
pose a (gradient-based) Hybrid Monte Carlo sampler that
is more efficient than (point-based) CONDENSATION. The
method provides more efficient local descent towards the
minima, but it is still prone to trapping in sub-optimal local
minima.

Wachter and Nagel (1999) use articulated kinematics and
a shape model built from truncated cones, and estimate
motion in a monocular sequence, using edge and intensity
(optical flow) information using an extended Kalman filter.
Anatomical joint limits are enforced at the level of the filter
prediction, but not during the update step, where they could
be violated. They show experiments in an unconstrained
environment for a subject wearing normal clothing, track-
ing motion parallel with the image plane using articulated
models with 10-15 d.o.f.

Both Brand (1999) and Howe et al. (1999) pose 3D esti-
mation as a learning and inference problem, assuming that
some form of 2D tracking (stick 2D model positions or sil-
houettes) is available over an entire time-series. Howe et al.
(1999) learn Gaussian distributions over short “snippets”
of observed human motion trajectories, then use these as
priors in an EM-based Bayesian MAP framework to es-
timate new motions. Brand (1999) learns a HMM with
piecewise linear states and solves for the MAP estimate
using an entropy minimization framework. As presented,
these methods are basically monomodal so they can not
accommodate multiple trajectory interpretations, and they

The covariance estimates of nonlinear least-squares optimizers as
used by (Heap and Hogg, 1998; Cham and Rehg, 1999) are not robust
to model/image matching errors and incorrect (i.e. biased) for natural im-
age statistics that have highly non-Gaussian shape with high kurtosis and
long tails (Zhu and Mumford, 1997; Sidenbladh and Black, 2001). We use
an observation likelihood and a robust local continuous optimizer based
on heavy tail error distributions (see §3.1 and §4.1) to address these prob-
lems.
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Figure 2: Different body models using for tracking (a,b,c).
In (c) the prediction errors for a model configuration are
also plotted (per node, for a contour and intensity cost func-
tion, see text).

also rely heavily on their learned-prior temporal models to
stabilize the tracking. Nevertheless, they provide a power-
ful higher-level learning component that is complementary
to the framework proposed in this paper.

2 Human Body Model
Our human body model (fig. 2a,b,c) consists of a kinematic
‘skeleton’ of articulated joints controlled by angular joint
parameters xa, covered by ‘flesh’ built from superquadric
ellipsoids with additional tapering and bending parameters
(Barr, 1984). A typical model has around 30 joint param-
eters, plus 8 internal proportion parameters xi encod-
ing the positions of the hip, clavicle and skull tip joints,
plus 9 deformable shape parameters for each body part,
gathered into a vector xd. A complete model can be en-
coded as a single large parameter vector x = (xa,xd,xi).
During tracking we usually estimate only joint parameters,
but during initialization the most important internal propor-
tions and shape parameters are also optimized, subject to a
soft prior based on standard humanoid dimensions obtained
from Group (2002) and updated using collected image evi-
dence. This model is far from photorealistic, but it suffices
for high-level interpretation and realistic occlusion predic-
tion, offering a good trade-off between computational com-
plexity and coverage.

The model is used as follows. Superquadric surfaces
are discretized as meshes parameterized by angular coor-
dinates in a 2D topological domain. Mesh nodes ui are
transformed into 3D points pi = pi(x) and then into pre-
dicted image points ri = ri(x) using composite nonlinear
transformations:

ri(x) = P (pi(x)) = P (A(xa,xi, D(xd,ui))) (1)

where D represents a sequence of parametric deformations
that construct the corresponding part in its own reference

frame, A represents a chain of rigid transformations that
map it through the kinematic chain to its 3D position, and P
represents perspective image projection. During model es-
timation, robust prediction-to-image matching cost metrics
are evaluated for each predicted image feature ri, and the
results are summed over all features to produce the image
contribution to the overall parameter space cost function.
We use both direct image-based cost metrics such as robus-
tified normalized edge energy, and extracted feature based
ones. The latter associate the predictions ri with one or
more nearby image features r̄i (with additional subscripts
if there are several matches). The cost is then a robust func-
tion of the prediction errors ∆ri(x) = r̄i − ri(x).

3 Problem Formulation
We aim towards a probabilistic interpretation and optimal
estimates of the model parameters by maximizing the total
probability according to Bayes rule:

p(x|r̄) ∝ p(r̄|x) p(x) = exp (−
∑

ie(r̄i|x)) p(x) (2)

where e(r̄i|x) is the cost density associated with the obser-
vation of node i and p(x) is a prior on model parameters. In
our MAP approach, we discretize the continuous problem
and attempt to minimize the negative log-likelihood for the
total posterior probability, expressed as the following cost
function:

f(x) = − log(p(r̄|x) p(x)) (3)
= − log p(r̄|x) − log p(x) = fo(x) + fp(x) (4)

3.1 Observation Likelihood
Whether continuous or discrete, the search process depends
critically on the observation likelihood component of the
parameter space cost function. Besides smoothness proper-
ties, the likelihood should be designed to limit the number
of spurious local minima in parameter space. Our method
employs a combination of robust edge and intensity infor-
mation on top of a multiple assignment strategy based on
a weighting scheme that focuses attention towards motion
boundaries. Our likelihood term is also based on robust
(heavy-tailed) error distributions. Note that both robustly
extracted image cues and robust parameter space estima-
tion are used: the former provides “good features to track”,
while the latter directly addresses the model-image associ-
ation problem.
Robust Error Distributions: Robust parameter estimation
can be viewed as the choice of a realistic total likelihood
model for the combined inlier and outlier distributions for
the observation. We model the total likelihood in terms
of robust radial terms ρi, where ρi(s) can be any increas-
ing function with ρi(0) = 0 and d

ds
ρi(0) = ν

σ2 . These
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Figure 1: (a) Typical parameter space minima distribution measured with respect to an arbitrary minimum. Notice that
the minima are far from each other in parameter space so wide sampling is necessary to find them. However, boosting the
dynamics by sampling from the transition prior (as in particle filtering) leads to inefficiencies (b).

Figure 3: Examples of our robust low-level feature extraction: original image (a), motion boundaries (b), intensity-edge
energy (c), robust horizontal flow field (d) and the model-based edge matching process (e). Multiple edge matches found
along individual search lines (model projected contour normals) are fused using a probabilistic assignment strategy (see
text).

model error distributions corresponding to a central peak
with scale σ, and a widely spread background of outliers
ν. Here we used the ‘Lorentzian’ ρi(s, σ) = ν log(1 + s

σ2 )
and ‘Leclerc’ ρi(s, σ) = ν(1 − exp(− s

σ2 )) robust error
potentials.

The cost for the observation i, expressed in terms of
corresponding model prediction is e(r̄i|x) = 1

Nν
eui(x),

where N is the total number of model nodes, Wi is a posi-
tive definite weighting matrix associated to the assignment
i, and:

ei(x) =







1

2
ρi(∆ri(x)Wi ∆ri(x)

>
) if i is assigned

νbf = ν if back-facing
νocc = kν, k > 1 if occluded

(5)

The robust observation likelihood contribution is thus:

fo(x) = − log p(r̄|x) (6)
= fa(x) + Nbf νbf + Nocc νocc (7)

where fa(x) represents the term associated with the image
assigned model nodes, while Nocc and Nbf are the numbers
of occluded and back-facing (self-occluded) model nodes.

Notice that occluded model predictions are not simply
ignored. They contribute a constant penalty to the over-
all observation likelihood. This is necessary in order to
build likelihoods that preserve their response properties un-
der occlusion and viewpoint change. For instance, good
fits from both frontal and side views should ideally have
similar peak responses, but it is clear that the number of
occluded model points is in general larger in a side view
than in a frontal one. This can lead to down-weighting
of peaks for side views if only the visible nodes are taken
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into account. An additional difficulty arises, for example,
in cases where the legs pass each other (in a side-view)
and the model ‘locks’ both of its legs onto the same image
leg. To avoid such situations, we include all of the model
nodes when fusing the likelihood, but we slightly penalize
occluded ones in order to make them less attractive. A way
to choose the occlusion penalty ν is to fit the model to the
data and compute an approximate error per node. By us-
ing a slightly higher value for occluded nodes, we make
them more attractive than a bad fit but less attractive than
other non-occluded states that can exist in the neighbor-
hood of the parameter space. We find this heuristic gives
good results in practice, although a more rigorous treat-
ment of occlusion would be desirable in the general case.
At present, this is computationally too expensive, but in-
teresting approximations can be found in MacCormick and
Blake (1998).

Cue Integration and Assigned Image Descriptors: We
use both edge and intensity features in our cost function
(see Sminchisescu (2002b) for details). For edges, the im-
ages are smoothed with a Gaussian kernel, contrast normal-
ized, and a Sobel edge detector is applied. For intensities,
a robust multi-scale optical flow method based on Black
and Anandan (1996) implementation gives both a flow field
and an associated outlier map (see fig. 3b). The outlier map
is processed similar to edges, to obtain a smooth 2D po-
tential field Sp. It conveys useful information about the
motion boundaries and is used to weight the significance
of edges (see fig. 3b). We typically use diagonal weight-
ing matrices Wi, associated with the predicted feature ri

and corresponding matched observation r̄i, of the form
Wi(ri) = 1 − kSp(r̄i), where k is a constant that con-
trols the emphasis and confidence in the motion boundary
estimation. (The smoothed motion boundary image is a
real image with values between 0 and 1 as in fig. 3b. For
instance, k = 0 will weight all the edges uniformly, while
k = 1 will entirely exclude the edge responses that are not
on motion boundaries). In practice, we found that values
of k in the range k = 0.2–0.4 worked well. For visible
nodes on model occluding contours (O), we perform line
search along the normal and retain all possible assignments
within the search window (see fig. 3e), weighting them by
their importance qualified by the motion boundary map W.
For visible model nodes lying inside the object (I), we use
the correspondence field derived from the robust optical
flow at their corresponding image prediction. This acts as a
residual measurement error at each visible model node (see
Sminchisescu (2002b) for details). The assigned data term

This is particularly effective when combined with the Covariance
Scaled Sampling (CSS) algorithm presented in §4. Loss of visibility of
certain body parts leads to increased uncertainty in related parameters,
and CSS automatically ensures broader sampling in those parameter space
regions.

(6) thus becomes:

fa(x) =
1

2

∑

i∈O, e∈Ei

ρie(∆rie(x)Wie ∆rie(x)
>

) (8)

+
1

2

∑

j∈I

ρjf
(∆rj f

(x)Wjf
∆rj f

(x)
>

) (9)

where the subscripts “ie” denote multiple edges Ei assigned
to model prediction i, and “jf ” denote the flow term as-
signed to model prediction j.

3.2 Model Priors
The complete prior penalty over model parameters is a sum
of negative log likelihoods fp = fan+fs+fpa correspond-
ing to the following prior densities pan, ps, ppa:
Anthropometric data pan: The internal proportions for
a standard humanoid (based on statistical measurements)
are collected from (Group, 2002) and used effectively as a
Gaussian prior, pan = N (µan,Σan), to estimate a con-
crete model for the subject to be tracked. Left-right sym-
metry of the body is assumed: only “one side” of the inter-
nal proportions parameters are estimated while collecting
image measurements from the entire body.
Parameter stabilizers ps: Certain modeling details are far
more important than one might think. For example, it is
impossible to track common turning and reaching motions
unless the clavicle joints in the shoulder are modeled ac-
curately. However, these parameters have fairly well de-
fined equilibrium positions and leaving them unconstrained
would often lead to ambiguities that produce nearly singu-
lar (flat) cost surfaces. We control these hard-to-estimate
parameters with long-tailed “sticky prior” stabilizers scal-
ing their Gaussian equilibria, ps = N (µs,Σs). This en-
sures that in the absence of strong observations, the pa-
rameters are constrained to lie near their default values,
whereas stronger observations can “unstick” them from the
defaults and effectively turn off the prior.
Anatomical joint angle limits Cbl: 3D consistency re-
quires that the values of joint angles evolve within anatom-
ically consistent intervals. Also, when estimating internal
body proportions during initialization, we ensure that they
remain within a certain range of deviation from the stan-
dard humanoid (typically 10%). We model this with a set
of inequalities of the form Cbl ·x < 0, where Cbl is a ‘box-
limit’ constraint matrix.
Body part interpenetration avoidance ppa: Physical con-
sistency requires that different body parts do not interpene-
trate during estimation. We avoid this by introducing re-
pulsive potentials that decay rapidly outside the surface
of each body part, fpa = exp(−f(x) |f(x)|p−1), where
f(x) < 0 defines the interior of the part and p controls the
decay rate.
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3.3 Distribution Representation

We represent parameter space distributions as sets of sep-
arate modes mi ∈ M, each having an associated overall
probability, mean and covariance matrix mi = (µi, Σi, ci).
These can be viewed as Gaussian mixtures. Cham & Rehg
(Cham and Rehg, 1999) also use multiple Gaussians, but
they had to introduce a special piecewise representation as
their modes seem to occur in clusters after optimization.
We believe that this is an artifact of their cost function de-
sign. In our case, as the modes are the result of robust con-
tinuous optimization, they are necessarily either separated
or confounded. Our 3D-from-monocular application also
requires a more effective sampling method than the 2D one
of Cham and Rehg (1999), as explained in §4.2.

3.4 Temporal Propagation

Equation 2 reflects the search for the model parameters in
a static image, under likelihood terms and model priors
but without a temporal or initialization prior. For temporal
observations Rt = {r̄1, r̄2..., r̄t}, and sequence of states
Xt = {x1,x2...,xt}, the posterior distribution over model
parameters becomes:

p(xt|Rt) ∝ p(r̄t|xt) p(xt)
∫

xt−1
p(xt|xt−1) p(xt−1|Rt−1)

(10)
where p(xt|xt−1) is a dynamical prior and p(xt−1|Rt−1)
is the prior distribution from t − 1. Together they form the
temporal prior p(xt|Rt−1) for initializing the static image
search (2).

4 Search Algorithm
Our parameter search technique combines robust
constraint-consistent local optimization with a more
global discrete sampling method.

4.1 Mode Seeking using Robust Constrained
Continuous Optimization

The cost function is a negative log likelihood. In order to
optimize a sample x to find the center of its associated like-
lihood peak, we employ an iterative second order robust
constrained local optimization procedure. At each itera-
tion, the log-likelihood gradients and Hessians of the ob-

In practice, at any given time step we work on a negative log-
likelihood ‘energy’ function that is essentially static, being based on both
the current observation likelihood and the parameter space priors, as in (3)
on page 11. The samples from the temporal prior p(xt|Rt−1) are used as
initialization seeds for local energy minimization. The different minima
found will represent the components of the posterior mixture representa-
tion.

Figure 4: (a) Displaced minimum due to joint limits con-
straints, (b) Joint limits without body non-self-intersection
constraints do not suffice for physical consistency.

servations and the soft priors are assembled from (3):

g =
df

dx
= go + ∇fan + ∇fs + ∇fpa (11)

H =
d2f

dx2
= Ho + ∇2fan + ∇2fs + ∇2fpa (12)

For local optimization we use a second order trust region
method, where a descent direction is chosen by solving the
regularized subproblem (Fletcher, 1987):

(H + λW) δx = −g subject to Cbl · x < 0 (13)

where W is a symmetric positive definite damping matrix
and λ is a dynamically chosen weighting factor. Joint limits
Cbl are handled as hard bound constraints in the optimizer,
by projecting the gradient onto the currently active (i.e. cur-
rently unlimited) variables. The joint constraints change
the character of the cost function and the minima reached
very significantly. Fig. 4 plots a 1D slice through the con-
strained cost function together with a second order Taylor
expansion of the unconstrained cost. Owing to the presence
of the bounds, the cost gradient is nonzero (orthogonal to
the active constraints) at the constrained minimum. The
unconstrained cost function is smooth, but the constrained
one changes gradient abruptly when a constraint is hit, es-
sentially because the active-set projection method changes
the motion direction to maintain the constraint.

4.2 Covariance Scaled Sampling
Although representations based on propagating multiple
modes, hypotheses or samples tend to increase the robust-
ness of model estimation, the great difficulty with high-
dimensional distributions is finding a sampleable proposal

‘Soft’ means that these terms are part of the cost surface, whereas
‘hard’ constraints such as joint limits restrict the range of variation of
their corresponding parameters.
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density that often hits their typical sets — the areas where
most of their probability mass is concentrated. Here we
develop a proposal density based on local parameter esti-
mation uncertainties. The local sample optimizations give
us not only local modes, but also their (robust, constraint
consistent) Hessians and hence estimates of the local pos-
terior parameter estimation uncertainty at each mode.

The main insight is that alternative cost minima are most
likely to occur along local valleys in the cost surface, i.e.
along highly uncertain directions of the covariance. It
is along these directions that cost-modeling imperfections
and noise, and 3D nonlinearities and constraints, have the
most likelihood of creating multiple minima, as the cost
function is shallowest and the 3D movements are largest
there. This is particularly true for monocular 3D estima-
tion, where the covariance is unusually ill-conditioned ow-
ing to the many poorly observable motion-in-depth d.o.f.
Some examples of such multimodal behavior along high
covariance eigen-directions are given in fig. 7. Also, it is
seldom enough to sample at the scale of the estimated co-
variance. Samples at this scale almost always fall back into
the same local minimum, and significantly deeper sampling
is necessary to capture nearby but non-overlapping modes
lying further up the valley. Hence, we sample according to
rescaled covariances, typically scaling by a factor of 8 or
so. Finally, one can sample either randomly, or according
to a regular pattern. For the experiments showed here, we
use random sampling using CSS with Gaussian tails. Fig. 6
summarizes the resulting covariance-scaled search method.

Given the explanations above, we must implement the
following steps:

(i) Generate fair samples from a prior with known
modes. This is easy. In our case we propagate Gaussian

Related variable metric ideas can be found in global optimization,
in the context of continuous annealing (Vanderbilt and Louie, 1984) and
have been applied by Black (1992) to low-dimensional (2D) optical flow
computation.

A sample is optimized to convergence to obtain the corresponding
mode. The Hessian matrix at the convergence mode gives the princi-
pal curvature directions and magnitude around the mode and its inverse
gives the covariance matrix, reflecting the cost local uncertainty structure.
The Hessian is estimated by the algorithm §4.1 during optimization (using
(11)), and the covariance is readily obtained from there.

In part this is due to imperfect modeling, which easily creates biases
greater than a few standard deviations, particularly in directions where
the measurements are weak. Also, one case in which multiple modes are
likely to lie so close together in position and cost that they cause con-
fusion is when a single mode fragments due to smooth evolutions of the
cost surface. In this case, singularity (‘catastrophe’) theory predicts that
generically, exactly two modes will arise (bifurcation) and that they will
initially move apart very rapidly (at a speed proportional to 1/

√
t). Hence,

it is easy for one mode to get lost if we sample too close to the one we are
tracking.

For efficiency purposes, an implementation could sample regularly,
in fact only along lines corresponding to the lowest few covariance eigen-
directions. Although this gives a very sparse sampling indeed, this is an
avenue that can be explored in practice.

mixtures can be used as importance sampling distributions,
and correction weighting is readily performed. Mixtures
provide a compact, explicitly multi-modal representation
and accurate localization, advantages emphasized by Heap
and Hogg (1998) and Cham and Rehg (1999) (§5.1). How-
ever, both papers use sampling stages based on the unmodi-
fied process model (i.e. dynamics with fixed, near-spherical
noise), which therefore have trapping and sample wastage
problems analogous to CONDENSATION.

(ii) Recover new modes of a distribution for which only
some of the modes are known. This is significantly more
difficult. A-priori, the distribution of unknown modes is
not available, nor are the boundaries of the basins of at-
traction of the existing modes (in order to find their neigh-
bors). Also, such likelihood peaks are often well-separated
in configuration space (e.g. the forwards/backwards flip-
ping ambiguities for human pose, or the cascades of in-
correct matches when a model limb is assigned to the in-
correct side of an image limb). For typical distributions of
minima in parameter space and in cost, see fig. 13 on page
22 and the results in table 1 on page 23. For well-separated
peaks, sampling based purely on the known (and poten-
tially incomplete) ones is inadequate, as most of the sam-
ples will simply fall back into the peaks they arose from.
So broader sampling is necessary, but it is also important
to focus the samples in relatively low cost regions (see also
fig. 1). To achieve this we propose to use the local cost sur-
face to shape a broad sampling distribution. As expected
on theoretical grounds, this turns out to give significantly
improved results for CSS (for sample cost median, num-
ber of minima found, their cost) than competing methods
based on either pure prior-based sampling or prior-based
sampling plus spherical ‘dynamical’ noise (see table 1 on
page 23).

(iii) Sample a prior under dynamic observations but
without making restrictive assumptions on the motion of
its peaks. In this case the modes from time t − 1 are avail-
able, and it is critical that the sampling procedure cover the

There are at least two ways to obtain a mixture. One is by clustering
a set of posterior samples generated, e.g., by CONDENSATION updates.
This may produce centers that are not necessarily well-separated, and that
may not actually reflect the true modes of the posterior owing to sampling
artifacts. Another possibility, followed here, is to optimize the samples
locally. In this case the modes found are true local peaks that are, neces-
sarily, either separated or confounded.

Several metrics exist for assessing the efficiency of particle filters
(Liu, 1996; MacCormick and Isard, 2000). The ‘survival diagnostic’ (also
called ‘effective sample size’) measures how many particles will survive
a resampling operation. If the weights are unbalanced very few may sur-
vive, thus reducing search diversity. But balanced weights do not imply
that all peaks have been well explored: samples trapped in a single mode
have reasonably well-balanced weights. The same criticism applies to the
‘survival rate’. This tries to characterize the ratio of the volume of sup-
port of the posterior to that of the prior. Low values suggest that the filter
may produce inaccurate density estimates, but again, trapping leaves the
survival rate reasonably high.
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peaks of the observation likelihood in the next time step t.
This means that samples should be generated in the basins
of attraction of the density peaks after applying the dynam-
ical update. In the absence of knowledge about the peaks’
motion (i.e. known system dynamics), we exploit the lo-
cal uncertainty structure in the distribution, and shape the
search region based on it. Again, broader sampling is nec-
essary, as the tracked object moves between frames. Also,
as explained above, the mode tracking process is not one-
to-one. New modes might emerge or split under the ef-
fect of increased uncertainty, and it is important that the
sampling process does not miss such events by sampling
too close to a given mode core, which may both move and
split between two temporal observations. Our quantitative
results in §6 directly support such findings e.g. for mode
splitting reflecting bi-modality generated by locally-planar
versus in-depth motion explanations (see below).

In this paper, we have not used specific motion models as
we want to be able to track general human motions (see for
instance, the sequences given in fig. 9–11). For the exper-
iments shown in the next section, we used trivial driftless
diffusion dynamics, so CSS has to account for local uncer-
tainty and sample widely enough to cover moving peaks.
One could also use constant velocity dynamics, or more
sophisticated learned motion models such as walking Rohr
(1994); Deutscher et al. (2000); Sidenbladh et al. (2000).
When they hold, such models can significantly stabilize
tracking, but note that they often turn out to be mislead-
ing, e.g. when the subject makes unexpected motions like
turning or switching activities.

To build up intuition about the shape of our cost surface, we
studied it empirically by sampling along uncertain covari-
ance directions (in fact eigenvectors of the covariance ma-
trix), for various model configurations. With our carefully
selected image descriptors, the cost surface is smooth apart
from the apparent gradient discontinuities caused by active-
set projection at joint constraint activation points. Hence,
our local optimizer reliably finds a local minimum. We
find that multiple modes do indeed occur for certain con-
figurations, usually separated by cost barriers that a clas-
sical (uninflated) sampling strategy would have difficulty
crossing. For example, fig. 7 shows the two most uncertain
modes of the fig. 9 human tracking sequence at times 0.8 s
and 0.9 s. (These are minima only within the sampled slice
of parameter space, but they do lie in the attraction zones
of full parameter space minima). Secondary minima like
those shown here occur rather often, typically for one of
two reasons. The first is incorrect registration and partial
loss of track when both edges of a limb model are attracted
to the same image edge of the limb. This is particularly
critical when there is imperfect body modeling and slightly
misestimated depth. The second occurs when the character
of a motion in depth is misinterpreted. Image registration

is maintained until the incorrect 3D interpretation becomes
untenable, at which point recovery is difficult. This situa-
tion occurs in fig. 7 (see also fig. 12). Identifying and track-
ing such ambiguous behaviors is critical, as incorrect depth
interpretations quickly lead to tracking failure.

Fig. 8a shows some typical slices along cost eigendirec-
tions at much larger scales in parameter space. Note that we
recover the expected robust shape of the matching distribu-
tion, with some but not too many spurious local minima.
This is crucial for efficiency and robustness, as the tracker
can only follow a limited number of possible minima.

5 Model Initialization
Our tracker starts with a set of initial hypotheses produced
by a model initialization process. Correspondences need
to be specified between model joint locations and approxi-
mate joint positions of the subject in the initial image, and
a non-trivial optimization process is run to estimate cer-
tain body dimensions and the initial 3D joint angles. Previ-
ous approaches to single-view model initialization (Taylor,
2000; Barron and Kakadiaris, 2000) do not fully address
the generality and consistency problems, failing to enforce
the joint limit constraints, and assuming either restricted
camera models or restricted human poses in the image. An
algorithm like the one we propose could also probably be
bootstrapped using estimates of 2D joint positions derived
from learned models of silhouette appearance (Rosales and
Sclaroff, 2000).

For stability, parameters are initialized in three stages,
each based on the formulation described in §4.1. Hard
joint limits are enforced at all stages by the constrained
optimization procedure, and corresponding parameters on
the left and right sides of the body are held equal, whereas
measurements are collected from the entire body (see be-
low). The first stage estimates joint angles xa, internal pro-
portions xi and a few simple shape xd parameters, sub-
ject to the given 3D to 2D joint correspondences and prior
intervals on the internal proportions and body part sizes.
The second stage uses both the given joint correspondences
and the local contour signal from image edges to optimize
the remaining volumetric body parameters (limb cross-
sections and their tapering parameters xd) while holding
the other parameters fixed. Finally, we refine the full model
(x) using similar image information to the second stage.
The covariance matrix corresponding to the final estimate
is used to generate an initial set of hypotheses, which are
propagated in time using the algorithm described in §4.
While the process is heuristic, it gives a balance between
stability and flexibility. In practice we find that enforcing
the joint constraints, mirror information and prior bounds
on the variation of body parameters gives far more stable
and satisfactory results. However, with monocular images,
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Figure 5: Typical covariance eigenvalue spectra plotted on a logarithmic scale, for a local minimum. σmax/σmin is 350 for
the 8 d.o.f. arm model, and 2000 for the 32 d.o.f. body one.

From the ‘old’ mixture prior p(xt−1|Rt−1) =
PK

i=1 πt−1
i N (µt−1

i , Σt−1
i ), at time t − 1, build ‘new’ mixture posterior

p(xt|Rt) =
PK

i=1 πt
iN (µt

i, Σ
t
i), at time t, as follows:

1. Build covariance scaled proposal density p∗
t−1 =

PK

i=1 πt−1
i P(µt−1

i , Σt−1
i ). For the experiments we have used

Gaussian tails. The covariance scaled Gaussian component proposals are P = N (µt−1
i , sΣt−1

i ) with s=4–14 in our
experiments.

2. Generate components of the posterior at time t by sampling from p∗
t−1 as follows. Iterate over j = 1...N until the

desired number of samples N are generated:
2.1. Choose component i from p∗

t−1 with probability πt−1
i .

2.2. Sample from P(µt−1
i , Σt−1

i ) to obtain sj .
2.3. Optimize sj over the observation likelihood at time t, p(x|r̄t) defined by (2), using the local continuous optimization
algorithm (§4.1). The result is the parameter space configuration at convergence µt

j , and the covariance matrix Σt
j =

H(µt
j)

−1. If the µt
j mode has been previously found by a local descent process, discard it (For notational clarity, without

any loss of generality, consider all the modes found are different).
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6. Compute the posterior mixture p(xt|Rt) =
PK

k=1 πt
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Figure 6: The steps of our covariance-scaled sampling algorithm.

the initialization always remains ambiguous and highly un-
certain in some parameter space directions, especially un-
der 3D-2D joint correspondence data. In our case, we em-
ploy a suitable coarse pose initialization and use the above
process for fine refinement, but if available, one could fuse

pose information from multiple images.
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Figure 7: Multimodality along several uncertain eigen-directions (0.8 and 0.9 s in cluttered body tracking sequence).

Figure 8: (a,b,c) Cost function slices at large scales, (d) Comparison of sampling methods: (1) CONDENSATION (dashed
circle coverage) randomizes each sample by dynamic noise, (2) MHT, solid circle ((Cham and Rehg, 1999), section
3.2 page 3) samples within covariance support (dashed ellipse) and applies the same noise policy as (1), finally, our
(3) Covariance Scaled Sampling (pattern ellipse) targets good cost minima (flat filled ellipses) by inflating or heavy tail
sampling the local robust covariance estimation (dashed ellipse)).

6 Experiments
For the experiments shown here we use an edge and in-
tensity based cost function and a body model incorporating

priors and constraints as explained in §3.1 and §3.2. We use
Gaussian tails for CSS. A quantitative evaluation of differ-
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ent Gaussian scalings appears in table 1 on page 23.
To illustrate our method we show results for an 8 second

arm tracking sequence and two full body ones (3.5 s and
4 s). All three sequences contain both self-occlusion and
significant relative motion in depth. The first two (fig. 9)
were shot at 25 frames (50 fields) per second against a clut-
tered, unevenly illuminated background. The third (fig. 11)
is at 50 non-interlaced frames per second against a dark
background, but involves a more complex model and mo-
tions. In our unoptimized implementation, a 270 Mhz SGI
O2 required about 5 s per field to process the arm exper-
iment and 180 s per field for the full body ones, most of
the time being spent in cost function evaluation. The fig-
ures show the current best candidate model overlayed on
the original images. We also explore the characteristic fail-
ure modes of various tracker components, as follows. By a
Gaussian single mode tracker we mean a single hypothesis
tracker doing local continuous optimization based on Gaus-
sian error distributions and without enforcing any physical
constraints. A Robust single mode tracker improves this by
using robust matching distributions. A Robust single mode
tracker with joint limits also enforces physical constraints.
For multimodal trackers, the sampling strategy can be ei-
ther CONDENSATION-based or CSS-based, as introduced
in previous sections.

Cluttered background sequences: These sequences ex-
plore 3D estimation behavior with respect to image assign-
ment and depth ambiguities, for a bending rotating arm un-
der an 8 d.o.f. model and a pivoting full-body motion under
a 30 d.o.f. one. They have cluttered backgrounds, specular
lighting and loose fitting clothing. In the arm sequence, the
deformations of the arm muscles are significant and other
imperfections in our arm model are also apparent.

The Gaussian single mode tracker manages to track 2D
frontoparallel motions in moderate clutter, although it grad-
ually slips out of registration when the arm passes the
strong edges of the white pillar (0.5 s and 2.2 s for the arm
sequence and 0.3 s for the human body sequence). Any sig-
nificant motion in depth is untrackable.

The robust single mode tracker tracks frontoparallel mo-
tions reasonably well even in clutter, but quickly loses track
during in-depth motions, which it tends to misinterpret as
frontoparallel ones. In the arm tracking sequence, shoulder
motion towards the camera is misinterpreted as frontopar-
allel elbow motion, and the error persists until the upper
bound of the elbow joint is hit at 2.6 s and tracking fails. In
the full body sequence, the pivoting of the torso is under-
estimated, being partly interpreted as quasi-frontoparallel
motion of the left shoulder and elbow joints. Despite the
presence of anatomical joint constraints, the fist eventually
collapses into the body if non-self-intersection constraints
are not present.

The robust joint-limit-consistent CSS multi-mode tracker

tracks the motion of the entire arm and body sequence with-
out failure. We retain just the 3 best modes for the arm
sequence and the 7 best modes for the full human body se-
quence. As discussed in §4.2, multimodal behavior occurs
mainly during significantly non-frontoparallel motions, be-
tween 2.2–4.0 s for the arm sequence, and over nearly the
entire full body sequence (0.2–1.2 s). For the latter, the
modes mainly reflect the ambiguity between true pivoting
motion and its incorrect “frontoparallel explanation”.

We also compared our method with a 3D version of
that of (Heap and Hogg, 1998; Cham and Rehg, 1999).
These methods were developed for 2D tracking and we
were interested in how well they would behave in the far
less well controlled monocular 3D case. We used a para-
metric Gaussian mixture representation, local descent for
mode refinement (as in Heap and Hogg (1998); Cham and
Rehg (1999)) and a process model based on constant ve-
locity plus dynamical noise sampling as in Cham and Rehg
(1999) (section 3.2, page 3), on the cluttered full body
tracking sequence. However, note that unlike the original
methods, ours uses robust (rather than least squares) image
matching and robust optimization by default, and also in-
corporates physical constraints and model priors. We used
10 modes to represent the distribution over our 30 d.o.f.
3D configurations, whereas Cham and Rehg (1999) used
10 for their 38 d.o.f. 2D SPM model. Our first set of ex-
periments used a non-robust SSD image matching metric
and a Levenberg-Marquardt routine for local sample op-
timization (as in Cham and Rehg (1999), except that we
use analytical Jacobians). With this cost function, we find
that outliers cause large fluctuations, bias and frequent con-
vergence to physically invalid configurations. Registration
is lost early in the turn (0.5 s), as soon as the motion be-
comes significantly non-frontoparallel. Our second exper-
iments used our robust cost function and optimizer, but
still with sampling as in Cham and Rehg (1999). The
track survived further into the turn, but was lost at 0.7 s
when the depth variation became larger. As expected, we
find that a dynamical noise large enough to provide suffi-
ciently deep sampling along uncertain in-depth directions
produces much too deep sampling along well-controlled
transversal ones, so that most of the samples are lost on
uninformative high-cost configurations. Similar arguments
apply to standard CONDENSATION, as can be seen in the
monocular 3D experiments of Deutscher et al. (2000).

Black background sequence: In this experiment we fo-
cus on 3D errors, in particular depth ambiguities and the
influence of physical constraints and parameter stabiliza-
tion priors. We use an improved body model with 34 d.o.f.
The four extra parameters control the left and right clavicle
joints in the shoulder complex, which we find to be essen-
tial for following many arm motions. Snapshots from the
full 4 s sequence are shown in fig. 11, and various failures
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Figure 9: Arm tracking against a cluttered background.

Figure 10: Human tracking against a cluttered background. See plate 14 on page 26 for details.

modes in fig. 12.

The Gaussian single mode tracker manages to follow
near-frontoparallel motions fairly reliably owing to the ab-
sence of clutter, but it eventually loses track after 0.5 s
(fig. 12a–d). The robust single mode tracker tracks the
non-frontoparallel motion somewhat longer (about 1 s), al-
though it significantly misestimates the depth (fig. 12e,f —
the right leg and shoulder are pushed much too far forward
and the head is pushed forward to match subject contour,
c.f . the “correct” pose in fig. 11). It eventually loses track
during the turn. The robust multi-mode tracker with joint-
limits is able to track quite well, but, as body non-self-
intersection constraints are not enforced, the modes oc-
casionally converge to physically infeasible configurations
(fig. 12g) with terminal consequences for tracking. Finally,
the robust fully constrained multi-mode tracker is able to
deal with significantly more complex motions and tracks
the full sequence without failure (fig. 11).

7 Sampling Distributions
We also ran some more quantitative experiments aimed at
studying the behavior of the different sampling regimes,
particularly the efficiency with which they locate minima
or low-cost regions of parameter space. We are interested
in how the sampling distribution, as characterized by the
shape of its core and the width of its tails, impacts the
search efficiency. For the study here we used the simple,
but still highly multi-modal, 3D joint to image joint like-
lihood surface that we use for initializing our 34 d.o.f. ar-
ticulated model. We only estimated joint parameters, not
body dimensions. We ran experiments involving Covari-
ance Scaled Sampling (CSS) and Spherical Sampling (SS)
for Gaussian distributions with scalings 1,2 8. To allow a
fair comparison, at each scale we kept the volume of the
sphere (proportional to Rn) equal to the volume of the cor-
responding rescaled unit covariance CSS ellipsoid (propor-
tional to λ1...λn, the product of eigenvalues). Also note
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Figure 11: Human tracking under complex motion. See figure 15 on page 27 for details.

Figure 12: Failure modes of various components of the tracker (see text).

that the final sampling distributions are not exactly Gaus-
sian — in fact they are often noticeably multimodal —
because our sampler preserves the physical constraints by
projecting inadmissible samples back onto the constraint
surface. Once made, the samples are locally optimized sub-
ject to the physical constraints using the method of §4.1.
We report the number of minima found by each method,
and the medians and standard deviations of their parame-
ter space distances and cost differences, in table 1. Fig. 13
shows distributions of numbers of samples and minima ver-
sus parameter space distance, standard deviation and cost,
for scaling 8. Note that CSS finds significantly more min-
ima, and also places samples at positions of significantly
lower cost, than SS. One can also see the large cost dif-
ference between optimized and unoptimized samples. SS
appears to find minima of slightly lower median cost than
CSS, but this is misleading. CSS still finds the few min-
ima found by SS, but it also finds many other more distant
ones, which, being further away, tends to increase its me-
dian cost.

8 Approximation Accuracy

The tracking experiments in §6 illustrated the practical be-
havior and failure modes of some of the components of the
CSS algorithm, and §7 presented a more quantitative eval-
uation. Now we turn to more technical points.

The CSS algorithm involves both local continuous op-
timization and somewhat more global covariance-scaled
sampling. It therefore has a natural mechanism to trade-
off speed and robustness. When tracking fails, both the
number of modes used to represent the distribution and the
number of samples produced in the sampling stage can be
increased. This increases the computational cost, but it may
allow the tracker to follow more difficult portions of the
image sequence. In principle, a sufficiently long run of any
sampling method would visit every region of the parame-
ter space, so that the basin of attraction of each mode was
sampled and all minima were found. It has been argued that
mixed continuous/discrete trackers (Heap and Hogg, 1998;
Cham and Rehg, 1999) will ’diverge’ if the visual infor-
mation is ambiguous and converge to a ‘best’ mode when
the target in the image is easily detectable. However, this
kind of divergence is not that important here. We are work-
ing with likelihood surfaces that have multiple peaks with
individual probabilities. Local optimization methods can
converge to any of these peaks and sampling methods will
eventually ‘condense’ near them if they use enough sam-
ples. Given the sampling/dynamics stage, both methods
have a chance of jumping between peaks (i.e. escaping spu-
rious ones), although this may be a very slow process. The
method presented here is designed to address the problems
of more efficient and systematic multi-modal exploration.
Note also that CSS can be viewed as an importance sam-
pling distribution and correction weighting for fair sample



22 Chapter 1. 3D Model Based Motion Capture

Figure 13: Optimized and unoptimized sample statistics for Spherical (SS) and Covariance Scaled (CSS) Sampling with
scaling factor 8 and runs of 2000 samples. Note the significantly larger number of minima found by CSS than by SS, and
also that the samples are placed at much lower cost.

generation can be performed with respect to the true prior.
A second issue concerns the algorithm’s efficiency ver-

sus its bias behavior. In tracking, assuming temporal coher-
ence, one may want to confine the search to the neighbor-
hood of the configurations propagated from the previous
tracking step. This can be done implicitly by designing a
likelihood surface that emphasizes local responses, or by

For example, an optical flow correspondence field, like that described
in §3.1 but based on least squares brightness matching, can behave as a

tuning the search process for locality, using short range dy-
namics. In either case, a global estimate of the posterior
distribution is too expensive, both for sampling and opti-
mization, while restricting attention to nearby states carries
the risk of missing distant but significant peaks.

A third issue concerns the approximation accuracy of a
Gaussian mixture for arbitrary multi-modal distributions.

locality prior, forcing local image velocity explanations and pruning away
remote, potentially ‘objective’ multi-modality.
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METHOD SCALE NUMBER OF PARAMETER STANDARD COST
MINIMA DISTANCE DEVIATIONS MEDIAN

MEDIAN MEDIAN
UNOPT OPT UNOPT OPT UNOPT OPT

CSS 1 8 1.148 2.55242 10.9351 47.6042 116.951 8.49689
CSS 4 59 3.21239 2.9474 35.2918 55.3163 1995.12 6.98109
CSS 8 180 4.969 3.34661 75.1119 109.813 16200.8 7.09866
SS 1 0 0.199367 - 24.5274 - 273.509 -
SS 4 11 0.767306 2.04928 96.1519 39.0745 4291.12 6.28014
SS 8 42 1.47262 2.54884 188.157 56.8268 16856.1 6.96481

Table 1: Quantitative results for the distribution of minima found. Note again that CSS finds more minima and places raw
samples at lower cost than SS.

The mixture model is likely to be inaccurate away from
the mode cores, and this may affect the accuracy of statis-
tical calculations based on it. However for tracking and
localization applications we are mainly interested in the
modes themselves, not the low-probability regions in their
remote tails. Sampling methods are non-parametric so in
principle they do not have this limitation, but in practice so
few samples fall deep in the tails that noisiness of the esti-
mates is a problem. Pure sample-based representations also
provide little insight into the structure of the uncertainty
and the degree of multi-modality of the likelihood surface.
In any case, the issue of approximation accuracy in low-
probability regions is not a main concern here. Provided
initial seeds are available in the individual mode’s basins
of attraction, sampling methods can generate fair samples
from the modes and optimization methods can precisely
identify their means and covariances by local descent. The
two techniques can be use inter-changeably, depending on
the application. It is the process of finding the initial seeds
for each mode that represents the major difficulty for high-
dimensional multi-modal distributions.

A fourth and important practical issue concerns the prop-
erties of the likelihood function. For many complex models
a good likelihood is difficult to build, and the one used may
be a poor reflection of the desired observation density. In
these situations, the strength of true and spurious responses
is similar and this may affect the performance of the track-
ing algorithm, irrespective how much computational power
is used. In such contexts, it can be very difficult to identify
the true tracked trajectory in a temporal flow of spurious
responses. This is a particularly complex problem, since
many likelihoods commonly used in vision degrade un-
gracefully under occlusion/disocclusion events and view-
point change. At present, we do not have good mecha-
nisms for detecting disocclusion events in complex back-
grounds. The CSS algorithm has an elegant mechanism

that accounts for high-uncertainty if particular degrees of
freedom are not observed (like occluded limbs, etc.) and
it will automatically sample broadly there. However, for
sub-sequences with long occlusion events, it is still likely
to attach occluded limbs to background clutter, rather than
maintaining them as occluded. Global silhouettes, or a hu-
man contour detector (Papageorgiu and Poggio, 1999), or
higher-order matching consistency (Sminchisescu, 2002a)
may help here. As an indication of the potential benefits
of this, we currently use foreground/background segmenta-
tion and the motion boundaries from the robust optical flow
computation to weight the importance of contours, and this
significantly improves the results in the sequences we have
analyzed.

9 Conclusions and Future Work

We have presented a new method for monocular 3D human
body tracking, based on optimizing a robust model-image
matching cost metric combining robustly extracted edges,
flow and motion boundaries, subject to 3D joint limits, non-
self-intersection constraints, and model priors. Optimiza-
tion is performed using Covariance Scaled Sampling, a
novel high-dimensional search strategy based on sampling
a hypothesis distribution followed by robust constraint-
consistent local refinement to find a nearby cost minima.
The hypothesis distribution is determined by propagating
the posterior at the previous time step (represented as a
Gaussian mixture defined by the observed cost minima and
their Hessians / covariances) through the assumed dynam-
ics (here trivial) to find the prior at the current timestep,
then inflating the prior covariances and resampling to scat-
ter samples more broadly. Our experiments on real se-
quences show that this is significantly more effective than
using inflated dynamical noise estimates as in previous ap-
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proaches, because it concentrates the samples on low-cost
points, rather than points that are simply nearby irrespec-
tive of cost. In future work, it should also be possible to
extend the benefits of CSS to CONDENSATION by using
inflated (diluted weight) posteriors and dynamics for sam-
ple generation, then re-weighting the results. Our human
tracking work will focus on incorporating better pose and
motion priors as well as designing likelihoods that are bet-
ter adapted for human localization in the image.
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Figure 14: Clutter human tracking sequence detailed results for the CSS algorithm in §6, on page 18.
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Figure 15: Complex motion tracking sequence detailed results for the CSS algorithm in §6 on page 18.
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Abstract
Becoming trapped in suboptimal local minima is a perennial problem when optimizing visual models,

particularly in applications like monocular human body tracking where complicated parametric models are
repeatedly fitted to ambiguous image measurements. We show that trapping can be significantly reduced by
building ‘roadmaps’ of nearby minima linked by transition pathways — paths leading over low ‘mountain
passes’ in the cost surface — found by locating the transition state (codimension-1 saddle point) at the top of
the pass and then sliding downhill to the next minimum. We present two families of transition-state-finding
algorithms based on local optimization. In eigenvector tracking, unconstrained Newton minimization is
modified to climb uphill towards a transition state, while in hypersurface sweeping, a moving hypersurface is
swept through the space and moving local minima within it are tracked using a constrained Newton method.
These widely applicable numerical methods, which appear not to be known in vision and optimization, gener-
alize methods from computational chemistry where finding transition states is critical for predicting reaction
parameters. Experiments on the challenging problem of estimating 3D human pose from monocular images
show that our algorithms find nearby transition states and minima very efficiently, but also underline the
disturbingly large numbers of minima that can exist in this and similar model based vision problems.

Keywords: Model based vision, global optimization, saddle points, 3D human tracking.

1 Introduction

Many visual modeling problems can be reduced to cost minimization in a high dimensional pa-
rameter space. Local minimization is usually feasible, but practical cost functions often have large
numbers of local minima and it can be very difficult to ensure that the desired one is found. Exhaus-
tive search is seldom feasible in more than about 2–3 dimensions, so global optimizers are typically
built around heuristics for finding ‘good places to look next’. This includes both deterministic meth-
ods like branch-and-bound and pattern search, and stochastic importance samplers like simulated
annealing [26], genetic algorithms and tabu search [18].

Unfortunately, global optimization remains expensive with any of these methods. In this paper
we develop an alternative strategy based on building 1-D ‘roadmaps’ linking the salient nearby
minima. Each local minimum has a basin of attraction within which local optimization converges
to it. Roughly speaking, our strategy is to start from a given minimum and to search for low lying
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‘mountain passes’ that lead away from its basin of attraction, finding the new minima they lead to
by sliding downhill using local optimization. The procedure is repeated recursively to build up a
roadmap linking the neighboring minima. More precisely, any minimum-peak-cost path connecting
two minima passes through a special state at its highest point, at which the path crosses the brow
of the pass and begins to descend. Such “transition states” are saddle points (the gradient of the
cost function vanishes there) at which the cost has a local maximum in the direction of the path
and a local minimum in all orthogonal directions. Technically, transition states are “codimension
1” saddle points — ones with one negative and (in n dimensions) n−1 positive principal curvatures
(Hessian eigenvalues). At the heart of our approach are two families of efficient numerical methods
for locating the transition states surrounding a given local minimum (see, for instance fig. 4 on page
41).

Although there are many algorithms for finding local minima, it seems that finding transition
states has generally been considered to be intractable, and we know of little previous work in the
vision or optimization communities on methods for this. However such methods do exist in the
computational chemistry / solid state physics community, where transition states are central to the
theory of chemical reactions1 . Both of our classes of transition-state-locating algorithms have roots
in chemistry, and both are based on modified forms of local Newton minimization. Eigenvector
tracking redefines a standard damped Newton minimization to converge uphill to a saddle point
of the desired signature, while hypersurface sweeping sweeps a moving hypersurface through the
space, using a constrained Sequential Quadratic Programming like iteration to track moving local
minima within it. These methods should be useful in many visual modeling problems where local
minima cause difficulties. Examples include model based tracking, reconstruction under correspon-
dence ambiguities, and various classes of camera pose and calibration problems. In this paper, we
present experimental results on monocular model based human pose estimation.

Contents: §2 describes our motivation and overall strategy. §3 discusses related trajectory methods
in computational chemistry and global optimization. §4 introduces damped Newton methods for
locating transition states, and discusses their relation to local minimization algorithms. §5 and §6
detail our Eigenvector Tracking and Hypersurface Sweeping algorithms. §7 illustrates the methods
on a 2D toy problem. §8 presents our main experiments on locating minima during monocular
reconstruction and tracking of 3D human body pose. §9 concludes the paper and discusses possible
directions for future research.

2 Motivation and Overall Strategy

Overall strategy: Below we will focus on numerical strategies for locating nearby transition states
starting from a given minimum. Here we briefly describe how these are used to build “roadmaps” of
local minima, thus allowing quasi-global (or at least, somewhat less local) minimization of smooth
cost functions with many local minima. Our basic strategy is simply to locate transition states
(saddle points that have exactly one negative principal curvature) with one of the methods described
below, then to slide downhill using local optimization to find the neighboring minima they lead to.

1Atomic assemblies can be modeled in terms of the potential energy induced by interactions among their atoms, i.e.
by an energy function defined over the high-dimensional configuration space of the atoms’ relative positions. A typical
assembly spends most of its time near an energy minimum (a stable or quasi-stable state), but thermal perturbations may
sometimes cause it to cross a transition state to an adjacent minimum — a chemical reaction. The peak energy of the
lowest transition path joining two minima is the main determinant of the likelihood of such a perturbation, and hence
determines the dominant reaction rate and mechanism.
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Transition states are interesting because the highest point of any locally-minimal-peak-cost path
between two minima of a smooth function is necessarily a transition state, and lower-cost paths
tend to lead to lower-cost minima. However, the methods studied here can be generalized to find
saddle types with larger numbers of negative principal curvatures, if desired.

The transition-state based search method is initialized at one or more known minima, and a
working queue of local minima is maintained. At each step, the lowest cost minimum is popped
off the queue, transition state searches in several directions are initialized from it, and for each
successful search the corresponding neighboring minimum is found by local descent, checked for
rediscoveries (within numerical tolerance), and if novel, re-enqueued. In favorable cases the algo-
rithm can be run to completion2 , but if there are too many minima to enumerate explicitly, it can be
limited to a fixed number of searches or function evaluations, in which case it tends to find nearby
and relatively low-lying minima. This is useful in tracking, as mistracking is more likely to lead to
a nearby minimum than a distant one.

Advantages of the transition state based approach: The above method works efficiently in many
dimensions, and in practice it is close to linear in the number of minima that need to be enumerated.
This good performance is made possible by the fact that transition state location methods are able
to use local properties of the cost function to steer the search towards globally meaningful regions
(transition states), from which other minima are easily found. In comparison, exhaustive search is
infeasible in more than a few dimensions, and methods that search for nearby minima by patterned
or purely random sampling also tend to become inefficient in high dimensional problems. Volume
increases rapidly with radius in high dimensions, so the low-cost ‘cores’ of minima tend to be
extremely small compared to their higher-cost surroundings. Thus, if random samples based at one
minimum are spread widely enough to reach an adjacent minimum — and neighboring minima are
often separated by significant distances in parameter space (see fig. 7 below) — they will necessarily
also be spread rather thinly owing to the large volume covered, so they can easily miss the minimum
altogether, and even if not, they are much more likely to hit the high-cost shoulders of its basin of
attraction than in its low-cost ‘core’. Hence, even with random or pattern sampling, it is necessary
to add a local optimization stage to push samples towards the high-likelihood regions in the ‘cores’
of the minima.

Moreover, in many applications where the cost function is very ill-conditioned, the sampling
pattern needs to be tailored to the local shape of the cost surface to avoid massive sample wastage,
as local minima tend to be distributed preferentially along low-cost-change / ill-conditioned direc-
tions. In particular, in monocular human tracking, there is substantial ill-conditioning owing to
depth recovery ambiguities, and for any given image of the person there are many — usually thou-
sands — of possible 3D kinematic solutions that need to be well sampled, all distributed along the
ill-conditioned depth degrees of freedom. The above observations led us to develop the Covariance
Scaled Sampling method [43, 46], but transition state search methods turn out to be even more ef-
fective at discovering such minima, as they easily find the transition states at the heads of elongated
low-cost valleys. See [47] for a complementary minimum enumeration method, that exploits the
forward/backward symmetry in the monocular human pose cost function in order to locate kine-
matic minima efficiently. See also [42] for a smoothing algorithm that reconstructs multiple plau-

2It is straightforward to modify this heuristic search method to run indefinitely and converge with probability one
simply by adding a random sampling element that is applied, perhaps with an exponentially decreasing probability in
order not to degrade the efficiency of the method (e.g. consider the following: any time the number of function evaluation
or saddle searches reaches an upper bound, say Ub, sample a point at random, optimize to find a local minimum, include
it in the working set and increase Ub).
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sible state trajectories for models where the multiplicity of solutions persists during tracking. Prior
knowledge on typical human poses can be further used to learn application specific low-dimensional
continuous generative models that are less ambiguous and allow more efficient search [41].

Difficulties of transition state based approach: Many efficient methods exist for finding local
minima of smooth high dimensional cost surfaces. Minimization allows strong theoretical guaran-
tees as the reduction in the function value provides a clear criterion for monitoring progress. For
example, for a bounded-below function in a bounded search region, any method that ensures ‘suf-
ficient decrease’ in the function at each step is ‘globally convergent’ to some local minimum [15].
Finding saddle points is much harder as there is no universal progress criterion and no obvious
analogue of a ‘downhill’ direction. Newton-style iterations provide rapid local convergence near
the saddle, but it is not so obvious how to find sufficiently nearby starting points. We will consider
several methods that extend the convergence zone. We are mainly interested in saddles as starting
points for finding adjacent minima, so we will focus on methods that can be started from a minimum
and tuned to find nearby transition states. Efficient ‘rubber band relaxation’ methods also exist for
finding the transition state(s) linking two given minima [35], but we will not need to consider this.

3 Transition State Location Strategies

We start with a brief overview of the computational chemistry / solid state physics literature on
locating transition states. This literature should be accessible to vision workers with high-school
chemistry and a working knowledge of optimization. However the underlying ideas can be difficult
to disentangle from chemistry-specific heuristics, and some of the references are rather naive about
numerical optimization issues. We therefore give a self-contained treatment of generalizations of
two of the most promising approaches below, in the language of numerical analysis.

A transition state is a local minimum along its n−1 positive curvature directions in parameter
space, but a local maximum along its remaining negative curvature one. So transition state search
methods are often formulated as a series of (n−1)-D minimizations, while moving or maximizing
along the remaining direction. The main differences lie in the methods of choosing which directions
to use.

Eigenvector tracking methods [10, 23, 7, 53, 54, 31, 22, 38, 33, 21, 11, 5] choose the ascent direc-
tion to be an eigendirection of the local cost function’s Hessian (second derivative) matrix. A
Newton based local minimization method is modified to locally increase the cost along the chosen
curvature eigendirection, while still reducing it along the remaining eigendirections. In particular,
if the lowest (most negative) curvature direction is chosen, the method attempts to find the lowest
gradient path to a transition state by walking along the ‘floor’ of the local cost ‘valley’. However
success can not be guaranteed, as such valleys may continue indefinitely without leading to a saddle
point [25, 49, 24]. Also, the method is not as canonical as it may seem: the eigendecomposition de-
pends non-trivially on the coordinate system used, so, e.g., changing the relative scaling of variables
changes the trajectory followed; and to ensure progress, “the same” eigenvector must be followed
at each step, but there is no natural identification between eigenvectors at different points, so there
is no canonical way to ensure this sameness.

An early eigenvector tracking method [23] used explicit Newton minimization in the (n−1)-D
space obtained by eliminating the coordinate with the largest overlap with the desired up-hill di-
rection. Later quasi-Newton methods use Lagrange multipliers [7, 53, 54] or shifted Hessian eigen-
values [38, 33, 21, 11, 5] to ensure that the cost function is increased along the ‘uphill’ eigendi-
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rection while still being minimized in the orthogonal subspace. Owing to the lack of a global
identification between eigenspaces at different points, maintaining a consistent direction to follow
can be delicate and several competing methods exist, including using a fixed eigenvector index
[23, 7, 53, 54, 31, 22] and following the eigendirection that is best aligned (has greatest dot product)
with the current one [38, 33, 21, 11, 5].

Eigenvector tracking can be viewed as a ‘virtual cost minimization’ obtained by inverting the
sign of both the ‘uphill’ eigenvalue and its corresponding gradient component [30, 21] (see below).
This gives an intuitive algebraic analogy with minimization, but none of minimization’s conver-
gence guarantees as the virtual cost function changes at each step.

Trajectory methods from global optimization [14, 20, 6] are based on the idea of tracing routes
through stationary points of a high-dimensional cost function. Some early 2D methods are based
on alternating descents and ascents along eigendirections [14], without any clear ascent heuristic.
“Golf” methods [20], aim at exploring different minima and equilibrate at a certain energy level
(assumed known a-priori). There are also randomized methods that speed up classical molecular
dynamics simulations by generating trajectories on a modified potential with reduced well depth
[51, 52] and lower potential at transition states. This insures both increased inter-minimum transi-
tion rates (and thus faster simulations), and unbiased behavior, in that the correct relative rates of
different transitions are preserved in the modified potential. An application of a generalization of
these methods to computer vision appears in [45]. Branin type methods [6, 3] are based on solving
differential equations derived from the gradient stationarity condition, rather than explicitly mini-
mizing the cost function. However, managing the singularities and bifurcations that arise during the
iteration is an open problem.

Space Sweeping and Filling Methods: The above methods can fail to make global progress, e.g.
owing to looping. Space sweeping methods [10, 1, 2, 4, 30, 19, 28, 17] guarantee more systematic
progress by using a moving potential or hypersurface to sweep candidate points though the space
in such a way that they often pass through transition states. Crippen & Sheraga’s early method [10]
builds an uphill path by stepping along a prespecified direction and minimizing in the hyperplane
orthogonal to the direction at each step. Mousseau & Barkema use a similar but less rigorous
technique based on changing the gradient sign in one direction followed by conjugate root-finding in
the other directions [30]. Barkema [4] pushes the solution away from a known minimum by adding
a steadily expanding repulsive spherical bias potential centred on the minimum, and optimizing
subject to this soft constraint. New minima are found but the method does not attempt to pass
exactly through saddle points. Abashkin & Russo [1, 2] minimize on successively larger-radius
hyperspheres centered at a minimum, and also provide a method for refining approximate saddle
point locations. The use of hyperspheres forces the search to move initially along the valley floor
of the cost surface [24], so usually at most two distinct saddles can be found. Below we will show
how to steer the initial search along any desired direction by using ellipsoidal surfaces. Closely
related “penalty methods” from global optimization (filled function, tunneling) attempt to modify
the cost function to prevent reconvergence to the currently known local minima, thus forcing the
discovery of new ones [19, 28, 17]. As the extents of the basins of attraction are not known in
advance, this requires the addition of increasingly strong repulsive potentials centered at the known
minima, until a transition state is crossed and a new solution is found. The optimization becomes
more complex as more minima are discovered because a repeller potential must be included for
each known minimum. Including a large number of repellers also leads to an increasingly flat
and contorted cost function. Repeller ideas are similar to those used in ‘tabu search’ methods
[18], which try to avoid trapping and cyclic behavior by forbidding or penalizing moves that return
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to recently-visited states. Tabu search is traditionally a combinatorial method, but it can also be
applied in the continuous domain by choosing a suitable problem discretization.

All of the above methods depend on particular choices. The hypersurface and repulsion based
methods depend on the local shape and alignment of the moving hypersurfaces or potentials, while
the eigenvector and valley following methods all depend on the local coordinate system — even
linear changes of coordinates completely change the eigenvalues and vectors, the notion of slowest-
ascent valleys, etc. These dependencies are much stronger than in minimization, where they en-
ter only via Levenberg-Marquardt style step damping (pure Newton iteration being coordinate-
independent). They can be a nuisance, but they also allow initial search directions to be varied, so
that many transition states can potentially be found starting from any given minimum.

The following sections detail several basic saddle point location methods. Damped Newton
iteration §4 is useful for refining estimated saddle points but its convergence domain is too limited
for general use. Eigenvector tracking §5 extends the convergence domain by operating a virtual
Newton optimization (thus remaining relatively lightweight), but may be sensitive to the ‘eigen-
vector following’ heuristics. Hypersurface sweeping §6 is better founded in that it provides more
guarantees of global progress, but no single sweep finds all saddle points and it is more complex to
implement.

4 Damped Newton Methods for Finding Transition States

We first consider local damped Newton-like methods for finding saddle points. These provide rapid
local convergence near saddle points, but higher level strategies are needed to ensure more global
convergence. Let f(x) be the cost function being optimized over n-D parameter vector x, and let
g ≡ ∂f

∂x
be the function’s gradient and H ≡ ∂

2f
∂x2 be its Hessian at the current point x. We seek

transition states, i.e.stationary points (g(x)=0) at which the Hessian has one negative and n−1
positive eigenvalues. If there is a stationary point at x+δx, first order Taylor approximation at x

gives:
0 = g(x+δx) ≈ g(x) + H δx (1)

Solving this linear system for δx and iterating to refine the approximation gives the Newton itera-
tion:

x ← x+δx with update δx = −H−1g (2)

When started sufficiently close to any regular stationary point (‘regular’ means roughly that H is
nonsingular and 2nd order Taylor expansion converges), Newton’s method converges to it, but how
close you need to be is a delicate point in practice.

For Newton-based minimization, the convergence can be globalized by adding suitable damping
to shorten the step and stabilize the iteration. Most formulations use the damped Newton update:

δx = −(H+λD)−1g (3)

where D is a positive diagonal matrix (often the identity). The damping factor λ > 0 is ma-
nipulated by the algorithm to ensure stable and reliable progress downhill towards the minimum.
Damping can be viewed as Newton’s method applied to a modified local model for f , whose gradi-
ent at x is unchanged but whose curvature is steepened to H+λD.

More generally, to stabilize Newton iteration near a saddle point, the negative Hessian curva-
tures must be made more negative, and the positive ones more positive. More globally, ‘uphill
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motion’ directions must be given sufficiently strong negative curvature, and ‘downhill motion’ ones
sufficiently strong positive curvature. This can be conveniently expressed in a Hessian eigenbasis
H = VEV>, where E = diag(λ1, ..., λn) are the eigenvalues and the columns of V are the eigen-
vectors of H with respect to the current coordinates. In this basis, the undamped Newton update
becomes δx = −V (ḡ1/λ1, . . . , ḡn/λn)>, where ḡi ≡ (V>g)i are the eigen-components of the
gradient. Damping can be introduced by replacing this with:

δx = −Vu(λ), where u(λ) ≡
(

ḡ1

λ1+σ1λ
, ..., ḡn

λn+σnλ

)

>

=
(

σ1ḡ1

σ1λ1+λ
, ..., σnḡn

σnλn+λ

)

>

(4)

where σi = ±1 is a desired sign pattern for the λi. Damping λ > maxi(−σiλi, 0) ensures that the
denominators are positive, so that the iteration moves uphill to a maximum along the eigendirections
with σi=− 1 and downhill to a minimum along the others. At each step this can be viewed as the
minimization of a virtual local function with curvatures λ + σiλi and sign-flipped gradients σiḡi.
However the virtual model changes at each step and f itself is not minimized, so none of the usual
convergence guarantees of well-damped minimization apply.

As in minimization, λ must be varied to ensure smooth progress. There are two main
strategies for this: Levenberg-Marquardt methods manipulate λ directly, while
trust region ones maintain a local region of supposed-‘trustworthy’ points, and
choose λ to ensure that the step stays within it, for instance ‖δx(λ)‖ = ‖u(λ)‖ .

r where r is a desired ‘trust radius’. (Such a λ can be found efficiently with a sim-
ple 1-D Newton iteration started at large λ [15]). In either case, one monitors model
accuracy metrics such as the second-order-Taylor based relative f -prediction error:

β =
∣

∣

∣

f(x+δx)−f(x)
g>δx+δx>Hδx/2

− 1
∣

∣

∣
(5)

as well as convergence criteria. Low accuracy indicates that the damping should be increased (larger
λ or smaller r), and high accuracy that it can safely be decreased to allow longer steps and speed
convergence (e.g., by scaling λ or r up or down by fixed constants).

As in minimization, if the exact Hessian is unavailable, quasi-Newton approximations based
on previously computed gradients can be used. Since positive definiteness is no longer required,
non-positive update rules such as Powell’s are generally preferred to the standard BFGS one [15, 5]:

H ← H− δx>ξ

‖δx‖4 δx δx> +
ξ δx> + δx ξ>

‖δx‖2 where ξ = g(x+δx)− g(x) −H(x)δx (6)

5 Eigenvector Tracking

Eigenvector tracking methods take the above Hessian eigenbasis method and add a heuristic for
selecting which eigendirection(s) to modify. Basically, once the coordinate system has been fixed,
the remaining freedom in (4) is the choice of the signs σi. The damped iteration tries to move uphill
to a maximum along directions with σi= − 1, and downhill to a minimum along directions with
σi= + 1, i.e. it tries to find a stationary point whose principal curvatures λi have the same signs as
the σi. So for minimization we need σi=+1, while for a transition state search exactly one σi must
be made negative. (This holds irrespective of the λi and ḡi at the current state, which affect only
the amount of damping required for stability).

The question of which eigenvalue to change is less obvious than it might seem. To ensure
continued progress we need to flip “the same” eigenvalues at each step. Unfortunately, there is no
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Eigenvector Tracking Transition State Search

Initialization
Set starting point x0, initial tracking direction t=ve for some e, and initial trust radius r.

Eigenvector Tracking Loop
A. At xk, find fk,gk,Hk, the Hessian eigen-decomposition (λi,vi) and eigen-basis gradient
ḡk. Set n− to the number of negative eigenvalues. If the problem has active internal constraints,
project t onto the constraint surface.
B. If k > 0 choose e = maxi |v>

i t|. Set α = |v>

et| and t = ve.
C. If λe > 0 set ḡe = −ḡe. Take an undamped Newton step if n−=1 and ‖δx‖ ≤ r. Otherwise
take a damped one (4) with λ chosen so that ‖δx‖ ≤ r.
D. Find the new f and the modeling error β (5). If β > 0.3 (say) or α < 0.7 (say), shrink the
trust radius r by say 50%. Otherwise, if β < 0.2 (say) and we took a damped step, grow r by
say 40%.
E. If β ≥ 1 go to step C (try a shorter step). If ‖gk‖ < ε return success if n−=1, failure
otherwise (convergence / failure exit case). Otherwise, go to step A (do next iteration).

Figure 1: Summary of the eigenvector tracking algorithm for transition state search.

globally well defined correspondence rule linking eigenvectors at different points, so there is no
rigorous definition of “sameness” and heuristics must be used. For transition state searches we only
need to track a single eigenvector (the one that is given σi=−1), so we will concentrate on this case.
A simple approach would be to choose a fixed direction in space (perhaps the initial eigendirection)
and take the eigenvector with maximal projection along this direction. But many such directions are
possible and the most interesting transition states may happen not to have negative curvature along
the particular direction(s) chosen. Alternatively, we can try to track a given eigendirection as we
move. The problem is that globally, eigendirections are by no means stable. Eigenvalues change as
we move about the space, but generically (in codimension 1) they never cross. When they approach
one another, the eigenbasis of their 2D subspace becomes ill-conditioned and slews around through
roughly 90◦. Seen from a large enough scale, the eigenvalues appear to cross with more or less
constant eigenvectors, but on a finer scale there is no crossing, only a smooth but rapid change of
eigendirection that is difficult to track accurately. Whichever of the two behaviors is desired, it is
difficult to choose a step length that reliably ensures it, so the numerical behavior of eigenvector-
tracking methods can sometimes be sensitive to fine scale steps. In fact, the imprecise coarse scale
view is probably the desired one: if we are tracking a large eigenvalue and hoping to reduce it to
something negative, it will have to “pass through” each of the smaller eigenvalues. Tracking at
too fine a scale is fatal as it (correctly) prevents such crossings, instead making the method veer
off at right angles to the desired trajectory. Even without these problems, there is no guarantee
that a saddle point of the desired signature is found — the trajectory might simply continue to
climb indefinitely. Also, as with other damped Newton methods, the whole process is dependent
on the affine coordinate system used. Nevertheless, eigenvector tracking is relatively lightweight,
simple to implement, and it often works well in practice. Generalization to k-th order saddles is
straightforward: the above procedure is applied to the lowest k (or some k) eigenvectors, and these
are tracked simultaneously. At each step, we simply choose the damping factor λ to ensure that the
corresponding directions have negative augmented curvatures.
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5.1 Implementation Details

Our implementation of eigenvector tracking is summarized in fig. 1. We use the damped Newton
saddle step (4), moving away from the minimum by reversing the sign of the gradient in the tracked
eigendirection if this has positive curvature. The damping λ > 0 is controlled to keep the step
within a trust radius r and to dominate any undesired negative eigenvalues. The trust radius is set
by monitoring the accuracy (5) of the local model for f .

In some of our target applications, the underlying problem also has bound constraints that need
to be maintained. For hypersurface sweeping (below) this just adds additional constraints to the
within-hypersurface minimizations, but for eigenvector tracking we introduced a trust region step
calculation routine that uses a projection strategy to handle constraints on x, and also projects the
eigenvector-tracking direction t along the constraints to ensure stability.

6 Hypersurface Sweeping

Eigenvector trackers do not enforce any notion of global progress, so they can sometimes cycle or
stall. To prevent this we can take a more global approach to the transition state searches ‘(n−1)-
D minimization and 1D maximization’. Hypersurface sweeping approaches sweep an (n−1)-D
hypersurface across the parameter space — typically a moving hyperplane or an
expanding hyper-ellipsoid centered at the initial minimum — tracking local min-
ima within the hypersurface and looking for temporal maxima in their function
values. The intuition is that as the hypersurface sweeps towards a transition state,
and assuming that it approaches along its cone of negative curvature directions, the
(n−1)-D minimization forces the hypersurface-minimum to move along the lowest path leading up
to the saddle’s ‘col’, and the 1-D maximization detects the moment at which the col is crossed. The
method can not stall or cycle as the hypersurface sweeps through each point in the space exactly
once.

The moving hypersurface can be defined either implicitly, in terms of the level sets c(x) = t
of some parameter space function c(x) (a linear form for hyperplanes, a quadratic one for hyper-
ellipsoids...), or explicitly in terms of a local parameterization x = x(y, t) with respect to some
hypersurface-t-parameterizing (n−1)-D vector y. The minimum-tracking problem becomes:

local maxt fc(t) where fc(t) ≡
{

local minc(x)=t f(x)

local miny f(x(y, t))
(7)

There are some caveats. Firstly, we may need to find and track several minima, as different

minima saddles/maxima
Hypersurfaces cut saddle with:

f

f>f0

0f

f>f0

0f<f0

0

f>f0

f<f0
f>f

local minima on the hypersurface typically lead to different transition
states. Secondly, even if we could track every local minimum within the
hypersurface, this would not suffice to find every transition state: each
family of hypersurfaces is ‘blind’ to some transition state orientations.
Transitions that are approached in ‘downhill’ rather than ‘uphill’ direc-
tions — ones that are cut in negative curvature directions (the hypersurface’s tangent space intersects
the transition states’ cone of negative curvature directions) — appear as saddle points or local max-
ima within the hypersurface, and so can not be found by tracking minima alone. Finally, some local
maxima of fc(t) do not indicate transition states. The minimum being tracked can also simply dis-
appear (topologically annihilate with another within-hypersurface saddle point), causing the tracked
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point to suddenly fall away to some other minimum on the hypersurface. This generates an abrupt
‘sawtooth’-shaped maximum in fc(t). In more detail, at any stationary-within-hypersurface point,
the projection of g= ∂f

∂x
vanishes, so f ’s isosurface is necessarily tangent to the local hypersur-

face: g ∝ ∂c
∂x

or g>∂x
∂y

= 0. The point is a within-hypersurface-minimum, -saddle, or -maximum
respectively as the cost isosurface has higher/mixed/lower signed curvature than the local hypersur-
face (i.e. as the isosurface is locally inside/mixed/outside the hypersurface). At points where the

less than hypersurfaces

Minima become unstable
when isosurfaces curve

moving hypersurface transitions from being outside to being mixed w.r.t. the
local isosurface, the minimum being tracked disappears and the solution drops
abruptly to some other hypersurface-minimum, producing a ‘sawtooth’ max-
imum in fc(t). The sweep can continue from the new minimum so this is not
a problem as far as finding subsequent minima is concerned, but if transition
states are needed it is important to eliminate the sawtooth maxima. (Similarly,
minima of fc(t) correspond to true local minima of f(x) — and there is no problem of ‘blindness’
in this case — except when they result from a sawtooth transition).

As each family of hypersurfaces is blind to some transition state orientations, it is useful to try
several different families. For example, hyperplanes find forwards-looking transitions while hyper-
ellipsoids find outward-looking ones. If we start the track at a minimum x0 of f(x), the initial
tracking direction is determined by the hyperplane normal or the ellipsoid shape and the Hessian
H = H(x0). First consider the family of hyper-ellipsoids c(x) = (x−x0)

>A (x−x0) = t, where
A is some positive definite matrix. To second order, f(x) generically has exactly two local minima
on an infinitesimal ellipsoid c(x) = t: the ± directions of the smallest eigenvector of the matrix
pencil A+λH. (Numerically, these can be found by generalized eigendecomposition of (A,H),
or standard eigendecomposition of L−>HL−1 where LL> is the Cholesky decomposition of A). For
most A there are thus only two possible initial trajectories for the moving minimum, and so at most
two nearest transition states will be found. To find other nearby transition states we need to modify
A. We can enforce any desired initial direction u by taking the ‘neutral’ search ellipsoids A = H

(on which f is constant to second order, so that all initial directions are equally good) and flattening
them slightly relative to the cost isosurfaces in the direction ±u. To satisfy the Lagrange multiplier
condition for a constrained minimum, ∂c

∂x
∝ ∂f

∂x
, we can take:

A = H + µgg>

u>g
(8)

where g = Hu is the cost gradient (and hence isosurface normal) for a small displacement u,
and µ is a positive constant, say µ ∼ 0.1 for mild flattening. Similarly, for hyperplanes c(x) =
n> (x−x0) = t with normal n, the initial tracking direction is u = ±H−1n, so to search in direction
u we need to take n = Hu. (Note that, particularly if H is ill-conditioned, more neutrally scaled
A,n tend to produce to initial directions that are closely aligned with H’s smallest eigenvector,
which is likely to lead to poor search diversity).

By finding and tracking within-hypersurface saddle points rather than just within-hypersurface
minima, the sweeping method can in principle be generalized to find saddle points with several
negative eigen-curvatures, but similar caveats would apply.

6.1 Hypersurface Sweeping Equations

This section summarizes the equations needed to implement hypersurface sweeping, for both implicitly-
specified and parametrically-specified hypersurfaces. For the implicit approach, let gc ≡ ∂c

∂x
and
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Hc ≡ ∂
2c

∂x2 be the gradient and Hessian of the hypersurface constraint function c(x). The hypersur-
face constraint is enforced with a Lagrange multiplier λ, solving:

∂

∂x
(f+λ c) = g + λgc = 0 subject to c = t (9)

If we are currently at (x, λ), second order Taylor expansion of these equations for a constrained
minimum at (x+δx, λ+δλ) gives the standard sequential quadratic programming update rule
for (δx, δλ):

(

Hλ gc

g>

c 0

)(

δx

δλ

)

= −
(

g + λgc

c− t

)

where Hλ ≡ H+λHc (10)

(The λHc term in the Hessian is often dropped for simplicity. This slows the convergence but still
gives correct results).

Similarly, in the parametric approach let J ≡ ∂

∂y
x(y, t). The chain rule gives the reduced

gradient gy and Hessian Hy:

gy = Jg (11)

Hy = JHJ> + ( ∂

∂y
J) · g (12)

These can be used directly in the Newton update rule δy = −H−1

y gy. In particular, if we eliminate
one x-variable — say xn so that y = (x1, ..., xn−1) and xn = xn(y, t) — we have:

J =
(

I | ∂xn

∂y

)

, gy = ∂f
∂y

+ gn
∂xn

∂y
, Hy = JHJ> + gn

∂
2xn

∂y2 (13)

To save optimization work and for convergence testing and step length control, it is useful to be able
to extrapolate the position and value of the next minimum from existing values. This can be done,
e.g., by linear extrapolation from two previous positions, or analytically by solving the constrained
minimum state update equations (g+(λ+δλ)gc)(x+δx) = 0 or gy(y+δy, t+δt) = 0 to first
order, assuming that x, t is already a minimum and t→ t+δt :

(δx, δλ) = 1
g>

c H
−1

λ
gc

(

H−1

λ gc, − 1
)

δt (14)

δy = −H−1

y

(

∂J

∂t
g + JH ∂x

∂t

)

δt δx = J δy + ∂x

∂t
δt, (15)

Standard Taylor expansion of f(x+δx(t)) then gives:

fc(t+δt) ≈ fc(t) + f ′
c δt +

1

2
f ′′

c δt2 (16)

with f ′
c = g δx

δt and f ′′
c = δx

δt

>

H δx
δt . For step length control, we can either fix δt and solve for

δx or δy (and hence x+δx ≡ x(y+δy, t+δt)), or fix a desired trust region for δx or δy and work
backwards to find a δt giving a step within it.

6.2 Implementation Details

The hyper-ellipsoid sweeping method that we used in the experiments below is summarized in fig. 2.
We start at a local minimum and use centered, curvature-eigenbasis-aligned ellipsoidal hypersur-
faces flattened along one eigendirection, say the eth. This restricts the initial search to an eigendi-
rection (the eth). This limitation could easily be removed, but it gives a convenient, not-too-large
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Hyper-ellipsoid Sweeping Transition State Search

1. Initialization
Given initial minimum x0 with Hessian H, eigen-decompose H to (λi,vi) with principal radii
σi = 1/

√
λi. Choose an initial search eigen-direction e. Shrink σe by say 20% and prepare to

eliminate xe. Set initial step x1 = x0 + t1σeve where t1 is say 3. Go to step 2.B.

2. Loop, Updating Hypersurface and Minimizing
A. k=k+1. Estimate an initial xk by linear extrapolation to the trust radius. Compute the
resulting tk.
B. Minimize f on the tk ellipsoid to get fc(tk): yk = arg miny f(xk(y, tk)).
C. Compute f ′

c = ∂
∂t

fc(tk). If f ′
c < ε we are near or past saddle: go to step 3.A. Otherwise go

to step 2.A.

3. Line Search for Transition State Refinement
A. If |f ′

c| < ε, exit.
B. k=k+1. Estimate tsaddle by linear interpolation of last two f ′

c values.
B. Optimize yk as in step 2.B and go to step 3.A.

Figure 2: Our hyper-ellipsoid sweeping algorithm for transition state search.

set of directions to try. All calculations are performed in eigen-coordinates and the minimum is
tracked using variable elimination (13) on xe. In eigen-coordinates, the on-hypersurface constraint
becomes:

∑

i

(xi/σ
′
i)

2 = t2 (17)

where the σ′
i are the principal standard deviations, except that the eth (eliminated) one is shrunk by

say 20%. Taking y = (x1, ..., xe−1, xe+1, ..., xn) and solving for xe gives:

xe(y, t) = ±σ′
e

√

t2 −∑

i6=e(xi/σ′
i)

2 (18)

The necessary derivatives are easily found. We use an x-based trust region to choose the time step.
First we estimate an initial xk+1 by linear extrapolation:

xk+1 ≈ xk + r
xk − xk−1

‖xk − xk−1‖
(19)

where r is a trust region radius for δx, then we solve for the corresponding tk+1 using the ellipsoid
constraint, and finally we optimize xk+1 on this ellipsoid.

In our target application there are also underlying equality or bound constraints on the model.
These are handled simply by including them as additional constraints in the hypersurface minimiza-
tion.

7 2D Examples

This section illustrates our eigenvector tracking and hypersurface sweeping methods on the Müller
potential, a very simple 2D example that is often used to demonstrate such methods in computa-
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Figure 3: Trajectories for the eigenvector following (left) and hyper-ellipsoid sweeping (right) al-
gorithms on the Müller cost surface, initialized along the ± eigendirections of the 3 minima (the
position of minima is shown with dots, the saddles are shown with crosses).

a b c d

e f g h
Figure 4: (a)-(h) Trajectories for eigenvector following on the Müller cost surface, started from
different minima along different principal curvature directions. Note that the trajectories (a), (b)
and (h) do not converge — in fact, no saddles exist in those regions of the space.

tional chemistry. The Müller potential has the form

V (x, y) =

4
∑

i=1

Ai eai(x−xi)2+bi(x−xi)(y−yi)+ci(y−yi)2 (20)

where A = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6), c = (−10,
−10,−6.5, 0.7), x = (1, 0,−0.5,−1), y = (0, 0.5, 1.5, 1). It has three local minima M1,M2,M3

separated by two saddle points S1, S2. The minima are separated by around one length unit, and
the transition states are around 100–150 energy units above the lowest minimum. See fig. 3 for
a concise summary of results for the Eigenvector tracking (ET) and Hypersurface Sweeping (HS)
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a b c d

e f g h
Figure 5: (a)-(h) Trajectories for hypersurface sweeping on the Müller cost surface, started from
different minima along different principal curvature directions. The trajectories (a), (b), (c) and (g)
do not converge to saddles. (b) and (c) use the same initial search direction but different ellipsoid
flattening factors. (c) is flattened less than (b), which allows a ‘sawtooth’ transition to occur, so
that the track jumps abruptly northwards to a new within-hypersurface minimum. (f) shows another
example — the saddle is crossed in an abrupt jump, without passing through the transition state (but
the subsequent minimum will later be found, as required). These effects are intrinsic: they are not
caused by discretization, step size effects, etc.

methods. In the figure, the position of minima is shown with dots and that of the saddles with
crosses.

Figs 4 and 5 respectively plot the trajectories of the eigenvector tracking and hypersurface
sweeping methods, with initial search along all four principal curvature directions of each mini-
mum. The hypersurface sweeping algorithm is also run for extended trajectories through several
saddles and minima in fig. 6. In this simplistic example all of the minima and transition states can
actually be found by a single sweep, but this is unusual in more complex problems.

8 Monocular Human Pose Reconstruction and Inter-Frame Tracking

In this section, we apply the transition state location and local minima mapping methods to the
difficult problem of 3D articular human tracking from monocular image sequences.

8.1 Previous Work on Monocular Human Tracking

There is a large literature on human motion tracking, but relatively few works tackle the 3D-from-
monocular case, where local minima are particularly troublesome owing to poor control of the depth
degrees of freedom. We will mention only a few works that make contributions to the search for
local minima problem in the context of generative 3D models. Deutscher et al use an annealed sam-
pling method and multiple cameras to widen the search and limit the presence of spurious minima
[12]. (Their sampling procedure resembles Neal’s [32], except that Neal also includes an addi-
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Figure 6: Trajectories for hypersurface sweeping on the Müller cost surface, for trajectories started
in different minima, but not stopped after the first saddle detection. Several saddles and minima are
found in each sweep.

tional importance sampling correction designed to improve mixing). During annealing, the search
for parameters is driven by noise proportional with their individual variances [13]. Considered
as an improved (implicit) search space decomposition mechanism, an early method of this type
was proposed by Gavrila & Davis [16] to efficiently sample partial kinematic chains. Adaptively
identifying and sampling parameters with high variance is useful, but kinematic parameters usually
have quite strong interactions that make simple axis-aligned sampling questionable. For monocular
reconstruction, it is important to realize that the principal axes of uncertainty change drastically
depending on the viewing direction (as noted for instance in [43, 40, 46]). Sidenbladh et al use an
intensity based cost function and focus search in the neighborhood of known trajectory pathways by
particle filtering with importance sampling based on either a learned walking model or a database of
motion snippets [36, 37]. Choo & Fleet [9] combine particle filtering and hybrid Monte Carlo sam-
pling to estimate 3D human motion, using a cost function based on joint re-projection error given
input from motion capture data. Sminchisescu & Triggs [43, 40, 46] argue that an effective random
sampler must combine all three of cost-surface-aware covariance scaling, a sampling distribution
with widened tails for deeper search, and local optimization (because deep samples usually have
very high costs, and hence will not be resampled even if they ultimately lead to other minima). All
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of these works note the difficulty of the multiple-minimum problem and attempt to develop tech-
niques or constraints (on the scene, motion, number of cameras or background) to tackle it. In a
complementary approach to the one presented here, Sminchisescu & Triggs [45] proposed MCMC
procedures that actively modify the effective cost function to stochastically drive the samples to-
wards transition states, thus reducing the trapping effects that plague classical MCMC sampling.
The cost modifications use gradient and curvature information to focus the search on local neighbor-
hoods that have transition-state-like characteristics. Sminchisescu et al [48] give modified MCMC
methods that speed up sampling from the equilibrium distribution by including long-range jumps
based on prior knowledge of the function’s dominant minima (which could be provided, e.g., by the
algorithms presented in this paper). Methods that search thoroughly over the static model-image
matching cost are an effective basis for very general trackers. Sminchisescu & Jepson [42] propose
a smoothing algorithm that computes multiple plausible trajectories for weakly identifiable non-
linear dynamical systems (like the ones resulting from 3d human modeling and tracking) where the
multiplicity of solutions in the model-image matching cost persists over temporal states. Therefore,
the trajectory distribution remains multimodal after both filtering and smoothing. Ambiguities can
be resolved to a certain extent using prior knowledge. Sminchisescu & Jepson [41] use joint angle
training sets typical of various application domains to learn constrained low-dimensional generative
models using non-linear embedding. Because the learned representations are global and continu-
ous, methods like the ones proposed here can be used for efficient search in a lower-dimensional
space.

8.2 Human Modeling

Here, we very briefly review the human model, priors, and image features that we use for the below
experiments. For more details, see [43, 40, 46].

Representation x: The 3D body model used in the human pose and motion estimation experiments
here consists of a kinematic ‘skeleton’ of articulated joints controlled by angular joint parameters,
covered by a ‘flesh’ built from superquadric ellipsoids with additional global deformations. For the
experiments here we estimate typically 32 joint parameters.

Observation Likelihood p(r|x): Robust model-to-image matching cost metrics are evaluated for
each predicted image feature, and the results are summed over all observations to produce the image
contribution to the parameter space cost function. We use a robust combination of extracted-feature-
based metrics and intensity-based ones such as optical flow and robustified normalized edge energy.
We also give results for a simpler joint correspondence likelihood designed for model initialization,
based on squared distances between reprojected model joints and their specified image positions.

Prior Constraints ps(x): The model incorporates both hard constraints (for joint angle limits) and
soft priors for collision avoidance between body parts. These ensure the parameter estimates remain
in the feasible region.

Estimation: We apply Bayes rule and minimize the total negative log-likelihood posterior proba-
bility, to give multiple locally MAP parameter estimates:

log p(x|r) ∝ log ps(x) + log p(r|x) = log ps(x)−∑

e(ri|x) (21)

Here, ps(x) is the prior on the model parameters that ensures feasibility, e(ri|x) is the cost density
associated with observation i, and the sum is over all observations (assumed independent).
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Equation (21) gives the model likelihood in a single image, under the model constraints but
without initial state or temporal priors3 . Adopting the Bayesian tracking framework, the temporal
prior at time t is determined by the previous posterior p(xt−1|Rt−1) and the system dynamics
pd(xt|xt−1), where we have collected the observations at time t into vector rt and defined Rt =
{r1, . . . , rt}. The posterior at t becomes:

p(xt|Rt) ∝ p(rt|xt) ps(xt)
∫

xt−1
pd(xt|xt−1) p(xt−1|Rt−1) (22)

Together pd(xt|xt−1) and p(xt−1|Rt−1) form the time t prior p(xt|Rt−1) for the image correspon-
dence search (21). The integral on the r.h.s. of (22) is approximated as a mixture distribution of
MAP estimates given by the local optima and their covariances from (21). See [46] for details
on the approximation and [48] for methods to speed-up MCMC sampling from the equilibrium
distribution using long-range jumps based on prior knowledge about minima structure.

8.3 Human Pose Estimation and Inter-Frame Tracking Experiments

Here we show examples from a set of experiments on locating local minima for pose estimation and
inter-frame tracking in monocular images, using cost surfaces based on various different combina-
tions of image cues and a 32 d.o.f. articulated human body model. The figures show examples of
minima found in likelihood models based on image contours and optical flow (fig. 9), contours and
silhouette-image data (fig. 11 – note that some of these minima can be removed using more complex
silhouette-based cost functions, as proposed in [39]), and model-to-image joint correspondences
(figs 12 and 13). We also give more extensive quantitative results in table 1. In each case, the model
was initialized in a minimum found using the local optimization algorithm from [43, 40, 46], and
transition state searches were initiated along its principal curvature directions. For each transition
state found, local descent [43, 40, 46] was used to find the corresponding neighboring minimum.
The algorithm was globalized by repeating the process from the new minima found (checking for
duplicates), until either no new minima are found or the permitted total run time has elapsed.

Fig. 7 captures some more quantitative information about the methods, here for the joint corre-
spondence cost function (see §8.2). This problem is well adapted to illustrating the algorithm, as
its cost surface is highly multimodal. Of the 32 kinematic d.o.f., about 10 are subject to ‘reflective’
ambiguities (forwards vs. backwards slant in depth). This potentially creates around 210 = 1024
local minima in the cost surface [27], although some of these are physically infeasible and hence
forbidden in any constraint-consistent optimization. Indeed, given the large number of minima that
exist, we find that it is very difficult to ensure initialization to the ‘correct’ pose with this kind of
data. The first row in fig. 7 displays the parameter space and cost distances of the 56 minima found
during a set of 64 constrained searches (the ± directions of the 32 eigenvectors of an initial mini-
mum, distances being measured w.r.t. this minimum, in radians and meters for the parameter space).
The second row again shows parameter space distances, but now measured in standard deviations
and for saddles rather than minima, for the same frontal view and for a slightly more side-on one
(fig. 12 and fig. 13). The plots reveal the structure of the cost surface, with nearby saddles at 4–10
standard deviations and progressively more remote ones at 20–50, 80–100 and 150–200 standard
deviations. It follows that no multiple-minimum exploration algorithm can afford to search only
within the ‘natural’ covariance scale of its current minima: significantly deeper sampling is needed
to capture even nearby minima (as previously noted, e.g. by [43, 46]).

3Local optima of the current observation cost are obtained using the prior initialization followed by robust constraint-
consistent local optimization, as described in [43, 40, 46].
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Figure 7: Summary of typical search results from a given minimum along±32-eigendirections. Top
row: parameter space distance and cost difference between the initial minimum and its discovered
neighbors. Second row: initial minimum to transition state distances in standard deviations for a
frontal pose with hypersurface sweeping, and a partly side-on one with eigenvector tracking. (See
figs 12 and 13 for the corresponding for visual results).

In fig. 8 we show sample cost profiles for typical runs of joint-constrained eigenvector follow-
ing (top) and hypersurface sweeping (bottom) search. In the eigenvector method, it is preferable
to represent the joint limits using a ‘hard’ active set strategy by projecting the tracking direction
onto the active constraint set (row 1 right) rather than soft constraints (row 1 left): the stiff ‘cost
walls’ induced by the soft constraints tend to force the eigenvector follower into head-on collision
with the wall, with the cost climbing rapidly to infinity. The active set strategy avoids this prob-
lem at the price of more frequent direction changes as the joint limits switch on and off (row 1
right). The hyper-ellipsoid method (row 2) produces trajectories that do not require special joint
limit processing, but its cost profiles have characteristic sawtooth edges (row 2 right) associated
with sudden state readjustments on the hypersphere at points where the tracked minimum becomes
locally unstable4 .

Figs 9 and 11 show minima for costs based on various combinations of image cues. In fig. 9 the
minima correspond to a small interframe motion, using contour and robust optical flow information.
This case has relatively few, but closely spaced local minima owing to the smoothing/quadratic
effect of the flow. (Remoter minima do still exist at points where the robust contributions of sets

4Note the different sources of trajectory instabilities in the two methods: in eigenvector tracking they are due to
the projection of the current trajectory step onto the joint-constraint surface, while for hypersurface sweeping, the joint
constraints can be enforced alongside the hypersurface one but there are instabilities due to topological transitions of
within-constraint minima.
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Figure 8: Top row: typical cost profiles for eigenvector tracking with soft (left) and hard (right) joint
angle constraints. Soft constraints often lead to ‘wall-climbing’ divergences when the search hits a
joint limit. The active-set projection strategy used in the hard-constraint tracker alleviates this, but
introduces abrupt variations of the path direction whenever a constraint is hit, which cause the cost
derivative to vary abruptly. Second row: The hyper-ellipsoid method does not require special joint
limit processing — the joint constraints can just be included with the hypersurface constraint — but
its cost profiles have characteristic ‘sawtooth’ transitions whenever the tracked minimum becomes
locally unstable on the hypersurface.

Figure 9: Minima of image-based cost functions: contour and optical flow likelihood. The model is
initialized in one minimum (second figure), and search trajectories for other minima (along different
principal curvature directions) are initiated from there. The other figures show some of the other
minima found. These correspond to incorrect contour assignments or to configurations where the
intensity robustifiers turn off (see text).
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Figure 10: Cost Function Experiment. The elbow joint is varied as shown in the top row, and the
corresponding edge cost is monitored. The corresponding cost function profile is multi-modal, with
characteristic ‘shoulders’ in which one edge of the image limb contributes to the matching cost of
the opposite edge of the model limb. These persist even when further visual cues (here a silhouette
term) are fused into the cost.

of flow measurements turn off, particularly when these coincide with incorrect edge assignments).
Fig. 11 shows minima arising from a silhouette and edge based cost function. To illustrate why
such minima occur, we first run a toy experiment [39], that moves a model forearm over an image
forearm — see fig. 10. As one can see in the bottom row, the cost has multiple minima, essentially
owing to the attribution of both model edges to different sections of the same image edge. Fig. 11
shows how such incorrect limb assignments affect the full model. The minima shown include
‘reflective’ (depth-related) ambiguities, incorrect edge assignments and singular ‘inside-silhouette’
configurations (some of these can be alleviated to some extent by augmenting the contour and
silhouette likelihood terms as in [39]).

Figs 12 and 13 show depth/pose ambiguities for frontal and half-profile views, under the model
to image joint correspondence cost function (which is not subject to image matching ambiguities).
The flexible and hard-to-observe arm-shoulder complex tends to induce more minima than the legs.
We also find that profile views (fig. 13) tend to generate fewer minima than frontal ones (fig. 12),
perhaps due to presence of body-part non-self-intersection and joint constraints that render many
‘purely reflective’ minima infeasible.

Finally, to provide a more quantitative evaluation of the minimum finding efficiency of the
eigenvector-tracking and hypersurface-sweeping algorithms, we selected 6 initial minima for a
frontal view and 6 more for a half-profile view, using the joint correspondence cost function and our
32 d.o.f. body model. Starting from these configurations, we initiated transition state searches along
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Figure 11: Minima of image-based cost functions: contour and silhouette likelihood. The model
is initialized at one minimum (fig. 9, second figure) and search trajectories for other minima are
initiated from there. The minima shown include ‘reflective’ (depth-related) ambiguities, incorrect
edge assignments and singular ‘inside-silhouette’ configurations. More complex silhouette-based
cost functions, as proposed in [39] can be further used eliminate some of the latter spurious minima
(see text).

the ±32-eigendirections at each minimum, giving a total of 12 × 64 = 768 search trials for each
algorithm. In this experiment we also set an upper-bound of 50 iterations per search (the search
is counted as a failure if a saddle has not been found at this point). Table 1 reports the number of
minima found by each method, and the medians and standard deviations of their parameter space
distances and function values. Both methods locate neighboring minima with good success rates.
In this experiment, hypersurface sweeping locates a few more minima than eigenvector tracking
(60% vs. 55%), but also finds slightly more remote and higher cost minima. When successful, the
eigenvector tracking method typically needs around 17–19 iterations to locate a transition state,
whereas hypersurface sweeping needs about 14–16. In contrast, once a transition state is located,
local descent finds the neighboring minimum in around 7–10 iterations.

Computationally, the cost of an iteration is determined by function evaluation costs and by the
cost of Hessian manipulation for each method. These in turn depend on the number of measure-
ments and the dimension of the parameter space, respectively. ET needs eigendecomposition of
the Hessian which is about 4-5 times more expensive than the Cholesky decomposition required
for a local descent iteration. HS needs Hessian eigendecomposition only for the initial selection of
the hypersurface shape, and any subsequent step involves a local optimization that in practice, we
found, converged in about 3-5 iterations. For the articulated pose problem studied here, we also
found that the above differences are dominated by the cost function evaluation, the manipulation of
the Hessian being comparatively fast for 32 dimensions. For example, on a 2.2Ghz Pentium pro-
cessor, the average iteration cost for the simple joint correspondence cost function was about 0.14s
for local descent, and about 0.31s for ET and 0.62s for HS. For more expensive image-based cost
functions, the timings were 1.21s for local descent, 1.67s for ET and 4.42s for HS.
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Figure 12: ‘Reflective’ kinematic ambiguities under the model/image joint correspondence cost
function in a frontal view. The model is initialized at one minimum (second row, leftmost figure),
and search trajectories are initiated for other minima along different principal curvature directions.
The images show some of the new minima found, from the original camera viewpoint (superposed
on the source image) and from a synthetic overhead viewpoint. Note the pronounced forwards-
backwards character of these reflective minima, and the large parameter space distances that often
separate them.

9 Conclusions and Research Directions

This paper has described two classes of deterministic, local optimization based algorithms for find-
ing ‘transition states’ (saddle points with 1 negative eigenvalue), and hence neighboring minima, of
high-dimensional cost functions with multiple minima. These methods allow us to build topological
‘roadmaps’ of the nearby local minima and the transition states that lead to them. They are based
on methods developed in computational chemistry, but here generalized, clarified and adapted for
use in computational vision. Experiments on the difficult problem of articulated 3D human pose
from monocular images show that our algorithms can stably and efficiently recover large numbers
of nearby transition states and minima, but also serve to underline the very large numbers of minima
that exist in this problem.
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Figure 13: ‘Reflective’ kinematic ambiguities under the model/image joint correspondence cost
function, for a half-profile view. For explanation, see fig. 12 caption.

METHOD NUMBER OF MEDIAN PARAMETER MEDIAN STANDARD MEDIAN COST
DETECTED MINIMA DISTANCE DEVIATIONS

ET 421 (55%) 4.45 79.6 3.39
HS 457 (60%) 5.01 91.6 3.87

Table 1: Quantitative results for the distribution of minima found by eigenvector tracking and hy-
persurface sweeping. The results represent a total of 768 local searches (forwards and backwards
along the 32-eigendirections of 6 frontal and 6 half-profile minima). Hypersurface sweeping finds
9% more minima than eigenvector tracking, but they are about 12–15% further away and have about
14% higher cost on average.

Our methods should be useful for many other minimum-rich problems in vision, including
structure from motion. They could also potentially be used to quantify the degree of ambiguity of
different cost functions, which in the long term may aid the design of less ambiguous cost functions
based on higher-level features and groupings.

Although the current methods are a great improvement over previous ones, they are not fool-
proof and much remains to be done in this area. Damped Newton iteration is useful for refining
estimated saddle points but its convergence domain is too limited for general use. Eigenvector
tracking extends the convergence domain but can be sensitive to the ‘same eigenvector’ heuristic
used. Hypersurface sweeping is better founded in that it provides some guarantee of global progress,
but no single sweep finds all saddle points and it is more complex to implement. Future research
directions include deriving heuristics to select promising up-hill directions for search initialization,
and an analysis of the benefits of different types of hypersurfaces and of ways to adaptively evolve
them based on the local cost function structure. It should be also interesting to explore the use of lo-
cal saddle point moves as alternatives to less informed long range Markov-chain steps in stochastic
simulations.
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Abstract
Sequential random sampling (‘Markov Chain Monte-Carlo’) is a popular strategy for many vision prob-

lems involving multimodal distributions over high-dimensional parameter spaces. It applies both to impor-
tance sampling (where one wants to sample points according to their ‘importance’ for some calculation,
but otherwise fairly) and to global optimization (where one wants to find good minima, or at least good
starting points for local minimization, regardless of fairness). Unfortunately, most sequential samplers are
very prone to becoming trapped for long periods in unrepresentative local minima, which leads to biased
or highly variable estimates. We present a general strategy for reducing MCMC trapping that generalizes
Voter’s ‘hyperdynamic sampling’ from computational chemistry. The local gradient and curvature of the
input distribution are used to construct an adaptive importance sampler that focuses samples on negative
curvature regions that are likely to contain low cost ‘transition states’ (codimension-1 saddle points rep-
resenting “mountain passes” connecting adjacent cost basins). This substantially accelerates inter-basin
transition rates while still preserving correct relative transition probabilities. Experimental tests on the diffi-
cult problem of 3D articulated human pose estimation from monocular images show significantly enhanced
minimum exploration.

Keywords: Hyperdynamics, Markov-chain Monte Carlo, importance sampling, global optimization, human
tracking.

1 Introduction

Many vision problems can be formulated either as global minimizations of highly non-convex cost
functions with many minima, or as statistical inferences based on fair sampling or expectation-
value integrals over highly multi-modal distributions. Importance sampling is a promising approach
for such applications, particularly when combined with sequential (‘Markov Chain Monte-Carlo’),
layered or annealed samplers [9, 5, 6], optionally punctuated with bursts of local optimization
[11, 4, 33]. Sampling methods are flexible, but they tend to be computationally expensive for a
given level of accuracy. In particular, when used on multi-modal cost surfaces, current sequential
samplers are very prone to becoming caught for long periods in cost basins containing unrepresen-
tative local minima. This ‘trapping’ or ‘poor mixing’ leads to biased or highly variable estimates

To appear in Journal of Image and Vision Computing, Special Issue on Selected Papers from the European Conference
on Computer Vision, ECCV 2002, Copenhagen. c© 2004 Kluwer Academic Publishers
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whose character is at best quasi-local rather than global. Trapping times are typically exponential
in a (large) scale parameter, so buying a faster computer helps little. Current samplers are myopic
mainly because, when judging ‘importance’, they consider only immediate local variations of the
size of the integrand being evaluated or the cost being optimized. For globally efficient estimates, it
is also critically important to include an effective strategy for reducing trapping, e.g. by explicitly
devoting some fraction of the samples to moving between cost basins.

This paper describes a method that reduces trapping by ‘boosting’1 the dynamics of the sequen-
tial sampler. It is based on A.F. Voter’s ‘hyperdynamics’ [45, 46], which was originally developed
in computational chemistry to accelerate the estimation of transition rates between different atomic
arrangements in atom-level simulations of molecules and solids. There, the dynamics is basically a
thermally-driven random walk of a point in the configuration space of the combined atomic coor-
dinates, subject to an effective energy potential that models the combined inter-atomic interactions.
The configuration-space potential is often highly multimodal, corresponding to different large-scale
configurations of the molecule being simulated. Trapping is a significant problem, especially as the
fine-scale dynamics must use quite short time-steps to ensure accurate physical modeling. Mixing
times of 106–109 or more steps are common. In our target applications in vision the sampler need
not satisfy such strict physical constraints, but trapping remains a key problem.

Hyperdynamics reduces trapping by enhancing the sampling rate near ‘transition states’ — low
lying saddle points that the system would typically pass through if it were moving thermally be-
tween adjacent energy basins. It does this by modifying the cost function, adding a term based on
the gradient and curvature of the original potential that raises the cost near the cores of the local
potential basins to reduce trapping there, while leaving the cost intact in regions where the original
potential has the low gradient and negative curvature eigenvalue characteristic of transition neigh-
borhoods. Hyperdynamics can be viewed as a generalized form of MCMC importance sampling
whose importance measure considers the gradient and curvature as well as the values of the original
cost function. The key point is not the specific form adopted for the potential, but rather the re-
fined notion of ‘importance’: deliberately adding samples to speed mixing and hence reduce global
bias (‘finite sample effects’), even though the added samples are not directly ‘important’ for the
calculation being performed.

Another general approach to multi-modal optimization is annealing [15, 24] (with detailed
balance variations like tampering [18]) — initially sampling with a reduced sensitivity to the under-
lying cost (‘higher temperature’), then progressively increasing the sensitivity to focus samples on
lower cost regions. Annealing has been used many times in vision and elsewhere2, e.g. [23, 24, 6],
but although it works well in many applications, it has important limitations as a general method
for reducing trapping. The main problem is that it samples indiscriminately within a certain energy
band, regardless of whether the points sampled are likely to lead out of the basin towards another
minimum, or whether they simply lead further up an ever-increasing potential wall. In many appli-
cations, and especially in high-dimensional or ill-conditioned ones, the cost surface has relatively
narrow ‘windows’ connecting adjacent basins, and it is important to steer the samples towards these
using local information about how the cost appears to be changing. Hyperdynamics is a first at-
tempt at doing this. Annealing and hyperdynamics are actually complementary: it may be possible
to speed up hyperdynamics by annealing its modified potential, but we will not investigate this here.

Paper organization: We review desirable features of fast mixing high-dimensional samplers in

1No relationship to boosting in machine learning is implied.
2In chemistry and physics applications of hyperdynamics, raising the temperature is often unacceptable as it would

significantly change the problem, e.g. the solid being simulated might melt. . .
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§1.1 and prior work in §1.2. Sampling and transition state theory are introduced in §2. Ways
to design generic fast-mixing transformations of the energy surface are presented in §3 and one
particular approximation is proposed and analyzed in §4. Complementary sampling strategies are
discussed in §5. Human modeling and high-dimensional pose estimation experiments are given in
§6 and §7. Conclusions and ideas for future research are discussed in §8.

1.1 What is a Good Multiple-Mode Sampling Function ?

‘The curse of dimensionality’ causes many difficulties in high-dimensional search. In stochastic
methods, long sampling runs are often needed to hit the distribution’s ‘typical set’ — the areas
where most of the probability mass is concentrated. In sequential samplers this is due to the inher-
ently local nature of the sampling process, which tends to become ‘trapped’ in individual modes,
moving between them only very infrequently. More generally, choosing an importance sampling
distribution is a compromise between tractable sampleability and efficient focusing of the sampling
resources towards ‘good places to look’.

There are at least three issues in the design of a good multi-modal sampler: (i) Approximation
accuracy: in high dimensions, when the original distribution is complex and highly multi-modal
(as is the case in vision), finding a sampleable function that gives good approximation accuracy /
low reject rate can be very difficult, thus limiting the applicability of the method. It is therefore
appealing to look for ways of using a modified version of the original distribution, as for instance in
annealing methods [23, 24, 6]. (ii) Trapping: even when the approximation is locally accurate (e.g.
by sampling the original distribution, thus avoiding any sample-weighting artifacts), most sampling
procedures tend to get caught in the mode(s) closest to the starting point of sampling. Very long
runs are needed to sample infrequent inter-mode transition events that lie far out in the tails of
the modal distributions, but that can make a huge difference to the overall results. (iii) Biased
transition rates: annealing changes not only the absolute inter-mode transition rates (thus reducing
trapping), but also their relative sizes [40]. So there is no guarantee that the modes are visited
with the correct relative probabilities implied by the dynamics on the original cost surface. This
may seem irrelevant if the aim is simply to discover ‘all good modes’ or ‘the best mode’, but the
levels of annealing needed to make difficult transitions frequent can very significantly increase the
number of modes and the state space volume that are available to be visited, and thus cause the vast
bulk of the samples to be wasted in fruitless regions3 . This is especially important in applications
like tracking, where temporal continuity implies that only nearby modes that are separated from the
current one by low energy barriers need to be recovered.

To summarize, for complex high dimensional problems, finding good, sampleable approximat-
ing distributions is hard, so it is useful to look at sequential samplers based on distributions derived
from the original one. There is a trade-off between sampling for local computational accuracy,
which requires samples in ‘important’ regions, usually mode cores, and sampling for good mixing,
which requires not only more frequent samples in the tails of the distribution, but also that these
should be focused on regions likely to lead to inter-modal transitions. Defining such regions is
delicate in practice, but it is clear that steering samples towards regions with low gradient and neg-
ative curvatures should increase the likelihood of finding transition states (saddle points with one

3There is an analogy with the chemist’s melting solid, liquids being regions of state space with huge numbers of small
interconnected minima and saddles, while solids have fewer, or at least more clearly defined, minima. Also remember
that state space volume increases very rapidly with sampling radius in high dimensions, so dense, distant sampling is
simply infeasible.
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negative curvature direction) relative to purely cost-based methods such as annealing.

1.2 Related Work

In this section we summarize some relevant work on high-dimensional search, especially in the
domain of human modeling and estimation. Deutscher et al track 3D body motion using a multi-
camera silhouette-and-edge based likelihood function and annealed sampling within a temporal
particle filtering framework [6]. Their sampling procedure resembles one used by Neal, except
that Neal also includes an additional importance sampling correction designed to improve mixing
[23, 24]. Sidenbladh et al use an intensity based cost function and particle filtering with impor-
tance sampling based on a learned dynamical model to track a 3D model of a walking person in
an image sequence [29]. Choo & Fleet combine particle filtering and hybrid Monte Carlo sam-
pling to estimate 3D human motion, using a cost function based on joint reprojection error given
input from motion capture data [5]. Sminchisescu & Triggs recover articulated 3D motion from
monocular image sequences using an edge and intensity based cost function, with a combination of
robust constraint-consistent local optimization and ‘oversized’ covariance scaled sampling to focus
samples on probable low-cost regions [33]. Their more recent work further enhances tracking re-
liability by explicitly enumerating the possible kinematic minima [37]. See also Sminchisescu &
Jepson [32] for a mixture smoother that computes a Bayesian approximation to an entire trajectory
distribution. This can be efficiently used in tandem with mixture filters like [4, 36, 37, 42].

Hyperdynamics uses stochastic dynamics with cost gradient based sampling as in [9, 22, 5], but
‘boosts’ the dynamics with a novel importance sampler constructed from the original probability
surface using local gradient and curvature information. All of the annealing methods try to in-
crease transition rates by sampling a modified distribution, but only the one given here specifically
focuses samples on regions likely to contain transition states. There are also deterministic local-
optimization-based methods designed to find transition states. See our companion paper [34, 38]
for references. A complementary class of methods [44, 1, 27, 20, 13, 39] assumes that the basins
of attraction of the dominant local minima are already known, and uses this to speed-up sampling
in a way that satisfies detailed balance. If exact sampling (as opposed to mode finding) is required,
such methods can be used in tandem with fast mixers like hyperdynamics or annealing, but we will
not investigate this here.4

2 Sampling and Transition State Theory

2.1 Importance Sampling

Importance sampling works as follows. Suppose that we are interested in quantities depending
on the distribution of some quantity x, whose probability density is proportional to f(x). Sup-
pose that it is feasible to evaluate f(x) pointwise, but that we are not able to sample directly
from the distribution it defines, but only from an approximating distribution with density fb(x).
We will base our estimates on a sample of N independent points, x1, ...,xN drawn from fb(x).

4One should be particularly careful to preserve detailed balance when selecting a transition kernel (jump proposal
mechanism) for MCMC sampling. Naively proposing jumps that do not take the relative volume factors of the source
and target regions into account is simply incorrect, whereas computing even approximate (but necessarily higher-order)
correction factors may lead to inefficiencies, if required at each simulation step. Methods like [1, 39] are designed to
address such trade-offs. They are provably correct asymptotically, allow correction factors to be precomputed and take
advantage of fast-mixing, local optimum search methods like [36, 38, 37].
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The expectation value of some quantity V (x) with respect to f(x) can then be estimated as V̄ =
∑N

i=1 wi V (xi)/
∑N

i=1 wi, where the importance weighting of xi is wi = f(xi)/fb(xi) (this as-
sumes that fb(x) 6= 0 whenever f(x) 6= 0). It can be proved that the importance sampled estimator
converges to the mean value of V as N increases, but it is difficult to assess how reliable the estimate
V̄ is in practice. Two issues affect this accuracy: the variability of the importance weights due to
deviations between f(x) and fb(x), and statistical fluctuations caused by the improbability of sam-
pling infrequent events in the tails of the distribution, especially if these are critical for estimating
V̄ .

2.2 Stochastic Dynamics

Various methods are available for speeding up sampling. Here we use a stochastic dynamics method
on the potential surface defined by our cost function (the negative log-likelihood of the state prob-
ability given the observations, f(x) = − log p(x| . . .) ). Canonical samples from f(x) can be
obtained by simulating the phase space dynamics defined by the Hamiltonian function:

H(x,p) = f(x) + K(p) (1)

where K(p) = p>p/2 is the kinetic energy, and p is the momentum variable. Averages of variables
V over the canonical ensemble can be computed by using classical 2N-dimensional phase-space
integrals:

〈V 〉 =

∫∫

V (x,p) e−αf(x) e−αK(p) dxdp
∫∫

e−αf(x) e−αK(p) dxdp
(2)

where α = 1/T is the temperature constant. Dynamics (and hence sampling) is done by locally
integrating the Hamilton equations:

dx

dt
= p and

dp

dt
= −

df(x)

dx
(3)

using a Langevin Monte Carlo type integration/rejection scheme that is guaranteed to perform sam-
pling from the canonical distribution over phase-space:

xi+1 = xi −
∆t2sd

2

df(x)

dx
+ ∆tsdni (4)

Here, ni is a vector of independently chosen Gaussian variables with zero mean and unit variance,
and ∆tsd is the stochastic dynamics integration step. Compared to so called ‘hybrid’ methods, the
Langevin method can be used with a larger step size and this is advantageous for our problem,
where the step calculations are relatively expensive (see [22] and its references for a more complete
discussion of the relative advantages of hybrid and Langevin Monte Carlo methods)5 . For physical
dynamics, t represents the physical time, while for statistical calculations it simply represents the
number of steps performed since the start of the simulation. The simulation time is used in §3 below
to estimate the acceleration of infrequent events produced by the proposed biased potential.

5Note that the momenta are only represented implicitly in the Langevin formulation. There is no need to update their
values after each leapfrog step as they are immediately replaced by new ones drawn from the canonical distribution at
the start of each iteration.
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Figure 1: The original cost function and the bias added for hyperdynamics. The bias prevents
extended trapping in the minimum by raising the cost there, while leaving it unchanged in the
transition neighborhoods.

2.3 Transition State Theory

Continuing the statistical mechanics analogy begun in the previous section, the behavior of the phys-
ical system can be characterized by long periods of ‘vibration’ within one ‘state’ (energy basin),
followed by infrequent transitions to other states via saddle points. In the ‘transition state the-
ory’ (TST) approximation, the transition rates between states are computed using the sample flux
through the dividing surface separating them. For a given state S, this is the N − 1 dimensional
surface separating the state S from its neighbors. The rate of escape from state S is:

ktst
S→ = 〈 |νS | δS(x) 〉S (5)

where δS(x) is a Dirac delta function positioned on the dividing surface of S and νS is the velocity
normal to this surface. Crossings of the dividing surface correspond to true state change events, and
we assume that the system loses all memory of this transition before the next event.

3 Accelerating Transition State Sampling

This section explains how transforming the sampling potential can accelerate transitions between
minima, and hence allow fairer sampling of the minima that are present. It describes general prop-
erties that such transformations should obey and derives quantitative estimates for the expected
acceleration factor. A specific functional form that approximates the required transformation prop-
erties is detailed in §4.

According to the transition state theory formalism presented in the previous section, the TST
rate can be evaluated as follows, using (5) and (2):

ktst
S→ =

∫∫

|νS | δS(x) e−αf(x) e−αK(p) dxdp
∫∫

e−αf(x) e−αK(p) dxdp
(6)

Now consider adding a positive bias or boost cost fb(x) (with a corresponding ‘biased’ state Sb)
to the original cost f(x), with the further property that fb(x) = 0 whenever δS(x) 6= 0, i.e. the
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potential is unchanged in the transition state regions. The TST rate becomes:

ktst
S→ =

∫∫

|νS | δS(x) e−α[f(x)+fb(x)] eαfb(x) e−αK(p) dxdp
∫∫

e−αf(x) e−αK(p) dxdp
(7)

=

〈

|νS | δS(x) eαfb(x)
〉

Sb

〈 eαfb(x) 〉Sb

=
〈 |νS | δS(x) 〉Sb

〈 eαfb(x) 〉Sb

(8)

The boost term increases every escape rate from state S as the cost well is made shallower, but it
leaves the ratios of escape rates from S, Sb to other states S1, S2 invariant:

ktst
S→S1

ktst
S→S2

=
ktst

Sb→S1

ktst
Sb→S2

(9)

This holds because all escape rates from S have the partition function of S as denominator, so
replacing this with the partition function of Sb leaves their ratios unchanged. Concretely, suppose
that during Nt steps of classical dynamics simulation on the biased cost surface, we encounter
Ne escape attempts over the dividing surface. For the computation, let us also assume that the
simulation is artificially confined to the basin of state S by reflecting boundaries. (This does not
happen in real simulations: it is used here only to estimate the ‘biased boost time’). The TST escape
rate from state S can be estimated simply as the ratio of the number of escape attempts to the total
trajectory length: ktst

S = Ne/(Nt∆tsd). Consequently, the mean escape time (inverse transition
rate) from state S can be estimated from (7) as:

τS
esc =

1

ktst
S→

=
〈 eαfb(x) 〉Sb

〈 |νS | δS(x) 〉Sb

=
1

Nt

∑Nt

i=1 eαfb(xi)

Ne/(Nt ∆tsd)
=

1

Ne

Nt
∑

i=1

∆tsd eαfb(xi) (10)

The effective simulation time boost achieved in step i thus becomes simply:

∆tbi
= ∆tsde

αfb(xi) (11)

The dynamical evolution of the system from state to state is still correct, but it works in a distorted
time scale that depends exponentially on the bias potential. As the system passes through regions
with high fb, its equivalent time ∆tb increases rapidly — owing to the large energy differential, the
original dynamics would have tended to linger in (or return to) these regions much more often on
average than the boosted dynamics suggests. Conversely, in zones with small fb the equivalent time
progress at the standard stochastic dynamics rate. Of course, in reality the simulation’s integration
time step and hence its sampling coarseness are the same as they were in the unboosted simulation.
The boosting time (11) just gives an intuition for how much time an unaccelerated sampler would
probably have wasted making ‘uninteresting’ samples near the cost minimum. But that is largely
the point: the wastage factors are astronomical in practice — unboosted samplers can not escape
from local minima.

4 The Biased Cost

The main requirements on the bias potential are that it should be zero on all dividing surfaces, that
it should not introduce new sub-wells with escape times comparable to the main escape time from
the original cost well, and that its definition should not require prior knowledge of the cost wells or
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saddle points (if we knew these we could avoid trapping much more efficiently by including explicit
well-jumping samples (c.f . [39, 37]). For sampling, the most ‘important’ regions of the cost surface
are minima, where the Hessian matrix H has strictly positive eigenvalues, and transition states,
where it has exactly one negative eigenvalue e1 < 0. The gradient vector vanishes in both cases.
The rigorous definition of the TST boundary is necessarily global6 , but locally near a transition
state the boundary contains the state itself and adjacent points where the Hessian has a negative
eigenvalue and vanishing gradient component along the corresponding eigenvector:

gp1 = V>

1g = 0 and e1 < 0 (12)

where g is the gradient vector and V1 is the first Hessian eigenvector. Voter [45, 46] therefore
advocates the following bias cost for hyperdynamics:

fb =
hb

2



 1 +
e1

√

e2
1 + g2

p1/d
2



 (13)

where hb is a constant controlling the strength of the bias and d is a length scale (e.g. an estimate
of the typical nearest-neighbor distance between minima, if this is available). In the neighborhood
of any first-order saddle point, (12) gives a good approximation to the true TST dividing surface.
Far away from the saddle, the approximation may not hold. For instance, the equation (12) may
be satisfied in regions internal to a minimum that do not represent state boundaries or for some
parts of the TST surface, the Hessian may have no negative eigenvalues and the gradient may not
be zero along the lowest Hessian eigenvector (but some higher one). However, the zones of the
dividing surface near low cost saddle points are the most likely regions for the inter-minimum
transition, and given that the above bias potential is small in these neighborhoods, it provides a
useful approximation to the true transition dynamics.

Increasing hb increases the bias and hence the nominal boosting. In principle it is even possible
to raise the minimum above the level of its surrounding transition states, but there is a risk that doing
so would entirely block the sampling pathways through and around the minimum, thus causing the
system to become trapped in a newly created well at one end of the old minimum. Hence, it is
usually safer to select a more moderate boosting. Regardless of the choice of hb, the bias potential
(13) has the desirable property that it automatically decreases, and ultimately vanishes, in regions
with the eigenvalue structure of transition neighborhoods (12).

4.1 Estimating the Gradient of the Bias Potential

Efficient sampling or optimization methods often require the gradient of the cost function. Direct
differentiation of Voter’s potential (13) for gradient-based dynamics requires third order deriva-
tives of f(x), but an inexpensive numerical estimation method based on first order derivatives was
proposed in [46]. For completeness we summarize this here. The calculations are more complex
than those needed for standard gradient based stochastic simulation, but in practice the exponential
speed-up provided by the bias easily dominates the additional constant factors associated with this.

6The basin of state S can be defined as the set of configurations from which gradient descent minimization leads to
the minimum S. This basin is surrounded by an (n−1)-D hypersurface, outside of which local descent leads to states
other than S.
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An eigenvalue can be computed by numerical approximation along its corresponding eigenvec-
tor direction s:

e(s) = [f(x + ηs) + f(x− ηs) − 2f(x)]/η2 (14)

The eigenvector direction can be estimated numerically using any gradient descent method, based
on a random initialization s or on the one from the previous dynamics step, using:

de

ds
= [g(x + ηs) − g(x − ηs)]/η (15)

The lowest eigenvector obtained from the minimization (15) is then used to compute the correspond-
ing eigenvalue via (14). The procedure can be repeated for higher eigenvalue-eigenvector pairs by
maintaining orthogonality with previous directions. The derivative of the projected gradient g1p can
then be obtained by applying the minimization to the matrices H + λg g> and H − λg g>. One
thus minimizes:

dei

dx
=
{

[g(x + ηs) + g(x − ηs) − 2g(x)]/η2
}

s=si

(16)

where:

e±λ = e(s) ± λ
[f(x + ηs) − f(x− ηs)

2η

]2
(17)

A good approximation to gp1 can be obtained from [46]:

gp1 =
1

2λ
(e+λ − e−λ), and

dgp1

dx
=

1

2λ

(

de+λ

dx
−

de−λ

dx

)

(18)

5 Complementary Hyperdynamic Sampling Strategies

Hyperdynamic sampling provides rapid mixing, but not fair samples from the equilibrium distribu-
tion. Inter-mode transition probabilities are preserved (c.f . §3) but the cores of minima are strongly
de-emphasized. To recover fair samples, some form of correction or post-processing is needed.
There are several approaches, depending on the application. One possibility is importance sam-
pling based reweighting (§2.1). Asymptotically, this will give correct results, but variability tends
to be high as hyperdynamics deliberately makes as few samples as it can in the mode cores. Prac-
tically, improvements are possible: (i) For fair sampling, the ‘bias’ can provide initial seeds for a
subsequent classical stochastic dynamics simulation operating on the original cost. By using such
well-mixed seeds spread over a substantially large number of minima the structure of the density
will be better represented. (ii) If precise localization of the modes is important e.g. in global opti-
mization, hyperdynamics provides seeds for local descent on the original energy surface. A third
option, reviewed next, combines the two ideas above and uses the known local minima within a fair
sampling run.

Darting methods assume that the positions of local minima are known a priori, and use these to
speed-up sampling from the equilibrium distribution [27, 1, 39]. They involve ‘smart’ moves that
ensure both fair sampling and rapid jumping between minima. Without some prior knowledge of
the structure of the distribution, long-range random jumps would stand a very low chance of being
accepted, as they will most likely hit high-energy regions, especially in high-dimensions. To avoid
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this, the initially proposed methods [1] work by placing spheres with equal radius at each local
minimum. The sampler resembles a standard MCMC simulation with local steps, except that with
fixed probability P a test is made to see whether the current configuration is inside one of the
known spheres (i.e. neighborhoods of minima). If the sample is outside any sphere, it is simply re-
counted. If it is inside a sphere, its relative position with respect to the center is computed, a different
minimum/sphere is selected with uniform probability, and a jump to the corresponding relative
location with respect to that minimum is proposed. The move is accepted or rejected according
to the usual Boltzmann criteria. One can prove that long-range jumps of this type obey detailed
balance provided the spheres do not overlap [1]. This is true because the probability of entering a
sphere from its outside is the same as the reverse move, namely 1 − P times the probability of a
local move. For inter-minimum moves the probability is equal in both directions. See [1, 39] for
details, and [39] for a generalization to different moves, shapes of local minima and overlapping
regions.

6 Human Domain Modeling

This section briefly describes the humanoid visual tracking models used in our hyperdynamic boost-
ing experiments. For more details see [33, 36].

Representation Our body models contain kinematic ‘skeletons’ of articulated joints controlled by
angular joint parameters, covered by ‘flesh’ built from superquadric ellipsoids with additional global
deformations [2]. A typical model has: about 30-35 joint parameters xa; 8 internal proportion
parameters xi encoding the positions of the hip, clavicle and skull tip joints; and 9 deformable shape
parameters for each body part, gathered into a vector xd. The complete model is thus encoded as a
single large parameter vector x = (xa,xd,xi). During tracking or static pose estimation we usually
estimate only joint parameters.

The model is used as follows. Superquadric surfaces are discretized into meshes parameter-
ized by angular coordinates in a 2D topological domain. Mesh nodes ui are transformed into 3D
points pi(x), then into predicted image points ri(x) using composite nonlinear transformations
ri(x) = P (pi(x)) = P (A(xa,xi, D(xd,ui))), where D represents a sequence of parametric de-
formations that construct the corresponding part in its own reference frame, A represents a chain of
rigid transformations that map it through the kinematic chain to its 3D position, and P represents
perspective image projection. During model estimation, prediction-to-image matching cost metrics
are evaluated between each predicted model feature ri and nearby associated image features r̄i, and
the results are summed over all features to produce the image contribution to the overall parameter
space cost function. The cost is thus a robust function of the prediction errors ∆ri(x) = r̄i−ri(x).
The cost gradient gi(x) and Hessian Hi(x) are also computed and assembled over all observations.

Estimation: We aim for a probabilistic interpretation and optimal estimates of the model parame-
ters by maximizing the total probability according to Bayes rule:

p(x|r̄) ∝ p(r̄|x) p(x) = exp

(

−
∑

i

e(r̄i|x)

)

p(x) (19)

where e(r̄i|x) is the cost density associated with observation i, the integral is over all observations,
and p(x) is the prior on the model parameters. Discretizing the continuous problem, our MAP
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approach minimizes the negative log-likelihood for the total posterior probability:

f(x) = − log p(r̄|x) − log p(x) = fl(x) + fp(x) (20)

Observation Likelihood: In the below experiments we actually only used a very simple Gaussian
likelihood based on given model-to-image joint correspondences. The negative log-likelihood for
the observations is just the sum of squared model joint reprojection errors. Our full tracking system
uses this cost function only for initialization, but it still provides an interesting (and difficult to
handle) degree of multimodality owing to the kinematic complexity of the human model and the
large number of parameters that are unobservable in a singular monocular image. In practice we
find that globalizing the search is at least as important for initialization as for tracking, and this cost
function is significantly cheaper to evaluate than our full image based one, allowing more extensive
sampling experiments.

Priors and Constraints: Both hard and soft priors are accommodated in our framework. They
include anthropometric priors on model proportions, parameter stabilizers for hard to estimate but
useful modelling parameters, terms for collision avoidance between body parts, and joint angle
limits. During estimation, the values, gradients and Hessians of the priors are evaluated and added
to the contributions from the observations.

7 Experiments

In this section we illustrate the hyperdynamics method on a toy problem involving a two-dimensional
multi-modal cost surface, and on the problem of initial pose estimation for an articulated 3D hu-
man model based on given joint-to-image correspondences. In both cases we compare the method
with standard stochastic dynamics on the original cost surface. The parameters of the two methods
(temperature, integration step, number of simulation steps, etc.) are identical, except that hyperdy-
namics requires values for the two additional parameters hb and d that control the properties of the
bias potential (13).

7.1 The Müller Cost Surface

Müller’s Potential (fig. 2, left) is a simple 2D analytic cost function with three local minima M1, M2,
M3, and two saddle points S1, S2, which is often used in the chemistry literature to illustrate tran-
sition state search methods. It has the form V (x, y) =

∑4
i=1 Ai e

ai(x−xi)2+bi(x−xi)(y−yi)+ci(y−yi)2

where A = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6), c = (−10,−10,
−6.5, 0.7), x = (1, 0,−0.5,−1), y = (0, 0.5, 1.5, 1). The inter-minimum distance is of order 1
length unit, and the transition states are around 100–150 energy units above the lowest minimum.

Fig. 2 (right) shows the result of standard stochastic dynamic sampling on the original cost
surface. Despite 6000 simulation steps at a reasonable step size ∆tsd = 0.01, only the basin of the
starting minimum is sampled extensively, and no successful escape has yet taken place. Fig. 3 shows
two hyperdynamics runs with parameters set for moderate boosting. Note the reduced emphasis on
sampling in the core of the minimum — in fact the minimum is replaced by a set of higher energy
ones — and the fact that the runs escape the initial basin. In the right hand plot there is a clear
focusing of samples in the region corresponding to the saddle point linking the two adjacent minima
M1 and M2. Finally, fig. 4 shows results for more aggressive bias potentials that cause the basins
of all three minima to be visited, with strong focusing of samples on the inter-minimum transition
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M1

M2

M3

S1

S2

Figure 2: The Müller Potential (left) and a standard stochastic dynamics gradient sampling simula-
tion (right) that gets trapped in the basin of the starting minimum.

Figure 3: Hyperdynamic sampling with hb = 150, d = 0.1 and hb = 200, d = 0.5.

regions. The bias here turns the lowest positive curvature region of the initial minimum into a local
maximum.

The plots also show that the Voter potential is somewhat ‘untidy’, with complicated local steps
and ridges. Near the hypersurfaces where the first Hessian eigenvalue e1 passes down through zero,
the bias jumps from hb to 0 with an abruptness that increases as the length scale d increases (sic) or
the gradient projection gp1 decreases, owing to the e1/

√

e2
1 + g2

p1/d
2 term in (13). A small d makes

these e1 = 0 transitions smoother, but increases the suddenness of ridges in the potential that occur
on hypersurfaces where g1p passes through zero.

Fig. 5 plots the simulation boosting time for two bias potentials. The left plot has a milder
potential that simply encourages exploration of saddle points, while the right plot has a more ag-
gressive one that is able to explore and jump between individual modes more rapidly. (Note the
very large and very different sizes of the boosting time scales in these plots).
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Figure 4: Hyperdynamic sampling with hb = 300, d = 10 and hb = 400, d = 100.
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Figure 5: Effective boost times for mild (left) and more aggressive (right) bias potentials.

7.2 Monocular 3D Pose Estimation

Now we explore the potential of the hyperdynamics method for monocular 3D human pose esti-
mation under model to image joint correspondences. This problem is well adapted to illustrating
the algorithm, as its cost surface is highly multimodal. Of the 32 kinematic model d.o.f., about
10 are subject to ‘reflective’ kinematic ambiguities (forwards vs. backwards slant in depth), which
potentially creates around 210 = 1024 local minima in the cost surface [16, 41, 37], although some
of these are not physically feasible and are automatically pruned during the simulation (see below).
Indeed, we find that it is very difficult to ensure initialization to the ‘correct’ pose with this kind of
data.

The simulation enforces joint limit constraints using reflective boundary conditions, i.e. by re-
versing the sign of the particle’s normal momentum when it hits a joint limit. We found that this
gives an improved sampling acceptance rate compared to simply projecting the proposed config-
uration back into the constraint surface, as the latter leads to cascades of rejected moves until the
momentum direction gradually swings around.

We ran the simulation for 8000 steps with ∆tsd = 0.01, both on the original cost surface (fig. 8)
and on the boosted one (fig. 6). It is easy to see that the original sampler gets trapped in the starting
mode, and wastes all of its samples exploring it repeatedly. Conversely, the boosted hyperdynamics
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Figure 6: Human poses sampled using hyperdynamics on a cost surface based on given model-
to-image joint correspondences, seen from the camera viewpoint and from above. Hyperdynamics
finds a variety of different poses including well separated reflective ambiguities (which, as expected,
all look similar from the camera viewpoint). In contrast, standard stochastic dynamics (on the
same underlying cost surface with identical parameters) essentially remains trapped in the original
starting mode even after 8000 simulation steps (fig. 8).

method escapes from the starting mode relatively quickly, and subsequently explores many of the
minima resulting from the depth reflection ambiguities.

Fig. 7 plots the estimated boosting times for two different bias potentials, hb = 200, d = 2,
and hb = 400, d = 20. The computed mean state variance of the original estimator was 4.10−6,
compared to 7.10−6 for the boosted one.

8 Conclusions and Open Research Directions

This paper has underlined the fact that for high dimensional multimodal cost functions, rather than
focusing only on performing their target computation, importance samplers need to devote some
of their samples to reducing trapping in local minima. With this in mind, we presented an MCMC
sampler designed to accelerate the exploration of different minima, based on the ‘hyperdynamics’
method from computational chemistry. It uses local cost gradients and curvatures to construct a
modified cost function that focuses samples towards regions with low gradient and at least one
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Figure 7: Boosting times for human pose experiments, with mild (left) and strong (right) bias.

Figure 8: Stochastic dynamics on the original cost surface leads to “trapping” in the starting mode.

negative curvature, which are likely to contain the transition states (low cost saddle points with one
negative curvature direction) of the original cost. Our experimental results demonstrate that the
method significantly improves inter-minimum exploration behavior in the problem of monocular
articulated 3D human pose estimation.

An interesting research direction would be the derivation and investigation of alternative, com-
putationally more efficient biased sampling distributions.
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Abstract
A major difficulty for 3D human body tracking from monocular

image sequences is the near non-observability of kinematic degrees
of freedom that generate motion in depth. For known link (body seg-
ment) lengths, the strict non-observabilities reduce to twofold ‘for-
wards/backwards flipping’ ambiguities for each link. These imply
2# links formal inverse kinematics solutions for the full model, and
hence linked groups of O(2# links) local minima in the model-image
matching cost function. Choosing the wrong minimum leads to rapid
mistracking, so for reliable tracking, rapid methods of investigating
alternative minima within a group are needed. Previous approaches
to this have used generic search methods that do not exploit the
specific problem structure. Here, we complement these by using
simple kinematic reasoning to enumerate the tree of possible for-
wards/backwards flips, thus greatly speeding the search within each
linked group of minima. Our methods can be used either determinis-
tically, or within stochastic ‘jump-diffusion’ style search processes.
We give experimental results on some challenging monocular human
tracking sequences, showing how the new kinematic-flipping based
sampling method improves and complements existing ones.

Keywords: Monocular 3D human body tracking, kinematic ambi-
guity, Covariance Scaled Sampling, inverse kinematics, particle fil-
tering, constrained optimization, high-dimensional search.

1 Introduction

A major difficulty for 3D human body tracking from monocu-
lar image sequences is the quasi-unobservability of kinematic
degrees of freedom that generate motion in depth. For un-
known limb (link) lengths this leads to continuous nonrigid
‘affine folding’ ambiguities, but once lengths are known these
reduce to twofold ‘forwards/backwards flipping’ ambiguities
for each link. The full model thus has 2# links formal inverse
kinematics solutions. Even with strong joint limits and no im-
age correspondence ambiguities, the model-image matching
cost function typically still has O(2# links) local minima, so
optimizing it is a difficult global search problem. But also a
necessary one, as following the wrong local minimum rapidly
leads to mistracking.

Several generic global search methods have already been
applied to this problem [4, 11, 14, 16], but they tend to be
somewhat inefficient as they make little use of the specific

Published in 2003 IEEE Int. Conf. on Computer Vision& Pattern Recogni-
tion. c© 2003 IEEE Computer Society Press.

problem structure. Here, we develop a new method that
speeds the search for local minima by using simple kinematic
principles to construct ‘interpretation trees’ generating the
possible 3D body configurations associated with a given set
of projected joint centres (§3). We give simple closed-form
inverse kinematics solutions for constructing these trees for
human limbs, and show how the method can be used to pro-
duce an efficient deterministic ‘kinematic jump’ sampler for
the different configurations. We use this sampler to construct
a novel mixture density propagation based tracking algorithm
(§4) that combines local covariance based diffusion, adaptive
kinematic chain selection based on local uncertainties, quasi-
global kinematic jumps and local continuous constrained op-
timization. We present quantitative results showing the effec-
tiveness of the new samplers compared to existing methods
(§5.1), and conclude with some challenging monocular ex-
periments showing the final tracker’s ability to follow rapid,
complex human motions in clutter.

1.1 Related Research

There is a large literature on human motion tracking but rel-
atively little work on developing search methods that exploit
both the local and global structure present in the 3D monoc-
ular articulated problem. Sidenbladh et al use particle filter-
ing with importance sampling based on either a learned walk-
ing model or a database of motion snippets, to focus search
in the neighborhood of known trajectory pathways [11, 12].
Deutscher et al propose an annealing framework in a multi-
camera setting [3]. During annealing, the search for parame-
ters is driven by noise proportional with their individual vari-
ances [4]. Considered as an improved (implicit) search space
decomposition mechanism, an early method of this type was
proposed by Gavrila & Davis [6] to efficiently sample partial
kinematic chains. Adaptively identifying and sampling pa-
rameters with high variance is useful, but kinematic param-
eters usually have quite strong interactions that make simple
axis-aligned sampling questionable. It is important to realize
that the principal axes of the covariance change drastically
depending on the viewing direction, and that even if these are
computed and used for sampling (as in [14]), they are only
local measures that capture little information about the global
minimum structure.

73
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Sminchisescu & Triggs [14] argue that an effective random
sampler must combine all three of cost-surface-aware covari-
ance scaling, a sampling distribution with widened tails for
deeper search, and local optimization (because deep samples
usually have very high costs, and hence will not be resampled
even if they lead to other minima). More recently, they have
also constructed deterministic optimization methods [15] and
cost-function-modifying MCMC samplers [16], for finding
‘transition states’ (saddle points) leading to nearby minima.

Skeletal reconstruction methods recover an interpretation
tree of possible 3D joint positions, based on user-specified
image joint positions [8, 17]. Lee & Chen [8] attempt to prune
their perspective interpretation tree using physical reasoning,
while Taylor [17] relies on additional user input to specify
plausible relative joint-centre depths for his affine one. Al-
though these methods do incorporate the forward-backward
flipping ambiguity, they can not reconstruct skeletal joint an-
gles, and this makes them inappropriate for tracking applica-
tions.

Our approach can be seen as a marriage of locally op-
timized covariance based random sampling with a domain-
specific deterministic sampler based on skeletal reconstruc-
tion using inverse kinematics. The local covariance infor-
mation obtained during optimization also provides a useful
heuristic for which kinematic parameters to sample.

2 Modeling and Estimation

Representation The 3D body model used in our human
tracking experiments consists of a kinematic ‘skeleton’ of ar-
ticulated joints controlled by angular joint parameters, cov-
ered by a ‘flesh’ built from superquadric ellipsoids with ad-
ditional global deformations [1]. A typical model has 30–35
joint parameters; 8 internal proportions encoding the posi-
tions of the hip, clavicle and skull tip joints; and 9 deformable
shape parameters for each body part. The complete model is
encoded in a single large parameter vector x. During tracking
and static pose estimation we usually estimate only joint pa-
rameters, but during initialization some length ratios are also
estimated. In use, the superquadric surfaces are discretized
into 2D meshes and the mesh nodes are mapped to 3D points
using the kinematic body chain then projected to predicted
image points ri(x) using perspective image projection.

Observation Likelihood: During tracking robust model-to-
image matching cost metrics are evaluated for each predicted
image feature ri, and the results are summed over all ob-
servations to produce the image contribution to the param-
eter space cost function. Cost gradient and Hessian con-
tributions gi,Hi are also computed and assembled. We
use a robust combination of extracted-feature-based metrics
and intensity-based matching ones (registering the model re-
projected texture at previous tracking step with the current

image) and robustified normalized edge energy. The feature-
based terms associate the predictions ri with nearby image
features r̄i, the cost being a robust function of the predic-
tion errors ∆ri(x) = r̄i − ri(x). We also give results for a
simpler likelihood designed for model initialization, based on
squared distances between reprojected model joints and their
specified image positions.
Priors and Constraints: Our model [14] incorporates both
hard constraints (for joint angle limits) and soft priors (penal-
ties for anthropometric model proportions, collision avoid-
ance between body parts, and stabilization of useful but hard-
to-estimate model parameters such as internal d.o.f. of the
clavicle complex). The priors provide additional cost, gra-
dient and Hessian contributions for the optimization.
Estimation: We apply Bayes rule and maximize the to-
tal posterior probability to give locally MAP parameter es-
timates:

log p(x|r̄) ∝ log p(x)+log p(r̄|x) = log p(x)−
∫
e(r̄i|x) di

(1)
Here, p(x) is the prior on the model parameters, e(r̄i|x) is
the cost density associated with observation i, and the inte-
gral is over all observations (assumed independent). Equa-
tion (1) gives the model likelihood in a single image, under
the model priors but without initial state or temporal priors.
During tracking, the temporal prior at time t is determined by
the previous posterior p(xt−1|Rt−1) and the system dynam-
ics p(xt|xt−1), where we have collected the observations at
time t into vector rt and defined Rt = {r1, . . . , rt}. The
posterior at t becomes

p(xt|Rt) ∝ p(r̄t|xt) p(xt)
∫

xt−1
p(xt|xt−1) p(xt−1|Rt−1)

Together p(xt|xt−1) and p(xt−1|Rt−1) form the time t prior
p(xt|Rt−1) for the image correspondence search (1).

3 Kinematic Jump Processes
Each configuration of the skeletal kinematic tree has an asso-
ciated interpretation tree — the tree of all fully- or partially-
assigned 3D skeletal configurations that can be obtained from
the given one by forwards/backwards flips. The tree con-
tains only, and generically all, configurations that are image-
consistent in the sense that their joint centres have the same
image projections as the given one. (Some of these may
still be inconsistent with other constraints: joint limits, body
self-intersection, occlusion...). The interpretation tree is con-
structed by traversing the kinematic tree from the root to the
leaves. For each link, we construct the 3D sphere centred on
the currently hypothesized position of the link’s root, with ra-
dius equal to link length. This sphere is pierced by the cam-
era ray of sight through the observed image position of the
link’s endpoint to give (in general) two possible 3D positions
of the endpoint that are consistent with the image observation
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Figure 1: Forwards/backwards ambiguity for a kinematic link
under monocular perspective projection. Given a standard
joint configuration ...JpJsJ1, one can build an alternative
‘flipped’ configuration ...JpJsJ2 with the same joint-centre
image projections. J2 is found by intersecting the sphere cen-
tered at Js with radius |JsJ1| with the camera line of sight
through the projection of J1, OJ1.

and the hypothesized parent position (see fig. 1). Joint an-
gles are then recovered for each position using simple inverse
kinematics (see below). If the ray misses the sphere, the par-
ent hypothesis was inconsistent with the image data and the
branch can be pruned.

More precisely, the above tree structure applies to non-
branching kinematic chains such as limbs. When there is
kinematic branching — e.g. for the four limbs attached to the
trunk — each branch can be sampled independently, so the
set of possible interpretations has a natural factored ‘product
of trees’ structure. In such cases we build independent trees
for each limb and take their product, e.g. each full-body con-
figuration contains independently-sampled configurations for
each of the four limbs.

Compared to current generic configuration space sampling
methods, forwards/backwards flipping generates high-quality
hypotheses very rapidly, and also provides unusually thor-
ough coverage, at least within each kinematically-induced
equivalence class of minima. Its quality stems from the fact
that the hypotheses generated all have approximately-correct
image projections (in particular, correct joint-centre projec-
tions). Its rapidity stems from the existence of simple closed
form solutions for the inverse kinematics in this particular
case (i.e. flexible kinematics constrained by observed joint-
centre projections), and the fact that the accurate hypotheses
generated do not need further ‘polishing’ by expensive non-
linear optimization.

One could also generate ‘flips’ using classical closed-form
or iterative techniques for solving the full inverse kinemat-
ics of the articulated skeleton, e.g. [10, 18]. However these
methods are not well-adapted to this application in the sense
that they solve a much more complicated problem (full re-
dundant kinematics from a given end-effector pose) while ig-
noring much of the available image information (constrained
projections of intermediate joint centres).

Figure 2: The ‘flipping’ ambiguities of the forearm and hand
under monocular perspective. (The left-most configuration
violates a wrist joint-angle limit and will be pruned away).

3.1 Direct Inverse Kinematics
As described above, flipping applies only to kinematic chains
with fully spherical joints. Single d.o.f. joints such as hinges
are usually too rigid to have a flipping ambiguity, as two d.o.f.
are needed to move the link end to an arbitrary new position
on the sphere. However, for human kinematics, flipping am-
biguities apply even to hinge joints such as the elbow: al-
though physically a hinge, the elbow effectively has spheri-
cal mobility once axial rotations of the upper arm about the
shoulder are included. Here we give the inverse kinematics
of this three link case as an example. We work in a reference
coordinate system and know the 3D positions Pi of joints Ji,
i = 1..4, as well as the rotational displacement R of J1 with
respect to the reference frame. The kinematic chain is rep-
resented in terms of Euler angles and pure translations along
negative z axes. We use R̂ to denote the z column of the ro-
tation matrix R. Suppose pi = Pi−Pi+1

‖Pi−Pi+1‖
, with i = 1..3

unit vectors specifying the (known) z axes at each individ-
ual joint, after applying the rotation in that joint. There are 3
d.o.f. in J1, 1 d.o.f. in J2 and 2 d.o.f. in J3 – these are rep-
resented by rotation matrices R1,2,3

x,y,z as in fig. 3. To solve for
rotations, we descend the kinematic chain and factor rotation
angles (x, y, z)1,2,3 by applying the constraints derived from
the known positions of Pi. The key observation is that, at any
joint Ji, given the known previous rotational displacement,
we have to factor out a rotation that aligns the z-axis with pi.
For instance, at J1, ̂R1

xR
1
yR

1
z = RT pi and we extract x1, y1

from: 


− sin(y1)
sin(x1) cos(y1)
cos(x1) cos(y1)


 = RT p1

In general this gives 4 solutions for x1, y1, but usually 2 do
not satisfy all 3 equalities and are removed. z1 is then recov-
ered together with x2 by solving R̂1

zR
2
x = (RR1

xR
1
y)

T p2

for the next joint J2:



sin(z1) sin(x2)
cos(z1) sin(x2)

cos(x2)


 = (RR1

xR
1
y)

T p2

Again there are 4 possible solutions but 2 can be pruned. Fi-
nally, x3, y3 are obtained in the same way as x1, y1, given the
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Figure 3: A three-joint link modeling anthropometric limbs.
It has one spherical joint J1, one hinge joint J2 and a 2 d.o.f.
end effector J3. The representation is built in terms of Euler
angles (with associated rotation matrices R1,2,3

x,y,z with angles
as sub-scripts and the joint rotation centers as superscripts)
and pure translations to the next joint along the negative z

axis. The inverse kinematics solution factors rotation angles
using knowledge of successive z axes (computed from Pi −
Pi+1) for limbs.

known x1, y1, z1, x2 values. As as special case, note that R1
z

remains unconstrained when P1, P2 and P3 are collinear. In
this case, z1 is either fixed to some default value or (for track-
ing) sampled within its range of variation.

3.2 Iterative Inverse Kinematics
In some situations, the simple closed form inverse kinemat-
ics given above does not suffice. This might happen for more
general kinematic structures — for example the looped kine-
matic chains formed when the hands are joined or placed
on the hips — or when the exact inverse kinematics either
fails (a camera ray does not intersect its sphere) or is ex-
pected to be inaccurate for some reason (a joint limit or body
non-self-intersection constraint is violated). In such cases,
we can fall back on a more general approach that directly
minimizes the sum of squared differences between the cur-
rent and desired joint configurations, using nonlinear opti-
mization in joint space. Our minimizer uses analytical gra-
dients and Hessians in a second-order damped Newton trust-
region framework, with both hard joint-angle limits and soft
non-self-intersection and image correspondence constraints
[14]. In practice, this method locates new flipped local min-
ima fairly successfully, but is significantly more expensive
than kinematics-based flipping as O(1) full local optimiza-
tion runs are needed for each new minimum found. However
this is still significantly more efficient than the random sam-
plers we have tested — see §5.

4 The Algorithm

In normal use, we embed our kinematic jump sampler within
a cost-sensitive mixture density propagation framework [14].
The jump sampler ensures rapid, consistent diffusion of sam-
ples across the kinematic minima associated with any given
set of image joint positions, while the random sampler pro-
vides robustness against incorrect image correspondences.
Here, we use a Covariance Scaled Sampling [14] tracker.
This probabilistic method represents the posterior distribu-
tion of hypotheses in joint space as a mixture of long-tailed
Gaussian-like distributions mi ∈ M, whose weights, cen-
tres and scale matrices (‘covariances’) mi = (ci, µi,Σi) are
obtained as follows. Random samples are generated, and
each is optimized (by nonlinear local optimization, respect-
ing any joint constraints, etc.) to maximize the local posterior
likelihood encoded by an image- and prior-knowledge based
cost function. The optimized likelihood value and position
give the weight and centre of a new component, and the in-
verse Hessian of the log-likelihood gives a scale matrix that
is well adapted to the contours of the cost function, even for
very ill-conditioned problems like monocular human track-
ing. However, when sampling, particles are deliberately scat-
tered more widely than a Gaussian of this scale matrix (co-
variance) would predict, in order to probe more deeply for
alternative minima.

Fig. 4 gives the general form of the algorithm, and fig. 5 de-
scribes the novel KinematicDiffusionJumpSampling rou-
tine that lies at its core. On entry, the user specifies a set
C of kinematic sub-chains that may be sampled (this can be
quite large, as the routine adaptively decides which to sam-
ple). At each time step, covariance scaled samples are gen-
erated from the prior. For each such sample an interpretation
tree is created on-line by the BuildInterpretationTree rou-
tine, with kinematic solutions obtained using InverseKine-
matics. The chain to be sampled is chosen adaptively using
a voting process based on the local covariance structure of
that region of the parameter space, SelectSamplingChain in
fig. 5. Local covariance scaled resampling is performed be-
fore the jump because we do not (yet) have the covariance
information needed to perform it afterwards. Each element
of the sampleable sub-chain set C is simply a list of parame-
ter names to sample. For instance, for a sub-chain rooted at
the left shoulder, this might include the rotational parameters
(xs, ys, zs, xe, xh, yh) where the (s, e, h) stand for (shoulder,
elbow, hand) and x, y, z for the rotation axes.

The proposed sampling strategy provides a balance be-
tween local and global search effort since samples are gen-
erated around the prior modes, as well as around new peaks
that are potentially emerging and have not yet been explored.
Re-weighting based on closest prior modes as in fig. 4, step 5,
ensures the tracker is not distracted by remote multi-modality
when tracking the correct minima.
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Kinematic Jump + CSS Diffusion Based Tracker
Input: The set C of permissible kinematic chain par-
titions to use for sampling, and the previous posterior
p(xt−1|Rt−1) =

∑K

i=1 πt−1
i N (µt−1

i , Σt−1
i ).

1. Build the covariance scaled proposal density
p∗(t−1) =

∑K

i=1 πt−1
i N (µt−1

i , sΣt−1
i ). (s ∼ 4-6).

2. Generate a set of samples S using KinematicDiffu-
sionJumpSampling on p∗(t−1) and C.

3. Optimize each sample sj ∈ S w.r.t. the time t observa-
tion likelihood (1), using local constrained optimization to
get MAP estimates µt

j with covariances Σt
j = H(µt

j)
−1.

4. Construct the unpruned posterior pu
t (xt|Rt) =

∑N

j=1 πt
jN (µt

j , Σ
t
j), where πt

j =
p(µt

j |r̄t)
P

N
j=1

p(µt
j
|r̄t)

, and

prune it to keep the K components with highest prob-
ability: p

p
t (xt|Rt) =

∑K

k=1 πt
kN (µt

k , Σt
k), with πt

k =
p(µt

k|r̄t)
P

K
j=1

p(µt
j
|r̄t)

.

5. For each mixture component j = 1..K in p
p
t , find

the closest prior component i in p(xt−1|Rt−1) in Bhat-
tacharyya distance Bij(µ

t−1
i , Σt−1

i , µt
j , Σ

t
j). Scale πt

j =

πt
j ∗ πt−1

i and discard component i of p(xt−1|Rt−1).

6. Compute the final posterior mixture p(xt|Rt) =∑K

k=1 πt
kN (µt

k , Σt
k), with πt

k =
πt

k
P

K
j=1

πt
j

.

Figure 4: The steps of our mixture density propagation algo-
rithm.

5 Experiments

This section gives experiments showing the performance of
our new Kinematic Jump Sampling (KJS) method relative
to two established random sampling methods, cost-surface-
sensitive Covariance Scaled Sampling (CSS) [14] and the
traditional cost-insensitive Spherical Sampling (SS) method
used implicitly, e.g. in CONDENSATION [7].

5.1 Quantitative Evaluation

Our first set of experiments studies the quantitative behav-
ior of the different sampling methods, particularly their effi-
ciency at locating minima or low-cost regions of parameter

CONDENSATION samples ‘spherically’ in the sense that the source of
randomness is Gaussian dynamical noise with a fixed prespecified covari-
ance. We could choose coordinates in which this distribution was spherically
symmetric. Whereas in CSS, the ‘noise’ adapts to the local cost surface at
each time step.

S = KinematicDiffusionJumpSampling({p∗}, C)
Generates a set of samples S based on Covariance Scaled
Sampling diffusion and kinematic jump processes.
1. Use SelectSamplingChain(Σi, C) to select a kinematic
chain Ci ∈ C to sample for each mixture component p∗

i .
2. Generate N random samples as follows:
2.1. Choose a mixture component p∗

i with probability πi.
2.2. CSS sample from p∗i to obtain sj .
2.3. Tj = BuildInterpretationTree(sj, Ci).
2.4. For each path (list of 3D joint positions) P in Tj , use
InverseKinematics(P ) to find joint angles cP , and add cP

to the list of samples, S = S ∪ cP .

SelectSamplingChain(Σ, C)
Heuristic to select a chain C ∈ C to sample for a com-
ponent with covariance Σ. C = ∪M

i=1Ci. The function
Idx(Ci) will provide the index of parameter Ci in the N -d
skeleton joint state.
1. Diagonalize Σ to obtain (vj , σj)j=1..N .
2. For each chain C ∈ C, find
votek =

∑M

i=1

∑N

j=1 σjvj [Idx(Ci)]
Intuitively this counts the cumulated uncertainty of
C along the local covariance principal directions vj ,
weighted by their corresponding standard deviations σj .
3. Return the chain C with the highest vote. (Alternatively,
the best k chains could be returned, or a vote-weighted
random one).

BuildInterpretationTree(s, C)
Builds the interpretation tree for s based on flipping the
variables in chain C (§3).

InverseKinematics(P )
Uses either closed-form (§3.1) or iterative (§3.2) inverse
kinematics to find the joint-space configuration associated
with a list of 3D joint positions P .

Figure 5: The components of our CSS diffusion plus kine-
matic jump sampling algorithm.

space. We study performance for different kinematic parti-
tions of the joint space under deterministic Kinematic Jump
Sampling (KJS), and also give results for the random Co-
variance Scaled (CSS) and Spherical (SS) samplers, show-
ing how different core shapes (spherical vs. local covariance-
based) and tail widths (scaled-Gaussian versus Cauchy) affect
their efficiency. The study was based on the simple, but still
highly multi-modal, model-joint to known-image-joint likeli-
hood function that we use to initialize our 34 d.o.f. articulated
model. The model started at approximately its true 3D con-

Our full initialization procedure also estimates some body dimensions,
but here these are held fixed.
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METHOD SCALE NUMBER OF MEDIAN PARAMETER MEDIAN STANDARD MEDIAN COST
MINIMA DISTANCE DEVIATION

NO OPT OPT NO OPT OPT NO OPT OPT

KJS1 - 1024 2.9345 2.8378 92.8345 93.9628 0.0998 0.0212
KJS2 - 1466 3.2568 2.2986 83.4798 82.5709 0.1045 0.0203
CSS 1 8 1.1481 2.5524 10.9351 47.6042 116.9512 8.4968
CSS 4 59 3.2123 2.9474 35.2918 55.3163 1995.1232 6.9810
CSS 8 180 4.9694 3.3466 75.1119 109.8131 16200.8134 7.0986
CSS 16 667 6.4242 6.7209 177.1111 465.8892 45444.1223 8.6958
CSS 1/HT 580 5.0536 6.9362 106.6311 517.3872 15247.7134 8.7242
SS 1 0 0.1993 - 24.5274 - 273.5091 -
SS 4 11 0.7673 2.0492 96.1519 39.0745 4291.1211 6.2801
SS 8 42 1.4726 2.5488 188.1571 56.8268 16856.1211 6.9648
SS 16 135 2.7195 2.8494 367.7461 87.8533 63591.4211 8.6958
SS 1/HT 232 2.1861 6.5474 178.6471 535.9991 18173.1121 17.8807

Table 1: Quantitative results on sample distribution for KJS, as well as CSS and SS with different types of tails (scaled-
Gaussian vs. HT, with and without optimization NO OPT vs. OPT). KJS finds 1024 minima in 1024 samples for the first
trial and 1466 minima in 1536 samples for the second round. The CSS/SS experiments used 2000 samples. Note that KJS
finds many more minima than SS and CSS, and that its samples are already very close to the final minima in cost, whereas
SS and CSS samples require a substantial amount of optimization to become plausible hypotheses. Also note that CSS has
significantly better performance than SS, both in terms of numbers of minima found and median costs of raw samples.

figuration.
Table 1 summarizes the results, giving the number of min-

ima found by each method, and also their median costs (like-
lihoods relative to the true configuration) and their distances
from the starting configuration in both spherical parameter
space units and covariance-scaled standard deviations. It
gives statistics both for raw samples, and for samples after
local continuous optimization subject to joint and body non-
self-intersection constraints. Fig. 6 shows some histograms
of numbers of samples and minima found versus parameter
space and Mahalanobis distance.
Spherical and Covariance Scaled Sampling: CSS and SS
were run with both Gaussian and heavy tailed (HT Cauchy)
distributions, using 2000 samples per run. For a fairer com-
parison we kept the volume of the distribution cores con-
stant: the volume of the unit covariance CSS ellipsoid is al-
ways equal to the volume of the corresponding sphere, i.e. the
sphere’s radius is taken to be R = n

√
λ1...λn, where λi are

the eigenvalues of the covariance ellipsoid. We ran the meth-
ods for Gaussian distributions with scaling 4,8,16 and Cauchy
distributions with scaling 1. Samples that violated physical
constraints were projected back onto the feasible constraint
surface. This often leads to highly non-Gaussian features
such as multi-peaked histograms, even though the raw sam-
pling distribution is Gaussian.

In the results, note the significantly greater number of local
minima found by CSS than by SS, and also that CSS samples
on average have much lower cost than SS ones. One can also
see the large cost difference between unoptimized (NO OPT)

and optimized (OPT) samples. Although the table seems to
show that SS generates slightly lower-cost optimized minima
than CSS, this is illusory. SS is simply too myopic to find
more than a few close-lying (and hence low cost) minima,
whereas CSS reliably finds both these and also many more
distant ones, some of which naturally have somewhat higher
cost.
Kinematic Jump Sampling: We ran KJS for several differ-
ent partitions of the skeleton into sampleable subchains. Ex-
periment KJS1 sampled the left and right shoulder joints and
the left calf, for a frontal view similar to the one in fig. 2. Each
of the 1024 configurations generated lead to a distinct local
minimum after optimization. The second experiment KJS2
sampled the left and right calf joints and the right shoulder
joint for a total of 1536 samples leading to 1466 minima af-
ter optimization. In both cases the parameter space minima
were hit quite accurately, so optimization is largely superflu-
ous. The KJS samples also have far lower costs than raw
SS or CSS samples. Thus, KJS sampling is also likely to be
effective when used with optimization-free discrete density
propagation methods such as CONDENSATION.

5.2 Tracking
Finally, we illustrate the full KJS + CSS method on a 4 s se-
quence involving full-body tracking of a subject performing
agile and rapid dancing moves. This sequence contains both
self-occlusion and significant relative motion in depth. It was
shot at 25 frames (50 fields) per second against a cluttered,
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Figure 6: Top: Distribution of optimized parameter space distance and standard deviation for the KJS1 experiment. The
samples are from the product of the interpretation trees for the left and right shoulder joints and the left calf, for a frontal view
similar to fig. 2. Bottom: Analogous distributions for Covariance Scaled Sampling (CSS) with scaling factor 8.

unevenly illuminated background, without special clothing
or markers. Fig. 7 shows some frames from the original se-
quence (first row), 2D tracking results showing the current-
best model configuration reprojected into the original image
(middle row), and the corresponding 3D model pose rendered
from a downwards-looking synthetic camera (bottom row).
The tracks were initialized by running a method similar to
that in §5.1, then selecting an initial set of 8 hypotheses that
gave plausible initial body poses. From then on, the full se-
quence was tracked automatically using an observation like-
lihood function based on edge and intensity measurements
as explained in §2. The sampling procedure was based on
CSS diffusion (with scaling 4-6) followed by kinematic jump
sampling with closed-form inverse kinematics. The selec-
tion of which kinematic sub-chain to sample at a given mode
and time was done automatically using the local-uncertainty
based voting mechanism described in §5. In this experiment
the list C of user supplied chains contained the short 3-link
chains associated with the neck, and each shoulder and each
hip. For tracking, one usually needs a search process that
does not wander too far from the given prior modes, and these
chains have the advantage of generating shallow interpreta-
tion trees representing relatively probable local jumps or am-
biguities. Such behavior is important not only for efficient
and reliabile tracking, but also for the coherence of the post-
tracking smoothing process, if any. (No smoothing was done
here). The above settings prove highly effective in the se-
quence analyzed here, as can be seen from the model repro-
jection both in the original image, and as seen from above.

6 Conclusions
We have presented a novel kinematic sampling framework for
recovering 3D human body motion from monocular video se-
quences. The cost surface for monocular human tracking is
structured and highly multi-modal. For any feasible set of
image joint positions, there are exponentially many 3D body
configurations projecting to it. All of these have similar im-
age projections, and they tend to have similar image likeli-
hoods as well. The different 3D configurations are linked
by ‘forwards/backwards flipping’ moves, one for each kine-
matic link. Our method uses simple inverse kinematics to
systematically generate the complete set of such configura-
tions given any one of them, and hence to investigate the full
set of associated cost minima. Our experiments show that
kinematic sampling complements and substantially improves
on conventional random sampling based trackers, and that it
can be used very effectively in tandem with them. The com-
bined system is able to track short sequences involving fast,
complex dancing motions in cluttered backgrounds.

Ongoing work is studing whether adding further physical
scene constraints can improve the pruning of inconsistent
samples, and also investigating the possibility of applying
jump-based strategies for non-kinematic ambiguities such as
image matching (e.g. ‘right limb but wrong edge’ correspon-
dence errors) and within other MCMC algorithms. We also
plan to make a more quantitative evaluation of our voting
heuristic, and we are interested in developing smoothing al-
gorithms that are better adapted to long range inter-frame dy-
namic moves.
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Figure 7: Jump kinematics in action! Tracking results for a 4 s agile dancing sequence. First row: original images. Middle
row: 2D tracking results showing the model-image projection of the best candidate configuration at the given time step.
Bottom row: the corresponding 3D model configuration rendered from above. Note the difficulty of the sequence, the good
model image overlap, and the realistic quality of 3D reconstucted model poses.

Acknowledgement Work supported by EU project VIBES.
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Chapter 2

2D Model Based Human Detection
and Motion Capture

This chapter contains two papers that approach the problem of extracting useful information from
images of humans from a purely 2D, image-based perspective. Both methods use “scaled prismatic
model” style articulated 2D body models [JBY96,CR99].

Summary of paper 5, “Learning to Parse Pictures of People”

This paper, published in the 2002 European Conference on Computer Vision [RST02], describes a
method for detecting humans in static images and labelling their major body sections. The algorithm
is based the dynamic programming approach to assembling possible human parts into a coherent
whole [FE73,FH00,IF01]. It adds individual part detectors based on Support Vector Machines
working over derivative energy based image descriptors to this approach, to allow the detector
to handle a wider range of images. The method is trained and tested on images from the MIT
pedestrian image database.

Summary of paper 6, “Tracking Articulated Motion with Piecewise
Learned Dynamical Models”

This paper, published in the 2004 European Conference on Computer Vision [AT04c], develops
a 2D human tracker based on a 2D “scaled prismatic model” body representation [CR99]. The
main contribution is the use of a learned dynamical model to help stabilize tracking, particularly
through rapid motions and changes of model aspect. The model is a mixture of second order linear
autoregressors, with each autoregressor learned as follows. K-means is used to cluster the training
data in state space, then for each patch PCA based dimensionality reduction is applied to the state
vectors to stabilize the ensuing estimation, an autoregressive model is learned, and the resulting
models are lifted back to the original dimensionality. Finally, an EM-like re-clustering iteration is
run to reassign training states to the models that fit them best, and readjust these models to fit the
assigned points.
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Learning to Parse Pictures of People

Remi Ronfard, Cordelia Schmid and Bill Triggs∗
INRIA, 655 avenue de l’Europe, 38330, Montbonnot, France

Abstract

Detecting people in images is a key problem for video indexing, browsing and
retrieval. The main difficulties are the large appearance variations caused by ac-
tion, clothing, illumination, viewpoint and scale. Our goal is to find people in static
video frames using learned models of both the appearance of body parts (head,
limbs, hands), and of the geometry of their assemblies. We build on Forsyth &
Fleck’s general ‘body plan’ methodology and Felzenszwalb & Huttenlocher’s dy-
namic programming approach for efficiently assembling candidate parts into ‘pic-
torial structures’. However we replace the rather simple part detectors used in these
works with dedicated detectors learned for each body part using Support Vector
Machines (SVMs) or Relevance Vector Machines (RVMs). We are not aware of
any previous work using SVMs to learn articulated body plans, however they have
been used to detect both whole pedestrians and combinations of rigidly positioned
subimages (typically, upper body, arms, and legs) in street scenes, under a wide
range of illumination, pose and clothing variations. RVMs are SVM-like classifiers
that offer a well-founded probabilistic interpretation and improved sparsity for re-
duced computation. We demonstrate their benefits experimentally in a series of
results showing great promise for learning detectors in more general situations.

Keywords: object recognition, image and video indexing, grouping and seg-
mentation, statistical pattern recognition, kernel methods.

1 Introduction
Detecting people in images is an important practical challenge for content-based image
and video processing. It is difficult owing to the wide range of appearances that peo-
ple can have. There is a need for methods that can detect people in general everyday
situations. For instance, actors in typical feature films are shown in a great variety of
activities, scales, viewpoints and lightings. We can not rely on frequently-made simpli-
fying assumptions such as non-occlusion, perfect background subtraction, etc.

To address this issue, Forsyth & Fleck introduced the general methodology of body
plans [8] for finding people in images. However, they relied on simplistic body part
detectors based on generalized cylinders. This is problematic, especially in the case
of loose clothing. Similarly, Felzenszwalb & Huttenlocher [6] showed how dynamic

∗Appeared in 2002 European Conf. on Computer Vision. c© 2002 Springer-Verlag LNCS. Work supported
by European Union FET-Open research project VIBES.
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programming could be used to efficiently group body plans cast as ‘pictorial structures’
[7], but they relied on simplistic colour-based part detectors. Both of these works make
strong photometric assumptions about the body parts. We retain their ideas for com-
posing parts into assemblies by building tree-structured models of people, but propose
a more general approach to learning the body part detectors and the underlying geo-
metric model, based on Support Vector Machines (SVM) [24, 4] or Relevance Vector
Machines (RVM) [22, 23]. In the past, SVM classifiers have been learned for entire
humans [18] and also for rigidly connected assemblies of subimages (typically, upper
body, arms, and legs) [16], but not for flexibly articulated body models.

We present a series of experiments showing the promise of learning the articulated
structure of people from training examples with hand-labelled body parts, using SVMs
or RVMs. Our contribution is three-fold. Firstly, our feature set and training method
builds reasonably reliable part detectors from as few as 100 hand-labelled training im-
ages, and the final RVM detectors are very efficient, often involving comparison with
only 2–3 positive and 2–3 negative exemplars. Secondly, we sketch a method for learn-
ing a body joint model using the recently proposed Adaptive Combination of Classi-
fiers (ACC) framework [16]. Thirdly, we describe an efficient decoder for the learned
models, that combines kernel based detection with dynamic programming. Our initial
experiments demonstrate that body part detectors learned with only 100 images from
the MIT pedestrian database can give reliable detection with as few as 4 false alarms
per image on this data set. This is remarkable as even humans often find it difficult
to classify the isolated part subimages correctly. The detected parts can be efficiently
assembled into correct body plans in 70% of cases.

The paper is structured as follows. We introduce our body plan model in §2, then
discuss body part detectors learned by two competing algorithms, SVM and RVM, in
§3. §4 presents our approach for learning and decoding body plans. Finally, §5 presents
some results and discusses future work.

2 The Pictorial Structure of People
In the work of Marr & Nishihara [15] and others [10, 19], people are described as hi-
erarchical 3D assemblies of generalized cylinders and components. The position of a
part C relative to its parent P is parametrized by C’s position (p, r, θ) and angular orien-
tation (ψ, φ, χ) in P’s cylindrical coordinate system. Each joint is thus represented as a
6-vector, with discrete toleranced values for each parameter. They note that perspective
projection makes many parameters unobservable and that the image signature of a joint
is a pair of axes, but still emphasize, and attempt to recover, 3D structure.

Recovering articulated 3D models from single images is difficult. Felzenszwalb &
Huttenlocher recently reconsidered Fischler & Elschlager’s notion of pictorial structure
[7] and demonstrated its usefulness for detecting people in indoor scenes [6]. Pictorial
structures are collections of image parts arranged in deformable configurations. They
are directly adapted to monocular observations. Similarly, Morris & Rehg argued that
3D tracking singularities can be removed using image based ‘scaled prismatic models’
[17] — essentially, pictorial structure models. Other 2D part-based models use im-
age edges [25] or motion models derived from dense optical flow [14] as features for
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Figure 1: Our articulated body model with its 14 joints and 15 body parts.

detection and/or tracking.
Following this line of research, we represent people using a 2D articulated appear-

ance model composed of 15 part-aligned image rectangles surrounding the projections
of body parts: the complete body, the head, the torso, and the left and right upper arms,
forearms, hands, thighs, calves and feet, numbered from 1 to 15 as in Figure 1. Each
body part Pi is a rectangle parametrized in image coordinates by its centre [xi, yi], its
length or size si and its orientation θi. A coarse resolution whole-body image is also
included in case ‘the whole is greater than the sum of the parts’. During training and
detection, we discretize the admissible range of sizes and orientations. As discussed
later, we use a range of 8 scales, and 36 orientations equally spaced every 10 degrees.
14 body joints connect the parts: the plexus between body and torso, the neck between
head and torso, the hips between torso and thighs, the knees between thighs and calves,
the ankles between calves and feet, the shoulders between torso and upper arms, the
elbows between upper arms and forearms and the wrists between forearms and hands.
Figure 1 shows the body model in average position, using a single aspect ratio of 16:9
for all body parts.

Expressed in terms of the probabilistic formulation of pictorial structure, the poste-
rior likelihood of there being a body with parts Pi at image locations li (i ∈ {1...15})
is the product of the data likelihoods for the 15 parts (i.e. the classification probabili-
ties for the observed subimages at the given part locations to be images of the required
parts) and the prior likelihoods for the 14 joints (i.e. the probabilities for a coherent
body to generate an image with the given relative geometric positionings between each
part and its parent in the body tree). The negative log likelihood for the whole body
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assembly A = {l1, . . . , l15} can thus be written as follows, where E is the list of body
joints (‘edges’ of the body tree):

L(A) = −
∑

i

log pi(li) −
∑

(ij)∈E

dij(li, lj)

Felzenszwalb & Huttenlocher model body parts as constant color regions of known
shapes and body joints as rotational joints. In this paper, we machine-learn the 29
distributions pi(li) and dij(li, lj) from sets of positive and negative examples. We
model the part and articulation likelihoods using linear Support Vector or Relevance
Vector Machines. Our work can be viewed as an extension of Mohan’s recent work
on combined classifiers [16], where ‘component’ classifiers are trained separately for
the limbs, torso and head based on image pixel values, and ‘combination’ classifiers
are trained for the assemblies based on the scores of the component classifiers in fixed
image regions. However, we learn part-aligned, rather than image-aligned, classifiers
for each body part, and we extend the ‘combination’ classifier to include deformable,
articulated structures rather than rigid assemblies.

3 Detecting Body Parts
In our model, learning each body part amounts to estimating its probability given the
observed image distribution at its location. Detecting and labelling body parts is a
central problem in all component-based approaches. Clearly the image must be scanned
at all relevant locations and scales, but there is also a question of how to handle different
part orientations, especially for small, mobile, highly articulated parts such as arms and
hands. One can work either in the image frame, trying to build a general detector
that is capable of finding the part whatever its orientation, or in a part-aligned frame,
building a detector that works for just one orientation and scanning this over all relevant
orientations. The part-aligned approach has the potential to produce simpler detectors
from less (but better labelled) training data, and the advantage that it also recovers
the part orientation. Which approach is faster or better must depend on the relative
complexity and reliability of all-orientation and one-orientation detectors, but in general
it is difficult to build good transformation invariance into general-purpose detectors.
The image-frame approach is well adapted to pedestrian detection applications such as
Mohan’s [16], where one wants a relatively coarse whole person detector for distant
people with similar poses (mainly standing or walking). But our ultimate goal is to
detect people and label them with detailed part locations, in applications where the
person may be in any pose and partly occluded. For this we believe that the part-based
body plan approach is preferable.

Our detector works with a generalized feature pyramid spanning 8 scales and 36
orientations 0◦ . . . 350◦. During training, the articular structure of each training image
is clicked, and for each designated part a 14 × 24 subimage aligned with its axes and
scaled to its size is extracted as shown in Figure 2. We learn 15 Support Vector or
Relevance Vector Machines for the individual parts and the whole body, and during
detection run each of them over the scale-orientation-position feature pyramid, then
assemble the results as discussed in the next section.
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Figure 2: A hand-labelled training image from the MIT database and its extracted body
part subimages. Reading vertically from left to right: left upper arm, forearm, hand;
left thigh, calf and foot; head, torso and whole body; right thigh, calf, foot; right upper
arm, forearm and hand.

3.1 Feature Sets
The problem of choosing features for object recognition has received a lot of interest
in recent years and numerous feature sets have been suggested, including image pixel
values, wavelet coefficients and Gaussian derivatives. Wavelets are currently popular,
but as a general representation for human body parts it is unclear whether standard
(rectangular) or non-standard (square) wavelet constructions are most suitable [9, 16].
Heisele et al obtained better results for their SVM face detector using gray levels rather
than Haar wavelets [9]. Some authors also feel that wavelets are unsuitable as a gen-
eral image representation because they represent point events rather than line or curve
ones, and instead propose ridgelets and curvelets [2, 5]. These might prove useful for
detecting human limbs.

Here we leave such issues for future work and use a feature set consisting of the
Gaussian filtered image and its first and second derivatives. Although simple, these
features seem to represent the variations of body part detail effectively over a range
of scales and orientations. The feature vector for an image rectangle at location-scale-
orientation [xi, yi, si, θi] contains the absolute values of the responses of the six Gaus-
sian σ = 1 filters {G,∇xG,∇yG,∇xxG,∇xyG,∇yyG} in the rectangle’s (rescaled
and reoriented) 14 × 24 window. There are thus 14 × 24 × 6 = 2016 features per
window. For color images we use only the luminance values Y. The absolute values of
the filter responses are normalized across each image. The extracted features are not
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Figure 3: The ∇xG and ∇yG feature images for the example in Figure 2.

required to be scale- or orientation-invariant. On the contrary, we seek features that are
tuned to the characteristic scales and orientations of the detail in the aligned body-part
images. Some examples of the feature vectors are shown in Figure 3.

To implement this, the Gaussian filters are computed using 9 rotated images from
0 to 80 degrees and 8 scales. We resample according to scale in each window, so the
standard deviation of the filters in their resampled 14 × 24 windows is always 1. For
any given size and orientation, we select the feature vector that best approximates the
part-aligned region as an axis-aligned rectangle of height 24. This choice of primitives
makes reasonably few assumptions about the nature of the features to be learned, which
can be arbitrary combinations of shape, luminance and texture.

3.2 Training
Using the 2016-dimensional feature vectors for all body parts in the training set, we
trained two linear classifiers for each part, one using a Support Vector Machine and the
other using a Relevance Vector Machine. SVMs and RVMs are grounded on statistical
learning results that suggest that they should give good classification performance even
when there are relatively few training examples. Here we decided to put this claim to a
severe test by training on the smallest sets of examples that give reasonable results —
in our case, about 100.

We trained the 15 part classifiers individually against a common ‘background’ data
set consisting of random pieces of the training images that do not contain people. Note
that we are not attempting to learn isolated part detectors or multi-class part-type clas-
sifiers, but reliable filters for rejecting non-parts within an articulated body plan frame-
work. We expect the overlap in appearance between different parts to be significant, but
we do not want this to cause missed detections in ambiguous cases.

Support Vector Machines: SVMs are discriminant classifiers that give a yes/no
decision, not a probability. However in our experiments we treat the SVM scores (scalar
products in feature space) as if they were log likelihoods for the body parts given the
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image values1.
Relevance Vector Machines: RVMs [22, 23] are Bayesian kernel methods that

choose sparse basis sets using an ‘Automatic Relevance Determination’ [1] style prior
that pushes non-essential weights to zero. They do not usually give significantly better
error rates than the corresponding SVMs, but they do often give similar results with
many fewer kernels. The functional form of the final classifier is the same as that of an
SVM — only the fitted weights are different. Here we use logistic linear discriminant
RVMs, whose output directly models the log-odds for a part versus a non-part at the
given point. In this paper, we use RVMs mainly to reduce the number of kernels (‘rel-
evance vectors’) and hence the computational complexity. The trained RVM classifiers
typically use only 2–3 positive and 2–3 negative relevance vectors each, as compared
to 100–200 support vectors for a comparable SVM classifier.

Currently we train the linear RVMs to make sparse use of examples, but they could
also be trained to make sparse use of features. This would potentially mean that fewer
image features would have to be extracted, and hence that the method would run faster.
We plan to investigate this in future work.

3.3 Detection
We detect all of the body parts at once, in a single scan over the orientation-scale pyra-
mid. The detection score for each part reduces to a simple convolution product against
a mask containing the discriminant sum of weighted support or relevance vectors. Con-
ceptually, this amounts to generalized template matching over images of local feature
vectors, with weighted sums of training examples as templates. The nonlinearity of
the process is hidden in the rectified, normalized local feature vectors. For efficiency
in the assembly stage, we currently retain only the 50 best candidates for each part.
The observed detection rates suggest that this strategy suffices for simple images, but
it is not ideal for robustness against occlusions and we ultimately plan to use a more
sophisticated strategy based on adaptive thresholds.

4 Parsing the body tree
In a non-articulated, image-aligned method such as that of Mohan [16], assembling
the part detections is relatively straightforward: decompose the search window into
subwindows, keep the highest score for the appropriate part in each subwindow, and
compose the scores into a single, low-dimensional feature vector. Given these second-
stage feature vectors, a single linear SVM can be learned for the overall body detection.

In our articulated, part-aligned method, the composition of part-models is only
slightly more difficult, and can be cast as a combinatorial search: from all detected
parts, search for the assemblies looking most like people. Since assemblies are natu-

1A more principled approach to converting the scores of a discriminant classifier to probabilities is as
follows: run the detector over a validation set and fit density models to its positive-example and negative-
example output scores. At any given score, the ratio of the positive-example density to the negative-example
one is an estimate of the positive-to-negative odds ratio for detections at that score.
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rally described as trees, efficient dynamic programming algorithms can be used to build
the second-stage classifier, as we now describe.

4.1 Parsing/decoding algorithm
Given N candidate body part locations lkn detected by each body part classifier Ck, we
are looking for a ‘parse’ of the scene into one or more ‘body trees’. One important sub-
problem is to assign a ‘valid detection’ or ’false alarm’ label to each candidate, based
not only on the candidate’s scores, but on the local configuration between the candi-
dates and its neighbours. Our approach relies on an extension of the Viterbi decoding
algorithm, as described by Ioffe & Forsyth [13] and Felzenszwalb & Huttenlocher [6],
which we sketch only briefly here. Given the detection scores Dk(lkn) for all candi-
dates n = 1...N , we search for the best candidate as a function of their direct parents
pa(n) in the body tree. For the leaves (i.e. hands, feet and head), this is computed by
algorithm 1:

Algorithm 1 leaf location
Bk(ljm) = min{n=1...N}−Dk(lkn) + dkj(lkn, ljm)
l∗k(ljm) = argmin{n=1...N}−Dk(lkn) + dkj(lkn, ljm)

Based on this computation, we can score candidates from the bottom up, using the
recursion algorithm 2:

Algorithm 2 bottom up
Bk(ljm) = min{n=1...N}−Dk(lkn) + dkj(lkn, ljm) + Σ{c|k=pa(c)}Bc(lkn)
l∗k(ljm) = argmin{n=1...N}−Dk(lkn) + dkj(lkn, ljm) + Σ{c|k=pa(c)}Bc(lkn)

At the root node we obtain the simple formula 3 for scoring the high level hypothe-
ses.

Algorithm 3 root location
Br = min{n=1...N}−Dr(lrn) + Σ{c|r=pa(c)}Bc(lrn)
L∗

r = arg min{n=1...N}−Dr(lrn) + Σ{c|r=pa(c)}Bc(lrn)

Choosing the most probable root node, we can then assign the other nodes in a top
down fashion by choosing L∗

k = l∗k(Lpa(k)) for each node given its parent. Note that
this algorithm has a complexity O(MN 2) with M the number body parts and N the
number of candidates per body part. As an example of the detection results obtained
with this method, Figure 6 shows the three most probable parses for four test images,
ranked in order of decreasing likelihood.

4.2 Learning the body tree
The cost functions used in our body tree model are based on geometric constraints on
the relative positions of parts at a body articulation, as in Felzenszwalb & Huttenlocher
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[6]. Essentially, the articulation model is a linear combination of the differences be-
tween two joint locations, as predicted separately by the two body parts meeting at the
articulation.

Algorithm 4 joint distance( li, lj)
Compute joint location xij , yij given first body part location li
Compute joint location xji, yji given second body part location lj
Return dij = wx

ij |xij −xji|+w
y
ij |yij −yji|+wθ

ij |θi−θj −θij |+ws
ij | log si

sj
− log sij |

Each body joint is parametrized by the relative sizes sij and angles θij between
its parts, and the four rigidity parameters wx

ij , w
y
ij , w

θ
ij , w

s
ij governing the admissible

range of apparent deformations of the articulation in position, size and orientation. We
learned the relative sizes sij and angles θij of each articulation by simply taking the
average relative positions of all pairs of body parts over the training set.

To learn the rigidity parameters, we again used a Support Vector Machine. For
each articulation Aij between parts Pi and Pj , we learned a ‘combination classifier’
based on a five-dimensional feature vector F 0

i = Di + Dj , F
x
i = |xij − xji|, F

y
i =

|yij − yji|, F
θ
i = |θi − θj − θij |, F

s
i = | log si

sj
− log sij | .

Using positive and negative examples from our training set, we used a linear SVM
classifier to learn a set of weights w0

ij , w
x
ij , w

y
ij , w

θ
ij , w

s
ij such that the score is positive

for all positive example, and negative for all negative examples. We experimentally
verified that the learned weights have the expected signs, w0

ij > 0 and wx
ij < 0, wy

ij <

0, wθ
ij < 0, ws

ij < 0 , so that the learned model can indeed be related to the log-
likelihood of the articulation

L(Aij) = F 0
i −

|wx
ij |

w0

ij

F x
i −

|wy

ij
|

w0

ij

F
y
i −

|wθ
ij |

w0

ij

F θ
i −

|ws
ij |

w0

ij

F s
i

In our experiments with the MIT pedestrian database, the learned models performed
slightly better than the naive approach of assigning equal weights to all parameters and
all articulations, and we expect the method to be of even greater benefit for dealing with
the more complicated cases of people in action such as running or jumping.

5 Implementation and results
We implemented and tested our method in Matlab. The system consists of several com-
ponents. There is an interactive program for hand-labelling examples and storing the
locations of the body joints and parts. Another function computes image pyramids and
extracts image signatures at all locations x,y, s, θ . These are used both to generate
feature vectors for SVM/RVM training, and to perform detection against the learned
models. Finally, a parser based on the above dynamic programming approach reads
candidate locations from the 15 body part detectors and produces a ranked list of can-
didate assemblies.

We used MIT’s public domain program SvmFu-3.0 to train the SVM classifiers. We
trained the RVM classifiers in Matlab using a new algorithm that will be described in
detail elsewhere.
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Figure 4: True positive rates for SVM and RVM body part detectors.

5.1 Experimental setup
We selected 100 frontal images from the MIT pedestrian database and labelled their 15
parts, as shown in Figure 2. Each example is labelled by clicking 14 body joints. Oc-
cluded parts are clicked at their most likely (hidden) location, but flagged as occluded.
Only visible parts are used to train the image part models, but the hidden parts can be
included when training the geometric models. We also picked 5 background regions
in each image, for use as negative examples. As a result, each body part classifier was
trained with slightly less than 100 positive examples, and 500 negative examples.

Separate examples are needed for training and testing, so we selected and labelled
another 100 images from the MIT pedestrian database to serve as a test set. This was
used to evaluate the body part and assembly detectors.

5.2 Detection of body parts.
Detectors are traditionally compared by tracing ROC curves, i.e. true detection rates
(recall) as a function of false alarm rates (1−precision). In our case the detectors must
be tuned to function as filters, so most important parameter is the false alarm rate needed
to achieve ‘total recall’. Hence, we compared the two detectors by measuring the false
detection rates required to detect all visible body parts in our test set. The resulting true
positive rates for each part detector are shown in Figure 4.

As can be seen, individual part images are not very discriminative, so the absolute
false alarm rates remain quite high. In fact, they become still higher (up to 15:1) once
confusions between parts are included. Even so, the linking stage manages to resolve
most of the ambiguity, and the number of candidates that have to be examined remains
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quite tractable, at most about 75 candidates per part for these images. Ignoring spatial
contiguity, the worst-case number of body joint hypotheses is therefore 14 × 752 =
78750. In practice, we observed an average number closer to 14×202 = 5600 and used
50 candidates as a safe bet in all of our experiments. The RVM classifiers perform only
slightly worse than their SVM counterparts, with mean false detection rates of 80.1%
and 78.5% respectively. This is remarkable given the very small number of relevance
vectors used by the RVM detectors. For the purpose of rapid filtering, the advantages
of the RVM clearly outweigh their inconvenience.

Also note that the worst results are obtained for the torso (3) and head (2) models.
The torso is probably the hardest body part to detect as it is almost entirely shapeless.
It is probably best detected indirectly from geometric clues. In contrast, the head is
known to contain highly discriminant features, but the training images contain a wide
range of poses and significantly more training data (and perhaps some bootstrapping on
false alarms) is probably needed to build a good detector.

5.3 Detection of body trees
We evaluated the final body detector by visually comparing the best (highest proba-
bility) three configurations returned with the correct interpretation in each of the 100
test set images. Thus, the task was purely that of detecting humans using the 50 best
candidates for each body part and the body tree model. Our first experiment used 100
training exemples. We obtained correct detections rates of 72 % using RVM scores and
83 % using SVM scores, while using a naive geometric model with uniform rigidity
parameters for all of the body joints. We then learned a geometric model using labelled
body joints from the 100 training images. We used the correct assemblies as positive ex-
amples, and circular permutations of the body parts as negative ones. Using the learned
model, the correct detection rates improved to 74 % and 85 %. We should note that
detection is a relatively easy task with this data set, and our method should be evaluated
also with regards to the pose estimates. We plan to investigate this area quantitatively
in later work. Qualitatively, we noted that a majority of the body parts were correctly
positioned in only 36 % of the test images for RVM and 55 % for SVM.

In a second experiment, we increased the size of the training set to 200 examples.
This resulted in a slight increase of the detection rates, to 76 % for SVM and 88 % for
RVM, and a much vaster improvement of the pose estimates, resulting in qualitatively
correct poses in 54 % of the test examples for RVM and 75 % for SVM.

6 Discussion and Future Work
The good detection rates achieved by the method make a convincing case that the body-
plan strategy is applicable to real problems in image and video indexing. We plan to
extend this work to video, where we hope to improve the detection rates even further
by making use of temporal and kinematic constraints. But the construction of the im-
age pyramid is computationally expensive, and we plan to move to a more efficient
implementation, which could rely on a more thorough selection of the feature vectors.
One way to do this will be to use RVM classifiers that learn relevant features rather
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Figure 5: Part detection results from test collection.

than relevant examples. As a complement, Sidenbladh & Black’s [20, 21] approach
for learning the image statistics of people vs. background could prove useful for learn-
ing better models by selecting better features. In the assembly phase, the complexity
of the dynamic programming algorithm is quadratic n the number of candidate parts
which need to be stored, which in turn depends on the precision of the individual body
part detectors. By fine-tuning the body part detectors, we expect to achieve significant
improvements also in the overall performance of the global detector.

Further work will be needed for assessing the correctness of the detection and pose
estimation results in a more systematic way and for ’bootstrapping’ the learned models
(adding examples on which our current model fails, and retraining). Even without boot-
strapping, we have verified experimentally that the quality of the body part classifiers
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Figure 6: Ranked detections and their energies, using the learned body model and SVM
scores.

is improved significantly by increasing the size of the training data. We will need to
quantify this observation in future work.
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We also plan to extend the method to handle multiple persons in a greater variety of
backgrounds and poses, by explicitly representing occlusions in the decoding process
as in the work of Coughlan et al. [3] or by introducing mixtures of partial body trees,
as in the recent proposal made by Ioffe and Forsyth [11, 12]. The cost functions used
to evaluate the assembly of the body plans could also benefit from a richer geometric
model and additional photometric constraints (e.g. similarity of color and texture be-
tween the body parts for the same person). There are cases where we would like to
move even further away from the human anatomic model, and replace it with a small
set of ’clothing models’, which could be learned in much the same way and provide
additional flexibility. Those are avenues for further experimental work.

7 Conclusion
Detecting humans is a challenging problem in computer vision, with considerable prac-
tical implications for content-based indexing. We believe we have reached three useful
concusions with the work reported in this paper. Firstly, it is possible to learn appear-
ance models for human body parts from examples and to use them as input to a body
plan parser, at least for a modest-size problem such as pedestrian detection. Secondly,
we have been able to learn geometric models for the combination of the detected parts,
allowing us to robustly estimate the likelihood of a body part assembly, without re-
course to sampling or HMM distributions, which require thousands of examples to be
learned efficiently. Thirdly, the learned models lead to an efficient decoding algorithm
that combines kernel based learning and dynamic programming techniques, and is sim-
ple enough to be extended to video sequences.
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Abstract

We present a novel approach to modelling the non-linear and time-varying dynamics of human motion,
using statistical methods to capture the characteristic motion patterns that exist in typical human activities.
Our method is based on automatically clustering the body pose space into connected regions exhibiting
similar dynamical characteristics, modelling the dynamics in each region as a Gaussian autoregressive
process. Activities that would require large numbers of exemplars in example based methods are covered
by comparatively few motion models. Different regions correspond roughly to different action-fragments
and our class inference scheme allows for smooth transitions between these, thus making it useful for
activity recognition tasks. The method is used to track activities including walking, running, etc., using a
planar 2D body model. Its effectiveness is demonstrated by its success in tracking complicated motions
like turns, without any key frames or 3D information.

1. Introduction
Tracking and analyzing human motion in video sequences is a key requirement in several applications. There
are two main levels of analysis: (i) detecting people and tracking their image locations; and (ii) estimating
their detailed body pose, e.g. for motion capture, action recognition or human-machine-interaction. The
two levels interact, as accurate detection and tracking requires prior knowledge of pose and appearance, and
pose estimation requires reliable tracking. Using an explicit body model allows the state of the tracker to
be represented as a vector of interpretable pose parameters, but the problem is non-trivial owing to the great
flexibility of the human body, which requires the modelling of many degrees of freedom, and the frequent
non-observability of many of these degrees of freedom in monocular sequences owing to self-occlusions
and depth ambiguities. In fact, if full 3D pose is required from monocular images, there are potentially
thousands of local minima owing to kinematic flipping ambiguities [18]. Even without this, pervasive image
ambiguities, shadows and loose clothing add to the difficulties.

Previous work: Human body motion work divides roughly into tracking based approaches, which involve
propagating the pose estimate from one time step to another, and detection based approaches, which estimate
pose from the current image(s) alone. The latter have become popular recently in the form of ‘exemplars’
[21] and ‘key frames’ [19]. These methods allow the direct use of image data, which eliminates the need
for predefined parametric models. But the interpretability of parametric models is lost, and large numbers of
exemplars are needed to cover high dimensional example spaces such as those of human poses. (Tree-based
structures have recently been explored for organizing these datasets [20], but they rely on the existence of
accurate distance metrics in the appearance space).

Within the tracking framework, many methods are based on computing optical flow [9, 3, 2], while others
optimize over static images (e.g. [18]). On the representation side, a variety of 2D and 3D parametric models
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Figure 1: Overview of the learning and tracking components of our algorithm (see text).

have been used [9, 3, 16, 18], as well as non-parametric representations based on motion [4] or appearance
[15, 11, 21]. A few learning based methods have modelled dynamics [8, 17, 14], motion patterns from motion
capture data (e.g. [1]), and image features [16, 7, 6]. To track body pose, Howe et al [8] and Sidenbladh
et al [17] propose plausible next states by recovering similar training examples, while Pavlovic et al [14]
learn a weak dynamical model over a simplified 8-parameter body for fronto-parallel motions. We extend the
learning based approach by modelling complex high dimensional motions within reduced manifolds in an
unsupervised setting. In the past, nonlinear motion models have been created by combining Hidden Markov
Models and Linear Dynamical Systems in the multi-class dynamics framework, e.g. in [13, 14]. However,
this approach artificially decouples the switching dynamics from the continuous dynamics. We propose a
simpler alternative that avoids this decoupling, discussing our philosophy in section 3.4.

Problem formulation: We use a tracking based approach, representing human motions in terms of a fixed
parametric body model controlled by pose-related parameters, and focusing on flexible methods for learning
the human dynamics. We specialize to monocular sequences using a 2D (image based) body model, but our
methods extend immediately to the 3D and multicamera cases. Our main aim is to study how relationships
and constraints in parameter space can be learned automatically from sample trajectories, and how this in-
formation can be exploited for tracking. Issues to be handled include the ‘curse of dimensionality’, complex
nonlinear motions, and transitions between different parts of the space.

Overview of approach: Our approach is based on learning dynamical models from sample trajectories. We
learn a collection of local motion models (Gaussian autoregressive processes) by automatically partitioning
the parameter space into regions with similar dynamical characteristics. The piecewise dynamical model is
built from a set of hand-labelled training sequences as follows: (i) the state vectors are clustered using K-
means and projected to a lower dimensional space using PCA to stabilize the subsequent estimation process;
(ii) a local linear autoregression for the state given the p previous reduced states is learned for each cluster
(p = 1,2 in practice); (iii) the data is reclustered using a criterion that takes into account the accuracy of the
local model for the given point, as well as the spatial contiguity of points in each model; (iv) the models are
refitted to the new clusters, and the process is iterated to convergence.

We sidestep the difficult depth estimation problem by using a purely 2D approach, so our dynamical
models are view dependent. Our tracking framework is similar to Covariance Scaled Sampling [18]: well-
shaped random sampling followed by local optimization of image likelihood. Figure 1 illustrates the basic
scheme of dividing the problem into learning and tracking stages.
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Figure 2: (a) Human pose parametrization in the Scaled Prismatic Model. (b) Examples of different poses of
the complete SPM. Each limb segment is overlayed with its corresponding template shape.

2. Body representation
We choose a simple representation for the human body: a modified Scaled Prismatic Model [12] that encodes
the body as a set of 2D chains of articulated limb segments. This avoids 3D ambiguities while still capturing
the natural degrees of freedom. Body parts are represented by rounded trapezoidal image templates defined
by their end widths, and body poses are parametrized by their joint angles and apparent (projected) limb
lengths. Including limb lengths, joint angles and hip and shoulder positions, our model contains 33 param-
eters, giving 33-D state vectors x = (θ1, d1, θ2, d2, . . . θn, dn). Figure 2 illustrates the parametrization and
shows some sample poses.

Three additional parameters are used during tracking, two for the image location of the body centre and
one for overall scale. We learn scale and translation independently of limb movements, so these parameters
are not part of the learned body model. The template for each body part contains texture information used
for model-image matching. Its width parameters depend on the subject’s clothing and physique. They are
defined during initialization and afterwards remain fixed relative to the overall body scale, which is actively
tracked.

3. Dynamical Model Formulation
Human motion is both complex and time-varying. It is not tractable to build an exact analytical model
for it, but approximate models based on statistical methods are a potential substitute. Such models involve
learning characteristic motions from example trajectories in parameter space. Our model learns the nonlinear
dynamics by partitioning the parameter space into distinct regions or motion classes, and learning a linear
autoregressive process covering each region.

3.1 Partitioning of State Space
In cases where the dynamics of a time series changes with time, a single model is often inadequate to describe
the evolution in state space. To get around this, we partition the state space into regions containing separate
models that describe distinct motion patterns. The partitions must satisfy two main criteria: (i) different
motion patterns must belong to different regions; and (ii) regions should be contiguous in state space. I.e.,
we need to break the state space into contiguous regions with coherent dynamics. Coherency means that the
chosen dynamical model is locally accurate, contiguity that it can be reliably deduced from the current state
space position. Different walking or running styles, viewpoints, etc., tend to use separate regions of state
space and hence separate sets of partitions, allowing us to infer pose or action from class information.

We perform an initial partitioning on unstructured input points in state space by using K-means on Ma-
halanobis distances (see fig. 3). The clusters are found to cut the state trajectories into short sections, all
sections in a given partition having similar dynamics. The partition is then refined to improve the accuracies
of the nearby dynamical models. The local model estimation and dynamics based partition refinement are
iterated in an EM-like loop, details of which are given in section 3.3.
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Figure 3: (a) The initial partition of the state space of a walking motion (5 cycles), projected to 2-D us-
ing PCA (see text). (b) The clusters correspond to different phases of the walking cycle, here illustrated
using the variations of individual joint angles with time. (The cluster labels are coded by colour). These
figures illustrate the optimal clustering obtained for a p=1 ARP. For p=2, a single class suffices for modelling
unidirectional walking dynamics.
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Figure 4: Using a reduced dynamical model to predict states in a high-dimensional space. A given state is
projected onto a low-dimensional space using PCA, within which a linear autoregressive progress is used to
predict a current (reduced) state. This is then lifted back into full state space to estimate a noise model in the
high-dimensional space. To prevent the state from being continually squashed into the PCA subspace, we lift
the velocity prediction and not the state prediction.

3.2 Modelling the Local Dynamics
Despite the complexity of human dynamics and the use of unphysical image-based models, we find that the
local dynamics within each region is usually well described by a linear Auto-Regressive Process (ARP):

xt =

p
∑

i=1

Ai xt−i + wt + vt (1)

Here, xt ∈ R
m is the pose at time t (joint angles and link lengths), p is the model order (number of previous

states used), Ai are m × m matrices giving the influence of xt−i on xt, wt ∈ R
m is a drift/offset term, and

vt is a random noise vector (here assumed white and Gaussian, vt ∼ N (0,Q)).
The choice of ARP order is strongly dependent on the nature of the motions exhibited by the system.

In practice, experiments on different kinds of motion showed that a second order ARP usually suffices for
human tracking:

xt = A1 xt−1 + A2 xt−2 + vt (2)

This models the local motion as a mass-spring system (set of coupled damped harmonic oscillators). It can
also be written in differential form: ẍt = B1 ẋt + B2 xt + vt.
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3.3 Model Parameter Estimation
The parameters to be estimated are the state-space partitioning, here encoded by the class centers ck, and
the ARP parameters {Ak

1 ,Ak
2 , . . .Ak

p,Qk} within each class (k = 1 . . .K). There are standard ways of
learning ARP models from training data [10]. We computed maximum likelihood parameter estimates. We
also wanted to take advantage of the well-structured nature of human motion. People rarely move their limbs
completely independently of one another, although the actual degree of correlation depends on the activity
being performed. This can be exploited by learning the dynamics with respect to a reduced set of degrees of
freedom within each class, i.e. locally projecting the system trajectories into a lower dimensional subspace.
Thus, within each partition, we:

1. reduce the dimensionality using linear PCA (in practice to about 5);

2. learn an ARP model in the reduced space;

3. “lift” this model to the full state space using the PCA injection;

4. cross-validate the resulting model to choose the PCA dimension.

The basic scheme is illustrated in figure 4, and the complete algorithm is given below. Before applying PCA,
the state-space dimensions need to be statistically normalized. This is done by dividing each dimension by
its observed variance over the complete set of training data.

Algorithm for estimation of maximum-likelihood parameters:

1. Initialize the state-space partitions by K-means clustering based on scaled (diagonal Mahalanobis)
distance.

2. Learn an autoregressive model within each partition.

3. Re-partition the input points to minimize the dynamical model prediction error. If the class assignments
have converged, stop. Otherwise go to step 2.

Step 2 above is performed as follows:

1. Reduce the vectors in the class to a lower dimensional space by:

(a) Centering them and assembling them into a matrix (by columns):
X = [ (xp1

−c) (xp2
−c) · · · (xpm

−c) ], where p1 . . . pm are the indices of the points in
the class and c is the class mean.

(b) Performing a Singular Value Decomposition of the matrix to project out the dominant directions:
X = UDVT .

(c) Projecting each vector into the dominant subspace: each xi ∈ R
m is represented as a reduced

vector qi = ŨT (xi − c) in Rm′

(m′ < m), where Ũ is the matrix consisting of the first m′

columns of U.

2. Build an autoregressive model, q̂ =
∑p

i=1 Ai qt−i, and estimate Ai by writing this in the form of a
linear regression:

qt = Ã q̃t−1, t = tp1
, tp2

, . . . tpn
(3)

where

Ã = ( A1 A2 · · · Ap ), q̃t−1 =











qt−1

qt−2

...
qt−p











3. Estimate the error covariance Q from the residual between {x̂i} and {xi} by “lifting” q̂t back into m

dimensions:
x̂t = c + Ũq̂t (4)
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Figure 5: Graphical models for inter-class transitions of a system. (a) An HMM-like mixed-state model, and
(b) our inter-class transition model (zi: observation, xi: continuous state, ki: discrete class). Transitions
in an HMM are learned as a fixed transition probability matrix, while our model allows location-sensitive
estimation of the class label by exploiting continuous state information.

Step 3 above is performed as follows: The K-means based partitions are revised by assigning training
points to the dynamical model that predicts their true motion best, and the dynamical models are then re-
learned over their new training points. This EM / relaxation procedure is iterated to convergence. In practice,
using dynamical prediction error as the sole fitting criterion gives erratic results, as models sometimes “cap-
ture” quite distant points. So we include a spatial smoothing term by minimizing:

∑

training points

(prediction error) + λ · (number of inter-class neighbors)

where λ is a relative weighting term, and the number of inter-class neighbors is the number of edges in a
neighborhood graph that have their two vertices in different classes (i.e., a measure of the lack of contiguity
of a partition).

3.4 Inter-Class Transitions
Many example-based trackers use discrete state HMMs (transition probability matrices) to model inter-cluster
transitions [21, 20]. This is unavoidable when there is no state space model at all (e.g. in exemplars [21]), and
it is also effective when modelling time series that are known to be well approximated by a set of piecewise
linear regimes [5]. Its use has been extended to multi-class linear dynamical systems exhibiting continuous
behavior [14], but we believe that this is unwise, as the discrete transitions ignore the location-within-partition
information encoded by the continuous state, which strongly influences inter-class transition probabilities. To
work around this, quite small regions have to be used, which breaks up the natural structure of the dynamics
and greatly inflates the number of parameters to be learned. In fact, in modelling human motion, the current
continuous state already contains a great deal of information about the likely future evolution, and we have
found that this alone is rich enough to characterize human motion classes, without the need for the separate
hidden discrete state labels of HMM based models.

We thus prefer the simpler approach of using a piecewise linear dynamical model over an explicit spatial
partition, where the ‘class’ label is just the current partition cell. More precisely, we use soft partition
assignments obtained from a Gaussian mixture model based at the class centres, so the dynamics for each
point is a weighted random mixture over the models of nearby partitions. Our classes cover relatively large
regions of state space, but transitions typically only occur at certain (boundary) areas within them. Constant
transition probabilities given the current class label would thus be inappropriate in our case.

Figure 5 compares the two schemes in graphical form. By modelling the class-label to be conditional
on continuous state, we ensure a smooth flow from one model to the next, avoiding erratic jumps between
classes, and we obviate the need for complex inference over a hidden class-label variable.

4. Image Matching Likelihood
At present, for the model-image matching likelihood we simply use the weighted sum-of-squares error of
the backwards-warped image against body-part reference templates fixed during initialization. Occlusions
are handled using support maps. Each body part P has an associated support map whose jth entry gives the
probability that image pixel j currently ‘sees’ this part. Currently, we use hard assignments, p(j sees P ) ∈
{0, 1}. To resolve the visibility ambiguity when two limbs overlap spatially, each pose has an associated
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Figure 6: Results from tracking athletic motion (frames 0,4,8,12,16,20,24). The tracker was trained on a
different athlete performing a similar motion. Strong priors from the dynamical model allow individual limbs
to be tracked in the presence of a confusing background. Note that the left arm is not tracked accurately. This
is due to the fact that it was occluded in the initial image and hence no information about its appearance was
captured in the template. However, the dynamics continue to give a good estimate of its position.

limb-ordering, which is known a priori for different regions in the pose space from the training data. This
information is used to identify occluded pixels that do not contribute to the image matching likelihood for the
pose. We charge a fixed penalty for each such pixel, equal to the mean per-pixel error of the visible points in
that segment. Some sample support maps are shown in figure 8(b).

5. Tracking Framework
Our tracking framework is similar to Covariance Scaled Sampling [18]. For each mode of xt−1, the dis-
tribution N (x̂t,Q) estimated by the dynamical model (1,5) is sampled, and the image likelihood is locally
optimized at each mode. State probabilities are propagated over time using Bayes’ rule. The probability of
the tracker being in state (pose) xt at time t given the sequence of observations Zt = {zt, zt−1 . . . z0} is:

p(xt | Zt) = p(xt | zt,Zt−1) ∝ p(zt |xt) p(xt | Zt−1)

where Xt is the sequence of poses {xi} up to time t and

p(xt | Zt−1) =

∫

p(xt | Xt−1) p(Xt−1 | Zt−1) dXt−1 (5)

The likelihood p(zt |xt) of observing image zt given model pose xt is computed based on the image-model
matching error. The temporal prior P (xt | Xt−1) is computed from the learned dynamics. In our piecewise
model, the choice of discrete class label kt is determined by the current region in state space, which in our
current implementation depends only on the previous pose xt−1, enabling us to express the probability as

p(xt | Xt−1) = p(xt | Xt−1, kt) p(kt |xt−1) (6)

The size and contiguity of our dynamical regions implies that p(kt |xt−1) is usually highly unimodal. The
number of modes increases when the state lies close to the boundary between two or more regions, but in this
case, the spatial coherence inherited from the training dynamics usually ensures that any of the corresponding
models can be used successfully, so the number of distinct modes being tracked does not tend to increase
exponentially with time. For each model k = 1 . . .K, we use a Gaussian posterior for p(k|xt): p(k |xt) ∝

e−((xt−ck)Σ−1(xt−ck))/2 where ck is the center of the kth class. Note that with a second order ARP model,
p(xt | Xt−1) = p(xt |xt−1,xt−2).

6. Results
We demonstrate our technique by learning models for different classes of human motion and using them to
track complete body movements in unseen video sequences. Here, we present results from two challenging
sequences.
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Figure 7: (a) Dynamical model prediction error w.r.t. number of motion-classes in the turning experiment.
Minimizing the validation error selected 3 classes, corresponding to the two walking directions and turning
between them. (b) The influence of spatial regularization when re-partitioning the state space. A weak
regularization λ ∼ 0.1 gives the optimal dynamical estimates. A larger λ causes the partition to remain too
close to the suboptimal initial K-means estimate.

(a) (b)

(c)
Figure 8: Examples from our turning experiment. (a) Poses characterizing the 3 motion classes learned. (b)
Support maps illustrating occlusion information for the 3 classes (color coded by body part). (c) Tracking
results (every 6th frame from 0–66). The corresponding state vectors show a smooth transition between the
turning and walking models.

1. Fast athletic motion: This is a case where traditional methods typically fail due to high motion blur.
A hand-labelled sequence covering a few running cycles is used to train a model and this is used to track a
different person performing a similar motion. For a given viewing direction, we find that a single 2nd order
autoregressive process in 5 dimensions suffices to capture the dynamics of such running motions. A tracking
example is shown in figure 6.
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2. Switching between turning and walking: This experiment illustrates the effectiveness of our inter-
class transition model. A 300-frame sequence consisting of walking in different directions and turning motion
is used as training data. Our learning algorithm correctly identifies 3 motion patterns (see figure 7(a)),
corresponding to two different walking directions and turning between them. The frames corresponding to
the centers of these 3 classes are shown in figure 8(a). While tracking a new sequence, the model correctly
shifts between different classes enabling smooth switching between activities. Figure 8(c) shows complete
tracking results on an unseen test sequence.

In both cases, the models were initialized manually (we are currently working on automatic initialization),
after which only the learned dynamics and appearance information were used for tracking. Position and
scale changes were modelled respectively as first and zeroth order random walks and learned online during
tracking. This allows us to track sequences without assuming either static or fixating cameras, as is done
in several other works. The dynamical model alone gives fairly accurate pose predictions for at least a few
frames, but the absence of clear observations for any longer than this may cause mistracking.

Figure 7(b) shows how repartitioning (step 3 of our parameter estimation algorithm) improves on the
initial K-means based model, provided that a weak smoothing term is included.

7. Conclusion
We have discussed a novel approach to modelling dynamics of high degree-of-freedom systems such as the
human body. Our approach is a step towards describing dynamical behavior of high-dimensional parametric
model spaces without having to store extremely large amounts of training data. It takes advantage of local
correlations between motion parameters by partitioning the space into contiguous regions and learning indi-
vidual local dynamical behavior within reduced dimensional manifolds. The approach was tested on several
different human motion sequences with good results, and allows the tracking of complex unseen motions in
the presence of image ambiguities. The piecewise learning scheme developed here is practically effective,
and scalable in the sense that it allows models for different actions to be built independently and then stitched
together to cover the complete ‘activity space’. The learning process can also be made interactive to allow
annotation of different classes for activity recognition purposes.

In terms of future work, the appearance model needs to be improved. Adding detectors for characteristic
human features and allowing the appearance to evolve with time would help to make the tracker more robust
and more general. Including a wider range of training data would allow the tracker to cover more types of
human motions.

An open question is whether non-parametric models could usefully be incorporated to aid tracking. Joint
angles are a useful output, and are probably also the most appropriate representation for dynamical modelling.
But it might be more robust to use comparison with real images, rather than comparison with an idealized
model, to compute likelihoods for joint-based pose tracking.
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Chapter 3

3D Learning Based Motion Capture

This chapter presents a recent paper written with my PhD student Ankur Agarwal. It describes a
“model free” approach to human motion capture, based on directly regressing (‘learning’) a non-
linear association between image descriptors and 3D pose vectors. The paper is currently under
review for PAMI. It represents an extended journal version of two conference papers, one presented
at the 2004 International Conference on Computer Vision and Pattern Recognition (CVPR) [AT04a]
representing the static version of the method, and the other presented at the 2004 International Con-
ference on Machine Learning (ICML) [AT04b], representing the dynamic version.

Summary of paper 7, “Recovering 3D Human Pose from Monocular
Images”

The paper starts by describing a direct-learning-based method for reconstructing 3D human pose
from a single image [AT04a]. The human subject’s image silhouette is assumed to have been
extracted, e.g. by background subtraction. The process begins by extracting a 100-D descriptor
vector that robustly encodes the silhouette shape, as follows. Shape context vectors (log-polar
histograms of silhouette-edge locations) are calculated for each point on the image silhouette, giving
a distribution of points in a 60-D descriptor space. These points are then vector quantized using 100
code vectors learned by k-means clustering over the training data set, and the resulting histogram
is normalized to give the silhouette’s final 100-D descriptor vector. This is done for all examples in
a large training set of 3D pose vectors (joint angles) and their corresponding silhouettes. Finally a
nonlinear regressor that predicts 3D pose vectors from 100-D silhouette vectors is learned, and using
this, the poses of previously unseen silhouettes can be predicted. Several regression methods were
tested. The finally adopted method used a Relevance Vector Machine (a sparse Bayesian method)
over a Gaussian kernel, but several other methods gave very similar results. The training data was
obtained from a conventional motion capture rig1, so the final system (only) encodes natural human
poses. The silhouette-based image description is intrinsically ambiguous in the sense that there are
often several qualitatively different poses that project to a particular image silhouette. In our tests,
the method worked well for about 85% of images, but returned incorrect results for the remaining
15%, largely because it chose the wrong solution under this ambiguity.

1Unfortunately, the corresponding silhouettes had to be synthesized, as the motion capture system could not supply
these.
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To correct this ambiguity, we then extend the method to provide 3D human motion capture from
monocular image sequences [AT04b]. The main point here is to maintain a purely learning based
direct estimation framework, but to use the incoming state estimate to disambiguate between the
possible pose-from-silhouette solutions, thus removing the ambiguity of the static image case. State
(pose) predictions are made in the obvious way, using a linear autoregressive dynamical model, here
learned from the training data. However, rather than following the familiar filtering-based structure
where separate pose estimates from the data (silhouette) and the dynamics are merged to make
the final posterior state estimate, we use a joint regressor that predicts the state using both the
silhouette descriptor and the dynamical prediction. To allow the dynamical prediction to “select”
the correct inverse solution for the silhouette-based components to reconstruct (or if you prefer,
the appropriate inverse Jacobian for them to use to correct the dynamical prediction), it is essential
to include nonlinear interactions between the dynamics-based and the state-based components of
this regressor. In our case, joint Gaussian kernels were used for this regression. In testing, the
final method worked very well, successfully removing most of the visible ‘glitchiness’ of the one-
image-at-a-time approach and producing realistic-looking resynthesized videos. However it should
be noted that it is limited by its training data — poses that lie far from the span of those seen during
training can not be reconstructed accurately.

Finally, we briefly study multiple-hypothesis versions of these two methods, based on replacing
the individual regressor with a mixture of linear regressors model. In the static case, this simply
offers multiple possible solutions, while in the dynamic one, it is integrated into a particle-based
probabilistic tracker.



Recovering 3D Human Pose from
Monocular Images

Ankur Agarwal and Bill Triggs

Abstract— We describe a learning based method for
recovering 3D human body pose from single images
and monocular image sequences. Our approach requires
neither an explicit body model nor prior labelling of
body parts in the image. Instead, it recovers pose by
direct nonlinear regression against shape descriptor vec-
tors extracted automatically from image silhouettes. For
robustness against local silhouette segmentation errors,
silhouette shape is encoded by histogram-of-shape-contexts
descriptors. We evaluate several different regression meth-
ods: ridge regression, Relevance Vector Machine (RVM)
regression and Support Vector Machine (SVM) regression
over both linear and kernel bases. The RVMs provide much
sparser regressors without compromising performance,
and kernel bases give a small but worthwhile improvement
in performance. Loss of depth and limb labelling infor-
mation often makes the recovery of 3D pose from single
silhouettes ambiguous. We propose two solutions to this:
the first embeds the method in a tracking framework, using
dynamics from the previous state estimate to disambiguate
the pose; the second uses a mixture of regressors frame-
work to return multiple solutions for each silhouette. We
show that the resulting system tracks long sequences stably,
and is also capable of accurately reconstructing 3D human
pose from single images, giving multiple possible solutions
in ambiguous cases. For realism and good generalization
over a wide range of viewpoints, we train the regressors
on images resynthesized from real human motion capture
data. The method is demonstrated on a 54-parameter full
body pose model, both quantitatively on independent but
similar test data, and qualitatively on real image sequences.
Mean angular errors of 4–5 degrees are obtained — a
factor of 3 better than the current state of the art for the
much simpler upper body problem.

Index Terms— Computer vision, human motion estima-
tion, machine learning, multivariate regression, Relevance
Vector Machine

I. INTRODUCTION

We consider the problem of estimating and tracking
3D configurations of complex articulated objects from
monocular images, e.g. for applications requiring 3D
human body pose and hand gesture analysis. There
are two main schools of thought on this. Model-based
approaches presuppose an explicitly known parametric
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GRAVIR-CNRS-INRIA, 655 avenue de l’Europe, 38330 Mont-
bonnot, France. Ankur.Agarwal@inrialpes.fr, Bill.Triggs@inrialpes.fr,
http://lear.inrialpes.fr/people/{agarwal,triggs}.

body model, and estimate the pose either by directly
inverting the kinematics (which has many possible so-
lutions and requires known image positions for each
body part) [28], or by numerically optimizing some form
of model-image correspondence metric over the pose
variables, using a forward rendering model to predict
the images (which is expensive and requires a good
initialization, and the problem always has many local
minima [25]). An important sub-case is model-based
tracking, which focuses on tracking the pose estimate
from one time step to the next starting from a known
initialization, based on an approximate dynamical model
[9,23]. In contrast, learning based approaches try to
avoid the need for explicit initialization and accurate
3D modelling and rendering, and to capitalize on the
fact that the set of typical human poses is far smaller
than the set of kinematically possible ones, by estimating
(learning) a model that directly recovers pose estimates
from observable image quantities. In particular, example
based methods explicitly store a set of training examples
whose 3D poses are known, and estimate pose by
searching for training image(s) similar to the given input
image, and interpolating from their poses [5,18,22,27].

In this paper we take a learning based approach, but
instead of explicitly storing and searching for similar
training examples, we use sparse Bayesian nonlinear
regression to distill a large training database into a single
compact model that has good generalization to unseen
examples. Given the high dimensionality and intrinsic
ambiguity of the monocular pose estimation problem,
the selection of appropriate image features and good
control of overfitting is critical for success. We are
not aware of previous work on pose estimation that
directly addresses these issues. Our strategy is based
on the sparsification and generalization properties of
our nonlinear regression algorithm, which is a form of
the Relevance Vector Machine (RVM) [29]. RVMs have
been used earlier, e.g. to build kernel regressors for 2D
displacement updates in correlation-based patch tracking
[33]. Human pose recovery is significantly harder —
more ill-conditioned and nonlinear and much higher
dimensional — but by selecting a sufficiently rich set
of image descriptors, it turns out that we can still obtain
enough information for successful regression. Loss of
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depth and limb labelling information often makes the
recovery of 3D pose from single silhouettes ambiguous.
We propose two solutions to this. The first embeds the
method in a tracking framework, using dynamics from
the previous state estimate to disambiguate the pose. The
second uses a mixture of regressors framework to return
multiple possible solutions for each silhouette, allowing
accurate pose reconstructions from single images. When
working with a sequence of images, these solutions are
fed as input to a multiple hypothesis tracker to give the
most likely estimate for each time step.

Previous work: There is a good deal of prior work
on human pose analysis, but relatively little on directly
learning 3D pose from image measurements. Brand
[8] models a dynamical manifold of human body con-
figurations with a Hidden Markov Model and learns
using entropy minimization, Athitsos and Sclaroff [4]
learn a perceptron mapping between the appearance
and parameter spaces, and Shakhnarovich et al [22]
use an interpolated-k-nearest-neighbor learning method.
Human pose is hard to ground truth, so most papers in
this area [4,8,18] use only heuristic visual inspection to
judge their results. However Shakhnarovich et al [22]
used a human model rendering package (POSER from
Curious Labs) to synthesize ground-truthed training and
test images of 13 d.o.f. upper body poses with a limited
(±40◦) set of random torso movements and view points.
In comparison, our regression algorithm estimates full
body pose and orientation (54 d.o.f.) — a problem whose
high dimensionality would really stretch the capacity of
an example based method such as [22]. Like [11,22], we
used POSER to synthesize a large set of training and test
images from different viewpoints, but rather than using
random synthetic poses, we used poses taken from real
human motion capture sequences. Our results thus relate
to real data.

Several publications have used the image locations
of the centre of each body joint as an intermediate
representation, first estimating these centre locations in
the image, then recovering the 3D pose from them.
Howe et al [12] develop a Bayesian learning frame-
work to recover 3D pose from known centres, based
on a training set of pose-centre pairs obtained from
resynthesized motion capture data. Mori & Malik [18]
estimate the centres using shape context image matching
against a set of training images with pre-labelled centres,
then reconstruct 3D pose using the algorithm of [28].
These approaches show that using 2D joint centres as an
intermediate representation can be an effective strategy,
but we have preferred to estimate pose directly from the
underlying local image descriptors as we feel that this is
likely to prove both more accurate and more robust, also

providing a generic framework for directly estimating
and tracking any prespecified set of parameters from
image observations.

As regards tracking, some approaches have learned
dynamical models for specific human motions [19,20].
Particle filters and MCMC methods have been widely
used in probabilistic tracking frameworks e.g. [23,31].
Most of these methods use an explicit generative model
to compute observation likelihoods. We propose a dis-
criminatively motivated framework in which dynamical
state predictions are directly fused with descriptors com-
puted from the observed image. Our algorithm is related
to Bayesian tracking, but we eliminate the need for
both an explicit body model that is projected to predict
image observations, and a corresponding error model
that is used to evaluate the likelihood of the observed
image given this projection. A brief description of our
regression based scheme is given is [1] and its first
extension to resolve ambiguities using dynamics within
the regression is described in [2].

Overview of the approach: We represent 3D body pose
by 55-D vectors x including 3 joint angles for each
of the 18 major body joints. This choice corresponds
to the motion capture data that we use to train the
system (details in section II-B). The input images are
reduced to 100-D observation vectors z that robustly
encode the shape of a human image silhouette. Given a
set of labelled training examples {(zi,xi) | i = 1 . . . n},
the RVM learns a smooth reconstruction function x =
r(z), valid over the region spanned by the training
points. The function is a weighted linear combination
r(z) ≡ ∑

k ak φk(z) of a prespecifed set of scalar
basis functions {φk(z) | k = 1 . . . p}. In our tracking
framework, to help to disambiguate pose in cases where
there are several possible reconstructions, the functional
form is extended to include an approximate preliminary
pose estimate x̌, x = r(x̌, z). (See section V.) At
each time step, a state estimate x̌t is obtained from
the previous two pose vectors using an autoregressive
dynamical model, and this is used to compute the basis
functions, which now take the form {φk(x̌, z) | k =
1 . . . p}. Section VI gives an alternative method for
handling ambiguities by returning multiple possible 3D
configurations corresponding to a silhouette. The func-
tional form is extended to a probabilistic mixture p(x) ∼
∑

k πkδ(x, rk) allowing each reconstruction rk to output
a different solution.

Our solutions are well-regularized in the sense that the
weight vectors ak are damped to control over-fitting, and
sparse in the sense that many of them are zero. Sparsity
occurs because the RVM actively selects only the ‘most
relevant’ basis functions — the ones that really need to
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Fig. 1. Different 3D poses can have very similar image observations,
causing the regression from image silhouettes to 3D pose to be
inherently multi-valued. The legs are the arms are reversed in the first
two images, for example.

have nonzero coefficients to complete the regression suc-
cessfully. A sparse solution obtained by the RVM allows
the system to select relevant input features (components)
in case of a linear basis (φk(z) = kth component of
z). For a kernel basis — φk(z) ≡ K(z, zk) for some
kernel function K(zi, zj) and centres zk — relevant
training examples are selected, allowing us to prune a
large training dataset and retain only a minimal subset.

Organization: §II describes our image descriptors and
body pose representation. §III gives an outline of our
regression methods. §IV details the recovery of 3D pose
from single images using this regression, discussing
the RVM’s feature selection properties but showing
that ambiguities in estimating 3D pose from single
images cause occasional ‘glitches’ in the results. §V
describes our first solution to this problem: a tracking
based regression framework capable of resolving these
ambiguities, with results from our novel tracker in §V-
B. §VI describes an alternative solution: a mixture of
regressors based approach incorporated in a multiple
hypothesis tracker. Finally, §VII concludes with some
discussions and directions for future work.

II. REPRESENTING IMAGES AND BODY POSES

Directly regressing pose on input images requires a
robust, compact and well-behaved representation of the
observed image information and a suitable parametriza-
tion of the body poses that we wish to recover. To encode
the observed images we use robust descriptors of the
shape of the subject’s image silhouette, and to describe
our body pose, we use vectors of joint angles.

A. Images as Shape Descriptors

Silhouettes: Of the many different image descriptors
that could be used for human pose estimation, and in
line with [4,8], we have chosen to base our system on
image silhouettes.

Silhouettes have three main advantages: (i) They can
be extracted moderately reliably from images, at least
when robust background- or motion-based segmentation
is available and problems with shadows are avoided; (ii)
they are insensitive to irrelevant surface attributes like
clothing colour and texture; (iii) they encode a great deal
of useful information about 3D pose without the need
of any labelling information 1.

Two factors limit the performance attainable from
silhouettes: (i) Artifacts such as shadow attachment
and poor background segmentation tend to distort their
local form. This often causes problems when global
descriptors such as shape moments are used (as in
[4,8]), as every local error pollutes each component of
the descriptor: to be robust, shape descriptors need to
have good locality. (ii) Silhouettes make several discrete
and continuous degrees of freedom invisible or poorly
visible (see fig. 1). It is difficult to tell frontal views
from back ones, whether a person seen from the side is
stepping with the left leg or the right one, and what are
the exact poses of arms or hands that fall within (are
“occluded” by) the torso’s silhouette. Including interior
edge information within the silhouette [22] is likely to
provide a useful degree of disambiguation in such cases,
but is difficult to disambiguate from, e.g. markings on
clothing.

Shape Context Distributions: To improve resistance to
segmentation errors and occlusions, we need a robust
silhouette representation. The first requirement for ro-
bustness is locality. Histogramming edge information is
a good way to encode local shape robustly [17,6], so
we begin by computing local descriptors at regularly
spaced points on the edge of the silhouette. We use
shape contexts (histograms of local edge pixels into
log-polar bins [6]) to encode silhouette shape quasi-
locally over a range of scales, computing the contexts
in local regions defined by diameter roughly equal to
the size of a limb. In our application we assume that
the vertical is preserved, so to improve discrimination,
we do not normalize contexts with respect to their
dominant local orientations as originally proposed in [6].
The silhouette shape is thus encoded as a distribution

1We do not believe that any representation (Fourier coefficients, etc.)
based on treating the silhouette shape as a continuous parametrized
curve is appropriate for this application: silhouettes frequently change
topology (e.g. when a hand’s silhouette touches the torso’s one),
so parametric curve-based encodings necessarily have discontinuities
w.r.t. shape.
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Fig. 2. (Left) The first two principal components of the distribution
of all shape context vectors from a training data sequence, with the
k-means centres superimposed. The average-over-human-silhouettes
like form arises because (besides finer distinctions) the context vectors
encode approximate spatial position on the silhouette: a context at the
bottom left of the silhouette receives votes only in its upper right
bins, etc. (Centre) The same projection for the edge-points of a single
silhouette (shown on the right).

(in fact, as a noisy multibranched curve, but we treat
it as a distribution) in the 60-D shape context space.
(In our implementation, shape contexts contain 12 an-
gular × 5 radial bins, giving rise to 60 dimensional
histograms.) Matching silhouettes is therefore reduced
to matching these distributions in shape context space.
To implement this, a second level of histogramming is
performed: we reduce the distributions of all points on
each silhouette to 100-D histograms by vector quantizing
the shape context space. Silhouette comparison is thus
finally reduced to a comparison of 100-D histograms.
The 100 centre codebook is learned once and for all
by running k-means on the combined set of context
vectors of all of the training silhouettes. See fig. 2.
(Other centre selection methods give similar results.)
For a given silhouette, a 100-D histogram z is built by
allowing each of its context vectors to vote softly into
the few centre-classes nearest to it, and accumulating
scores of all context vectors. This soft voting reduces the
effects of spatial quantization, allowing us to compare
histograms using simple Euclidean distance, rather than,
say, Earth Movers Distance [21]. (We have also tested
the normalized cellwise distance ‖√p1−

√
p2‖2, with

very similar results.) The histogram-of-shape-contexts
scheme gives us a reasonable degree of robustness to oc-
clusions and local silhouette segmentation failures, and
indeed captures a significant amount of pose information
(see fig. 3).

B. Body Pose as Joint Angles

We recover 3D body pose (including orientation w.r.t.
the camera) as a real 55-D vector x, including 3 joint
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Fig. 3. Pairwise similarity matrices for (left) image silhouette
descriptors and (right) true 3D poses, for a 483-frame sequence of a
person walking in a decreasing spiral. The light off-diagonal bands that
are visible in both matrices denote regions of comparative similarity
linking corresponding poses on different cycles of the spiral. This
indicates that our silhouette descriptors do indeed capture a significant
amount of pose information. (The light SW-NE ripples in the 3D pose
matrix just indicate that the standing-like poses at the middle of each
stride have mid-range joint values, and hence are closer on average to
other poses than the ‘stepping’ ones at the end of strides).

angles for each of the 18 major body joints. The sub-
ject’s overall azimuth (compass heading angle) θ can
wrap around through 360◦. To maintain continuity, we
actually regress (a, b) = (cos θ, sin θ) rather than θ,
using atan2(b, a) to recover θ from the not-necessarily-
normalized vector returned by regression. So we have
3×18+1 = 55 parameters.

We stress that our framework is inherently ‘model-
free’ and is independent of the choice of this pose
representation. The system itself has no explicit body
model or rendering model, and no knowledge of the
‘meaning’ of the motion capture parameters that it is
regressing — it simply learns to predict these from
silhouette data. Similarly, we have not sought to learn
a minimal representation of the true human pose de-
grees of freedom, but simply to regress the original
motion capture based training format, and our regression
methods handle such redundant output representations
without problems.

The motion capture data was taken from the public
website www.ict.usc.edu/graphics/animWeb/ humanoid.
Although we use real motion capture data for joint an-
gles, we do not have access to the corresponding image
silhouettes, so we currently use a graphics package,
POSER from Curious Labs, to synthesize suitable train-
ing images, and also to visualize the final reconstruction.
This does unfortunately involve the use of a synthetic
body model, but we stress that this model is not part
of our system and would not be needed if real motion
capture data with silhouettes were available.
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III. REGRESSION METHODS

This section describes the regression methods that we
have evaluated for recovering 3D human body pose from
the above image descriptors. Here we follow standard
regression notation, representing the output pose by real
vectors y ∈ Rm and the input shape as vectors x ∈ Rd.
2

For most of the paper, we assume that the relationship
between x and y — which a priori, given the ambiguities
of pose recovery, might be multi-valued and hence
relational rather than functional — can be approximated
functionally as a linear combination as a prespecified set
of basis functions:

y =

p
∑

k=1

ak φk(x) + ε ≡ Af(x) + ε (1)

Here, {φk(x) | k = 1 . . . p} are the basis functions, ak

are Rm-valued weight vectors, and ε is a residual error
vector. For compactness, we gather the weight vectors
into an m×p weight matrix A ≡ (a1 a2 · · · ap) and
the basis functions into a Rp-valued function f(x) =
(φ1(x) φ2(x) · · · φp(x))

>. To allow for a constant
offset Af+b, we can include φ(x) ≡ 1 in f .

To train the model (estimate A), we are given a set
of training pairs {(yi,xi) | i = 1 . . . n}. In this paper
we will usually use the Euclidean norm to measure y-
space prediction errors, so the estimation problem is of
the form:

A := arg min
A

{

n
∑

i=1

‖Af(xi) − yi‖2 + R(A)

}

(2)

where R(−) is a regularizer on A. Gathering the
training points into an m×n output matrix Y ≡
(y1 y2 · · · yn) and a p×n feature matrix F ≡
(f(x1) f(x2) · · · f(xn)), the estimation problem
takes the form:

A := arg min
A

{

‖AF − Y‖2 + R(A)
}

(3)

Note that the dependence on {φk(−)} and {xi} is
encoded entirely in the numerical matrix F.

A. Ridge Regression

Pose estimation is a high dimensional and intrinsi-
cally ill-conditioned problem, so simple least squares
estimation — setting R(A) ≡ 0 and solving for A

in least squares — typically produces severe overfit-
ting and hence poor generalization. To reduce this, we

2However note that in subsequent sections, outputs (3D-pose vec-
tors) will be denoted by x ∈ R

55 and inputs will be instances from
either the observation space, z ∈ R

100, or the joint (predicted) state
+ observation space, (x>, z>)> ∈ R155.

RVM Training Algorithm
1) Initialize A with ridge regression. Initialize the

running scale estimates ascale = ‖a‖ for the
components or vectors a.

2) Approximate the ν log ‖a‖ penalty terms with
“quadratic bridges”, the gradients of which
match at ascale. I.e. the penalty terms take the
form ν

2 (a/ascale)
2 + const.

(One can set const = ν(log‖ascale‖− 1
2 ) to match

the function values at ascale, but this value is
irrelevant for the least squares minimization.)

3) Solve the resulting linear least squares problem
in A.

4) Remove any components a that have become
zero, update the scale estimates ascale = ‖a‖,
and continue from 2 until convergence.

Fig. 4. An outline of our RVM training algorithm.

need to add a smoothness constraint on the learned
mapping, for example by including a damping or reg-
ularization term R(A) that penalizes large values in
the coefficient matrix A. Consider the simplest choice,
R(A) ≡ λ ‖A‖2, where λ is a regularization parameter.
This gives the ridge regressor, or damped least squares
regressor, which minimizes

‖AF̃ − Ỹ‖2 := ‖AF − Y‖2 + λ ‖A‖2 (4)

where F̃ ≡ (F λ I) and Ỹ ≡ (Y 0). The solution
can be obtained by solving the linear system AF̃ = Ỹ

(i.e. F̃> A> = Ỹ>) for A in least squares3, using QR
decomposition or the normal equations. Ridge solutions
are not equivariant under scaling of inputs, so we usually
standardize the inputs (i.e. scale them to have unit
variance) before solving.

λ must be set large enough to control ill-conditioning
and overfitting, but not so large as to cause overdamping
(forcing A towards 0 so that the regressor systematically
underestimates the solution).

B. Relevance Vector Regression

Relevance Vector Machines (RVMs) [29,30] are a
sparse Bayesian approach to classification and regres-
sion. They introduce Gaussian priors on each parameter
or group of parameters, each prior being controlled
by its own individual scale hyperparameter. Integrating
out the hyperpriors (which can be done analytically)

3In case a constant offset y = Ax + b is included, this vector b
must not be damped and hence the system takes the form (A b) F̃ =

Ỹ where F̃ ≡

„

F λ I
1 0

«

and Ỹ ≡
`

Y 0
´

.
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gives singular, highly nonconvex total priors of the form
p(a) ∼ ‖a‖−ν for each parameter or parameter group
a, where ν is a hyperprior parameter. Taking log likeli-
hoods gives an equivalent regularization penalty of the
form R(a) = ν log ‖a‖. Note the effect of this penalty.
If ‖a‖ is large, the ‘regularizing force’ dR/da ∼ ν/‖a‖
is small so the prior has little effect on a. But the smaller
‖a‖ becomes, the greater the regularizing force becomes.
At a certain point, the data term no longer suffices to
hold the parameter at a nonzero value against this force,
and the parameter rapidly converges to zero. Hence, the
fitted model is sparse — the RVM automatically selects
a subset of ‘relevant’ basis functions that suffices to
describe the problem. The regularizing effect is invariant
to rescalings of f() or Y. (E.g. scaling f → αf forces
a rescaling A → A/α with no change in residual error,
so the regularization forces 1/‖a‖ ∝ α track the data-
term gradient AFF> ∝ α correctly). ν serves both as
a sparsity parameter and as a scale-free regularization
parameter. The complete RVM model is highly non-
convex with many local minima and optimizing it can
be problematic because relevant parameters can easily
become accidentally ‘trapped’ in the singularity at zero.
However, in practice this does not prevent RVMs from
giving useful results. Setting ν to optimize the estimation
error on a validation set, one typically finds that RVMs
give sparse regressors with performance very similar
to the much denser ones from analogous methods with
milder priors.

To train our RVMs, we do not use Tipping’s algorithm
[29], but rather a continuation method based on suc-
cessively approximating the ν log ‖a‖ regularizers with
quadratic “bridges” ν (‖a‖/ascale)

2 chosen to match the
prior gradient at ascale, a running scale estimate for a (see
fig. 5). The bridging changes the apparent curvature if
the cost surfaces, allowing parameters to pass through
zero if they need to, with less risk of premature trapping.
The algorithm is sketched in figure 4.

We have tested both componentwise priors, R(A) =
ν

∑

jk log |Ajk|, which effectively allow a different set
of relevant basis functions to be selected for each dimen-
sion of y, and columnwise ones, R(A) = ν

∑

k log ‖ak‖
where ak is the kth column of A, which select a com-
mon set of relevant basis functions for all components
of y. Both priors give similar results, but one of the
main advantages of sparsity is in reducing the number
of basis functions (support features or examples) that
need to be evaluated, so in the experiments shown we
use columnwise priors. Hence, we minimize

‖AF − Y‖2 + ν
∑

k

log ‖ak‖ (5)

–4

–3

–2

–1

0

a

Fig. 5. “Quadratic bridge” approximations to the ν log ‖a‖ regular-
izers. These are introduced to prevent parameters from prematurely
becoming trapped at zero. (See text.)

C. Choice of Basis

We tested two kinds of regression bases f(x). (i)
Linear bases, f(x) ≡ x, simply return the input vector,
so the regressor is linear in x and the RVM selects
relevant features (components of x). (ii) Kernel bases,
f(x) = (K(x,x1) · · · K(x,xn))

>, are based on a ker-
nel function K(x,xi) instantiated at training examples
xi, so the RVM effectively selects relevant examples.
Our experiments with various kernels and combinations
of kernels and linear functions show that kernelization
(of our already highly non linear features) gives a small
but useful improvement in performance — about 0.8◦

per body angle, out of a total mean error of around 7◦.
The form and parameters of the kernel have remarkably
little influence. The experiments shown use a Gaussian
kernel K(x,xi) = e−β‖x−xi‖

2

with β estimated from
the scatter matrix of the training data, but other β values
within a factor of 2 from this value give very similar
results.

IV. POSE FROM STATIC IMAGES

We conducted experiments using a database of motion
capture data for a 54 d.o.f. body model (3 angles for
each of 18 joints, including body orientation w.r.t the
camera). We report mean (over all 54 angles) RMS
absolute difference errors between the true and estimated
joint angle vectors, in degrees:

D(x,x′) =
1

m

m
∑

i=1

|(xi − x′
i) mod ± 180◦| (6)

The training silhouettes were created by using POSER to
render the motion captured poses, and reduced to 100-
D histograms by vector quantizing their shape context
distributions using centres selected by k-means.

We compare here results of regressing body pose x

(after transforming from 54-D to 55-D as described
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Fig. 6. Mean test-set fitting error for different combinations of body
parts, versus the linear RVM spareseness parameter ν. The minima
indicate the optimal sparsity / regularization settings for each body
part. Limb regressors are sparser than body or torso ones: the whole
body regressor retains 23 features; torso, 31; right arm, 10; and the
left leg, 7.
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Fig. 7. Silhouette points whose shape context classes are retained by
the RVM for regression on (a) left arm angles, (b) right leg angles,
shown on a sample silhouette. (c-f): Silhouette points encoding torso
& neck parameter values over different view points and poses. On
average, about 10 features covering about 10% of the silhouette suffice
to estimate the pose of each body part.

in section II-B) on the silhouette descriptors z using
ridge, RVM and SVM [32] based regression methods on
linear and kernel bases with the functional form given
in section III:

x = Af(z) + ε ≡
p

∑

k=1

ak φk(z) + ε (7)

Ridge regression and RVM regression use quadratic
loss functions to measure x-space prediction errors, as
described in section III, while SVM regression uses the
ε-insensitive loss function [26] and a linear programming
method for training. The results shown here use the
SVM-light [15] for implementation.

A. Implicit Feature Selection

Kernel based RVM regression gives reliable pose
estimates while retaining only about 6% of the training
examples, but working in kernel space hides information
associated with individual input features (components

of z-vectors). Conversely, linear-basis RVM regression
(f(z) = z) provides less flexible modelling of the
relationship between x and z, but reveals which of the
original input features encode useful pose information,
as the RVM directly selects relevant components of z.

One might expect that, e.g. the pose of the arms
was mainly encoded by (shape-context classes receiving
contributions from) features on the arms, and so forth,
so that the arms could be regressed from fewer features
than the whole body, and could be regressed robustly
even if the legs were occluded. To test this, we divided
the body joints into five subsets — torso & neck, the
two arms, and the two legs — and trained separate
linear RVM regressors for each subset. Fig. 6 shows
that similar validation-set errors are attained for each
part, but the optimal regularization level is significantly
smaller (there is less sparsity) for the torso than for the
other parts. Fig. 7 shows the silhouette points whose
contexts contribute to the features (histogram classes)
that were selected as relevant, for several parts and
poses. The two main observations are that the regres-
sors are indeed sparse — only about 10 of the 100
histogram bins were classed as relevant on average, and
the points contributing to these tend to be well localized
in important-looking regions of the silhouette — but
that there is a good deal of non-locality between the
points selected for making observations and the parts of
the body being estimated. This nonlocality is somewhat
surprising. It is perhaps only due to the extent to which
the motions of different body segments are synchronized
during natural walking motion, but if it turns out to be
true for larger training sets containing less orchestrated
motions, it may suggest that the localized calculations
of model-based pose recovery actually miss a good deal
of the information most relevant for pose.

B. Performance Analysis

Fig. 8 summarizes the test-set performance of the
various regression methods studied — kernelized and
linear basis versions of damped least squares regression
(LSR), RVM and SVM regression, for the full body
model and various subsets of it — at optimal regularizer
settings computed using 2-fold cross validation. All
output parameters are normalized to have unit variance
before regression and the tube width ε in the SVM is
set to correspond to an error of 1◦ for each joint angle.
Kernelization brings only a small advantage (0.8◦ on
an average) over purely linear regression against our
(highly nonlinear) descriptor set. The regressors are all
found to give their best results at similar optimal kernel
parameters, which are more or less independent of the
regularization prior strengths. The RVM regression gives
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LSR RVM SVM
Average error (in degrees) 5.95 6.02 5.91
% of support vectors retained 100 6 53

Fig. 8. (Top) A summary of our various regressors’ performance
on different combinations of body parts for the spiral walking test
sequence. (Bottom) Error measures for the full body using Gaussian
kernel bases with the corresponding number of support vectors re-
tained.

(a) (b) (c) (d) (e) (f)

Fig. 9. Some sample pose reconstructions for a spiral walking
sequence not included in the training data. The reconstructions were
computed with a Gaussian kernel RVM, using only 156 of the 2636
training examples. The mean angular error per d.o.f. over the whole
sequence is 6.0◦. While (a-c) show accurate reconstructions, (d-f)
are examples of misestimation: (d) illustrates a label confusion (the
left and right legs have been interchanged), (e,f) are examples of
compromised solutions where the regressor has averaged between
two or more distinct possibilities. Using single images alone, we find
∼ 15% of our results are misestimated.

very slightly higher errors than the other two regressors,
but much more sparsity. For example, in our whole-
body method, the final RVM selects just 156 (about
6%) of the 2636 training points as basis kernels, to give
a mean test-set error of 6.0◦. We attribute the slightly
better performance of the SVM to the different form
of its loss function. The overall similarity of the results

obtained from the 3 different regressors confirms that
our representation and framework are insensitive to the
exact method of regression used.

Fig. 9 shows some sample pose estimation results,
on silhouettes from a spiral-walking motion capture
sequence that was not included in the training set. The
mean estimation error over all joints for the Gaussian
RVM in this test is 6.0◦, but the error for individual
joints varies depending on the range and discernibility
of each joint angle. The RMS errors obtained for some
key body angles are as follows (the ranges of variation
of these angles in the test set are given in parentheses):
body heading angle: 17◦ (360◦), left shoulder angle: 7.5◦

(50.8◦), and right hip angle: 4.2◦ (47.4◦). Fig. 10 (top)
plots the estimated and actual values of the overall body
heading angle θ during the test sequence, showing that
much of the error is due to occasional large errors that
we will refer to as “glitches”. These are associated with
ambiguous cases where the silhouette might easily arise
from any of several possible poses. As one diagnostic
for this, recall that to allow for the 360◦ wrap around
of the heading angle θ, we actually regress (a, b) =
(cos θ, sin θ) rather than θ. In ambiguous cases, the
regressor tends to compromise between several possible
solutions, and hence returns an (a, b) vector whose norm
is significantly less than one. These events are strongly
correlated with large estimation errors in θ, as illustrated
in fig. 10.

Fig. 11 shows reconstruction results on some real
images. The reconstruction quality demonstrates the
method’s robustness to imperfect visual features, as a
quite naive background subtraction method was used to
extract somewhat imperfect body silhouettes from these
images. The last example demonstrates the problem of
silhouette ambiguity: the method returns a pose with the
left knee bent instead of the right one as the silhouette
looks the same in the two cases, causing a glitch in the
output pose.

Although numerically our results are already signifi-
cantly better than others presented in the literature (6◦ as
compared to RMS errors of about 20◦ per d.o.f. reported
in [22]), our pose reconstructions do still contain a
significant amount of temporal jitter, and also occasional
glitches. The jitter is to be expected given that each
image is processed independently. It can be reduced
by temporal filtering (simple smoothing or Kalman
filtering), and also by adding a temporal dimension to
the regressor. The glitches occur when more than one so-
lution is possible, causing the regressor to either ‘select’
the wrong solution, or to output a compromised solution,
different from each. One possible way to reduce such
errors would be to incorporate stronger features such as
internal body edges within the silhouette, however the
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Fig. 10. (Top): The estimated body heading (azimuth θ) over
418 frames of the spiral walking test sequence, compared with its
actual value from motion capture. (Middle, Bottom): Episodes of high
estimation error are strongly correlated with periods when the norm
of the (cos θ, sin θ) vector that was regressed to estimate θ becomes
small. These occur when similar silhouettes arise from very different
poses, so that the regressor is forced into outputing a compromise
solution.

problem is bound to persist as important internal body
edges are often not visible and useful body edges have to
be distinguished from irrelevant clothing texture edges.
Furthermore, even without these limb labelling ambigu-
ities, depth related ambiguities continue to remain an
issue. By relying on experimentally observed poses, our
single image method has already reduced this ambiguity
significantly, but human beings often rely on very subtle
cues to disambiguate multiple solutions.

In the absence of multiple simultaneous views, tem-
poral continuity is an important supplementary source
of information for resolving these ambiguities. In the
following two sections, we describe two different ap-
proaches that exploit continuity within our regression
model.

V. TRACKING AND REGRESSION

This section describes a novel ‘discriminative’ track-
ing framework that fuses pose predictions from a learned
dynamical model into our single image regression frame-
work, to correctly reconstruct the most likely 3D pose
at each time step. The 3D pose can only be observed in-
directly via ambiguous and noisy image measurements,

Fig. 11. 3D poses reconstructed from some real test images using a
single image for each reconstruction (the images are part of a sequence
from www.nada.kth.se/∼hedvig/data.html). The middle and lower
rows respectively show the estimates from the original viewpoint and
from a new one. The first two columns show accurate reconstructions.
In the third column, a noisy silhouette causes slight misestimation of
the lower right leg, while the final column demonstrates a case of
left-right ambiguity in the silhouette.

so it is appropriate to start by considering the Bayesian
tracking framework in which our knowledge about the
state (pose) xt given the observations up to time t is
represented by a probability distribution, the posterior
state density p(xt | zt, zt−1, . . . , z0).

Given an image observation zt and a prior p(xt) on
the corresponding pose xt, the posterior likelihood for
xt is usually evaluated using Bayes’ rule, p(xt|zt) ∝
p(zt|xt) p(xt), where p(zt|xt) is an explicit ‘generative’
observation model that predicts zt and its uncertainty
given xt. Unfortunately, when tracking objects as com-
plicated as the human body, the observations depend
on a great many factors that are difficult to control,
ranging from lighting and background to body shape and
clothing style and texture, so any hand-built observation
model is necessarily a gross oversimplification. One way
around this would be to learn the generative model
p(z|x) from examples, then to work backwards via
its Jacobian to get a linearized state update, as in the
extended Kalman filter. However, this approach is some-
what indirect, and it may waste a considerable amount of
effort modelling appearance details that are irrelevant for
predicting pose. Instead, we prefer to learn a ‘diagnostic’
(discriminative or regressive) model p(x|z) for the pose
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x given the observations z — c.f . the difference between
generative and discriminative classifiers, and the regres-
sion based trackers of [16,33]. Similarly, in the context
of maximum likelihood pose estimation, we prefer to
learn a diagnostic regressor x = x(z), i.e. a point esti-
mator for the most likely state x given the observations
z, not a generative predictor z = z(x). Unfortunately,
this brings up a second problem. As we have seen in
the previous section, image projection suppresses most
of the depth (camera-object distance) information and
using silhouettes as image observations induces further
ambiguities owing to the lack of limb labelling. So
the state-to-observation mapping is always many-to-one.
These ambiguities make learning to regress x from z dif-
ficult because the true mapping is actually multi-valued.
A single-valued least squares regressor tends to either
zig-zag erratically between different training poses, or
(if highly damped) to reproduce their arithmetic mean
[7], neither of which is desirable.

To reduce the ambiguity, we work incrementally from
the previous few states4 xt−1, . . . (e.g. as was done in
[10]). We adopt the working hypothesis that given a
dynamics based estimate xt(xt−1, . . .) — or any other
rough initial estimate x̌t for xt — it will usually be the
case that only one of the observation-based estimates is
at all likely a posteriori. Thus, we can use the x̌t value
to “select the correct solution” for the observation-based
reconstruction xt(zt). Formally this gives a regressor
xt = xt(zt, x̌t), where x̌t serves mainly as a key to
select which branch of the pose-from-observation space
to use, not as a useful prediction of xt in its own right.
To work like this, the regressor must be well-localized
in x̌t, and hence nonlinear. Taking this one step further,
if x̌t is actually a useful estimate of xt (e.g. from a
dynamical model), we can use a single regressor of the
same form, xt = xt(zt, x̌t), but now with a stronger
dependence on x̌t, to capture the net effect of implicitly
reconstructing an observation-estimate xt(zt) and then
fusing it with x̌t to get a better estimate of xt.

A. Learning the Regression Models

Our discriminative tracking framework now has two
levels of regression. We formulate the models as follows
and continue to use the methods described in section III:

1) Dynamical (Prediction) Model: Human body dy-
namics can be modelled fairly accurately with a second
order linear autoregressive process, xt = x̌t + ε, where
x̌t ≡ Ã xt−1 + B̃ xt−2 is the second order dynamical
estimate of xt and ε is a residual error vector (c.f .

4As an alternative we tried regressing the pose xt against a sequence
of the last few silhouettes (zt, zt−1, . . .), but the ambiguities are
found to persist for several frames.

e.g. [3]). To ensure dynamical stability and avoid over-
fitting, we actually learn the autoregression for x̌t in the
following form:

x̌t ≡ (I + A)(2xt−1 − xt−2) + Bxt−1 (8)

where I is the m×m identity matrix. This form helps to
maintain stability by converging towards a default linear
prediction if A and B are overdamped. We estimate A

and B by regularized least squares regression against
xt, minimizing ‖ε‖2

2 + λ(‖A‖2
Frob + ‖B‖2

Frob) over the
training set, with the regularization parameter λ set by
cross-validation to give a well-damped solution with
good generalization.

2) Likelihood (Correction) Model: Now consider the
observation model. As discussed above, the underlying
density p(xt | zt) is highly multimodal owing to the
pervasive ambiguities in reconstructing 3D pose from
monocular images, so no single-valued regression func-
tion xt = xt(zt) can give acceptable point estimates
for xt. However much of the ‘glitchiness’ and jitter
observed in the static reconstructions of section IV-B
can be removed by feeding x̌t into the regression model.
The combined regressor can be formulated in several
different ways. The simplest is to linearly combine x̌t

with the estimate xt given by equation (7), but this only
smooths the results, reducing jitter, while still continuing
to give wrong solutions when (7) returns a wrong
estimate. We thus include a non-linear dependence on x̌t

with zt in the observation-based regressor, giving a state
sensitive observation update. Our full regression model
also includes an explicit linear x̌t term to represent the
direct contribution of the dynamics to the overall state
estimate, so the final model becomes xt ≡ x̂t+ε

′ where
ε
′ is a residual error to be minimized, and:

x̂t = Cx̌t+

p
∑

k=1

dk φk(x̌t, zt) ≡
(

C D
)

(

x̌t

f(x̌t, zt)

)

(9)
Here, {φk(x, z) | k = 1 . . . p} is a set of scalar-valued
nonlinear basis functions for the regression, and dk

are the corresponding R
m-valued weight vectors. For

compactness, we gather these into an Rp-valued feature
vector f(x, z) ≡ (φ1(x, z), . . . , φp(x, z))

> and an m×p
weight matrix D ≡ (d1, . . . ,dp). In the experiments
reported here, we used instantiated-kernel bases of the
form

φk(x, z) = Kx(x,xk) · Kz(z, zk) (10)

where (xk, zk) is a training example and Kx,Kz are
(here, independent Gaussian) kernels on x-space and
z-space, Kx(x,xk) = e−βx‖x−xk‖

2

and Kz(z, zk) =
e−βz‖z−zk‖

2

. Building the basis from Gaussians based at
training examples in joint (x, z) space makes examples
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Fig. 12. An example of mistracking caused by an over-narrow pose
kernel Kx. The kernel width is set to 1/10 of the optimal value,
causing the tracker to lose track from about t=120, after which the
state estimate drifts away from the training region and all kernels
stop firing by about t=200. Left: the variation of a left hip angle
parameter for a test sequence of a person walking in a spiral. Right:
The temporal activity of the 120 kernels (training examples) during this
track. The banded pattern occurs because the kernels are samples taken
from along a similar 2.5 cycle spiral walking sequence, each circuit
involving about 8 steps. The similarity between adjacent steps and
between different circuits is clearly visible, showing that the regressor
can locally still generalize well.
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Fig. 13. The variation of the RMS test-set tracking error with damping
factor s. See the text for discussion.

relevant only if they have similar image silhouettes and
similar underlying poses.

Mistracking due to extinction. Kernelization in joint
(x, z) space allows the relevant branch of the inverse
solution to be chosen, but it is essential to choose the
relative widths of the kernels appropriately. If the x-
kernel is chosen too wide, the method tends to aver-
age over (or zig-zag between) several alternative pose-
from-observation solutions, which defeats the purpose
of including x̌ in the observation regression. On the

other hand, too much locality in x effectively ‘switches
off’ the observation-based state corrections whenever
the estimated state happens to wander too far from the
observed training examples xk. So if the x-kernel is set
too narrow, observation information is only incorporated
sporadically and mistracking can easily occur. Fig. 12
illustrates this effect, for an x-kernel a factor of 10
narrower than the optimum. The method initially seemed
to be sensitive to the kernel width parameters, but
after fixing good default values by cross-validation on
an independent motion sequence we observed accurate
performance over a sufficiently wide range for both the
kernel widths: a tolerance factor of about 2 on βx and
about 4 on βz .

Neutral vs Damped Dynamics. The coefficient matrix
C in (9) plays an interesting role. Setting C ≡ I forces
the correction model to act as a differential update on
x̌t (what we refer to as having a ‘neutral’ dynamical
model). On the other extreme, C ≡ 0 gives largely
observation-based state estimates with only a latent
dependence on the dynamics. An intermediate setting,
however, turns out to give the best overall results. Damp-
ing the dynamics slightly ensures stability and controls
drift — in particular, preventing the observations from
disastrously ‘switching off’ because the state has drifted
too far from the training examples — while still allowing
a reasonable amount of dynamical smoothing. Usually
we estimate the full (regularized) matrix C from the
training data, but to get an idea of the trade-offs in-
volved, we also studied the effect of explicitly setting
C = sI for s ∈ [0, 1]. We find that a small amount
of damping, sopt ≈ .98 gives the best results overall,
maintaining a good lock on the observations without
losing too much dynamical smoothing (see fig. 13.) This
simple heuristic setting gives very similar results to the
model obtained by learning the full matrix C.

B. Tracking Results

We trained the new regression model (9) on our
motion capture data as in section IV. For these exper-
iments, we used 8 different sequences totalling about
2000 instantaneous poses for training, and another two
sequences of about 400 points each as validation and
test sets. Errors are again reported as described by (6).

The dynamical model is learned from the training data
exactly as described in §V-A.1, but when training the
observation model, we find that its coverage and capture
radius can be increased by including a wider selection
of x̌t values than those produced by the dynamical
predictions. Hence, we train the model x = xt(x̌, z)
using a combination of ‘observed’ samples (x̌t, zt) (with
x̌t computed from (8)) and artificial samples generated
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(d) Pure dynamical model on test set
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(b) Pure observation model on test set
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(e) Pure observation model on test set
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(c) Joint regression model on test set
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Fig. 14. Sample tracking results on a spiral walking test sequence. (a) Variation of the left hip-angle parameter, as predicted by a pure dynamical
model initialized at t = {0, 1}, (b) Estimated values of this angle from regression on observations alone (i.e. no initialization or temporal
information), (c) Results from our novel joint regressor, obtained by combining dynamical and state+observation based regression models. (d,e,f)
Similar plots for the overall body rotation angle. Note that this angle wraps around at 360◦, i.e. θ ' θ ± 360◦.

by Gaussian sampling N (xt,Σ) around the training state
xt. The observation zt corresponding to xt is still used,
forcing the observation based part of the regressor to
rely mainly on the observations, i.e. on recovering xt

(or at least an update to x̌t) from zt, using x̌t mainly
as a hint about the inverse solution to choose. The
covariance matrix Σ is chosen to reflect the local scatter
of the training examples, with a larger variance along
the tangent to the trajectory at each point to ensure that
phase lag between the state estimate and the true state
is reliably detected and corrected.

Fig. 14 illustrates the relative contributions of the
dynamics and observation terms in our model by plotting
tracking results for a motion capture test sequence in
which the subject walks in a decreasing spiral. This
sequence was not included in the training set, although

similar ones were. The purely dynamical model (8) pro-
vides good estimates for a few time steps, but gradually
damps and drifts out of phase. Such damped oscillations
are characteristic of second order linear autoregressive
dynamics, trained with enough regularization to ensure
model stability. The results based on observations alone
without any temporal information are included again
here for comparison. These are obtained from (7), which
is actually a special case of (9) where C = 0 and
Kx = 1. Panels (c),(f) show that jointly regressing
dynamics and observations gives a significant improve-
ment in estimation quality, with smoother and stabler
tracking. There is still some residual misestimation of
the hip angle in (c) at around t=140 and t=380. At
these points, the subject is walking directly towards the
camera (heading angle θ∼0◦), so the only cue for hip
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t=001 t=060 t=120 t=180 t=240 t=300

Fig. 15. Sample pose reconstructions for the spiral walking sequence
using the tracking method. This sequence was not included in the
training data, and corresponds to figures 14(c) & (f). The reconstruc-
tions were computed with a Gaussian kernel RVM, using only 18%
training examples. The average RMS estimation error per d.o.f. over
the whole sequence is 4.1◦.

angle is the position of the corresponding foot, which is
sometimes occluded by the opposite leg. Humans also
find it difficult to estimate this angle from the silhouette
at these points.

Fig. 15 shows some silhouettes and corresponding
maximum likelihood pose reconstructions, for the same
test sequence. The 3D poses for the first two time steps
were set by hand to initialize the dynamical predictions.
The average RMS estimation error over all joints using
the RVM regressor in this test is 4.1◦. Well-regularized
least squares regression over the same basis gives similar
errors, but has much higher storage requirements. The
Gaussian RVM gives a sparse regressor for (9) involving
only 348 of the 1927 (18%) training examples, thus
allowing a significant reduction in the amount of training
data that needs to be stored. The reconstruction results
on two test video sequences are shown in figs 16 and
19.

In terms of computation time, the final RVM regressor
already runs in real time in Matlab. Silhouette extraction
and shape-context descriptor computations are currently
done offline, but should be feasible online in real time.
The offline learning process takes about 2-3 min for the
RVM with ∼2000 data points, and currently about 20
min for Shape Context extraction and clustering (this
being highly unoptimized Matlab code).

Automatic Initialization: The method is reasonably
robust to initialization errors. Although the results shown
in figs. 14 and 15 were obtained by initializing from
ground truth, we also tested the effects of automatic (and
hence potentially incorrect) initialization. In an experi-

ment in which the tracker was automatically initialized
at each time step in turn using the pure observation
model, then tracked forwards and backwards using the
dynamical tracker, the initialization lead to successful
tracking in 84% of the cases. The failures were the
‘glitches’, where the observation model gave completely
incorrect initializations.

VI. RESOLVING AMBIGUITIES USING A MIXTURE OF
EXPERTS

In this section, we discuss an alternative approach
to dealing with multiple possible solutions in the 3D
pose estimation problem. We extend our single image
regression framework from section IV to a mixture of
regressors (often known as a mixture of experts [14]).
Such a model enables the regressor to output more
than one possible solution from a single silhouette —
in general a multimodal probability density p(x|z). We
describe the formulation of our mixture model and show
how it can be used in a multiple hypothesis probabilistic
tracking framework to achieve smooth reconstruction
tracks free from glitches.

A. Probabilistic pose from static images

A close analysis of the nature of ambiguities in the
silhouette-to-pose problem indicates that they are of
more than one type in nature. Firstly, there exist in-
stances where any 3D pose in a continuous range seems
to explain the given silhouette observation quite well,
e.g. estimating out-of-plane rotations where the limb
length signal is not strong enough to estimate the angle
accurately. Here one would desire a broad distribution
in 3D pose space as the output from a single silhouette.
Other cases of ambiguity arise due to kinematic flipping
(c.f . [24]) or label-ambiguities (disambiguating the left
and right arms/legs). In such cases, there is typically a
finite discrete set of probable solutions — often only
2 or 4, but sometimes more. To deal with both of the
above cases, we model the conditional density p(x|z) as
a mixture of Gaussians:

p(x|z) =
K

∑

k=1

πk N (x̄k,Λk) (11)

where x̄k is computed by learning a regressor x̄k =
Ak f(z) + bk within each mixture component, and Λk

(a diagonal covariance matrix in our case) is estimated
from residual errors. πk are the gating probabilities of
the regressors. Setting f(z) ≡ z simplifies the problem
to learning a mixture of linear regressors. The model
is learned by fitting a mixture of Gaussians to the joint
probability density (z>,x>)>:
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t=02 t=08 t=14

t=20 t=26 t=32

Fig. 16. 3D poses reconstructed from a test video sequence (obtained from www.nada.kth.se/∼hedvig/data.html). The presence of shadows and
holes in the extracted silhouettes demonstrates the robustness of our shape descriptors — however, a weak or noisy observation signal sometimes
causes failure to track accurately. E.g. at t = 8, 14, the pose estimates are dominated by the dynamical predictions, which do ensure smooth and
natural motion but may cause slight mistracking of some parameters.

(

z

x

)

=
K

∑

k=1

πk N (µk,Γk)

µk =

(

z̄k

Akz̄k + bk

)

,Γk =

(

Σk ΣkA
>

k

AkΣk AkΣkA
>

k + Λk

)

(12)

To avoid overfitting, we constrain the descriptor co-
variance matrix Σ to be diagonal, thereby drastically
reducing the number of parameters to be estimated in our
model. The gating probabilities are given by πk(z) =
1
Z
|Σk|−1e−

1

2
(z−z̄k)>Σ

−1

k
(z−z̄k).

The parameters are learned using a standard Expec-
tation Maximization (EM) algorithm. We initialize the
class centers and gating probabilities by clustering in
the x-space alone in order to separate points that have
similar z-values but different x values. (Including z in
the initial clustering decreased the quality of separation
between ambiguous cases). Results show that most of
the ambiguities are resolved and the regressors indeed
learn separate models for the multiple possible solutions
that come from different regions of the pose space.
Figure 17 shows the two most highly weighted modes of
the distribution in 3D pose obtained by using a mixture
of 8 regressors over some sample silhouettes. These two
solutions usually capture the principal ambiguities, but
valid reconstructions are often also present in some of
the remaining 6 modes of the output.

The associated probabilities of these modes are given
by the gating probabilities πk of the regressors used

(a) (b)

(c) (d)

(e) (f)

Fig. 17. Multiple possible 3D pose estimates obtained from individual
silhouettes using a mixture of regressors. The two most likely modes
of the distribution are shown in each case, and generally capture
the two most evident reconstruction possibilities, illustrating cases
of forward-backward ambiguity (a,b), kinematic flipping of the legs
(c) and interchanging labels between the two legs (d,e). (f) shows an
example where the first solution is a misestimate but feasible solutions
are obtained in the other modes.
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for the reconstruction. We find that these gating prob-
abilities typically give a good idea of the true number
of ambiguous solutions in the given case, but they do
not always select the correct solution from among the
generated possibilities. To get an idea of the number of
cases where the system cannot choose a single ‘correct’
solution, we rank the various modes obtained by the
regressors according to their (i) estimated probabilities
πk, and (ii) their accuracies obtained by comparison
with the ground truth. We find that in 30-35% of the
cases, the solution that is estimated as being most likely
is actually incorrect — but most of these correspond
to cases that are truly ambiguous — and the correct
solution is usually amongst the few most probable ones.

Using a mixture model scheme in place of a single
regressor allows most of the instances of compromised
solutions from the single regressor to be resolved into
several solutions capturing the different 3D possibilities
(e.g. compare figures 9(e) and 17(e)). This gives the
method the capability of accurately estimating possible
3D poses from single images — even in the cases of
ambiguity — by outputing several possible solutions
whenever they exist. Below we describe how to use
these multiple possible solution sets across a sequence of
silhouettes to allow smooth tracking free from glitches.

B. Condensation based tracking

The multimodal likelihoods obtained in the previous
section can be used in a tracker that combines the modes
across time to estimate a temporally coherent maximum
likelihood trajectory of 3D poses. This is demonstrated
by implementing a CONDENSATION [13] based tracking
algorithm that uses the output density of our mixture
model to assign likelihoods to its particles. We work
with the assumption that state information from the
current observation is independent of state information
from the dynamics:

p(xt | zt,xt−1, . . .) ∝ p(xt | zt) p(xt |xt−1, . . .) (13)

The pose reconstruction ambiguity is reflected in the fact
that the likelihood p(xt|zt) is typically multimodal. It
is often obtained by using Bayes’ rule to invert to the
many-to-one generative model p(zt|xt), but we continue
to work in our discriminative tracking framework and
hence use p(xt|zt) as opposed to p(zt|xt). The dynam-
ical model from section V-A.1 is used to generate an
estimate of the 3D pose distribution p(xt |xt−1, . . .).
Samples (x̌i

t) from this distribution are then assigned
weights p(x̌i

tz) by the observation model density as
given in (11).

Figure 18 shows tracking results obtained on our
spiral walk test set using CONDENSATION with 2000
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Fig. 18. Tracking results with a particle filter on a spiral walk test
sequence using the mixture of regressors output as an observation
model: (Left) left hip angle parameter, (Right) torso heading angle.

particles. In general, the method tracks through the cor-
rect modes of the observation density. Smooth tracks are
produced, with the maximum likelihood reconstructions
usually being more accurate than any of the 8 individual
modes of the multimodal regressor output alone.

VII. DISCUSSIONS AND CONCLUSIONS

We have presented a method that recovers 3D hu-
man body pose from monocular silhouettes by direct
nonlinear regression of joint angles against histogram-
of-shape-context silhouette shape descriptors. Neither a
3D body model nor labelled image positions of body
parts are needed, making the method easily adaptable
to different people, appearances and representations of
3D human body pose. The regression is done in either
linear or kernel space, using either ridge regression or
Relevance Vector Machines. The main advantage of
RVMs is that they allow sparse sets of highly relevant
features or training examples to be selected for the
regression. We have proposed two ways of overcoming
the intrinsic ambiguity of the pose-from-monocular-
observations problem: regressing the pose jointly on
image observations and previous pose; and using a
mixture of regressors in a multiple hypothesis tracking
scheme. Both of these produce stable, temporally consis-
tent tracking. Our mixture of regressors scheme has the
capability to reconstruct 3D human pose accurately from
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t=01 t=12 t=24

t=36 t=48 t=60

t=72 t=84 t=108

Fig. 19. 3D poses reconstructed from another test video sequence (obtained from http://mocap.cs.cmu.edu/). In this sequence the subject walks
towards the camera causing a scale change by a factor of ∼2. (The images and silhouettes have been normalized in scale here for display
purposes). Our scale invariant silhouette representation allows the algorithm to process a silhouette independent of its size or location in the image
without disturbing the 3D pose recovery.

a single image, giving multiple possible poses whenever
they exist.

Our kernelized RVM regressors retain only about
15 − 20% of their training examples in the regression
based tracking, thus giving a large effective reduction in
storage space compared to nearest neighbour methods,
which must retain the whole training database. Our
methods show promising results, being about three times
more accurate than the current state of the art [22].

Future work: We plan to investigate the extension of
our regression based system to cover a wider class of
human motions and also add structured representations
to our model for dealing with greater variability in the 54
dimensional output space. On the vision side, we would
like to include richer features, such as internal edges in
addition to silhouette boundaries to reduce susceptibility
to poor image segmentation.

Our linear RVMs directly select relevant features in
the image descriptor space. This property may be useful
for identifying better feature sets, not only for pose
recovery and tracking, but also for human detection
tasks.
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Chapter 4

Low-Level Vision

This chapter contains four papers dealing with low-level vision, including image filtering and re-
sampling, feature extraction and feature correspondence.

Summary of paper 8, “Empirical Filter Estimation for Subpixel Inter-
polation and Matching”

This paper, presented at the 2001 International Conference on Computer Vision [Tri01a], focuses
on the issue of low-level image interpolation and resampling. It stems from dissatisfaction with
the orthodox treatment of sampling found in countless textbooks, in which all signals are assumed
to have been strictly bandlimited before sampling, so that sinc-function based interpolation and re-
sampling are the gold standards against which all other methods should be judged. The paper points
out that natural images notably fail to conform to this model. They almost always contain signifi-
cant admixtures of abrupt intensity steps, which dominate their high-frequency spectra, and which
would often generate visually unpleasant ‘ringing’ if the “ideal” of perfect bandlimited sampling
were really put into practice. In default of a satisfying alternative sampling theory, the paper takes
an empirical approach and asks what forms of resampler actually work best for real images, in the
sense of minimizing empirical resampling error. 1D and 2D minimal error filters are designed by
direct optimization over a database of training images, under various assumptions about the camera
response and various plausible error metrics. The overall conclusion is that the empirically optimal
filters are relatively insensitive to the exact assumptions made and have a windowed-sinc-like form
with 2-4 oscillations on each side of the main peak, but that the optimal windowing function is
distinctly non-classical, with step-like behaviour at pixel boundaries rather than smooth descent.

Summary of paper 9, “Boundary Conditions for Young - van Vliet Re-
cursive Filtering”

Young & van Vliet gave a method of approximating Gaussian-based filters by an efficient forwards-
backwards Infinite Impulse Response recursion [YvV95,vVYV98,YvVvG02]. This short techni-
cal note submitted to IEEE Transactions on Image Processing [Tri04a] points out that the heuristic
method of transitioning from the forwards to the backwards recursion in these papers leads to sig-
nificant amplitude and phase distortion near the right hand boundary, and derives a transition matrix

129



130 Chapter 4. Low-Level Vision

linking the forwards and backwards recursions that eliminates this distortion.

Summary of paper 10, “Detecting Keypoints with Stable Position, Ori-
entation and Scale under Illumination Changes”

Presented at the 2004 European Conference on Computer Vision [Tri04b], this paper generalizes
the popular Förstner-Harris keypoint detector to transformation groups broader than pure transla-
tions, and also shows how to incorporate additional illumination invariance. Keypoints (also called
“points of interest”, or more casually “corners”) are isolated image points that are in some sense
particularly salient, so that they can be reliably re-detected in other images. They are the foundation
of the “local feature” approach to vision, in which either image patches centred on the points, or
more generally local image descriptors based on the patches, are used for image correspondence,
motion, scene reconstruction, object recognition, etc. The detectors pioneered by Moravec [Mor77],
Förstner [F8̈6,FG87,F9̈4] and Harris & Stevens [HS88] use various measures of geometric stability
as salience metrics, i.e., as keypoints, they explicitly select points that seem likely to serve as stable
‘anchors’ under geometric matching. This is quantified in terms of the stability of self-matching of
the patch against itself — a quantity that can be approached by various differential image calcula-
tions. All of the above detectors use stability under small translations as their criterion, in which
case it turns out that the differential calculations centre on the so-called “second moment matrix”
or “structure tensor” of the local image patch,

∫
patch ∇I ∇>I dx. The current paper shows how to

generalize these constructs to select points that have prespecified degrees of stability under trans-
formation groups larger than pure translation, and derives detectors for arbitrary subgroups of the
2D affine group. It also shows how to correct the resulting generalized scatter matrix to enforce
invariance under various common types of illumination variations (affine changes of illumination
and uniform illumination gradients). The final detector is implemented in a multiscale framework,
but (although it detects locally-affinely-stable points) it has not yet been extended to incorporate full
affine invariance. The overall philosophy here is that one should be able to prespecify the various
degrees of stability needed by the application (for example, those needed to calculate stable local
descriptors based on the detected keypoints), and ask the detector to explicitly select keypoints that
match these requirements.

Summary of paper 11, “Joint Feature Distributions for Image Corre-
spondence”

This paper from the 2001 International Conference on Computer Vision [Tri01b] presents a new ap-
proach to the problem of multi-image correspondence for rigid and partially- or near-rigid scenes.
It points out that instead of using rigid geometric constructs such as conventional matching ten-
sors, multi-image visual correspondence problems can be formulated probabilistically, as the es-
timation of “Joint Feature Distributions” (JFD’s) — joint probability distributions for the image
positions of corresponding features across several images. The resulting distributions implicitly
encode the uncertain scene geometry, and could potentially be used to create a probabilistic ana-
logue of rigid scene reconstruction. Correspondence prediction and feature transfer is achieved very
naturally by conditioning on the given observations to give a lower-dimensional joint distribution
for the unobserved variables. The remainder of the paper then develops an explicit parametriza-
tion and estimation method for some particularly interesting families of JFD’s with close links to
conventional matching constraints. Algebraically, the estimation algorithm is closely related to the
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standard linear (“8 point” and “4 point”) methods for estimating the corresponding matching ten-
sor, but with the additional benefit that certain scene geometries that are singular for conventional
matching tensor estimation cause no problems at all for JFD based methods, and may even improve
the efficiency of correspondence search. In particular, planar and near-planar scenes are handled
gracefully by the JFD analogue of the fundamental matrix / epipolar constraint: as the scene be-
comes progressively more planar, the conditional JFD correspondence search windows naturally
and progressively shrink from the full epipolar line to small ellipses centred on the correspondences
predicted by the underlying plane homography. Hence explicit model selection is not necessary:
the “epipolar” model continues to work stably for planar scenes. The paper finishes with a short
technical appendix that gives some of the algebraic geometry behind the construction.
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Abstract

We study the low-level problem of predicting pixel intensities
after subpixel image translations. This is a basic subroutine for
image warping and super-resolution, and it has a critical influ-
ence on the accuracy of subpixel matching by image correlation.
Rather than using traditional frequency-space filtering theory or
ad hoc interpolators such as splines, we take an empirical ap-
proach, finding optimal subpixel interpolation filters by direct
numerical optimization over a large set of training examples.
The training set is generated by subsampling larger images at
different translations, using subsamplers that mimic the spatial
response functions of real pixels. We argue that this gives re-
alistic results, and design filters of various different parametric
forms under traditional and robust prediction error metrics. We
systematically study the performance of the resulting filters, pay-
ing particular attention to the influence of the underlying image
sampling regime and the effects of aliasing (“jaggies”). We sum-
marize the results and give practical advice for obtaining sub-
pixel accuracy.
Keywords: image filtering, subpixel interpolation, super-
resolution, aliasing, subpixel matching.

1 Introduction
What is the best way to obtain subpixel accuracy from
images? – Ultimately, it is a question of which fea-
ture extraction, filtering or interpolation scheme to use.
Interpolation schemes are often motivated theoretically
[18,9,10], either as finite-width approximations to the in-
finite ‘sinc’ filters that exactly interpolate band-limited
signals in Nyquist sampling theory1, or in terms of con-
venient parametric forms such as cubic splines. But at
bottom the question is empirical. Real images are nei-
ther cubic nor strictly band-limited to the pixel spacing.

Extended version of a paper appearing in the 2001 IEEE Int. Conf. Com-
puter Vision. c© 2001 IEEE Computer Society Press.

1We assume familiarity with basic sampling theory. Sampling a con-
tinuous signal on a discrete grid folds (‘aliases’) high spatial frequencies
down to their fractional parts (in cycles per grid unit), and thus confuses
the signal. Signals limited to the Nyquist frequency band [− 1

2
, 1

2
] (no

wavelengths less than 2 pixels) have no aliasing and hence can be recon-
structed exactly. Bandwidth limitation / band-limited signal reconstruc-
tion can be implemented by continuous / discrete convolution against
a sinc function sinc(πx) ≡ sin(πx)/(πx), whose abruptly truncated
Fourier transform (1 for |f | < 1

2
and 0 elsewhere) but infinite, slowly

decaying oscillating tails in x make it expensive to implement accurately
by direct convolution.

Nyquist and spline theory neither give us optimal interpo-
lators for them, nor tell us which of the many suboptimal
approximations to use. These issues exist in 1D but be-
come even thornier for images, where multidimensional
sampling artifacts — notably the ‘aliasing’ of non-grid-
aligned edges into staircases of discrete steps (“jaggies”)
— can seriously degrade feature detection and geometric
precision.

In default of an effective theory, we treat these issues
empirically, designing accurate interpolators by minimiz-
ing their prediction errors over sets of training images con-
taining subpixel translations. Our current implementation
is oriented towards quantitative matching (subpixel corre-
lation) rather than human perception: we choose intensity-
related error metrics (e.g. L1, L2) rather than perceptual
ones (e.g. [12]); we consider geometric as well as pho-
tometric accuracy; and we pay particular attention to the
(strong) influence of the underlying pixel spatial response
function. Our approach could also be used for super-
resolution [16,3,5,4], but here we use individual not mul-
tiple images, and we aim to predict what the original cam-
era would return if shifted, not an enhanced image. An
illuminating 1D analytic study complementary to our 2D
empirical one is [15]. For a unified “information optimiz-
ing” approach to sampling and reconstruction, see [7]. For
subpixel reconstruction based on learned “codebooks” see
[6,1].

Our main aim was to establish ‘good working practice’
for accurate subpixel image manipulation, side-stepping
the bewildering range of methods available for filter de-
sign [9,10]. Forms like splines are essentially heuristic,
and we do not accept that strict band-limitation and sinc
interpolation are the ideal approach for vision, to be ap-
proximated as well as the available computational power
allows. The high frequency spectra of natural images are
dominated by phase-coherent 1/f components produced
by step edges. Bandwidth truncation of these produces
significant high frequency ‘ringing’, which disturbs both
the human eye and accurate computer vision algorithms.
As figure 1 shows, abruptly band-limited images simply
do not “look right”: oscillations propagate out from each
edge, making featureless surfaces look textured and gen-
erally confusing the signal2 . If band-limited images are to

2These artifacts are more visible on the computer than in print. Here
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(a) original image (b) band-limited (c) band-limited + subsampled (d) blurred + subsampled

Figure 1: The effects of abrupt bandwidth limitation. An original image (a), limited to 1/15 of the bandwidth (b)
then decimated (point-subsampled) 15× (c). The band-limited images (b,c) have characteristic “ringing” artifacts:
Nyquist frequency waves propagate outwards from each edge making smooth surfaces look striped or plaided, especially
between parallel edges. Blurring (a) with a σ = 7 Gaussian before subsampling gives a slightly less sharp image (d),
but no ringing.

be used, the downstream image processing modules must
be capable of handling such artifacts.

Notation: PRF stands for Pixel (spatial) Response
Function (§2). Image points are denoted x = (x, y) with
input pixels (centres) at integer coordinates. w denotes
filter half-width: a half-width w interpolator reconstruct-
ing sub-pixel location (x, y) accesses all integer positions
(i, j) with |x − i|, |y − j| < w. §2 discusses our method
of generating training data, §3 comments on aliasing, §4
sketches our filter design method, §5 presents our experi-
mental findings, and §6 summarizes.

2 Image Formation & Subsampling
To estimate subpixel interpolation filters, our training
method (§4) needs a large body of training images with ac-
curately labelled subpixel shifts. Suitable data could per-
haps be collected experimentally, but this would be time
consuming and error-prone. Instead, we have preferred
to synthesize suitable data by carefully subsampling real
source images. This allows us to rapidly generate a large
body of training examples with guaranteed-accurate sub-
pixel shifts, and it can synthesize measurements corre-
sponding to any given camera response (i.e. PRF, see be-
low), which gives us great flexibility in filter design. The
danger is that subsampled images may be “unrealistic” —
too unrepresentative of real scenes to produce useful inter-
polators. This section argues that appropriate subsampling
does capture the relevant aspects of real scenes. The argu-
ment relies on two empirical properties of the underlying

they are due to abrupt bandwidth truncation alone, not finite filter width
or image boundary effects (we used carefully windowed FFT on much
larger images). Poorly truncated sinc filters give even worse ringing.

continuous input images:
(i) Within small enough regions, many natural scenes

are nearly scale invariant, with smooth featureless power-
law spectra. Zooming out does not change their local
statistics: local windows on zoomed scenes look similar
to local windows on unzoomed ones. In particular, rescal-
ing step edges changes neither their appearance nor their
1/f spectra, so images dominated by abrupt transitions
between uniform regions are locally scale-invariant, and
interpolators fitted to such data should remain valid for
other edge-dominated scenes. One set of windows with
edges at all positions and orientation looks much like an-
other. Zooming does change the ratio of uniform regions
to edge-containing ones, but this has little effect on the
results as uniform regions are uninformative for interpo-
lator training (they constrain only the average of the filter
coefficients).

(ii) The trained interpolators depend mainly on charac-
teristics of the input spectra within a few octaves of the
pixel sampling frequency, particularly the way that useful
information shades into aliasing: higher frequencies are
usually too strongly attenuated to cause much aliasing and
too phase-sensitive to reconstruct3, and lower ones look
like constants within the filter’s limited window. Hence,
the un-subsampled discrete source images contain all of
the frequencies needed to synthesize realistic images of
a zoomed-out scene, including sampling and aliasing ef-
fects. By ‘careful subsampling’ we mean exactly this syn-

3Linear interpolators are convolution-like but do not necessarily pre-
serve sinusoids, so they can synthesize frequencies not present in their
input. They can be viewed as convolvers acting on densified signals con-
structed by intercalating zeros between the input samples, which extends
their spectra.
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thesis.
At least for scene classes with some local scale in-

variance (and in practice, most scenes are locally edge-
dominated), these properties suggest that subsampling
should be a useful strategy for synthesizing training data
provided that we arrange for the subsampled images
to mimic as closely as possible those that would have
been produced by the same camera looking at a rescaled
(zoomed out) scene, including all signal degradation, sam-
pling and aliasing effects. To approximate this we use a
simplistic local model of image formation. We assume
that pixels are identical; that each responds linearly to the
total light flux falling on it which is in turn a linear func-
tion of the underlying scene luminance; and that this linear
process is shift-invariant: if the scene luminance is rep-
resented in image plane coordinates as an ‘ideal’ image
L(x), a pixel at x0 responds with R(x0) = (P ∗L)(x0) ≡
∫

x P (x0 − x) L(x) dx, where “∗” denotes convolution and
the Pixel Response Function (PRF) P (x0−x) represents
the combined effects of scattering, blurring, diffraction,
other signal degradations, and flux integration across the
pixel’s receptive zone. Clearly this model is only approx-
imate — real pixel responses are nonlinear (saturation,
clipping, quantization), and the various degradations de-
pend on 3D and image position, wavelength, optics and
geometry4 — but it will suffice as a local model for pre-
dicting “average” subpixel behaviour. Interpolators that
adapt to local imaging conditions are left for future work.

To predict the image R′ of the rescaled scene, we ap-
ply the desired PRF P at the new scale rather than the
old one: R′(x) = (P ∗ Lλ)(x) = (P1/λ ∗ L)(λ x) where
Lλ(x) ≡ L(λ x) is the reduced scene (λ > 1) and
P1/λ(x) ≡ P (x/λ) is the expanded PRF. In practice
this amounts to simply convolving the discrete source im-
age with a sampled version of the expanded PRF before
subsampling: the original PRF is not eliminated, but for
λ & 4 it is so much narrower than the expanded one that
its additional smoothing effect is negligible.

Typical PRF’s (see fig.2) are around one pixel wide,
with a form dominated by pixel geometry for narrower
PRF’s and optics (blurring, diffraction) for wider ones. §3
shows how to estimate the PRF of a real camera. §5 ex-
periments with a number of idealized PRF’s in order to

4Apart from blur, pixel geometry is the main PRF determinant. “In-
terline” CCD’s include shielded channels to prevent smearing caused by
incoming light during readout shifting, so only about 40–70% of the pixel
area is light sensitive, while “full frame” CCD’s use the light collectors
themselves for readout and have sensitive areas nearer 100% [17,10].
Chip-surface micro-lenses and colour filters alter the PRF, and position
dependent variations occur near the borders of large chips where the in-
coming rays strike the surface quite obliquely. Sharpening filters are
often included in the electronics to reduce blur, but cause asymmetry
and ringing that may lead to clipping near strong edges. Saturation and
clipping severely degrade the geometric precision, so for precise applica-
tions it is best to underexpose the images and to switch off any deblurring
filters.
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Figure 2: Experimental horizontal pixel responses (PRF’s)
for an analog video camera. These give the light sensitiv-
ity of the pixels as the signal moves across them.

(a) (b) (c) (d) (e) (f)

Figure 3: Aliasing along an edge due to poor sampling.
When the original image (a) is decimated 15× it shows
clear jaggies (b). Even an optimal reinterpolation filter can
do little to recover from these (c). The prediction error (d)
is concentrated along strong edges, in phase with the jag-
gies. A more smoothly (0.5 pixel Gaussian) subsampled
image (e) has no visible jaggies and can be reconstructed
(f) with far less error.

determine which aspects of PRF form are important for
subpixel accuracy.

3 Aliasing
Digitization converts smooth sloping edges into staircases
of more or less abrupt steps or “jaggies”, an effect (incor-
rectly) called “aliasing”. The experiments below show that
for well-focused images at typical daylight noise levels,
aliasing is easily the dominant source of error in subpixel
interpolation. Fig.3 illustrates this on the extreme case of
a point-subsampled image. Even well designed interpola-
tion filters can do little to recover from aliasing once it is
present. In fact, no finite-window filter can eliminate all
aliasing. As an edge moves forwards one pixel, its jaggies
move sideways by one cycle (one “jag”) by a Moiré effect.
As the edge becomes more closely aligned with one of
the coordinate axes, its jaggies become ever more widely
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spaced and move ever more rapidly sideways. Eventually,
they are more widely spaced than the filter window and the
filter has no way of predicting when they will pass through
it.

The Moiré properties of aliasing along edges provide
an easy means of measuring the effective horizontal and
vertical PRF’s of the camera. If we take a shallow step
edge and move parallel to the coordinate axis it is nearly
aligned with, the step gradually encroaches on the pix-
els we cross as we move. Hence, these pixel intensities
effectively give a fine sampling (with spatial resolution
1/(aliasing period of edge)) of the cumulative response of
a pixel as an edge moves across it. Taking derivatives
along the line of samples gives the non-cumulative pixel
response function, i.e. the response as a line edge moves
across the pixel. For example, in fig.3 (b), sampling along
a vertical line gives a fairly abrupt step as the line hits
its jaggie, and differentiating this gives the vertical PRF,
which is nearly a delta function. The results in fig.2 were
obtained in this way.

4 Filter Design
Our design method for subpixel interpolators is extremely
simple: we collect a training set of pairs of images with
known subpixel relative displacements, choose a paramet-
ric form for the filter and an error metric for its prediction
error, and numerically minimize the filter’s total prediction
error on the test images over its parameters. Consider each
element in turn.
Training images: Training requires a large set of accu-
rately labelled subpixel data. Any images could be used.
The study below subsampled large photogrammetric im-
ages to generate the training data. As discussed in §2, we
believe subsampling to be adequately realistic, and it al-
lows arbitrarily large and varied data sets to be generated
quickly and reliably. It also allowed a detailed compar-
ison of the effects of different PRF’s, which would not
otherwise have been possible. A 15× subsampling factor
provided reasonably dense interpolation and ensured that
the PRF of the original source camera had negligible influ-
ence on the results. We considered only grayscale images
as the non-collocated sampling of Bayer-style RG

GB colour
arrays greatly complicates subpixel issues.
Parametric filter: We designed filters from several dif-
ferent parametric families. All were based on square win-
dows centred on the inter-pixel square containing the sub-
pixel position being predicted. The mask of a half-width
w filter includes exactly w input pixels on each side. Half-
width 1 filters access just the four corners of the 1 pixel
square containing the point being predicted, and in prac-
tice tend to approximate bilinear interpolation. The exact
conventions for our convolution sums are given in the ap-
pendix. Our simplest parametrization leaves the weights
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Figure 4: The pixel response functions for which filters
were designed in this study.

at all positions and shifts as free parameters. Alterna-
tively, we can fit a separable filter, where each weight is
the product of the corresponding x-filter and y-filter ones.
Finally, we can parametrize each inter-pixel section of the
separable filters as a separate cubic, which further reduces
the number of parameters, couples the weights at different
shifts, and allows subpixel shifts not in the original train-
ing set to be generated. We did not implement continuity
constraints between the cubic sections because the opti-
mal filters often have small discontinuities in practice. We
can also require the impulse response to be symmetric if
desired, but real PRF’s are often asymmetric, especially
along scan lines.
Error metric: Our designs minimize intensity (grey-
level) prediction error rather than, e.g. perceptual or fea-
ture location metrics. The errors are summed over all re-
sampled pixels and all subpixel shifts being considered.
Let δIi be the difference between the observed and the
predicted intensity at pixel i and σ be a robustness-scale
parameter. We designed filters under the following error
norms. L2: classical least squares, |δIi|

2. L1: least abso-
lute value, |δIi|. Lorentz: log

(

1 + 1

2
|δIi/σ|2

)

. Smoothed

L1:
√

1 + 1

2
|δIi/σ|2 − 1.

Optimization method: The most conspicuous feature
of the optimization problem is the huge number of mea-
surements available — more than 107 for the designs
given below. It often has many parameters too. Sepa-
rable filters have comparatively few, but the largest non-
separable filters tested below — half-width 6 with 15×
subsampling — have (2 · 6 · 15)2 = 32400 free pa-
rameters in 255 groups of 144 (the groups being inde-
pendent if no inter-shift smoothness constraints are en-
forced — and none seem to be needed). However, the
data is very strong, so apart from its size the optimiza-
tion problem is relatively benign. Given these character-
istics, we chose to use Liu & Nocedal’s elegant LBFGS
(limited memory quasi-Newton) optimizer [11,13] from
Netlib (http://www.netlib.org). The required values and
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Figure 5: Optimal interpolation filter impulse responses (left) and spectra (right) for separable L2-norm filters designed
for various pixel response functions (top, for half-width w = 6) and filter widths (bottom, for the gauss 0.5 PRF). A
sinc function (left) and the image spectrum (right) are plotted for comparison.

gradients of the error function with respect to the filter pa-
rameters are calculated by a predict-and-accumulate cycle
through the test images to evaluate gradients with respect
to the parameters of the non-separable filter, followed by
chain-rule reduction to a smaller parameter space if re-
quired.

The basis of the LBFGS approach [11,13] is to observe
changes in the cost gradient as the method progresses, and
use these to dynamically build up and maintain a rank k
approximation to the problem’s Hessian, for some fixed k.
The approximation is maintained using BFGS updates and
used to predict quasi-Newton optimization steps. LBFGS
is designed for large problems in which the full Hessian
can not be stored or decomposed. In typical applications
k is chosen quite small (in the range 2–10), but given the
high cost of evaluating our cost function we prefer to set it
to 100 or more, as this gives more Newton-like steps. The
tests below typically required around 80 iterations for the
easier problems, and up to about 200 for the harder ones
(particularly the large spline filters).

Note that we use LBFGS not just for the nonlinear (sep-
arable filter or robust error norm) problems, but also for
the classical linear least squares ones (free non-separable
filter in the L2 error norm) and the non-smooth (L1 error
norm) ones. We originally included LAPACK’s direct lin-
ear least squares routine DGELS for the linear problems,

but found that it was much slower than the iterative code
LBFGS on large problems. For the L1 norm, the use of a
smooth code is not ideal, but there are so many equations
here that the simplex method based linear programming
codes we tried were hopelessly inefficient. We would ex-
pect interior point L1 codes to do better, but LBFGS is
perhaps not a bad approximation to these as it ‘learns’ cur-
vature in directions in which the active set (and hence the
gradient) changes. In any event it handles the L1 prob-
lems fairly well, although we had to loosen the conver-
gence threshold to prevent thrashing near convergence.

5 Experimental Results
We made a systematic study of subpixel interpolation filter
design using the above methods. There is only space for
a brief summary of what we learned. The results shown
are based on the Ascona Workshop test images — eight
1800× 1800 aerial views of a suburban scene, taken with
a photogrammetric camera and a high-resolution colour
film scanner (http://www.photogrammetry.ethz.ch/news/
events/ascona/dataset/dataset.html, see fig.6(a)). The im-
ages were converted to grayscale and subsampled 15×
with the desired PRF’s at integer shifts between 0 and 15
(i.e. subpixel x and y shifts in (0, 1...15)/15), so the train-
ing PRF’s are accurate to around 15× the target resolution.
The Ascona images have σ ∼ 2 blur and some spots and



138 Chapter 4. Low-Level Vision

Figure 6: Examples of the Ascona (top) and Imetric (bot-
tom) test images.

scratches, but training on sharper, cleaner indoor images
(six 3072 × 2048 images from IMETRIC using a Kodak
DCS460 digital camera with σ ∼ 0.7, fig.6(b)) gave es-
sentially identical results, as expected.

Design results: We designed separable and non-separable
15× interpolation filters of half-widths w = 1...6 pixels
under the above four error norms for the following seven
PRF’s (see fig.4). Delta: unsmoothed decimation / point
subsampling (by far the worst case for aliasing). Box 0.4,
0.5: box filters of half-width 5/15 and 7/15 represent-
ing ideal square pixels with sensitive areas of full widths
(2 ·5+1)/15 = 0.73 and 1.0 pixels, the former being rep-
resentative of ‘interline’ CCD’s, the latter of ‘full frame’
ones [17]. Triangle 1.0: width 1 triangular response repre-
senting ideal bilinear interpolation. Gauss 0.5, 1.0: Gaus-
sian responses of σ = 0.5, 1.0 pixels, representing typical,
and fairly large, amounts of optical blurring. Sinc 1.0: the
ideal Nyquist-band-limiting PRF (may not be physically

realizable owing to negative coefficients). Sinc subsam-
pling used carefully windowed FFT to minimize trunca-
tion and boundary effects. Where not otherwise noted the
following default parameters were used: training and test
PRF, Gaussian 0.5; filter, separable, all entries free, half-
width w = 3; error norm, L2. We train and test on the
same (subsampled Ascona) images: validation against the
IMETRIC set showed that the effects of overfitting were
negligible.

Fig.5 shows how the impulse responses and spectra of
the interpolators vary with design PRF and width. All of
the designs have sinc-like oscillations, but except for the
sinc PRF these decay much more rapidly than a sinc or
classically-windowed sinc function. The Delta PRF in-
terpolator is nearly triangular with very small side-lobes,
while those for the broader PRF’s have 2–3 visible side-
lobes. Reducing the design width progressively sup-
presses the side-lobes until the filters become triangular
at w = 1. Half-widths 2–4 are probably the best compro-
mise in practice. The spectra show the same story, with all
filters having side-lobes significantly smaller than a trun-
cated sinc of the same width5. As expected, the spectra
of the training images are relatively featureless at these
scales, so the designs are insensitive to the particular im-
ages used.

It is instructive to view the sinc PRF interpolators as
windowed versions of the ideal sinc interpolator. Dividing
by sinc(x) gives the implied empirically optimal window-
ing functions (fig.7). The recovered window functions are
broader and more abrupt than most classical ones (the rela-
tively broad Welch (1−(x/w)2) and Lanczos (sinc(x/w))
ones are shown for comparison). As a result, the sinc
PRF interpolators are far from band-limited: their spec-
tra are actually broader than those resulting from most
other PRF’s. The optimal windows also descend by abrupt
steps, rigidly scaling each side-lobe. This gives the opti-
mal interpolators small but significant derivative disconti-
nuities at each zero crossing, especially where the last two
lobes drop to zero in two ∼ 40% steps. In effect, the input
data is windowed, not the interpolator : the interpolators
for all fractional shifts share the same input points and the
same windowing.

The fitted bicubic interpolators tell the same story for
the other PRFs. They have significantly larger side-lobes
than commonly recommended bicubics such as Catmull-
Rom or Mitchell-Netravali splines [12], and again small
but distinct derivative discontinuities (fig.8). Optimal in-
terpolation does not imply either gentle windowing or
high-order smoothness.

Filters designed under different error norms are for the
most part nearly identical, although L1 designs typically

5The slight bumpiness of the spectra is due to FFT aliasing — the
Nyquist limit for 15× interpolators is only 7.5 (pixels)−1 — and noise
— O

`

107
´

training pixels leaves O(
√

10−7) ∼ −35 dB noise.
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have slightly smaller side lobes than L2 ones, with the two
robust norms intermediate between these two. The differ-
ences are largest for the Delta PRF. Aliasing ensures that
the input data contains significant numbers of outliers, but
these are distributed fairly symmetrically so they do not
upset the L2 fits too much. The 2D designs have small
but consistent non-separabilities (about 5% of amplitude
for most PRF’s, mostly in the central ±1 pixel square), but
this does not seem to give them a noticeable performance
edge over their separable counterparts, except perhaps for
the Delta PRF.

Test results: Now consider the experimental performance
of the designed filters. Our tests use large images subsam-
pled as for the training images. We consider two aspects of
subpixel performance: intensity interpolation error (which
the filters were designed to minimize) and feature loca-
tion error. Intensity testing is self evident: we interpo-
late the test images and compare the result to the origi-
nal shifted versions, accumulating errors in some chosen
error metric (here L1). The location tests were designed
to study the “ground truth” performance of subpixel cor-

relation matching (not, e.g., feature detection). We de-
fined a set of strong isolated test features with accurately-
known subpixel locations by selecting 100–150 “points of
interest” — locations at which correlation matching of the
image against itself gives high spatial accuracy in all di-
rections — in each unsubsampled test image. For this
we used a Harris (Lucas-Kanade-Harris-Förstner) detec-
tor with inflated scale parameters (so that the detected fea-
tures should be strong points of interest in the subsampled
images), and suppression parameters set to eliminate all
spurious responses along edges and in textured regions.
This provided a test set that was independent of the PRF
and shift used (real 3D features exist independently of
these!), and that had minimal aliasing artifacts (in particu-
lar, no spurious responses along edges). Visual inspection
confirmed the high quality of the chosen points. The lo-
cation tests used the subsampled locations of these points
as correlation centres. For each centre and shift, we inter-
polated the image and made an exhaustive search of the
correlation at all 1/15th-pixel locations within a window
of ±20/15 pixels around the known output centre. The
best result found was taken as the match, and the result-
ing translational errors were recorded and analyzed. To
minimize edge effects, correlations were calculated by in-
tegrating the L2 (squared) intensity prediction error over a
σ = 2.0 Gaussian window. Optionally, independent noise
was added to the base and target images before matching.
This approach is idealistic in using near-perfect features
with no geometric or photometric distortion between the
base and target windows, but it allows us to study just one
thing at a time, here aliasing and subpixel accuracy.

Fig.9 summarizes the performance of the designed fil-
ters. The salient point is the overwhelming influence of
the test image PRF on all aspects of subpixel performance.
Aliasing along edges is by far the dominant source of error
in these plots, and the main factor controlling aliasing is
the test PRF: the narrower it is, the more aliasing and error
there is. The Delta PRF (decimation) is particularly bad in
this respect and dominates the error plots. In contrast, as
the top row shows, the design PRF for the interpolation
filter has relatively little influence. Basically, filters de-
signed for any PRF of similar width give similar results.
The plots in the bottom row show that there is little ad-
vantage in extending the filter half-width beyond about 3
pixels. Spatially, the errors are largest at half-pixel shifts,
as would be expected.

Given the extent to which smoother PRF’s reduce alias-
ing, we can ask whether it is also useful to smooth the
images after sampling. Unsurprisingly, post-sampling
smoothing of both source and test images does reduce
interpolation error. Fig.10 suggests that small amounts
(σ ≈ 0.5 pixels) of post-smoothing also slightly reduce
the location error in correlation matching, both for noise-
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Figure 9: Interpolation error (left) and location error (right) versus (top) design and test pixel type, (middle) filter half-
width, (bottom) actual subpixel x translation (averaged over y). Unless otherwise noted all filters are tested on the PRF’s
they were designed for.

less (no added noise) and quite noisy images. However
the benefit is minor and is probably due to the effective
increase in the size of the correlation integration window.
Post-smoothing greater than about 0.8 pixels rapidly de-
grades spatial accuracy. Note also the poor performance
of the sinc PRF filter at high noise levels — the extended
oscillations of sinc filters give them larger squared inte-
grals, and hence more noise accumulation, than compara-
ble Gaussians.

6 Summary and Conclusions

For everyday cameras and noise levels, aliasing (“jag-
gies”) is the dominant cause of accuracy loss in subpixel
interpolation and matching, not random noise. Aliasing is
determined mainly by the Pixel spatial Response Function
(PRF). Over-narrow PRF’s have large aliasing and much
lower accuracy. Image processing after sampling does lit-
tle to reduce the effects of aliasing, but a small amount of
additional optical blurring before sampling can sometimes
improve accuracy considerably. The effective PRF should
ideally have a standard deviation of around 0.5 pixels but
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Half width Interval x 1 − x x2(1 − x) x(1 − x)2

2 [0, 1] −0.03125 1.01464 0.21293 0.67536
[1, 2] 0.00881 −0.00709 −0.30911 −0.49580

3 [0, 1] −0.03884 1.01786 0.23888 0.82584
[1, 2] 0.02460 −0.00784 −0.54197 −0.80243
[2, 3] −0.00803 0.00154 0.15611 0.19234

4 [0, 1] −0.04076 1.01453 0.26186 0.86611
[1, 2] 0.02788 −0.00502 −0.59981 −0.88859
[2, 3] −0.01095 −0.00009 0.25106 0.35183
[3, 4] 0.00215 0.00114 −0.05962 −0.10759

Figure 11: Coefficients of optimal cubic spline filters of half width w=2,3,4 for the gauss 0.5 pixel. x is measured from
the start of each interval.
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Figure 10: Location error versus test pixel type and
amount of post-sampling smoothing, for the gauss 0.5 fil-
ter. The top plot is with no added noise, the bottom one
with Gaussian noise of σ = 20 gray-levels.

its exact form is not critical. Visually, this corresponds to
just enough blurring to make jaggies along strong edges
disappear, c.f . fig.3(e).

Whatever the PRF, it is easily measured by taking
derivatives along strong nearly-axis-aligned edges, and a
custom subpixel interpolation filter can then be designed
for it. Optimal interpolators of any desired parametric
form can be designed by explicitly minimizing their to-
tal L2 or robust interpolation error over a set of training
images. Suitable training images can be synthesized by
subsampling larger ones, using the desired design PRF
at different relative shifts. The resulting optimal filters

have rapidly decaying sinc-function-like oscillations, sep-
arable filters of half-width 2–3 being fully sufficient for
most practical applications. The filter forms depend on
the widths of their design PRF’s, but are relatively insen-
sitive to the exact PRF shape, the error norm and the train-
ing images used. Filters designed for different but broadly
similar PRFs give similar interpolation and matching per-
formance, so the design and application PRF’s do not need
to be closely matched. Smooth windowing and high order
continuity are not needed for optimality: the optimal sub-
pixel interpolators have small derivative discontinuities at
their zero crossings, and their implied windowing func-
tions have abrupt steps there.

Future work: A useful minor extension would be to
design interpolators for half-windows, to allow optimal
signal reconstruction near occlusion boundaries. Other
low-level image operators such as feature detectors would
probably also benefit from explicit empirical performance
optimization, the main barrier being (as here) the lack of
suitable training data.

We only considered linear convolution filters here but
the approach extends easily to nonlinear ones, e.g. lin-
ear combinations of nonlinear functions of pixel intensi-
ties or intensity differences... It would be interesting to
see whether such filters could provide better resistance
to aliasing. Kernel-based learning methods such as Sup-
port Vector Machines could perhaps also be used [14], al-
though speed might be a problem and our initial attempts
to train an SVM filter failed owing to the huge number
of measurements involved. Despite the many advantages
of linear sinusoidal sampling theory, we do feel that some
sort of nonlinear theory built from steps, corners and their
integrals (ramps, etc.) is needed for computer vision, as
the underlying signal is to a large extent built out of such
elements at sparse but arbitrary subpixel positions and ori-
entations, rather than sinusoids. At present we have no
such theory, but psychophysical data and recent results on
independent components analysis and kernel based learn-
ing all seem to point in this direction [2,8,14].
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Conventions
Conventions for subpixel filtering can be confusing. To
understand ours, consider the standard continuous convo-
lution integral for output signal I1 in terms of input signal
I0, evaluated at position x + dx:

I1(x + dx) =

∫

y
W (x + dx − y) I0(y)dy

For the discrete case we simply change the integral to a
sum, supposing that x, y are integer positions and dx ∈
[0, 1) × [0, 1) is the subpixel position we want to evaluate
I1 at, and changing variables to z = x − y:

I1(x + dx) =
w−1
∑

z1,z2=−w

W (z + dx) I0(x − z)

Hence we need the input I0 at integer positions, and the
impulse response W at whatever subpixel ones we need in
[−w, w) × [−w, w). Which integer position we store the
output I1(x + dx) at is up to us.
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Boundary Conditions for Young - van Vliet
Recursive Filtering

Bill Triggs

Abstract— Young & van Vliet designed computationally effi-
cient methods for approximating Gaussian-based convolutions by
running a recursive IIR filter forwards over the input signal,
then running a second IIR filter backwards over the first filter’s
output. However, to transition between the two filters, they used
a suboptimal heuristic that produces significant amplitude and
phase distortion for all points within about 3 standard deviations
of the right-hand boundary. We derive a simple linear transition
rule that eliminates this distortion.

Index Terms— Gaussian smoothing, bidirectional recursive fil-
tering, boundary conditions.

I. INTRODUCTION

Young & van Vliet (YvV) have developed computationally
efficient forwards-backwards IIR recursions for Gaussian fil-
ters [1], Gaussian derivatives [2], and Gabor filters [3]. See
[3] for their most recent design rules for Gaussians, and [4]
for space-variant extensions and a performance comparison
with other IIR Gaussian methods including Deriche’s original
method [5], [6]. All of the YvV filters work forwards, recur-
sively calculating a running sum ut as a linear combination
of the input signal it and the k previous u values, then
work backwards calculating a running sum vt as a linear
combination of ut and the l previously-calculated v values:

ut = it +
Pk

j=1
aj ut−j , t = 1 . . . n (1)

vt = ut +
Pl

j=1
bj vt+j , t = n . . . 1 (2)

The final output is a scaled version of vt, and {aj,j=1...k}
and {bj,j=1...l} are suitably chosen filter coefficients. For
Gaussians, YvV choose k=l and a=b [1], [3]. For other filters,
it may be a linear transformation of the original input signal,
e.g. a discrete derivative for derivative filters [1].

II. THE PROBLEM WITH HEURISTIC BOUNDARY

CONDITIONS

To complete the specification (1, 2), we must fix initial
conditions for u near t=1 and for v near t=n. For u, we
can pretend that the signal existed and took some nominal
constant value i− (typically either 0 or i1) for all t<1. The
correct initialization at t=1 is then to set all u1−j,j=1...k to
i−/(1 −

Pk

j=1
aj), the steady state response to an infinite

stream of i−’s. Similarly, if we could suppose that for all
t>n, ut took some constant value u+, the correct condition
at t=n would be to set vn+j,j=1...l to u+/(1 −

Pl

j=1
bj),

the steady state response to an infinite stream of u+’s. YvV
apparently do exactly this, with i−=i1 and u+=un (c.f . [3]
equations (20,21)). Another plausible choice for u+ would be
i+/(1−

Pk

j=1
aj), the steady state u resulting from an infinite
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Fig. 1. Impulse responses for points at various numbers of standard
deviations from the right boundary, for a YvV Gaussian filter, with
the standard YvV boundary heuristic u+=un (top) and with our new
boundary correction (10) (bottom). The corrected responses are much
closer to the desired (truncated Gaussian) form.

stream of constant input values i+ above t=n (typically, i+
would be either in or 0).

Unfortunately, neither choice for u+ is correct. If the
forwards filter were continued to t�n with input i+, its output
would decay smoothly from un to i+/(1 −

Pk

j=1
aj) within

a few standard deviations, and the corresponding backwards
filter would take all elements of this “advance warning”
signal into account when calculating its response. In fact,
the forwards-backwards process only gives the correct overall
impulse response when the full double recursion is run without
truncation. Incorrect truncation causes significant amplitude
and phase (geometric position) distortion for all points within
about 3.5 standard deviations of the boundary. Fig. 1 illustrates
the extent of the problem.

III. DERIVATION OF LINEAR BOUNDARY CORRECTION

To correct for the effects of truncation, we notionally extend
the forwards-backwards pass to t→∞ assuming a constant
input value i+ above t=n, and calculate the coefficients
{vn+j,j=1...l} that would result from this infinite extension,
given i+ and the final forwards filter state {un−j,j=0...k−1}.
The whole process is linear so the v’s must be linear functions
of the u’s and i+. First suppose that i+ = 0. Gathering the u’s,
v’s into running k, l vectors u, v, the forwards and backwards
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M =
1

(1+a1−a2+a3) (1−a1−a2−a3)
· (1+a2+(a1−a3) a3)

0

@

−a3a1+1−a2
3−a2 (a3+a1)(a2+a3a1) a3(a1+a3a2)

a1+a3a2 −(a2−1)(a2+a3a1) −(a3a1+a2
3+a2−1)a3

a3a1+a2+a2
1−a2

2 a1a2+a3a
2
2−a1a

2
3−a3

3−a3a2+a3 a3(a1+a3a2)

1

A

(3)

passes become:

ut = A ut−1 = At−n un (4)

vt = I1 ut + B vt+1 (5)

where

ut ≡

0

B

@

ut

...
ut−k+1

1

C

A
A ≡

0

B

B

B

@

a1 · · · ak−1 ak

1 · · · 0 0
...

. . .
...

0 · · · 1 0

1

C

C

C

A

(6)

vt ≡

0

B

@

vt

...
vt+l−1

1

C

A
B ≡

0

B

B

B

@

b1 · · · bl−1 bl

1 · · · 0 0
...

. . .
...

0 · · · 1 0

1

C

C

C

A

(7)

and I1 = (1 0 . . . 0)>(1 0 . . . 0) is an l×k matrix with a
1 in the top left corner and zeros elsewhere. Combining these
equations for all t≥n, we have vn =

`P

∞

i=0
Bi I1 Ai

´

un.
We need to calculate the l×k matrix M ≡

P

∞

i=0
Bi I1 Ai that

links the final forwards state un to the initial backwards one
vn. By its recursive definition:

M = I1 + B M A (8)

Given a, b, it is easy to find the corresponding entries of M
by solving this linear system, e.g. using a symbolic algebra
package such as MAPLE. For example, for the Gaussian filter
recommended by YvV, k=l=3, a=b, the corresponding M is
given in (3) above.

Finally, to handle nonzero i+, we can simply reduce to
the i+=0 case by subtracting the constant-u response u+ =
i+/(1 −

Pk

j=1
aj) from each component of un, apply M,

then add back the corresponding constant-v response u+/(1−
Pl

j=1
bj) to get vn.

IV. SUMMARY OF METHOD

In summary, Young & Van Vliet recursive filters suffer from
severe amplitude and phase distortion at the right boundary
unless the backwards running coefficients are initialized from
the forwards ones as follows, where M is given by (8, 3):

0

B

@

vn

...
vn+l−1

1

C

A
= M

0

B

@

un − u+

...
un−k − u+

1

C

A
+

0

B

@

v+ + un

...
v+

1

C

A
(9)

u+ =
i+

1 −
Pk

j=1
aj

v+ =
u+

1 −
Pl

j=1
bj

(10)

An implementation of this for 2D Gaussian image filtering is
available on the author’s homepage.
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Abstract

Local feature approaches to vision geometry and object recognition are based
on selecting and matching sparse sets of visually salient image points, known as
‘keypoints’ or ‘points of interest’. Their performance depends critically on the ac-
curacy and reliability with which corresponding keypoints can be found in subse-
quent images. Among the many existing keypoint selection criteria, the popular
Förstner-Harris approach explicitly targets geometric stability, defining keypoints
to be points that have locally maximal self-matching precision under translational
least squares template matching. However, many applications require stability in
orientation and scale as well as in position. Detecting translational keypoints and
verifying orientation/scale behaviour post hoc is suboptimal, and can be misleading
when different motion variables interact. We give a more principled formulation,
based on extending the Förstner-Harris approach to general motion models and ro-
bust template matching. We also incorporate a simple local appearance model to
ensure good resistance to the most common illumination variations. We illustrate
the resulting methods and quantify their performance on test images.

Keywords: keypoint, point of interest, corner detection, feature based vision, Förstner-
Harris detector, template matching, vision geometry, object recognition.

1 Introduction
Local-feature-based approaches have proven successful in many vision problems, in-
cluding scene reconstruction [16,5], image indexing and object recognition [20,21,32,
33,23,24,25]. The basic idea is that focusing attention on comparatively sparse sets of
especially salient image points — usually called keypoints or points of interest — both
saves computation (as most of the image is discarded) and improves robustness (as there
are many simple, redundant local cues rather than a few powerful but complex and deli-
cate global ones) [37]. However, local methods must be able to find ‘the same’ keypoints
again in other images, and their performance depends critically on the reliability and ac-
curacy with which exactly corresponding points can be found. Many approaches to
keypoint detection exist, including ‘corners’ [2,17,38,28,4], parametric image models
[3,31,1], local energy / phase congruency [27,29,30,18], and morphology [35,19]. One
of the most popular is that developed by Förstner & Gülch [7,9] and Harris & Stephens
[15] following earlier work by Hannah [14] and Moravec [26]. This approach brings
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the accuracy issue to the fore by defining keypoints to be points at which the predicted
precision of local least squares image matching is locally maximal [14,22,6,10,12,11].
Notionally, this is implemented by matching the local image patch against itself under
small translations, using one of a range of criteria to decide when the ‘sharpness’ of the
resulting correlation peak is locally optimal. Moravec did this by explicit single-pixel
translations [26]; Hannah by autocorrelation [14]; and Förstner by implicit least squares
matching, using Taylor expansion to re-express the accuracy in terms of the eigenval-
ues of the scatter matrix or normal matrix of the local image gradients,

∫

∇I>
∇I dx

[7,9,8]. All of these methods use rectangular patches, usually with a scale significantly
larger than that of the image gradients used. This is problematic for patches that con-
tain just one strong feature, because the self-matching accuracy for these is the same
wherever the feature is in the patch, i.e. the matching-based approach guarantees good
self-matching accuracy, but not necessarily accurate centring of the patch on a visible
feature. Working independently of Förstner, Harris & Stephens improved the localiza-
tion performance by replacing the rectangular patches with Gaussian windows (convo-
lutions) with a scale similar to that of the derivatives used [15]. With Gaussian-based
derivative calculations and more careful attention to aliasing, the method has proven
to be one of the most reliable keypoint detectors, especially in cases where there are
substantial image rotations, scalings or perspective deformations [33,24].

One problem with the Förstner-Harris approach is that it optimizes keypoints only
for good translational precision, whereas many applications need keypoints that are sta-
ble not only under translations, but also under rotations, changes of scale, perspective
deformations, and changes of illumination (c.f . [34]). In particular, many local feature
based object recognition / matching methods calculate a vector of local image descrip-
tors at each keypoint, and later try to find keypoints with corresponding descriptors in
other images [20,21,32,23,24,25]. This usually requires the extraction of a dominant
orientation and scale at each keypoint, and keypoints that have poorly defined orienta-
tions or scales tend to produce descriptors that vary too much over re-detections to be
useful. Hence, it seems useful to develop keypoint detectors that explicitly guarantee
good orientation and scale stability, and also good stability under local illumination vari-
ations. This is the goal of the current paper, which generalizes the Förstner-Harris self-
matching argument to include non-translational motions, and also provides improved
resistance to illumination variations by replacing simple least squares matching with an
illumination-compensated matching method related to Hager & Belhumeur’s [13].

Much of the paper focuses on the low-level task of characterizing the local sta-
bility of matching under geometric transformations and illumination variations. The
Förstner-Harris approach shows that such analysis is a fruitful route to practical key-
point detection in the translational case, and we argue that this continues to hold for
more general transformations. Also note the relationship to invariance: if we use image
descriptors based at the keypoints for matching, the more invariant the descriptors are
to a given type of transformation, the less accurate the keypoint detection needs to be
with respect to these transformations. But exactly for this reason, it is useful to develop
detectors whose performance under different types of transformations is quantifiable
and controllable, and our approach explicitly does this. We adopt the following basic
philosophy:
(i) There is no such thing as generic keypoints. They should be selected specifically for
the use to which they will be put, using a purpose-designed detector and parameters.
(ii) Keypoints are not just positions. Stability in orientation and scale and resistance to
common types of appearance variations are also needed.
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(iii) Each image (template) matching method defines a corresponding self-matching
based keypoint detector. If the keypoints will be used as correspondence hypotheses
that are later verified by inter-image template matching, the keypoint detector and pa-
rameters corresponding to the matching method should be used.
Contents: §2 describes our matching based framework for keypoint detection. §3 gives
some specific examples and implementation details. §4 gives a few experimental results.
Notation: x stands for image coordinates, ∇ for x-derivatives, I, R for the images
being matched (treated as functions of x), t for the image motion/warping model, c for
the pixel comparison functional. Derivatives are always row vectors, e.g. δI ≈ ∇I δx.
For most of the paper we assume continuous images and ignore sampling issues.

2 General Framework
This section develops a general framework for robust image (template) matching under
analytical image deformation and appearance variation models, uses it to derive stability
estimates for locally optimal matches, and applies this to characterize keypoint stability
under self-matching.
Template matching model: We will use the following generalized error model for
template matching, explained element-by-element below:

Q(µ, λ) ≡
∫

c
(

I(t(x, µ), λ), R(x), x
)

dx (1)

I is the image patch being matched, R is the reference patch it is being matched against,
x is a set of 2D image coordinates centred on R, and c ≥ 0 (discussed further below)
is a weighted image pixel comparison functional that is integrated over the patch to find
the overall matching quality metric Q. x′ = t(x, µ) is an image motion / warping model
that maps R’s coordinates x forwards into I’s natural coordinate system, i.e., I is ef-
fectively being pulled back (warped backwards) into R’s frame before being compared.
The motion model t is controlled by a vector of motion parameters µ (2D translation,
perhaps rotation, scaling, affine deformation. . .). Before being compared, I may also
undergo an optional appearance correction controlled by a vector of appearance pa-
rameters λ (e.g., luminance or colour shifts/rescalings/normalizations, corrections for
local illumination gradients . . .). Note that we think of the input patch I as an ad hoc
function I(x, λ) of both the position and appearance parameters, rather than as a fixed
image I(x) to which separate appearance corrections are applied. This allows the cor-
rections to be image-content dependent and nonlocal within the patch (e.g. subtracting
the mean in Zero Mean Cross Correlation). We assume that µ = 0 represents a neutral
position or reference transformation for the patch (e.g. no motion, t(x, 0) = x). Sim-
ilarly, λ = 0 represents a default or reference appearance setting (e.g. the unchanged
input, I(x, 0) = I(x)).

The patch comparison integral is over a spatial window centred on R, but for com-
pactness we encode this in the pixel comparison metric c. So c usually has the form:

c(I(x), R(x), x) ≡ w(x) · ρ(I(x), R(x)) (2)

where w(x) is a spatial windowing function (rectangular, Gaussian. . .) that defines
the extent of the relevant patch of R, and ρ(I(x), R(x)) is a spatially-invariant image
pixel comparison metric, e.g., the squared pixel difference ‖I(x) − R(x)‖2 for tradi-
tional unweighted least squares matching. The “pixels” here may be greyscale, colour,
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multi-band, or even pre-extracted edge, feature or texture maps, so ρ() can be quite
complicated in general, e.g. involving nonlinear changes of luminance or colour space,
perceptual or sensitivity-based comparison metrics, robust tailing-off at large pixel dif-
ferences to reduce the influence of outliers, etc. Ideally, ρ() should return the negative
log likelihood for the pixels to correspond, so that (assuming independent noise in each
pixel) Q becomes the total negative log likelihood for the patchwise match. For prac-
tical inter-image template matching, the reliability depends critically on the robustness
(large difference behaviour) of ρ(). But for keypoint detection, we always start from the
self-matching case I=R, so only the local behaviour of ρ() near I=R is relevant: key-
point detectors are oblivious to large-difference robustification of ρ(). We will assume
that ρ() has least-squares-like behaviour for small pixel differences, i.e. that it is locally
differentiable with zero gradient and positive semi-definite Hessian at I=R, so that:

δc
δI(x)

∣

∣

∣

I=R
= 0,

δ2c
δI(x)2

∣

∣

∣

I=R
≥ 0 (3)

Our derivations will be based on 2nd order Taylor expansion at I=R, so they exclude
both non-differentiable L1 matching metrics like Sum of Absolute Differences (SAD)
and discontinuous L0 (on-off) style ones. Our overall approach probably extends to
such metrics, at least when used within a suitable interpolation model, but their abrupt
changes and weak resampling behaviour make general derivations difficult.

Finally, we allow c to be a functional, not just a function, of I, R. (I.e. a func-
tion of the local patches, not just their pointwise pixel values). In particular, c may run
I, R through convolutional filters (‘prefilters’) before comparing them, e.g. to restrict
attention to a given frequency band in scale-space matching, or simply to suppress high
frequencies for reduced aliasing and/or low frequencies for better resistance to global il-
lumination changes. In general, the resampling implied by t() could significantly change
I’s spatial frequency content, so prefiltering only makes sense if we do it after warping.
We will thus assume that prefilters run in x-space, i.e. they are defined relative to the co-
ordinates of the reference image R. For example, for affine-invariant keypoint detection
[32,24,25], keypoint comparison should typically be done, and in particular prefiltering
should be applied, in the characteristic affine-normalized frame of the reference key-
point, so x would typically be taken to be the affine-normalized coordinates for R. For
any t(), derivatives of the unwarped input image I can always be converted to deriva-
tives of its prefilter using integration by parts, so the effective scale of derivative masks
always ends up being the x-space scale of the prefilter.
Matching precision: Now suppose that we have already found a locally optimal tem-
plate match. Consider the behaviour of the matching quality metric Q under small per-
turbations I → I+δI . Under 2nd order Taylor expansion:

δQ ≈
∫

(

δc
δI

δI + 1
2 δI> δ2c

δI2 δI
)

x′=t(x)
dx (4)

For any perturbation of an exact match, I(t(x)) = R(x), the first order (δI) term van-
ishes identically by (3). More generally, if we are already at a local optimum of Q under
some class of perturbations δI , the integrated first order term vanishes for this class.
Both hold for keypoints, so we will ignore the δI term from now on.

Using the parametric model I(t(x, µ), λ), the image I changes as follows under first
order changes of the motion and appearance parameters µ, λ:

δI ≈ L δλ + M δµ , where L ≡ ∂I
∂λ

, M ≡ ∇I · T, T ≡ ∂t
∂µ

(5)
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Here, ∇I ≡ ∂I
∂t (t(x)) is the standard gradient of the original unwarped image I , evalu-

ated in I’s own frame at t(x). The columns of the Jacobians L and M can be thought of as
appearance and motion basis images, characterizing the linearized first-order changes in
I as the parameters are varied. Putting (4, 5) together gives a quadratic local cost model
for perturbations of the match around the optimum, based on a positive semidefinite
generalized scatter matrix S :1

δQ(δλ, δµ) ≈ 1
2 ( δλ> δµ> )S

(

δλ
δµ

)

(6)

S ≡
(

A B
B> C

)

≡
∫

(

L>
M>
)

δ2c
δI2 ( L M ) dx (7)

S generalizes the matrix
∫

∇I >
∇I dx that appears in the Förstner-Harris keypoint

detector (which assumes pure translation, T = I, M = ∇I , quadratic pixel difference
metric δ2c

δI2 = I, and empty illumination model L). To the extent that c gives the negative
log likelihood for the match, S is the maximum likelihood saddle point approximation to
the Fisher information matrix for estimating λ, µ from the match. I.e., S−1 approximates
the covariance with which the parameters λ, µ can be estimated from the given image
data: the larger S, the stabler the match, in the sense that the matching error δQ increases
more rapidly under given perturbations δλ, δµ.

Now suppose that we want to ensure that the two patches match stably irrespec-
tive of appearance changes. For a given perturbation δµ, the appearance change that
gives the best match to the original patch — and hence that masks the effect of the
motion as well as possible, thus creating the greatest matching uncertainty — can be
found by minimizing δQ(δµ, δλ) w.r.t. δλ. By inspection from (6), this is δλ(δµ) =
−A−1 B δµ. Back-substituting into (6) gives an effective quadratic reduced penalty
function δQred(δµ) ≡ δQ(δµ, δλ(δµ)) ≈ 1

2 δµ> Cred δµ characterizing motion-
with-best-appearance-adaptation, where the reduced scatter matrix is

Cred ≡ C − B>A−1B (8)

with A, B, C as in (7). Cred and C quantify the precision of motion estimation respec-
tively with and without appearance adaptation. Some precision is always lost by factor-
ing out appearance, so Cred is always smaller than C. To the extent that the matching
error metric c is a statistically valid log likelihood model for image noise, C−1 and C−1

red
estimate the covariances of the corresponding motion parameter estimates under trials
with independent noise samples. More generally, if we also have prior information that
appearance variations are not arbitrary, but have zero mean and covariance D−1, the opti-
mal δλ(δµ) becomes −(A+D)−1B δµ and Cred is replaced by the less strongly reduced
covariance C′

red ≡ C − B>(A + D)−1B.
Keypoint detection: Ideally, we want to find keypoints that can be stably and reliably
re-detected under arbitrary motions from the given transformation family t(x, µ), de-
spite arbitrary changes of appearance from the appearance family I(x, λ). We focus on
the ‘stability’ aspect2, which we characterize in terms of the precision of self-matching
under our robust template matching model. The idea is that the patch itself is its own

1Strictly, to be correct to O
`

(δµ,δλ)2
´

we should also expand (5) to 2nd order, which introduces a 2nd

order ‘tensor’ correction in the δI term of (4). But, as above by (3), the latter term vanishes identically for
keypoint detection. Even for more general matching, the correction is usually negligible unless the match
is poor and the motion / appearance models are very nonlinear. One can think of (7) as a Gauss-Newton
approximation to the true S. It guarantees that S is at least positive semidefinite (as it must be at a locally
optimal match). We will adopt it from now on.

2We do not consider other matchability properties [7] such distinctiveness here, as this is more a matter for
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best template — if it can not be matched stably even against itself, it is unlikely to be
stably matchable against other patches. We are interested in stability despite appearance
changes, so we use the reduced scatter matrix Cred (8) to quantify geometric precision.

The amount of precision that is needed depends on the task, and we adopt the design
philosophy that visual routines should be explicitly parametrized in terms of objective
performance criteria such as output accuracy. To achieve this we require keypoints to
meet a lower bound on matching precision (equivalently, an upper bound on matching
uncertainty). We quantify this by introducing a user-specified criterion matrix C0 and
requiring keypoints to have reduced precisions Cred greater than C0 (i.e. Cred − C0 must
be positive semidefinite). Intuitively, this means that for a keypoint candidate to be
accepted, its transformation-space motion-estimation uncertainty ellipse C−1

red must be
strictly contained within the criterion ellipse C−1

0 .
In textured images there may be whole regions where this precision criterion is met,

so for isolated keypoint detection we must also specify a means of selecting ‘the best’
keypoint(s) within these regions. This requires some kind of ‘saliency’ or ‘interest’
metric, ideally an index of perceptual distinctiveness / reliable matchability modulo our
appearance model. But here, following the Förstner-Harris philosophy, we simply use
an index of overall matching precision as a crude substitute for this. In the translation-
only case, Förstner [7,9] and Harris & Stephens [15] discuss several suitable precision
indices, based on the determinant, trace and eigenvalues of the scatter matrix. In our
case, there may be several (more than 2) motion parameters, and eigenvalue based crite-
ria seem more appropriate than determinant based ones, owing to their clear links with
uncertainty analysis. Different motion parameters also have different units (translations
in pixels, rotations in radians, dilations in log units), and we need to normalize for this.
The criterion matrix C0 provides a natural scaling, so as our final saliency criterion we
will take the minimum eigenvalue of the normalized reduced motion precision matrix
C−1/2

0 Cred C−1/2
0 . Intuitively, this requires the longest axis of the motion-estimation co-

variance ellipse, as measured in a frame in which C0 becomes spherical, to be as small as
possible. With this normalization, the keypoint-acceptability criterion Cred > C0 simpli-
fies to the requirement that the saliency (the minimum eigenvalue) must be greater than
one. Typically, C0 is diagonal, in which case the normalization matrix C−1/2

0 is the di-
agonal matrix of maximum user-permissible standard errors in translation, rotation and
scale.

As usual, pixel sampling effects introduce a small amount of aliasing or jitter in the
image derivative estimates, which has the effect of spreading gradient energy across the
various eigenvalues of S even when the underlying image signal is varies only in one
dimension (e.g. a straight edge). As in the Förstner-Harris case, we compensate for this
heuristically by subtracting a small user-specified multiple α of the maximum eigenvalue
of C−1/2

0 Cred C−1/2
0 (the 1-D ‘straight edge’ signal) before testing for threshold and

saliency, so our final keypoint saliency measure is λmin − α λmax.
In practice, the Schur complement in Cred = C−B>A−1B is calculated simply and ef-

ficiently by outer-product based partial Cholesky decomposition. A standard symmetric
eigendecomposition method is then used to calculate the minimum eigenvalue, except
that 2D eigenproblems are handled as a special case for speed.

the descriptors calculated once the keypoint is found. Distinctiveness is usually characterized by probability of
mismatch within a population of extracted keypoints (e.g. [33]). For a recent entropic approach to image-wide
distinctiveness, see [36].
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3 Examples of Keypoint Detectors
Given the above framework, it is straightforward to derive keypoint detectors for specific
pixel types and motion and appearance models. Here we only consider the simplest few
motion and appearance models, and we assume greyscale images.
Comparison function: As in the traditional Harris detector, we will use simple squared
pixel difference to compare pixels, and a circular Gaussian spatial integration window.
So modulo prefiltering, δ2c

δI2 in (7) reduces to simple weighting by the window function.
Affine deformations: For keypoints, only local deformations are relevant, so the most
general motion model that is useful is probably the affine one. We will use various
subsets of this, parametrizing affine motions linearly as x′ = x + T µ where:

T µ =

(

1 0 −y x x y

0 1 x y −y x

)

( u
v
r
s
a
b

)

=

(

1+s+a −r+b

r+b 1+s−a

)(

x

y

)

+

(

u

v

)

(9)

Here, (x, y) are window-centred pixel coordinates, (u, v) is the translation, s the scale,
and for small motions, r is the rotation and a, b are axis- and 45◦-aligned quadrupole
deformations. The resulting M matrix is as follows, where ∇I = (Ix, Iy):

M =
(

Ix Iy −yIx+xIy xIx+yIy xIx−yIy yIx+xIy

)

(10)

If the input image is being prefiltered (which, as discussed, must happen after warping,
i.e. after (10)), we can integrate by parts to reduce the prefiltered M vector to the form:

Mp =
(

Ip
x , Ip

y , −(yI)p
x+(xI)p

y , (xI)p
x+(yI)p

y−2Ip, (xI)p
x−(yI)p

y, (yI)p
x+(xI)p

y

)

(11)

where Ip ≡ p ∗ I , (xI)p
y ≡ py ∗ (xI), etc., denote convolutions of I , xI , etc., against

the prefilter p and its derivatives px, py. The −2Ip term in the s entry corrects for the
fact that prefiltering should happen after any infinitessimal scale change coded by M :
without this, we would effectively be comparing patches taken at different derivative
scales, and would thus overestimate the scale localization accuracy. If p is a Gaussian of
width σ, we can use (10) or (11) and the corresponding identities (xI)p = xIp + σ2Ip

x

or (xI)p
x = x Ip

x + σ2Ip
xx + Ip (from (x−x′)g(x−x′) = −σ2gx(x−x′), etc.) to move

x, y outside the convolutions, reducing Mp to:
(

Ip
x , Ip

y , −yIp
x+xIp

y , xIp
x+yIp

y+σ2I
p
xx+yy, xIp

x−yIp
y+σ2I

p
xx−yy, yIp

x+xIp
y + 2σ2Ip

xy

)

(12)

Appearance model: Class-specific appearance models like [1,13] can include elabo-
rate models of appearance variation, but for generic keypoint detection we can only use
simple generic models designed to improve resistance to common types of local illu-
mination variations. Here, we allow for (at most) a scalar illumination shift, addition
of a constant spatial illumination gradient, and illumination rescaling. So our linear
appearance model is I+L λ where L(x) is a subset of:

L(x) =
(

1 x y I(x)
)

(13)
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(a) translation (b) translation + scale (c) translation + rotation (d) similarity

(e) translation / offset (f) translation / offset + gain (g) translation / full (h) similarity / full

Figure 1: Minimum-eigenvalue strength maps for a popular test image under various
motion and illumination models. The saliency differences are much larger than they
seem: the maps have been very strongly gamma compressed, normalized and inverted
for better visibility. The prefilter and integration windows had σ=1 pixel, and α = 0.
Criterion standard deviations were 1 pixel in translation, 1 radian in rotation,

√
2 in

scale, but these values are not critical.

As with M, the elements of L must be prefiltered, but I is just smoothed to Ip and 1, x, y

typically have trivial convolutions (e.g., they are unchanged under Gaussian smoothing,
and hence generate a constant diagonal block diag(1, σ2

w, σ2
w) in S).

Putting it all together: The main stages of keypoint detection are: (i) prefilter the input
image to produce the smoothed image and derivative estimates Ip, Ip

x , Ip
y , Ip

xx, Ip
xy, Ip

yy

needed for (12, 13); (ii) for each keypoint location x, form the outer product matrix
of the (desired components of the) combined L/M vector at all pixels in its window,
and sum over the window to produce the scatter matrix S(x) (7) (use window-centred
coordinates for x, y in (12, 13)); (iii) at each x, reduce S(x) to find Cred(x), normalize
by C0, and find the smallest eigenvalue (saliency). Keypoints are declared at points
where the saliency has a dominant local maximum, i.e. is above threshold and larger than
at all other points within a suitable non-maximum-suppression radius. For multiscale
detection, processing is done within a pyramid and keypoints must be maxima in both
position and scale. As usual, one can estimate subpixel keypoint location and scale
by quadratic interpolation of the saliency field near its maximum. But note that, as in
the standard Förstner-Harris approach, keypoints do not necessarily contain nameable
features (corners, spots) that clearly mark their centres — they may just be unstructured
patches with locally maximal matching stability3.

When calculating S, instead of separate ab initio summation over each integration
window, one can also use image-wide convolution of quadratic ‘energies’ as in the stan-
dard Förstner-Harris detector, but for the more complicated detectors there are many
such maps to be calculated (76 for the full 10-entry L/M model). See the extended
version of this paper for details.

In our current implementation, run times for the full 10-L/M-variable detector (which
is more than one would normally use in practice) are a factor of about 10 larger than for
the original two variable Förstner-Harris detector.

3If well-localized centres are needed, specialized locators exist for specific image structures such as spots
and corners (e.g. [8]), or more generally one could search for sharp (high-curvature) and preferably isolated
maxima of the minimum eigenvalue field or local saliency measure, not just for high (but possibly broad) ones.
For example, a minimum acceptable peak curvature could be specified via a second criterion matrix.
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Figure 2: Mean predicted standard error (inverse square root of saliency / minimum
eigenvalue in normalized units) for template matching of keypoints under our motion
and lighting models, for the model’s top 100 keypoints on the Summer Palace image in
fig. 3.

Relation to Zero Mean Matching: This common matching method compares two im-
age patches by first subtracting each patches mean intensity, then summing the resulting
squared pixel differences. We can relate this to the simplest nonempty illumination cor-
rection model, L=

(

1
)

, whose reduced scatter matrix over window w(x) is:

Cred =

∫

w M>M dx − M
>

M =

∫

w (M−M)>(M−M) dx

M ≡
∫

w (M) dx
/ (∫

w dx
)1/2 (14)

For the translation-only model, T is trivial, so the illumination correction simply has the
effect of subtracting from each image gradient its patch mean (c.f . (10)). If w changes
much more slowly than I , ∇I ≈ ∇I and hence ∇I − ∇I ≈ ∇(I − I), so this is ap-
proximately the same as using the gradient of the bandpassed image I − I. The standard
Förstner-Harris detector embodies least squares matching, not zero mean matching. It
is invariant to constant illumination shifts, but it does not subtract the gradient of the
mean ∇I (or more correctly, the mean of the gradient ∇I) to discount the effects of
smooth local illumination gradients superimposed on the pattern being matched. It thus
systematically overestimates the geometric strength of keypoints in regions with strong
illumination gradients, e.g. near the borders of smoothly shaded objects, or at the edges
of shadows.

4 Experiments
Fig. 1 shows that the saliency (minimum eigenvalue) map emphasizes different kinds of
image structures as the motion and illumination models are changed. Image (a) is the
original Förstner-Harris detector. Images (b), (c), (d) successively add scale, rotation
and scale + rotation motions, while images (e), (f), (g) adjust for illumination offset,
offset + gain, and offset + gain + spatial gradients. Note the dramatic extent to which
enforcing rotational stability in (a)→(c) and (b)→(d) eliminates the circular dots of the
calibration pattern. In comparison, enforcing scale stability in (a)→(b) and (c)→(d) has
more subtle effects, but note the general relative weakening of the points at the summits
of the towers between (a) and (b): straight-edged ‘corners’ are scale invariant, and
are therefore suppressed. Unfortunately, although ideal axis- and 45◦-aligned corners
are strongly suppressed, it seems that aliasing and blurring effects destroy much of the
notional scale invariance of most other rectilinear corners, both in real images and in
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non-axis-aligned ideal ones. We are currently working on this problem, which also
reduces the cross-scale performance of the standard Förstner-Harris detector.

Adding illumination invariance seems to have a relatively small effect in this exam-
ple, but note the general relative sharpening caused by including x and y illumination
gradients in (a), (e), (f)→(g). Points on the borders of intensity edges have enhanced
gradients owing to the slope alone, and this tends to make them fire preferentially despite
the use of the minimum-eigenvalue (most uncertain direction) criterion. Subtracting the
mean local intensity gradient reduces this and hence sharpens the results. However a
negative side effect of including x, y gradients is that locally quadratic image patches —
in particular small dots and ridge edges — become much less well localized, as adding
a slope to a quadratic is equivalent to translating it.

Allowing more general motions and/or quotienting out illumination variations al-
ways reduces the precision of template matching. Fig. 2 shows the extent of this effect
by plotting the relative standard errors of template matching for our complete set of
motion and lighting models, where the matching for each model is performed on the
model’s own keypoints. There is a gradual increase in uncertainty as parameters are
added, the final uncertainty for a similarity transform modulo the full illumination model
being about 2.5 times that of the original translation-only detector with no illumination
correction.

Fig. 3 shows some examples of keypoints selected using the various different mo-
tion/lighting models. The main observation is that different models often select differ-
ent keypoints, and more invariant models generate fewer of them, but beyond this it is
difficult to find easily interpretable systematic trends. As in the Förstner-Harris case,
keypoints are optimized for matching precision, not for easy interpretability in terms of
idealized image events.

5 Summary and Conclusions

Summary: We have generalized the Förstner-Harris detector [7,9,15] to select key-
points that provide repeatable scale and orientation, as well as repeatable position, over
re-detections, even in the face of simple local illumination changes. Keypoints are se-
lected to maximize a minimum-eigenvalue-based local stability criterion obtained from a
second order analysis of patch self-matching precision under affine image deformations,
compensated for linear illumination changes.
Future work: The approach given here ensures accurate re-localizability (by inter-
image template matching) of keypoint image patches under various transformations, but
it does not always provide accurate ‘centres’ for them. To improve this, we would like to
characterize the stability and localization accuracy of the local maxima of the saliency
measure (minimum eigenvalue) under the given transformations. In other words, just
as we derived the local transformational-stability matrix Cred(x) for matching from the
scalar matching metric Q(x), we need to derive a local transformational-stability matrix
for saliency from the scalar saliency metric. Only here, the saliency measure is already
based on matching stability, so a second level of analysis will be needed.

References

[1] S. Baker, S. Nayar, and H. Murase. Parametric feature detection. Int. J. Computer Vision,
27(1):27–50, 1998.



Paper 10: Detecting Keypoints with Stable Position, ... — ECCV’04 155

(i) translation (j) similarity (k) affine

(a) translation (b) translation + rotation (c) translation + scale (d) similarity

(e) translation / offset (f) translation / offset + xy (g) translation / full (h) affine

Figure 3: Examples of keypoints from the CMU and Summer Palace (Beijing) test im-
ages, under various motion and illumination models. The prefilter and integration win-
dows had σ=2 pixels, α = 0, and non-maximum suppression within 4 pixels radius
and scale factor 1.8 was applied. Note that, e.g., ‘affine’ means ‘resistant to small affine
deformations’, not affine invariant in the sense of [32,24,25].
[2] P.R. Beaudet. Rotationally invariant image operators. In Int. Conf. Pattern Recognition,

pages 579–583, 1978.

[3] R. Deriche and T. Blaszka. Recovering and characterizing image features using an efficient
model based approach. In Int. Conf. Computer Vision & Pattern Recognition, pages 530–
535, 1993.

[4] R. Deriche and G. Giraudon. A computational approach for corner and vertex detection.
Int. J. Computer Vision, 10(2):101–124, 1993.

[5] O. Faugeras, Q-T. Luong, and T. Papadopoulo. The Geometry of Multiple Images. MIT
Press, 2001.

[6] W. Förstner. On the geometric precision of digital correlation. Int. Arch. Photogrammetry
& Remote Sensing, 24(3):176–189, 1982.

[7] W. Förstner. A feature-based correspondence algorithm for image matching. Int. Arch. Pho-
togrammetry & Remote Sensing, 26 (3/3):150–166, 1986.



156 Chapter 4. Low-Level Vision

[8] W. Förstner. A framework for low-level feature extraction. In European Conf. Computer
Vision, pages II 383–394, Stockholm, 1994.

[9] W. Förstner and E. Gülch. A fast operator for detection and precise location of distinct points,
corners and centres of circular features. In ISPRS Intercommission Workshop, Interlaken,
June 1987.

[10] A. Grün. Adaptive least squares correlation — concept and first results. Intermediate Re-
search Report to Helava Associates, Ohio State University. 13 pages, March 1984.

[11] A. Grün. Least squares matching: A fundamental measurement algorithm. In Close Range
Photogrammetry and Machine Vision, pages 217–255. Whittles Publishing, Caithness, Scot-
land, 1996.

[12] A. Grün and E.P. Baltsavias. Adaptive least squares correlation with geometrical constraints.
In SPIE Computer Vision for Robots, volume 595, pages 72–82, Cannes, 1985.

[13] G. Hager and P. Belhumeur. Efficient region tracking with parametric models of geometry
and illumination. IEEE Trans. Pattern Analysis & Machine Intelligence, 20(10):1025–1039,
1998.

[14] M.J. Hannah. Computer Matching of Areas in Stereo Images. Ph.D. Thesis, Stanford Uni-
versity, 1974. AIM Memo 219.

[15] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey Vision Confer-
ence, pages 147–151, 1988.

[16] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

[17] L. Kitchen and A. Rosenfeld. Gray-level corner detection. Patt. Rec. Lett., 1:95–102, 1982.

[18] P. Kovesi. Image features from phase congruency. Videre: A Journal of Computer Vision
Research, 1(3), 1999.

[19] R. Laganière. Morphological corner detection. In Int. Conf. Computer Vision, pages 280–
285, 1998.

[20] D. Lowe. Object recognition from local scale-invariant features. In Int. Conf. Computer
Vision, pages 1150–1157, 1999.

[21] D. Lowe. Local feature view clustering for 3d object recognition. In Int. Conf. Computer
Vision & Pattern Recognition, pages 682–688, 2001.

[22] B.D. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In IJCAI, 1981.

[23] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points. In
Int. Conf. Computer Vision, pages 525–531, 2001.

[24] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In European
Conf. Computer Vision, pages I.128–142, 2002.

[25] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. In
Int. Conf. Computer Vision & Pattern Recognition, 2003.

[26] H.P. Moravec. Towards automatic visual obstacle avoidance. In IJCAI, page 584, 1977.

[27] M. C. Morrone and R. A. Owens. Feature detection from local energy. Patt. Rec. Lett.,
6:303–313, 1987.

[28] J.A. Noble. Finding corners. Image & Vision Computing, 6(2):121–128, 1988.

[29] D. Reisfeld. The constrained phase congruency feature detector: Simultaneous localization,
classification, and scale determination. Patt. Rec. Lett., 17:1161–1169, 1996.

[30] B. Robbins and R. Owens. 2d feature detection via local energy. Image & Vision Computing,
15:353–368, 1997.



Paper 10: Detecting Keypoints with Stable Position, ... — ECCV’04 157

[31] K. Rohr. Localization properties of direct corner detectors. J. Mathematical Imaging &
Vision, 4(2):139–150, 1994.

[32] F. Schaffalitzky and A. Zisserman. Viewpoint invariant texture matching and wide baseline
stereo. In Int. Conf. Computer Vision, pages 636–643, Vancouver, 2001.

[33] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point detectors. Int. J. Com-
puter Vision, 37(2):151–172, 2000.

[34] J. Shi and C. Tomasi. Good features to track. In Int. Conf. Computer Vision & Pattern
Recognition, pages 593–600, Seattle, 1994.

[35] S. M. Smith and J. M. Brady. SUSAN - a new approach to low level image processing.
Int. J. Computer Vision, 23(1):45–78, 1997.

[36] M. Toews and T. Arbel. Entropy-of-likelihood feature selection for image correspondence.
In Int. Conf. Computer Vision, pages 1041–1047, Nice, France, 2003.

[37] P. H. S. Torr and A. Zisserman. Feature based methods for structure and motion estimation.
In B. Triggs, A. Zisserman, and R. Szeliski, editors, Vision Algorithms: Theory and Practice,
pages 278–294, Corfu, Greece, 2000. Springer-Verlag LNCS.

[38] O. Zuniga and R. Haralick. Corner detection using the facet model. In Int. Conf. Computer
Vision & Pattern Recognition, pages 30–37, 1983.





Joint Feature Distributions for Image Correspondence

Bill Triggs
CNRS-INRIA, 655 avenue de l’Europe, 38330 Montbonnot, France.

Bill.Triggs@inrialpes.fr � http://www.inrialpes.fr/movi/people/Triggs

Abstract

We introduce ‘Joint Feature Distributions’, a general statistical
framework for feature based multi-image matching that explic-
itly models the joint probability distributions of corresponding
features across several images. Conditioning on feature posi-
tions in some of the images gives well-localized distributions for
their correspondents in the others, and hence tight likelihood re-
gions for correspondence search. We apply the framework in
the simplest case of Gaussian-like distributions over the direct
sum (affine images) and tensor product (projective images) of the
image coordinates. This produces probabilistic correspondence
models that generalize the geometric multi-image matching con-
straints, roughly speaking by a form of model-averaging over
them. These very simple methods predict accurate correspon-
dence likelihood regions for any scene geometry including pla-
nar and near-planar scenes, without ill-conditioning or explicit
model selection. Small amounts of distortion and non-rigidity
are also tolerated. We develop the theory for any number of
affine or projective images, explain its relationship to matching
tensors, and give results for an initial implementation.
Keywords: Joint Feature Distributions, matching constraints,
multi-image geometry, feature correspondence, statistical mod-
elling.

1 Introduction
This paper introduces a natural statistical framework for
multi-image feature correspondence, Joint Feature Dis-
tributions (JFD’s), and uses them to “probabilize” the
entire range of affine and projective geometric matching
constraints [12,15,2,3,5,7,21,20]. JFD’s are simply joint
probability distributions over the positions of correspond-
ing features in m > 1 different images, used as a sum-
mary of some population of interesting correspondences
(all valid ones, those near a particular surface or object,
background ones...). Conditioning on some of the features
gives tight probabilistic correspondence search regions for
the remaining ones. Although we will choose parametric
forms that reproduce and generalize the standard match-
ing constraints, JFD’s are in essence descriptive statistical
models rather than normative geometric ones: they aim
to summarize the observed behaviour of the given train-
ing correspondences, not to rigidly constrain them to an

Extended version of a paper appearing in the 2001 IEEE Int. Conf. Com-
puter Vision. c© 2001 IEEE Computer Society Press. This work was
supported by European Union FET project VIBES.

ideal predefined geometry. We believe that JFD’s will
become the standard method for many correspondence
search problems. Their benefits over matching constraints
include: more precise search focusing; built-in handling
of noise and distortion (small non-rigidities, lens distor-
tion...); and globally stable estimation, even for geome-
tries that are degenerate for classical matching constraints.
The projective two image model is perhaps the most use-
ful. It generalizes the epipolar constraint, but instead of
searching along the full length of epipolar lines, it searches
ellipses (Gaussians) whose centre, axis, length and width
are determined by the point being matched, its epipolar
line, the range of disparities seen in the training data,
and the noise level. JFD’s stably and accurately adapt
to any scene geometry from deep 3D through to copla-
nar: as the depth range of the training data decreases, the
search ellipses progressively shorten until ultimately the
model becomes essentially homographic. There is no ill-
conditioning for near-coplanar scenes, no need to choose
between epipolar and homographic correspondence mod-
els, and no under- or over-estimation of the plausible cor-
respondence regions. In contrast, epipolar models typi-
cally search entire (and perhaps inaccurate) epipolar lines,
wasting effort and greatly increasing the probability of
false correspondences.

The idea of using JFD’s for image correspondence is
very natural and obvious in retrospect. As far as we know
it has not appeared before, but there are many related
threads in the literature. JFD’s react against explicit model
selection for matching constraints [9,10,17] by incorpo-
rating the well-known statistical rule that you can only
predict events similar to the ones you trained on — extrap-
olating a full epipolar geometry from near-coplanar data is
unstable, but irrelevant for predicting near-coplanar cor-
respondences, c.f . e.g. [13]. JFD’s have analogies with
Bayesian model averaging [18] but are much simpler and
more direct. Plane+parallax [11,14,8,23,1,22] offers sta-
bler geometric parametrizations than matching tensors for
near-planar scenes. These could no doubt be “probabi-
lized” in much the same way as we do here.

Another aspect of this work is a new theoretical frame-
work for studying multi-image geometry and especially
matching constraints, based on the notion of the tensor
joint image. We will use some isolated results from this,
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Figure 1: The basic principle of JFD feature correspon-
dence.

but the full development had to be omitted for lack of
space.
§2 sketches the general principles of JFD matching, §3

develops some tools, then we focus on Gaussian-like JFD
models for affine (§4) and perspective (§5) camera geome-
tries. §6 briefly discusses the implementation and some
preliminary experiments and §7 concludes.

Notation: We assume familiarity with affine and pro-
jective matching constraints at the level of, e.g. [6], and
the ability to think tensorially at need [21,20]. Slanted
fonts denote inhomogeneous x, y and homogeneous x , y
image vectors, upright fonts inhomogeneous x,y and ho-
mogeneous x, y 3D ones. P denotes 3×4 image projection
matrices, p() probability distributions, [ · ]× 3 × 3 cross
product matrices ([ x ]× y = x ∧ y), 〈−〉x expectation over
the distribution of x.

2 Joint Feature Distributions
We can model the m noisy image projections xi | i=1...m of
a fixed 3D feature f as probability distributions pi(xi | f)
centred on f ’s true projections, with widths determined by
the relevant noise levels. More generally, the joint distri-
bution p(x1, ..., xm | f) is typically well-localized, and for
independent noise factors as

∏
i pi(xi | f). If f now varies

across some population of 3D features with distribution
p(f), the Joint Feature Distribution (JFD) of the result-
ing population of image features is:

p(x1, ..., xm) ≡

∫
p(x1, ..., xm | f)p(f)df (1)

For broad priors p(f), the one-image marginals
p(xi) ≡

∫
p(x1, ..., xm) dx1...dxi−1dxi+1...dxm =∫

pi(xi | f)p(f)df are typically broad and uninforma-
tive. But the ‘sharpness’ of the original image projections
pi(xi | f) is not entirely lost: The JFD p(x1, ..., xm)
remains highly correlated and still encodes most of

the precise location information. In particular, the
Conditional Feature Distributions (CFD’s) like

p(x1 | x2, ..., xm) ≡
p(x1 ,x2,...,xm)
p(x2,...,xm)

(2)

encode precise inter-image dependencies that are efficient
tools for correspondence search. Fig.1 illustrates the prin-
ciple for two 1D projective images x, y of a 1D scene. The
JFD p(x, y) encodes a strong probabilistic dependency be-
tween x and y whose “backbone” is the underlying ge-
ometric correspondence (here a 1D homography). The
marginals p(x), p(y) are broad and uninformative, but
given a particular feature x, the CFD p(y | x) (the normal-
ized cross-section through p(x, y) at x) is sharply peaked
at the corresponding y value. We can use this to predict
tight probabilistic search regions for y given x, and vice
versa.

The abstract JFD framework has rich analogies with,
and generalizes, conventional multi-image geometry —
see table 1. It applies to any correspondence relation-
ship that can be modelled probabilistically, regardless of
feature type, parametrization, number of images, rigidity
or distortion. But it is most useful when (suitable para-
metric forms can be chosen so that) the estimated JFD’s
have strong correlations that provide accurate search fo-
cusing. The link with geometry is strongest for corre-
spondences governed by matching constraints. Then, as in
fig.1, the matching geometry forms the “backbone” of the
JFD p(x, y) and fixes the locations of the CFD’s p(y | x),
while the image noise determines the cross-section of the
JFD and the widths of the CFD’s. The 3D feature popula-
tion p(f) or its image marginals p(x),p(y) determine the
height of the JFD along its backbone, but have little direct
influence on the CFD shapes.

As with matching constraints, JFD’s are image-based
models originally derived from 3D quantities (here the 3D
feature prior p(f) and the projection models pi(xi | f),
there the camera matrices Pi), but typically estimated
from observed image correspondences. The familiar three
stage estimation process [4] still applies: (i) build a large
set of possible correspondences, e.g. by feature detection
followed by correlation matching; (ii) hypothesize well-
supported candidate models, e.g. using a robust clusterer
such as RANSAC; (iii) robustly fit parametric model(s)
to the most interesting candidate(s). The fitted models
are parametric probability distributions for both JFD’s
(explicitly) and matching constraints (we actually fit a
geometry-based probabilistic noise model). The cluster-
ing stage ensures reliable fitting by rejecting false matches
and ‘uninteresting’ true ones, e.g. features on moving ob-
jects when we are fitting the background, or non-coplanar
features when we are fitting a plane. Good clustering is
even more critical for JFD’s than for matching constraints
owing to their polymorphism: they are designed to sum-
marize a user-defined class of observations not to enforce
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Entity Matching Constraint Approach Joint Distribution Approach
3D camera geometry Camera projection mapping, matri-

ces Pi : f → xi = Pi f

Conditional feature projection dis-
tributions p(xi | f)

Image signature of camera geome-
try

Multi-image matching tensors
Tij...k

Joint Feature Distributions
p(x, ..., z)

Inter-image feature transfer Tensor based feature transfer x '
Tij...k · y · ... · z

Conditional Feature Distributions
p(x | y, ..., z)

Inter-image feature correspondence Geometric matching constraints
Tij...k · x · ... · z = 0

Probability that features corre-
spond, p(x, ..., z), or p(x | y, ..., z)

Scene reconstruction Ray intersection, tensor-based re-
construction

Posterior 3D feature probability
p(f | x, ..., z)

Table 1: Analogies between the joint distribution approach and multi-image matching constraints.

a predefined structure, so it is much less clear what con-
stitutes an outlier. The obvious approach is to use self-
consistency, finding clusters too dense to be probable un-
der broader members of the parametric distribution family
c.f . e.g. [4,18]. We will not go into these difficult group-
ing issues here, but we expect JFD’s to be effective corre-
spondence models for many natural grouping classes such
as points on compact moving objects.

From now on we focus on deriving efficient paramet-
ric models for JFD’s. We will only consider Gaussian-
like models, which appear to be the simplest useful para-
metric forms. Gaussians can only capture linear depen-
dencies, so to produce JFD’s that can mimic the standard
matching constraints, we will need parametrizations that
make these constraints appear linear. As in matching con-
straint estimation, we do this by mapping the input ob-
servations into a suitable joint image space, containing
the direct sum (juxtaposition) of the input coordinates for
affine models, but their tensor (outer) product for projec-
tive ones. For example, for projective fundamental ma-
trix or epipolar JFD estimation, we map the n correspon-
dences (x, x′) to homogeneous 9-D outer product vectors
x ⊗ x ′ ∼ (1, x, y, x′, y′, xx′, xy′, yx′, yy′)> and build a
9×n measurement matrix M from these. The fundamental
matrix estimate uses just the smallest eigenvector of M M>

(e.g. [6]), whereas the JFD model captures the under-
lying uncertainty using an appropriately-weighted “aver-
age” over all of the eigenvectors (in fact, (M M>)−1). Con-
ditioning the JFD gives compact correspondence search
regions consistent with all (not just one!) of the likely
models in the average. The JFD is loosely analogous to
“model averaging” of fundamental matrices [18], but it
is based directly on the input correspondences, not on a
blurred geometric model.

3 Scatter & Covariance

Homogeneous covariance: Before starting we introduce
some tools. We encode distributions homogeneously.
Given an uncertain affine point x with mean x̄, covari-

ance V and homogeneous vector x = ( x
1 ), its homo-

geneous covariance X , homogeneous information X−1

and χ2 value are:

X ≡ 〈x x>〉x =

(
x̄ x̄>+V x̄

x̄> 1

)
(3)

X−1 =

(
V−1 −V−1x̄

−x̄>V−1 +x̄>V−1 x̄+1

)
(4)

χ2(x | x̄, V) ≡ (x − x̄)>V−1 (x − x̄) = x>X−1x − 1 (5)

The mean, covariance and information of the Gaussian
fit neatly into the homogeneous matrices X , X−1. Given
a collection of training points {xp}p=1...n, their homoge-
neous scatter matrix 1

n

∑
p xp x>

p encodes their mean and
covariance, and hence defines an approximate Gaussian
probability model for the point population. If the points
are also uncertain, their smoothed homogeneous scatter
1
n

∑
p 〈xp xp〉xp

encodes the mean and covariance of the
mixture distribution generated by the sum of the individual
point distributions. Viewed as a summary of the popula-
tion statistics, this double-counts the noise and hence over-
estimates the covariance, but when there are relatively few
points this smoothed but biased estimate is often prefer-
able to the unsmoothed one because it contains additional
information about the noise level. Either type of scatter
matrix can be used when estimating JFD’s below.

Note that these formulae require the homogeneous point
vectors to be affinely normalized (scaled so that the last
coordinate is 1). We assume this throughout the paper. Al-
though many formulae (notably in §5) appear projective,
they all are based on the standard “noise in pixels” image
plane error model which is intrinsically affine. For a start
at building a projectively covariant error model, see [19].

Dual covariance: Some matching constraints are based
on the lines through an image point rather than the
point itself. The simplest is the homographic relation-
ship x ' H y . This can be written in constraint form
as u H y = 0 = v H y where u, v are any two inde-
pendent lines through x . For least squares estimation
we square and sum the constraints: 0 ≈ (u H y)2 +
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(v H y)2 = y>H> (u u> + v v>) H y . We will view
u u> + v v> as the “homogeneous scatter matrix” of the
chosen set {u, v} of lines through x . More generally
we could use 2

n

∑n
i=1 ui u>

i where {ui} is any rank 2
set of lines through x . These rank 2 matrices encode x
as their null vector, and each defines its own importance
weighting over the lines through x (i.e. the constraints).
To be more systematic, we fix a standard weighting pro-
cedure that defines our notion of “the uniform distribu-
tion of lines” through any given x . Algebraically, the
most uniform way to write the squared homography con-
straints is ‖ [ x ]× H y‖2 ≈ 0, which leads to the “scat-
ter matrix” [ x ]>× [ x ]× = ‖x‖2I − x x>. This is not
projectively covariant, but we can make it so by intro-
ducing a fixed quadric matrix Q, which we usually take
to be the identity matrix in a well-normalized projective
frame. We then define the dual covariance of x to be
X̃ ≡ (x>Q x) Q − (Q x)(Q x)>. Or if x is uncertain with
homogeneous covariance X = 〈x x>〉, the dual covariance
is the expectation of this: X̃ ≡ trace(Q X ) Q − Q X Q.
For Q = I this becomes (c.f . (3)):

X̃ =

(
1+y2+Vyy −xy−Vxy −x

−xy−Vxy 1+x2+Vxx −y

−x −y x2+y2+Vxx+Vyy

)
(6)

For nonsingular Q, X = 1
d trace(Q−1 X̃ ) Q−1−Q−1 X̃ Q−1,

so dualization is reversible (d is the space dimension, here
2). Our JFD models of line-through-point constraints (ho-
mographies, trifocal, quadrifocal) are all based on dual co-
variances.

4 The Affine JFD
We now develop a Gaussian JFD model for point fea-
tures under affine image projection. This is the sim-
plest useful model, and a good warm-up for the projective
case. To keep the projective link clear we work in affine-
homogeneous coordinates rather than centred inhomoge-
neous ones. Our JFD model must reproduce and “proba-
bilize” the affine matching constraints. But these are al-
ready linear in the image coordinates and Gaussians natu-
rally model linear relationships, so the problem is trivial.
Suppose that the training data is n correspondences in m
affine images xip | i=1...m,p=1...n. Collect the components
of each correspondence into a 2m + 1 component homo-
geneous affine joint image vector xp ≡ (x>

1p ... x>

mp 1)>,
and form these into a (2m + 1) × n affine measurement
matrix M ≡ (x1, ..., xn). Viewing our correspondences
as points in joint image space, their homogeneous scatter
matrix is simply V ≡ 1

n

∑n
p=1 xp x>

p = 1
n M M>, or if we

choose to use the smoothed scatter: V ≡ 1
n

∑
p

〈
xp x>

p

〉
=

1
n

∑
p

(
xp x>

p +
( Vp 0

0 0

))
= 1

n M M> + 1
n

(
P

p Vp 0
0 0

)
,

where Vp is the 2m × 2m inhomogeneous joint noise co-

variance of xp (for independent noise, Vp is block diago-
nal with 2×2 blocks). Our affine JFD model is simply the
Gaussian that best describes this population of joint image
vectors, i.e. the Gaussian with homogeneous covariance V
and homogeneous information V−1.

Why does this work? - The theory of affine projection
tells us that for ideal noiseless observations, rank(M) ≤ 4,
i.e. the vectors xp span a 3D affine space [16]. We are
modelling noisy observations, but the ideal behaviour tells
us what to expect: M typically has 1 large ‘homogeniza-
tion’, ≤ 3 large ‘geometry’ and ≥ 2m − 4 small ‘noise’
singular vectors, and similarly for V = 1

nM M> with
eigenvectors. So the JFD is typically very ‘flat’ — broad
and featureless along the ‘geometry’ directions, but nar-
row along the remaining ‘noise’ ones. Conditioning on an
image point x effectively freezes two of the ‘geometry’ di-
rections, so at most one remains, spanning the joint epipo-
lar line of x in the remaining images. Even this direction
is restricted to the breadth of the training population, so
for coplanar data it will shrink to a point.

For our Gaussian JFD’s, conditioning leads to famil-
iar Schur-complement matrix formulae. To do the cal-
culation, partition (x>

1 ... x>

m)> into known components
k and unknown ones u, freeze k at their known values in
χ2(x) = x> V−1 x − 1 (5), and complete the squares to
find the conditional log likelihood of the remaining un-
knowns u. Let k̄, ū be the training set means of k, u. Par-
tition the corresponding information as

(
A B

B> C

)
, where

A = (V−1)kk, etc. The search region for the unknowns
u given the knowns k is defined by the CFD p(u | k),
which turns out to have mean ū − C−1B>(k − k̄) and co-
variance C−1. (NB: The population covariance of u is
Vuu = (C − B>A−1B)−1, which is usually much larger).
If k is an uncertain measurement with covariance D−1, the
CFD p(u | k) is broadened to mean ū − C−1B>(A+D −
BC−1B>)−1D(k− k̄) and covariance (C−B>(A+D)−1B)−1.
(Usually D � A so we can drop the A’s). The prior
likelihood for observing the knowns k in the first place
is χ2(k |V) = (k− k̄)> (A − BC−1B>) (k− k̄). As usual in
such calculations, there are other forms for these expres-
sions that may be stabler or more efficient, but we will not
go into this here.

Implementation is straightforward: form the homoge-
neous scatter V from the training data, invert to get the
information V−1 (the Gaussian JFD model), partition and
condition on known observations to get search windows
for their unknown correspondents. One minor snag is that
V = M M> becomes rank deficient (rank ≤ 4) for noise-
less data, so the estimated information V−1 becomes infi-
nite. This is correct — exact geometry allows infinitely
accurate predictions — but numerically inconvenient. In
practice we avoid it by adding a small diagonal regularizer
diag(ε, ..., ε, 0) to V before inverting. Typically ε ∼ 10−9 :
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large enough to prevent loss of numerical precision during
the inversion, but not so large as to blur the final estimates
significantly. Similarly, V is rank deficient for n ≤ 2m
noisy but unsmoothed correspondences because we do not
have enough observations to estimate all of the noise co-
variances. The solution is to incorporate more noise infor-
mation, e.g. using smoothed scatters.

5 The Projective JFD
Affine JFD’s are too rigid to model perspective distor-
tion exactly, so we now develop more flexible projective
models. As before we consider only Gaussian-like mod-
els, so to mimic the matching constraints we need to use
parametrizations in which these become linear. Projec-
tive matching constraints are multilinear in the homoge-
neous coordinates of their image features, but as in “lin-
ear” matching tensor estimation we can make the prob-
lem appear linear by treating multilinear combinations as
if they were independent coordinates, i.e. by mapping the
input feature vectors to their outer (Kronecker) product
tensor. For example, for two images we can not use just
the image coordinates x = (x, y, 1)>, x ′ = (x′, y′, 1)>

or the affine joint image vector (x, y, x′, y′, 1)>, be-
cause the projective matching constraints also have bi-
linear terms xx′, ..., yy′. Instead we need to collect
the components of the outer product x x ′> into a vector
(xx′, xy′, x, yx′, yy′, y, x′, y′, 1)> and use these as work-
ing coordinates. More generally, for point features in any
number of images, it turns out (proof omitted) that tensor-
ing the input coordinates is necessary and sufficient to lin-
earize all of the matching constraints linking the images,
and generically the only linear constraints on these coordi-
nates are matching ones. So we really have no choice: to
linearize the projective matching constraints linking fea-
tures x1, ..., xm from m images, we have to use the 3m

components of their joint image tensor t = x1 ⊗ ...⊗ xm

as working coordinates. We will view t both as a 3m-
component vector and as a tensor tA...D = xA

1 · ... · xD
m

(indices A...D = 1...3). Assuming affine normalization
for x1, ..., xm, our projective JFD models are “Gaussians
in t-space”, p(t) ∼ e−L/2, with negative log likelihood:

L = t> W t = WA...D A′...D′(xA
1 ...xD

m)(xA′

1 ...xD′

m )
(7)

The JFD is parametrized by the homogeneous informa-
tion tensor W , viewed as a symmetric positive definite
3m × 3m matrix generalizing the homogeneous informa-
tion. This model has the following useful properties:

1. It naturally models uncertain matching constraints. Al-
gebraically, the simplest way to represent and combine
uncertain constraints is to use weighted sums of squared
constraint violations. For linear constraints such as

the matching constraints on t , this yields nonnegative
quadratic forms in the variables, i.e. Gaussians in t .

2. If we freeze some of the variables xi at arbitrary values,
L retains its tensored-quadratic form in the remaining
ones, with coefficients given by W contracted against
the frozen variables. So conditioning on known val-
ues for search region (CFD) prediction reduces to trivial
tensor contraction — even simpler than the affine case.

3. Conditioning down to a single image gives a standard
Gaussian expressed in homogeneous form, so predict-
ing its high-probability search regions is easy.

JFD estimation: Now consider how to estimate a projec-
tive JFD W that summarizes a given set of training cor-
respondences (x1p, ..., xmp) | p=1...n. By analogy with the
affine case we treat the joint image tensors tp =x1p ⊗ ...⊗
xmp of the training correspondences as 3m-component
affine-homogeneous vectors and build their 3m × 3m ho-
mogeneous scatter matrix V = 1

n

∑
p tp t>p = 1

nM M>

where M = (t1, ..., tn) is the 3m × n measurement matrix
familiar from linear matching tensor estimation. We then
invert to get the JFD parameter estimate W ≈ V−1. This
last step is unfortunately only heuristic1 but it appears to
work reasonably well in practice, perhaps because (if we
imagine the eigen-decomposition of V being inverted) it
gets at least the noise model in t’s block of affine coordi-
nates and the noiseless perspective corrections right.

As in the affine case, if we have uncertainties for the
features we can use them to stabilize the JFD’s noise level
estimates, and we do this by taking expectations over
noise when calculating the scatter. We assume indepen-
dent noise so that tensor expectations factor into single-
image ones. Working tensorially, the smoothed scatter
tensor is:

V A...D A′...D′

= 1
n

∑
p

〈
(xA

1p...x
D
mp)(x

A′

1p ...xD′

mp)
〉

= 1
n

∑
p

〈
xA
1pxA′

1p

〉
· ... ·

〈
xD

mpxD′

mp

〉

= 1
n

∑
p XAA′

1p · ... · XDD′

mp

(8)

where Xip =
〈
xip x>

ip

〉
are the homogeneous covariances

of the input features. Once again, this smoothes the JFD
estimate at the cost of some double-counting of noise. It

1Our projective JFD’s are not really Gaussians because their input co-
ordinates t are restricted to a nonlinear (2m)-D subvariety of their (3m)-
D space — tensors of the rank-one form t = x1 ⊗ ... ⊗ xm. Gaussian
integrals over this restricted space are intractable, so we can not calcu-
late the normalization factor that makes the JFD into a correctly normal-
ized probability distribution. This factor is indispensable for estimating
W . For training data with scatter V on a normalized distribution family
p(t) = e−(t>W t−N(W))/2 , where N(W ) is the normalization, maxi-
mum likelihood estimation reduces to minimizing trace(W V )−N(W )

with respect to W , with implicit solution W such that V = dN(W)
dW .

For a true Gaussian, N(W ) = log det W − d log(2π) and hence
dN
dW = W−1.
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is particularly useful when there are n < 3m training fea-
tures (which is common for m ≥ 3). As a safeguard, we
also add a 3m × 3m diagonal regularizer diag(ε, ..., ε, 0)
to V , where typically ε ∼ 10−8. These measures are even
more necessary in the projective case than in the affine
one, as V is both large (so that many measurements are re-
quired to span it) and structurally ill-conditioned (because
“perspective effects are usually small” compared to affine
ones). The ill-conditioning is normal and causes no prob-
lems so long as we regularize enough to prevent it from
causing loss of numerical precision.

‘Epipolar’ JFD vs. linear fundamental matrix estima-
tion: Both methods start with the 9 × n measurement
matrix M of the tensored measurements. Form the 9 × 9
scatter V = M M>, let V =

∑9
a=1 λa fa f>a be its eigen-

decomposition, and write the eigenvectors fa as 3×3 “fun-
damental matrix candidates” Fa. The conventional linear
fundamental matrix estimate is the smallest eigenvector
F9 of V , or equivalently the largest of W = V−1. On test
correspondences t =x⊗x ′, the JFD estimate W =V−1 has
unnormalized “log likelihood” penalty function t>W t =∑9

a=1 λ−1

a (fa t)2 =
∑9

a=1 λ−1

a |x Fa x ′|2, i.e. “a weighted
sum of possible epipolar constraints”. Similarly, condi-
tioning on x gives conditional log likelihood x ′>A x ′ for
x ′, where AA′B′ = WAB A′B′ xA xB, i.e. the correspon-
dence search regions are defined by “weighted scatters of
possible epipolar lines” A =

∑9
a=1 λ−1

a (x>Fa)(x>Fa)>.
The fundamental matrix estimate amounts to truncating
W at its largest eigenvector, giving effective penalty func-
tion (f>9 t)2 = |x F9 x ′|2, i.e. the estimated epipolar con-
straint violation. For small noise and strong data, V has
just one very small eigenvalue, so the penalty sum is en-
tirely dominated by F9 and the JFD model reduces to the
fundamental matrix one. But if V has several small eigen-
values owing to noisy or weak data (e.g. coplanar data
makes V rank 6 with 3 “noise” eigenvalues), these all
contribute significantly the penalty sum, which becomes
a kind of weighted average over these observed “con-
straints” on the data, restricting the directions in which
the measurements can vary and hence the size of the “av-
eraged epipolar” correspondence search regions.

Statistical error weighting: Although they include co-
variances, our linear JFD methods are essentially ‘alge-
braic’: they implement heuristic polynomial error mod-
els rather than statistically weighted rational ones. We
will not consider nonlinear JFD estimation here, but a
step towards statistical weighting in the conditioning cal-
culation greatly improves the accuracy of the predicted
search regions. For points near the epipole, algebraic
weighting produces over-broad search regions (fig.2 top
right). As above, the cost transversal to epipolar lines
is controlled by the JFD’s epipolar line violation term
|x F9 x ′|2, where F9 is the fundamental matrix. For x

near the epipole, x>F9 ≈ 0 and |x F9 x ′|2 is small for any
x ′. We correct for this heuristically by replacing AA′B′ =
WAB A′B′ xA xB in the CFD x ′>A x ′ with λ A where λ =
(WAB A′B′ V AB NA′B′

)/ trace(A N), N = diag(1, 1, 0),
and V is the x-image population scatter. The idea is that
if W ≈ f9 f>9 as above, trace(A N) ≈ x>F9 N F>

9 x is the
norm of the epipolar line vector x>F9 and the numerator is
the average of such norms across the training population.
So λ reinforces the cost near the epipole without changing
its overall population average. This heuristic reweighting
procedure works well in practice and we are currently try-
ing to formalize it.

5.1 Dual Space JFD’s

The above approach in principle allows us to produce pro-
jective JFD’s for any type of matching geometry in any
number of images, and it is indeed the preferred represen-
tation for the practically important 2 image ‘epipolar JFD’
case. However, for m > 2 images or known-coplanar
scenes it uses training correspondences very inefficiently.
In the space of joint image tensors t , the nonlinear d-D im-
age of a d-D projective subspace of 3D space containing
k centres of projection turns out to span a (

(
m+d

d

)
−k)-

D linear subspace (proof omitted). The above JFD model
“learns” (spans) at most one tensor dimension per training
correspondence, so just to capture the underlying geome-
try (let alone the noise) we need

(
m+3

3

)
−m = 8, 17, 31...

training correspondences in m = 2, 3, 4... images for gen-
eral 3D geometry, or

(
m+2

2

)
= 6, 10, 15... for known-

coplanar points. In comparison, linear matching tensor
estimators need only 8, 7, 6 correspondences for 3D points
and 4, 4, 4 for coplanar ones. Matching constraints are
more efficient when they are tensor-valued, so that a single
matching tensor with relatively few coefficients generates
several linear constraints on each tensored image corre-
spondence. By mirroring these index structures we can
build correspondingly efficient JFD models, at the cost of
less image-symmetric representations and an implicit re-
striction to correspondence models subjacent to the mir-
rored matching constraint. For example, a JFD based on
the index structure of a two image homography constraint
can be estimated from 4 correspondences rather than 6,
but implicitly commits us to quasi-planar data.

To do this, we simply need to assume a JFD whose
form is an average over constraints of the desired type.
Free indices arise essentially when points x appear du-
alized as [ x ]× in the matching constraints, i.e. for “any
line through the point” style constraints. For example, 2
image homographic constraints with matrix H and 3 im-
age trifocal constraints with tensor T can be written sym-
bolically as ‖ [ x ′ ]× H x‖2 and ‖ [ x ′ ]× (T · x) [ x ′′ ]× ‖2,
or alternatively as

∑
i |u

′
i
>H x |2 and

∑
ij |(u

′
i)

>(T ·

x)u′′
j |

2 where {u′
i}, {u′′

j } are any sets of two (or
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Figure 2: Predicted search ellipses for the projective 2 image JFD, versus the true correspondences and their epipolar
lines. The scenes contain uniform random points in a sphere (deep scene) or a sphere flattened to 20% of its depth
(shallow scene). Top right: Algebraic error weighting leads to incorrect broadening of the search regions near the
epipole. The other plots use our CFD reweighting heuristic to correct this (see end of §5.0). Bottom right: For all of the
geometries tested, the estimated conditional distributions accurately reflect the true correspondence likelihoods. Here
we histogram the standard errors of the true observations under the estimated CFD’s, for forwards (top curves) and
fixation (bottom curves) motions.

more) independent lines through x ′, x ′′. Expanding
these forms tensorially gives (HB

A HB′

A′ )XAA′

X̃ ′
BB′ and

(T BC
A T B′C′

A′ )XAA′

X̃ ′
BB′ X̃ ′′

CC′ where X = x x> and
X̃ ′ = [ x ′ ]

>

× [ x ′ ]× or X̃ ′ =
∑

i u′
i u′

i, and similarly
for X̃ ′′ with x ′′, u′′

j . The squared constraints can be
expressed compactly in terms of the homogeneous co-
variance X of x and the scatter matrices X̃ ′, X̃ ′′ of the
lines through x ′, x ′′. We will fix the relative weight-
ing of the different constraints by systematically using
the dual covariances (6) of x ′, x ′′ for X̃ ′, X̃ ′′. For our
JFD models we take averages over constraints of these
forms, i.e. we adopt homogeneous Gaussian-like forms
with unnormalized log likelihoods W B B′

A A′ XAA′

X̃ ′
BB′ and

W BC B′C′

A A′ XAA′

X̃ ′
BB′ X̃ ′′

CC′ , where X and X̃ ′, X̃ ′′ are
the (noiseless) normal and dual homogeneous covariances
of the test correspondences (x , x ′, x ′′). These are still
quadratic in the tensored measurements x ⊗ x ′(⊗x ′′), so
they are reparametrizations of the general projective JFD
models developed above. They are parametrized by infor-
mation tensors W B B′

A A′ , W BC B′C′

A A′ , which can be viewed

respectively as 9 × 9 and 27 × 27 homogeneous informa-
tion matrices representing scatters

∑
i hi h>

i and
∑

i si s>

i

over possible homography matrices (9-component ‘vec-
tors’ hi) and trifocal tensors (27-component ‘vectors’
si). To estimate the models we again build (regular-
ized and possibly smoothed) scatter tensors over train-
ing correspondences, here V A A′

B B′ = 1
n

∑
p XAA′

p X̃ ′
p BB′

and V A A′

BC B′C′ = 1
n

∑
p XAA′

p X̃ ′
p BB′ X̃ ′′

p CC′ , treat these
as 9 × 9 and 27 × 27 homogeneous covariance matri-
ces, and invert to estimate the corresponding information.
To use the models for correspondence search, we condi-
tion on known feature positions by contracting their nor-
mal or dual covariances (as appropriate) into the informa-
tion tensors until we reach a single-image model, which
is necessarily quadratic in the remaining feature vector,
i.e. a Gaussian whose likelihood regions are simple el-
lipses. This approach extends to all other matching con-
straint equations with free covariant indices: we just need
to use normal or dual covariances as appropriate, and think
tensorially when necessary.
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6 Implementation & Experiments
We have implemented the above methods in MATLAB
for any number of images and duality structure, but here
we only show brief results for the 2 image ‘epipolar’
JFD. Recall the algorithm: build the 9 × 9 scatter ma-
trix V = 1

n

∑
p tp t>p from the tensored training corre-

spondences tp, regularize and invert to get the JFD infor-
mation W = (V + diag(ε, ..., ε, 0))−1, and view this as
a tensor WAB A′B′ . Then, for each test correspondence
x , form AA′B′ = WAB A′B′ xAxB and optionally rescale
it by λ = (WAB A′B′ V ABNA′B′

)/ trace(A N) (N =
diag(1, 1, 0)) to correct the error weighting. The result-
ing A is the conditional information for x ′ = (x′, y′, 1)>,
from which Gaussian log-likelihood search ellipses can be
found by expanding x ′>A x ′ as a quadratic and discarding
the constant term. Algebraic error weighting does pro-
duce over-wide search ellipses for points near the epipole,
so it is advisable to include the reweighting factor λ. The
reweighted method works well in practice for all of the ge-
ometries that we have tested, giving search ellipses aligned
with the epipolar lines with realistic lengths and breadths,
which progressively shrink to circles as the scene becomes
planar.

7 Summary and Conclusions
We introduced Joint Feature Distributions (JFD’s), a gen-
eral statistical framework for image matching based on
modelling the joint probability distributions of the posi-
tions of corresponding features in different images. The
JFD is estimated from a population of training correspon-
dences, then conditioned on the values of test features to
produce tight likelihood regions for the corresponding fea-
tures in other images. We developed relatively simple
Gaussian-like JFD models for affine and projective im-
ages, which can be viewed as probabilistic “model aver-
ages” of the affine and projective multi-image matching
constraints. The methods naturally and stably handle any
scene geometry from deep 3D through to coplanar scenes,
without explicit model selection. For example, the ‘epipo-
lar’ JFD stably enforces an epipolar, homographic or near-
homographic constraint, according to the behaviour of the
training data.

Future work: The JFD idea is recent and we are still ac-
tively investigating its properties. There are some theoret-
ical loose ends, particularly in the projective case where
even the basic W ≈ V−1 estimation procedure for the “lin-
ear” model is only heuristic. We do not yet have JFD’s
with rigorous statistical error weighting, and it is unclear
whether there are JFD analogues of matching tensor con-
sistency relations like det(F ) = 0. Both issues are likely
to lead to nonlinear models. Practically, we need to de-
velop robust estimators for JFD’s. As JFD’s are less rigid

than matching constraints, self-consistency based cluster-
ing will probably be needed to isolate correspondence sub-
populations susceptible to JFD modelling. The full popu-
lation model will thus be a mixture of JFD’s. Numerically,
we are developing QR and SVD based JFD representa-
tions that should be less sensitive to rounding errors than
our current scatter / information ones.

A The Tensor Joint Image
This appendix develops the properties of tensor joint
image representation. “Recall” two fundamental map-
pings from algebraic geometry. Given projective spaces
P

A, ..., PD with generic points xA, ..., zD and dimensions
d1, ..., dm, the Segré mapping takes (xA, ..., zD) in the
Cartesian product (direct sum) space P

A × ... × P
D to

the rank one tensor2 tA...D ≡ xA · ... · zD in the ten-
sor product space P

A...D. The Segré variety is the image
of P

A × ... × P
D under this mapping. It is a (

∑
i di)-

dimensional algebraic variety in the (
∏

i(di + 1) − 1)-
dimensional projective space P

A...D, isomorphic to P
A ×

...×P
D, and cut out by the 2×2 determinants of the form

t ...Ai...Aj ... t ...Bi...Bj ... − t ...Ai...Bj ... t ...Bi...Aj ... = 0. Its
points linearly span the whole of P

A...D. The Segré map-
ping is the standard way of giving a Cartesian product a
variety structure in algebraic geometry.

The Segré mapping encapsulates the nonlinearity of
multilinear polynomials on P

A× ...×P
D, in the sense that

any multilinear form
∑

A...D cA...D xA...zD becomes a
linear one

∑
A...D cA...D tA...D in terms of the Segré coor-

dinates tA...D = xA...zD. Any subvariety of P
A×...×P

D

defined by multilinear polynomials is Segré-mapped to
the intersection of a linear subspace (the null space of
the Segré-linearized polynomials) with the Segré variety3.
The individual homogeneous scale factors of xA, ..., zD

are confounded in xA · ... · zD, so the Segré mapping also
turns out to be a good way of circumventing problems with
homogeneous scale factors.

Similarly, given a projective space P
A with generic

point xA and dimension d, the degree m Veronese map-
ping on P

A takes xA to the rank one tensor xA1A2...AM ≡
xA1 xA2 ...xAm in the symmetric tensor product space
P

(A1A2...Am). The parentheses (A1...Am) mean “take the
symmetric part”: in the tensor product it suffices to re-
strict attention to the

(
d+m

d

)
ordered index combinations

2Several competing definitions of rank exist for tensors with more
than 2 indices. None is entirely satisfactory, but all agree that outer prod-
ucts of vectors have rank 1, as here.

3Multilinear forms p in subsets of the variables xA, ..., zD can be
homogenized up to full multilinear forms by multiplying in turn by
each multilinear combination xAi · ... · yBj of the missing variables
xAi , ..., yBj . Projectively, all entries of xAi , etc., can not vanish at
once, so the up-homogenized polynomials all vanish iff p does. In this
projectivized sense, the Sergé mapping also linearizes multilinear poly-
nomials of degree less than that of xA...zD. The multi-image matching
constraints behave this way.
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A1 ≤ A2 ≤ ... ≤ Am rather than the dm unordered ones,
as xA1 xA2 ...xAm is automatically symmetric under arbi-
trary permutations of A1...Am. Analogously to the Segré
case, the Veronese variety linearly spans P

(A1A2...Am) and
is cut out by 2 × 2 determinants, and the Veronese map-
ping linearizes all degree m polynomials on P

A, map-
ping varieties defined by such polynomials (or, by up-
homogenization, lower degree ones) to linear slices of the
Veronese variety in P

(A1A2...Am).
Now turn to vision. Consider m 3 × 4 image projec-

tions PA
a , ..., PD

a projecting 3D points Xa ∈ P
a to image

points xA ' PA
a Xa, ..., zD ' PD

a in P
A, ..., PD. Assem-

ble the image points into a joint image4 (xA, ..., zD) ∈
P

A × ... × P
D — the image of P

a under the joint projec-
tion (PA

a , ..., PD
a ). A point-tuple is the image of some 3D

point iff it satisfies certain well-known geometric match-
ing constraints [12,15,2,3,5,7,21,20]. These constraints
are multilinear in (xA, ..., zD), so they become linear un-
der the Segré mapping (xA, ..., zD) −→ xA · ... · zD, and
hence cut out a linear-intersection subvariety of the Segré
variety in the tensor product space P

A...D. We call this
the tensor joint image. It has coordinates of the form
tA...D = (PA

a Xa) · ... · (PD
d Xd) and represents the image

of P
a under the composition of joint image projection and

Segré.
The image projections also act naturally on tensor prod-

ucts of P
a, in particular taking a point (symmetric tensor)

T a...d ∈ P
(a...d) to tA...D ' PA

a ...PD
d T a...d in the image

tensor space PA...D. The image of the degree m Veronese
mapping Xa ∈ P

a −→ Xa · ... · Xd ∈ P
(a...d) under

this tensor product map is exactly the Segré mapping, so
the Veronese variety of P

a also maps to the tensor joint
image. In short, the following diagram is commutative:

P
a Veronese mapping

−−−−−−−−−→
Xa → Xa·...·Xd

P
(a...d)

Xa

↓

(PA
a Xa,...,PD

a Xa)

y joint
projection

tensor
projection

y
T a...d

↓

PA
a ...PD

d T a...d

P
A × ... × P

D Segré mapping
−−−−−−−−−−−−−→
(xA,...,zD) → xA·...·zD

P
A...D

The tensor projection PA
a · ... ·PD

d from the
(
m+3

3

)
-linear-

dimensional space P
(a...d) to the (often much larger) 3m-

linear-dimensional one P
A...D is linear. Its kernel is

spanned exactly by the m camera centre tensors ca
i · ... ·c

d
i ,

where ci is the centre of projection of camera i. Generi-
cally the camera centre tensors are linearly independent in
P

(a...d), so the image of P
(a...d) in P

A...D under the tensor
projection generically has linear dimension

(
m+3

3

)
− m.

4If we forget the individual projective depths (homogeneous scale
factors) here we get the Cartesian-product joint image, if not we get the
“projective joint image” defined in [21,20]. The latter is a linear image
of P

a under the 3m× 4 “joint projection” matrix (PA
a ... PD

a )>, but not
immediately recoverable from the input images. Either will do for our
purposes as the Segré mapping below obliterates the relative scales.

The composite Veronese / tensor projection mapping has
a base point at each camera centre, as expected.

Similarly, the Veronese images of 3D lines and planes
have linear dimensions

(
m+1

1

)
and

(
m+2

2

)
in P

(a...d), and(
m+1

1

)
− k1,

(
m+2

2

)
− k2 under tensor projection into

P
A...D, where k1, k2 are the number of camera centres

they contain.
The Veronese image of P

a linearly spans P
(a...d), so

its projection the tensor joint image spans the linear im-
age of P

(a...d) in P
A...D. The (Segré-mapped) matching

constraints are simply the orthogonal complement of this
linear subspace of P

A...D. They can’t be more restrictive
without eliminating (the joint images of) real 3D points,
and if they were less restrictive they would necessarily fail
to eliminate some invalid image correspondences, as the
Segré image of P

A × ... × P
D linearly spans the whole of

P
A...D.
The point of all this is that tensoring the image mea-

surements reduces much of the geometry of matching con-
straints to linear considerations (modulo the nonlinearity
of the Segré mapping itself, of course). We claim that this
is a good way to understand certain aspects of the struc-
ture of the matching constraints. In particular, it provides
a suitable space in which to run a projective joint distribu-
tion formalism, as it allows simple Gaussian-like distribu-
tions to enforce the matching constraints.
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Chapter 5

Geometric Vision & Scene
Reconstruction

This chapter contains four papers dealing with vision geometry and the mathematical theory of
scene reconstruction. Thematically, they date from the period immediately after my PhD thesis.

Summary of paper 12, “Critical Motions for Auto-Calibration When
Some Intrinsic Parameters Can Vary”

This paper published in the Journal of Mathematical Imaging and Vision [KTÅ00] represents the
journal version of a collaboration begun several years earlier [KT99] with Fredrik Kahl and Kalle
Åström of Lund University, on characterizing the algebraic critical sets for visual scene recon-
struction and camera calibration. It deals specifically with the problem of “autocalibration” — the
recovery of camera calibration using only weak information about the camera or scene, such as
the fact that certain of the camera’s intrinsic parameters remain unchanged during a motion. A
“critical configuration” is a class of motions or a set of parameters for which autocalibration is
intrinsically impossible owing to symmetries or degeneracies that weaken the structure of the set
of equations used for autocalibration, and a “critical set” is the set of all such motions or param-
eters in the parameter space. The paper attacks the problem of characterizing the critical sets for
several different autocalibration problems using a combination of projective geometry, geometric
intuition and techniques from computational algebraic geometry (Gröbner basis methods). The
characterization given is sometimes implicit, but in certain cases, notably two view problems where
the only unknown internal camera parameters are the focal lengths, we are able to give a detailed
characterization and explicit algorithms.

Summary of paper 13, “Le Calcul de Pose: de nouvelles méthodes ma-
tricielles”

This paper derives some new algebraic resultant based methods for the classical problem of deter-
mining the 3D position and orientation of a calibrated camera given several 3D points with known
coordinates and their images. Methods for 3 points (4 solutions) and 4 or more points (1 solution)

169



170 Chapter 5. Geometric Vision & Scene Reconstruction

are developed. The paper appeared in the 2002 French national conference Reconnaissance des
Formes et Intelligence Artificielle [AQT02].

Summary of paper 14, “Plane + Parallax, Tensors and Factorization”

Published in the 2000 European Conference on Computer Vision [Tri00], this paper relates the
tensorial approach to vision geometry that was developed at length in my PhD thesis, to the “plane
+ parallax” formulation where all geometric quantities are referred to a 3D reference plane and to
heights or distances measured relative to this plane. The advantage of the plane + parallax point of
view is that it simplifies many formulae and provides a good deal of valuable geometric intuition.
The paper gives plane + parallax parametrizations of the main projective-geometric objects (points,
lines, planes, etc.), rederives the geometric matching constraints (intrinsic tensorial relationships
linking several images of an observed 3D entity) in this framework, and finishes with a projective
factorization based scene reconstruction method based on the plane + parallax framework. The
development takes place in a projective frame in which the reference plane is placed at infinity —
an algebraic trick that simplifies matters by reducing the initial camera geometry to one in which
the (projectively warped) camera motion is nominally pure-translational.

Summary of paper 15, “Bundle Adjustment — A Modern Synthesis”

This long paper (almost a small monograph) [TMHF00] presents an extended survey of the techno-
logical state of the art in Bundle Adjustment circa mid-2000. The paper expands on a panel session
that we organized on this subject at our ICCV’99 workshop “Vision Algorithms: Theory and Prac-
tice”, so the paper was published in the post-workshop proceedings of the same name [TZS00].
“Bundle Adjustment” is the name given in photogrammetry to simultaneous optimization of an es-
timated structure and motion (i.e. joint refinement of the estimated 3D scene parameters together
with the intrinsic and extrinsic camera parameters). It is a central step in modern high-accuracy
scene reconstruction methods, but when a complex scene is being reconstructed from many images,
the resulting optimization problem can become very large and computation-intensive. However,
the intrinsic sparse structure of the problem — sometimes several layers of structure — can be
exploited to improve the efficiency of the solution. There is a wide choice of possible optimiza-
tion methods and exact and approximate linear system solvers, and an extended discussion of this
choice is given in the paper. One also has to consider issues such as overall problem formulation
and parametrization, intrinsic degeneracies (“gauge freedoms”) linked to coordinate system free-
doms, and robustness, outliers, solution validation and quality control. The paper gives advice on
all of these issues. It also contains historical and numerical appendices, a glossary and a bibliog-
raphy listing the most notable previous papers in this area. One of our main aims in writing this
paper was to reduce the amount of duplication of effort and rediscovery of known results, by pro-
viding the computer vision community with a point of reference into the extensive and often rather
inaccessible photogrammetry literature on this subject.
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Abstract

Auto-calibration is the recovery of the full camera geometry and Euclidean scene structure
from several images of an unknown 3D scene, using rigidity constraints and partial knowledge
of the camera intrinsic parameters. It fails for certain special classes of camera motion. This
paper derives necessary and sufficient conditions for unique auto-calibration, for several practi-
cally important cases where some of the intrinsic parameters are known (e.g. skew, aspect ratio)
and others can vary (e.g. focal length). We introduce a novel subgroup condition on the camera
calibration matrix, which helps to systematize this sort of auto-calibration problem. We show
that for subgroup constraints, criticality is independent of the exact values of the intrinsic pa-
rameters and depends only on the camera motion. We study such critical motions for arbitrary
numbers of images under the following constraints: vanishing skew, known aspect ratio and full
internal calibration modulo unknown focal lengths. We give explicit, geometric descriptions for
most of the singular cases. For example, in the case of unknown focal lengths, the only crit-
ical motions are: (i) arbitrary rotations about the optical axis and translations, (ii) arbitrary
rotations about at most two centres, (iii) forward-looking motions along an ellipse and/or a
corresponding hyperbola in an orthogonal plane. Some practically important special cases are
also analyzed in more detail.

1 Introduction

One of the core problems in computer vision is the recovery of 3D scene structure and camera
motion from a set of images. However, for certain configurations there are inherent ambiguities.
This kind of problem was already studied in optics in the early 19th century, for example, by Vieth
in 1818 and Muller in 1826. Pioneering work on the subject was also done by Helmholtz. See [13]
for references. One well-studied ambiguity is when the visible features lie on a special surface, called
a critical surface, and the cameras have a certain position relative to the surface. Critical surfaces
or “gefährlicher Ort” were studied by Krames [21] based on a monograph from 1880 on quadrics [32].
See also the book by Maybank [24] for a more recent treatment. Another well-known ambiguity is
that when using projective image measurements, it is only possible to recover the scene up to an

∗Appeared in J. Mathematical Imaging & Vision, 13(2):131–146, Oct 2000. c© Kluwer Academic Publishers 2000.
Work supported by the ESPRIT Reactive LTR project 21914, CUMULI
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unknown projective transformation [8, 10, 35]. Additional scene, motion or calibration constraints
are required for a (scaled) Euclidean reconstruction. Auto-calibration uses qualitative constraints
on the camera calibration, e.g. vanishing skew or unit aspect ratio, to reduce the projective ambiguity
to a similarity. Unfortunately, there are situations when the auto-calibration constraints may lead
to several possible Euclidean reconstructions. In this paper, such degeneracies are studied under
various auto-calibration constraints.

In general it is possible to recover Euclidean scene information from m ≥ 3 images by assuming
constant but unknown intrinsic parameters of a moving projective camera [26, 7]. Several practical
algorithms have been developed [39, 2, 30]. Some of the intrinsic parameters may even vary, e.g.
the focal length [31], or the focal length and the principal point [14]. In [29, 15] it was shown that
vanishing skew suffices for a Euclidean reconstruction. Finally in, [16] it was shown that given at
least 8 images it is sufficient if just one of the intrinsic parameters is known to be constant (but
otherwise unknown).

However, for certain camera motions, these auto-calibration constraints are not sufficient [42, 1,
40]. A complete categorization of these critical motions in the case of constant intrinsic parameters
was given by Sturm [36, 37]. The uniformity of the constant-intrinsic constraints makes this case
relatively simple to analyze. But it is also somewhat unrealistic: It is often reasonable to assume
that the skew actually vanishes whereas focal length often varies between images. While the case of
constant parameters is practically solved, much less is known for other auto-calibration constraints.
In [43], additional scene and calibration constraints are used to resolve ambiguous reconstructions,
caused by a fixed axis rotation. The case of two cameras with unknown focal lengths is studied in
[12, 28, 4, 20]. For the general unknown focal length case, Sturm [38] has independently derived
results similar to those presented here and in [20, 19].

In this paper, we generalise the work of Sturm [37] by relaxing the constraint constancy on the
intrinsic parameters. We show that for a large class of auto-calibration constraints, the degeneracies
are independent of the specific values of the intrinsic parameters. Therefore, it makes sense to
speak of critical motions rather than critical configurations. We then derive the critical motions
for various auto-calibration constraints. The problem is formulated in terms of projective geometry
and the absolute conic. We start with fully calibrated cameras, and then continue with cameras
with unknown and possibly varying focal length, principal point, and finally aspect ratio. Once
the general description of the degenerate motions has been completed, some particular motions
frequently occurring in practice are examined in more detail.

This paper is organized as follows. In Section 2 some background on projective geometry for
vision is presented. Section 3 gives a formal problem statement and reformulates the problem in
terms of the absolute conic. In Section 4, our general approach to solving the problem is presented,
and Section 5 derives the actual critical motions under various auto-calibration constraints. Some
particular motions are analyzed in Section 6. In order to give some practical insight of critical and
near-critical motions, some experiments are presented in Section 7. Finally, Section 8 concludes.

2 Background

In this section, we give a brief summary of the modern projective formulation of visual geometry.
Also, some basic concepts in projective and algebraic geometry are introduced. For further reading,
see [6, 24, 33].

A perspective (pinhole) camera is modeled in homogeneous coordinates by the projection
equation

x ' PX (1)

where X = (X, Y, Z, W )T is a 3D world point, x = (x, y, z)T is its 2D image, P is the 3 × 4 camera
projection matrix and ' denotes equality up to scale. Homogeneous coordinates are used for both
image and object coordinates. In a Euclidean frame, P can be factored, using a QR-decomposition,
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cf. [9], as

P ' K [R | −Rt] where K =





f f s u0

0 f γ v0

0 0 1



 . (2)

Here the extrinsic parameters (R, t) denote a 3 × 3 rotation matrix and a 3 × 1 translation
vector, which encode the pose of the camera. The columns of R = [r1r2r3] define an orthogonal
base. The standard base is defined by e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T . The intrinsic
parameters in the calibration matrix K encode the camera’s internal geometry: f denotes the
focal length, γ the aspect ratio, s the skew and (u0, v0) the principal point.

A camera for which K is unknown is said to be uncalibrated. It is well-known that for uncal-
ibrated cameras, it is only possible to recover the 3D scene and the camera poses up to unknown
projective transformation [8, 10, 35]. This follows directly from the projection equation (1): Given
one set of camera matrices and 3D points that satisfies (1), another reconstruction can be obtained
from

PX = (P T ) (T−1 X) = P̃ X̃,

where T is a non-singular 4 × 4 matrix corresponding to a projective transformation of P
3.

A quadric in P
n is defined by the quadratic form

XT QX = 0,

where Q denotes a (n+1)×(n+1) symmetric matrix and X denotes homogeneous point coordinates.
The dual is a quadric envelope, given by

ΠT Q∗Π = 0, (3)

where Π denotes homogeneous coordinates for hyper-planes of dimension n− 1 that are tangent to
the quadric. For non-singular matrices, it can be shown that Q ' (Q∗)−1 (see [33] for a proof). A
quadric with a non-singular matrix is said to be proper. Quadrics with no real points are called
virtual. In the plane, n = 2, quadrics are called conics. We will use C for the 3 × 3 matrix that
defines the conic points xT Cx = 0 and C∗ for its dual that defines the envelope of tangent lines
lT C∗l = 0 (where C∗ ' C−1). The image of a quadric in 3D-space is a conic, i.e. the silhouette of a
3D quadric is projected to a conic curve. This can be expressed in envelope forms as

C∗ ' PQ∗PT . (4)

Projective geometry encodes only cross ratios and incidences. Properties like parallelism and
angles are not invariant under different projective coordinate systems. An affine space, where
properties like parallelism and ratios of lengths are preserved, can be embedded in a projective space
by singling out a plane at infinity Π∞. The points on Π∞ are called points at infinity and be
interpreted as direction vectors. In P

3, Euclidean properties, like angles and lengths, are encoded by
singling out a proper, virtual conic on Π∞. This absolute conic Ω∞ gives scalar products between
direction vectors. Its dual, the dual absolute quadric Ω∗

∞, gives scalar products between plane
normals. Ω∗

∞ is a 4× 4 symmetric rank 3 positive semidefinite matrix, where the coordinate system
is normally chosen such that Ω∗

∞ = diag(1, 1, 1, 0). Π∞ is Ω∗
∞’s unique null vector: Ω∗

∞ Π∞ = 0.
The similarities or scaled Euclidean transformations in projective space are exactly those
transformations that leave Ω∞ invariant. The transformations that leave Π∞ invariant are the
affine transformations. The different forms of the absolute conic will be abbreviated to (D)AC
for (Dual) Absolute Conic.

Given image conics in several images, there may or may not be a 3D quadric having them as
image projections. The constraints which guarantee this in two images are called the Kruppa
constraints [22]. In the two-image case, these constraints have been successfully applied in order
to derive the critical sets, e.g. [28]. For the more general case of multiple images, the projection
equation given by (4) can be used for each image separately.
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3 Problem Formulation

The problem of auto-calibration is to find the intrinsic camera parameters (Ki)
m
i=1, where m denotes

the number of camera positions. In general, auto-calibration algorithms proceed from a projective
reconstruction of the camera motion. In order to auto-calibrate, some constraints have to be enforced
on the intrinsic parameters, e.g. vanishing skew and/or unit aspect ratio. Thus, we require that the
calibration matrices should belong to some proper subset G of the group K of 3×3 upper triangular
matrices. Once the projective reconstruction and the intrinsic parameters are known, Euclidean
structure and motion are easily computed.

For a general set of scene points seen in two or more images, there is a unique projective
reconstruction. However, certain special configurations, known as critical surfaces, give rise to
additional ambiguous solutions. For two cameras, the critical configurations occur only if both
camera centres and all scene points lie on a ruled quadric surface [24]. Furthermore, when an
alternative reconstruction exists, then there will always exist a third distinct reconstruction. For
more than two cameras, the situation is less clear. In [25], it is proven that when six scene points and
any number of camera centres lie on a ruled quadric, then there are three distinct reconstructions.
If there are other critical surfaces is an open problem.

We will avoid critical surfaces by assuming unambiguous recovery of projective scene structure
and camera motion. In other words, the camera matrices and the 3D scene are considered to be
known up to an unknown projective transformation. We formulate the auto-calibration problem
as follows: If all that is known about the camera motions and calibrations is that each calibration
matrix Ki lies in some given constraint set G ⊂ K, when is a unique auto-calibration possible? More
formally:

Problem 3.1. Let G ⊂ K. Then, given the true camera projections (Pi)
m
i=1, where Pi = Ki[ Ri | −Riti ]

and Ki ∈ G, is there any projective transformation T (not a similarity) such that P̃i ' PiT has de-
composition P̃i = K̃i[ R̃i | −R̃it̃i ] with calibration matrices K̃i lying in G?

Without constraints on the intrinsic parameters T can be chosen arbitrarily, so auto-calibration
is impossible. Also, T is only defined modulo a similarity,

T → T

[

R t
0 1

]

,

as such transformations leave K in the decomposition P = K[ R | −Rt ] invariant. Based on the above
problem formulation, we can define precisely what is meant by a motion being critical.

Definition 3.1. Let G ⊂ K and let (Pi)
m
i=1 and (P̃i)

m
i=1 denote two projectively related motions,

with calibration matrices (Ki)
m
i=1 and (K̃i)

m
i=1, respectively. If the two motions are not related by a

Euclidean transformation and Ki, K̃i ∈ G, they are said to be critical with respect to G.

A motion is critical if there exists an alternative projective motion satisfying the auto-calibration
constraints. Without any additional assumptions, it is not possible to tell which motion is the true
one. One natural additional constraint is that the reconstructed 3D structure should lie in front
of all cameras. In many (but by no means all) cases this reduces the ambiguity, but it depends on
which 3D points are observed.

According to (4) the image of the absolute conic Ω∞ is,

ω∗

i ' PiΩ
∗

∞PT
i ' Ki[ Ri | −Riti ]

[

I 0
0 0

]

[ Ri | −Riti ]T KT
i = KiKT

i . (5)

Thus, knowing the calibration of a camera is equivalent to knowing its image of Ω∞. Also, if there
is a projectively related motion (P̃i)

m
i=1, then the false image of the true absolute conic is the true

image of a “false” absolute conic:

ω̃∗

i ' P̃iΩ
∗

∞P̃T
i = P̃iT

−1TΩ∗

∞T T T−T P̃i = PiΩ
∗

f PT
i ,
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where Ω∗
f = TΩ∗

∞T T is some dual, virtual quadric of rank 3. This observation allows us to eliminate

the “false” motion (P̃i)
m
i=1 from the problem and work only with the true Euclidean motion, but

with a false absolute dual quadric Ω∗

f .

Problem 3.2. Let G ⊂ K. Then, given the true motion (Pi)
m
i=1, where Pi = Ki[ Ri | −Riti ] and

Ki ∈ G, is there any other proper, virtual conic Ω∗
f , different from Ω∗

∞, such that PiΩ
∗
f PT

i ' K̃iK̃T
i ,

where K̃i ∈ G?

Given only a 3D projective reconstruction derived from uncalibrated images, the true Ω∞ is not
distinguished in any way from any other proper, virtual planar conic in projective space. In fact,
given any such potential conic Ω∗

f , it is easy to find a ‘rectifying’ projective transformation that
converts it to the Euclidean DAC form Ω∗

∞ = diag(1, 1, 1, 0) and hence defines a false Euclidean
structure. To recover the true structure, we need constraints that single out the true Ω∞ and Π∞

from all possible false ones. Thus, ambiguity arises whenever the images of some non-absolute conic
satisfy the auto-calibration constraints. We call such conics potential absolute conics or false
absolute conics. They are in one-to-one correspondence with possible false Euclidean structures
for the scene.

A natural question is whether the problem is dependent on the actual values of the intrinsic
parameters. We will show that this is not the case whenever the set G is a proper subgroup of K.
Fortunately, according to the following easy lemma, most of the relevant auto-calibration constraints
are subgroup conditions.

Lemma 3.1. The following constrained camera matrices form proper subgroups of the 3 × 3 upper
triangular matrices K:

(i) Zero skew, i.e. s = 0.

(ii) Unit aspect ratio, i.e. γ = 1.

(iii) Vanishing principal point, i.e. (u0, v0) = (0, 0).

(iv) Unit focal length, i.e. f = 1.

(v) Combinations of the above conditions.

Independence of the values of the intrinsic camera parameters is shown as follows:

Lemma 3.2. Let Gi ∈ G for i = 1, ..., m, where G is a proper subgroup of K. Then, the motion
(Pi)

m
i=1 is critical w.r.t. G if and only if the motion (GiPi)

m
i=1 is critical w.r.t. G.

Proof. If (Pi)
m
i=1 is critical with the alternative motion (P̃i)

m
i=1 and calibrations Ki, K̃i ∈ G, then

clearly (GiPi)
m
i=1 and (GiP̃i)

m
i=1 are also critical, because GiKi, GiK̃i ∈ G by the closure of G under

multiplication. The converse also holds with G−1

i , by the closure of G under inversion.

Camera matrices with prescribed parameters do not in general form a subgroup of K, but it
suffices for them to be of the more general form K0K where K0 is a known matrix and K belongs to
a proper subgroup of K. For example, the set of all camera matrices with known focal length f has
the form





f 0 0
0 f 0
0 0 1









1 ∗ ∗
0 ∗ ∗
0 0 1



 .

The invariance with respect to calibration parameters simplifies things, especially if one chooses
Gi = K−1

i for i = 1, ..., m. With this in mind, we restrict our attention to proper subgroups of K
and formulate the problem as follows.
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Problem 3.3. Let G ⊂ K be a proper subgroup. Then, given the true motion (Pi)
m
i=1 for calibrated

cameras, where Pi = [ Ri | −Riti ], is there any other false absolute conic Ω∗

f , different from Ω∗
∞,

such that
[ Ri | −Riti ]Ω∗

f [ Ri | −Riti ]T ' K̃iK̃T
i ,

where K̃i ∈ G?

4 Approach

We want to explicitly characterize the critical motions (relative camera placements) for which par-
ticular auto-calibration constraints are insufficient to uniquely determine Euclidean 3D structure.
We assume that projective structure is available. Alternative Euclidean structures correspond one-
to-one with possible locations for a potential absolute conic in P

3. Initially, any proper virtual
projective plane conic is potentially absolute, so we look for such conics Ω∗ whose images also sat-
isfy the given auto-calibration constraints. Ambiguity arises if and only if more than one such conic
exists. We work with the true camera motion in a Euclidean frame where the true absolute conic
Ω∞ has its standard coordinates.

Several general invariance properties help to simplify the problem:
Calibration invariance: As shown in the previous section, if the auto-calibration constraints are
subgroup conditions, the specific parameter values are irrelevant. Hence, for the purpose of deriving
critical motions, we are free to assume that the cameras are in fact secretly calibrated, Ki = I, even
though we do not assume that we know this. (All that we actually know is Ki ∈ G, which does not
allow some image conics ω∗

i 6= I to be excluded outright).
Rotation invariance: For known-calibrated cameras, Ki can be set to identity, and thus the image
ω∗

i = I of any false AC must be identical to the image of the true one. Since

PiΩ
∗

f PT
i ' I ⇒ RPiΩ

∗

f PT
i RT ' RRT = I,

hold for any rotation R, the image ω∗
i is invariant to camera rotations. Hence, criticality depends

only on the camera centres, not on their orientations. More generally, any camera rotation that
leaves the auto-calibration constraints intact is irrelevant. For example, arbitrary rotations about
the optical axis and 180◦ flips about any axis in the optical plane are irrelevant if (a, s) is either
(1, 0) or unconstrained, and (u0, v0) is either (0, 0) or unconstrained.
Translation invariance: For true or false absolute conics on the plane at infinity, translations are
irrelevant so criticality depends only on camera orientation.

In essence, Euclidean structure recovery in projective space is a matter of parameterizing all of
the possible proper virtual plane conics, then using the auto-calibration constraints on their images
to algebraically eliminate parameters until only the unique true absolute conic remains. More
abstractly, if C parameterizes the possible conics and X the camera geometries, the constraints cut
out some algebraic variety in (C,X) space. A constraint set is useful for Euclidean structure from
motion recovery only if this variety generically intersects the subspaces X = X0 in one (or at most
a few) points (C,X0), as each such intersection represents an alternative Euclidean structure for the
reconstruction from that camera geometry. A set of camera poses X is critical for the constraints
if it has exceptionally (e.g. infinitely) many intersections.

Potential absolute conics can be represented in several ways. The following parameterizations
have all proven relatively tractable:
(i) Choose a Euclidean frame in which Ω∗

f is diagonal, and express all camera poses relative this
frame [36, 37]. This is symmetrical with respect to all the images and usually gives the simplest
equations. However, in order to find explicit inter-image critical motions, one must revert to camera-
based coordinates which is sometimes delicate. The cases of a finite false absolute conic and a false
conic on the plane at infinity must also be treated separately, e.g. Ω∗

f = diag(d1, d2, d3, d4) with
either d3 or d4 zero.
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(ii) Work in the first camera frame, encoding Ω∗
f by its first image ω∗

1 and supporting plane (nT , 1).

Subsequent images ω∗
i ' Hi ω∗

1 HT
i are given by the inter-image homographies Hi = Ri+ti n

T where
(Ri, ti) is the ith camera pose. The output is in the first camera frame and remains well-defined
even if the conic tends to infinity, but the algebra required is significantly heavier.
(iii) Parameterize Ω∗

f implicitly by two images ω∗
1 , ω∗

2 subject to the Kruppa constraints. In the
two-image case this approach is both relatively simple and rigorous — two proper virtual dual image
conics satisfy the Kruppa constraints if and only if they define a (pair of) corresponding 3D potential
absolute conics — but it does not extend so easily to multiple images.

The derivations below are mainly based on method (i) .

5 Critical Motions

In this section, the varieties of critical motions are derived. In most situations, the problem is solved
in two separate cases. One is when there are potential absolute conics on the plane at infinity, Π∞,
and the other one is conics outside Π∞. If the potential conics are all on Π∞, it is still possible to
recover Π∞ and thereby obtain an affine reconstruction. Otherwise, the recovery of affine structure
is ambiguous, and we say that the motion is critical with respect to affine reconstruction.

The following constraints on the camera calibration are considered:

(i) known intrinsic parameters,

(ii) unknown focal lengths, but the other intrinsic parameters known,

(iii) known skew and aspect ratio.

These constraints form a natural hierarchy and they are perhaps the most interesting ones from a
practical point of view. In Section 3, it was shown in that it is sufficient to study the normalized
versions of the auto-calibration constraints, since critical motions are independent of the specific
values of the intrinsic parameters. That is, when some of the intrinsic parameters are known, e.g.
the principal point is (10, 20), we may equivalently analyze the case of principal point set to (0, 0).
The corresponding camera matrices give rise to subgroup conditions according to Lemma 3.1.

5.1 Known intrinsic parameters

We start with fully calibrated perspective cameras. The results may not come as a surprise, but it
is important to know that there are no other possible degenerate configurations.

Proposition 5.1. Given projective structure and calibrated perspective cameras at m ≥ 3 distinct
finite camera centres, Euclidean structure can always be recovered uniquely. With m = 2 distinct
camera centres, there is always exactly a twofold ambiguity.

Proof. Assuming that the cameras have K = I does not change the critical motions. The camera
orientations are irrelevant because any false absolute conic must have the same (rotation invariant)
images as the true one. Calibrated cameras never admit false absolute conics on Π∞, as the (known)
visual cone of each image conic can intersect Π∞ in only one conic, which is the true absolute conic.
Therefore, consider a finite absolute conic Ω∗

f , with supporting plane outside Π∞. As all potential
absolute conics are proper, virtual and positive semi-definite [34, 37], a Euclidean coordinate system
can be chosen such that Ω∗

f has supporting plane z = 0, and matrix coordinates

Ω∗

f =









d1 0 0 0
0 d2 0 0
0 0 0 0
0 0 0 d4









.
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Figure 1: A twisted pair of reconstructions.

Since the cameras are calibrated, K = I, and their orientations are irrelevant, R = I, the conic
projection (4) in each camera becomes

[I | −t] Ω∗

f [I | −t]T ' I ⇔





d1 + d4t
2
1 d4t1t2 d4t1t3

d4t1t2 d2 + d4t
2
2 d4t2t3

d4t1t3 d4t2t3 d4t
2
3



 ' I.

As the conic should be proper, both d4 6= 0 and t3 6= 0, which gives t1 = t2 = 0. Thus the only
solutions are t± = (0, 0,±z) and Ω∗

f ' diag(1, 1, 0, 1/z2) for some z > 0. Hence, ambiguity implies
that there are at most two camera centres, and the false conic is a circle of imaginary radius i z,
centred in the plane bisecting the two camera centres.

In the two-image case, the improper self-inverse projective transformation

T =









1 0 0 0
0 1 0 0
0 0 0 z
0 0 1/z 0









interchanges the true Ω∗
∞ and the false Ω∗

f , according to

T Ω∗

f T T ' Ω∗

∞

and takes the two projection matrices P± = R±[I | −t±] to

P−T−1 = P− and P+T−1 = −R+

[

−1
−1

1
| −t+

]

.

While the first camera remains fixed, the other has rotated 180◦ about the axis joining the two
centres. This twofold ambiguity corresponds exactly to the well-known twisted pair duality [23,
18, 27]. The geometry of the duality is illustrated in Figure 1.

The ‘twist’ T represents a very strong projective deformation that cuts the scene in half, moving
the plane between the cameras to infinity, see Figure 2. By considering twisted vs. non-twisted
optical ray intersections, one can also show that it reverses the relative signs of the depths, so for
one of the solutions the structure will appear to be behind one camera, cf. [17]. To conclude, Propo-
sition 5.1 states that any two-view geometry has a ‘twisted pair’ projective involution symmetry and
any camera configuration with three or more camera centres has a unique projective-to-Euclidean
upgrade.
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Figure 2: Intersecting the visual cones of two image conics satisfying the Kruppa constraints gener-
ates a pair of 3D conics, corresponding to the two solutions of the twisted pair duality.

5.2 Unknown focal lengths

In the case of two images and internally calibrated cameras modulo unknown focal lengths, it is in
general possible to recover Euclidean structure. Since we know that the solutions always occur in
twisted pairs (which can be disambiguated using the positive depth constraint), it is more relevant to
characterize the motions for which there are solutions other than the twisted pair duality. Therefore,
the two-camera case will be dealt with separately, after having derived the critical motions for
arbitrary many images.

5.2.1 Many images

If all intrinsic parameters are known except for the focal lengths, the camera matrix can be assumed
to be K = diag(f, f, 1) which in turn implies that the image of a potential absolute conic satisfies

ω∗ = KKT '





λ 0 0
0 λ 0
0 0 1



 , for some λ > 0. (6)

We start with potential absolute conics on Π∞.

Potential absolute conics on Π∞

Let Cf denote a 3× 3 matrix corresponding to a false absolute conic (in locus form) on the plane at
infinity. Since Cf is not the true one, Cf 6' I. The image of Cf is according to (4)

ω ' RCf RT . (7)

Notice that criticality is independent of translation of the camera.
Two cameras are said to have the same viewing direction if their optical axes are parallel or

anti-parallel.

Proposition 5.2. Given Π∞ and known skew, aspect ratio and principal point, then a motion is
critical if and only if there is only one viewing direction.

Proof. Choose coordinates in which camera 1 has orientation R1 = I. Suppose a motion is critical.
According to (6) and (7), this implies that Cf ' diag(1, 1, 1 + µ) = I + µe3e

T
3 for some µ > −1. For

camera 2, let R2 = [ r1 r2 r3] and apply (7),

I + µr3r
T
3 '





1 0 0
0 1 0
0 0 ν



 , for some ν > 0.
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This implies that r3 = ±e3, and in turn, R2 =
(

∗ ∗ 0
∗ ∗ 0
0 0 ±1

)

which is equivalent to a fixed viewing

direction of the camera. Conversely, suppose the viewing direction is fixed, which means that

Ri =
(

∗ ∗ 0
∗ ∗ 0
0 0 ±1

)

for i > 1. Then, it is not possible to disambiguate between any of the potential

absolute conics in the pencil Cf (µ) ' I + µe3e
T
3 , since RiCf RT

i = Cf .

Potential absolute conics outside Π∞

Assume we have a critical motion (Ri, ti)
m
i=1 with the false dual absolute conic Ω∗

f . If the supporting
plane for Ω∗

f is Π∞, the critical motion is described by Proposition 5.2, so assume that Ω∗
f is outside

Π∞. As in the proof of Proposition 5.1, one can assume without loss generality that a Euclidean
coordinate system has been chosen such that Ω∗

f has supporting plane z = 0, and matrix coordinates

Ω∗

f =









d1 0 0 0
0 d2 0 0
0 0 0 0
0 0 0 d4









.

The image of Ω∗

f is according to (4),

PiΩ
∗

f PT
i ' ω∗

i ⇔ RiCf RT
i ' ω∗

i , where Cf =
[

d1

d2

0

]

+ d4tit
T
i . (8)

A necessary condition for degeneracy is that Ri should diagonalize Cf to the form (6), i.e. the
matrix Cf must have two equal eigenvalues. As it is always possible to find an orthogonal matrix
that diagonalizes a real, symmetric matrix [5], all we need to do is to find out precisely when Cf has
two equal eigenvalues. Lemma A.1 in the Appendix characterizes matrices of this form.

Applying the lemma to Cf in (8), with σ1 = d1, σ2 = d2, σ3 = 0 and ρ = d4, results in the
following cases:

(i) If d1 6= d2, then

a. t1 = 0 and t22d1d4 + t23(d1 − d2)d4 = (d1 − d2)d1, or

b. t2 = 0 and t21d2d4 + t23(d2 − d1)d4 = (d2 − d1)d2.

These equations describe a motion on two planar conics for which the supporting planes are
orthogonal. On the first plane, the conic is an ellipse, while on the other the conic is a
hyperbola (depending on whether d1 > d2 or vice versa), see Figure 3.

(ii) If d1 = d2, then t1 = t2 = 0 and t3 arbitrary.

Notice that the second alternative in case (ii) of Lemma A.1 does not occur, since it implies
tT e3 = 0, making Cf rank-deficient. Also, case (iii) is impossible, since σ3 = 0 = σ1 = σ2.

It remains to find the rotations that diagonalize Cf . Since rotations around the optical axis
are irrelevant, only the direction of the optical axis is significant. Suppose the optical axis is
parameterized by the camera centre t and a direction d, i.e. {t + λd|λ ∈ R}. Any point on the axis
projects to the principal point,

[R | −Rt]

[

t + λd
1

]

'





0
0
1



 ⇔ d ' RT





0
0
1



 .

The direction d should equal the third row of R, which corresponds to the eigenvector of the single
eigenvalue of Cf . Regarding the proof of Lemma A.1, it is not hard to see that the eigenvectors
are v ' (0, t2 d1, t3 (d1 − d2) ) and v ' (t1 d2, 0, t3 (d1 − d2) ) in the two sub-cases in (i) above.
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optical centrescritical ellipse

critical hyperbola

Figure 3: Two orthogonal planes, where one plane contains an ellipse and the other contains a
hyperbola.

Geometrically, this means that the optical axis must be tangent to the conic at each position, as
illustrated in Figure 4(b). Similarly in (ii), it is easy to derive that v = (0, 0,±1), which means
that the optical axis should be tangent to the translation direction, cf. Figure 4(c). An exceptional
case is when Cf has a triple eigenvalue, because then any rotation is possible. However, according
to Proposition 5.1, it occurs only for twisted pairs. To summarize, we have proven the following.

Proposition 5.3. Given known intrinsic parameters except for focal lengths, a motion is critical
w.r.t. affine reconstruction if and only if the motion consists of (i) rotations with at most two distinct
centres (twisted pair ambiguity), or (ii) motion on two conics1 (one ellipse and one hyperbola) whose
supporting planes are orthogonal and where the optical axis is tangent to the conic at each position,
or (iii) translation along the optical axis, with arbitrary rotations around the optical axis.

The motions are illustrated in Figure 4. In case (i) and (ii), the ambiguity of the reconstruction
is twofold, as there is only one false absolute conic, whereas in case (iii) there is a one-parameter
family of potential planes at infinity (all planes z=constant). Case (iii) can be seen as a special case
of the critical motion in Proposition 5.2, which also has a single viewing direction, but arbitrary
translations.

5.2.2 Two images

For two cameras, projective geometry is encapsulated in the 7 degrees of freedom in the fundamental
matrix, and Euclidean geometry in the 5 degrees of freedom in the essential matrix. Hence, from
two projective images we might hope to estimate Euclidean structure plus two additional calibra-
tion parameters. Hartley [10, 11] gave a method for the case where the only unknown calibration
parameters are the focal lengths of the two cameras. This was later elaborated by Newsam et. al.
[28], Zeller and Faugeras [41] and Bougnoux [4]. All of these methods are Kruppa-based. We will
derive the critical motions for this case based on the results of the previous sections.

Proposition 5.4. Given zero skew, unit aspect ratio, principal point at the origin, but unknown
focal lengths for two cameras, then a motion (in addition to twisted pair) is critical if and only if (i)
the optical axes of the two cameras intersect or (ii) the plane containing the optical axis of camera
1 and camera centre 2, is orthogonal to the plane containing optical axis of camera 2 and camera
centre 1.

1The actual critical motion is the conics minus the two points where the ellipse intersects the plane z = 0, since
the image ω

∗ is non-proper at these points.
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Figure 4: Critical motions for unknown focal lengths: (a) A motion with two fixed centres. (b) A
planar motion on an ellipse and a hyperbola. (c) Translation along the optical axis. See Proposi-
tion 5.3.
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Figure 5: Critical configurations for two cameras: (a) Intersecting optical axes. (b) Orthogonal
optical axis planes. See Proposition 5.4.

Proof. Cf. [28]. Suppose a motion is critical. Regarding Proposition 5.2, we see that if there is
only one viewing direction, the optical axes are parallel and intersect at infinity, leading to (i)
above. Examining the three possibilities in Proposition 5.3, we see that the first one is the twisted
pair solution. The second one, either both cameras lie on the same conic (and hence their axes
are coplanar and intersect) or one lies on the hyperbola, the other on the ellipse (in which case
their optical axes lie in orthogonal planes) leading to (ii). Conversely, given any two cameras with
intersecting or orthogonal-plane optical axes, it is possible to fit (a one-parameter family of) conics
through the camera centres, tangential to the optical axes.

The two critical camera configurations are shown in Figure 5.

5.3 Known skew and aspect ratio

Consider the image ω∗ = KKT of Ω∗
∞. Inserting the parameterization of K in (2) into its dual ω,

it turns out that ω12 = − s
f2γ

. Since f and γ never vanish, requiring that the skew vanishes is

equivalent to ω12 = 0. The constraint can also be expressed in envelope form using ω∗ ' ω−1,

ω12 = 0 or dually ω∗

12ω
∗

33 − ω∗

13ω
∗

23 = 0. (9)

If in addition to zero skew, unit aspect ratio is required in K, it is equivalent to ω11 = ω22. This
follows from the fact that ω11 = 1

f2 and ω22 = 1

f2γ
. The constraint can also be transfered to ω∗,

ω11 − ω22 = 0 or dually ω∗

33(ω
∗

22 − ω∗

11) + ω∗2
13 − ω∗2

23 = 0. (10)

Analyzing the above constraints on ω in locus form, results in the following proposition when
the plane at infinity Π∞ is known.

Proposition 5.5. Given Π∞, a motion is critical with respect to zero skew and unit aspect ratio if
and only if there are at most two viewing directions.

Proof. For each image we have the two auto-calibration constraints (9), (10) with ω given by (7).
Choose 3D coordinates in which the first camera has orientation R1 = I. The image 1 constraints
become simply C11 − C22 = C12 = 0, so we can parameterize Cf with C11, C12 and C13. Given a
subsequent image 2, represent its orientation R2 by a quaternion q = (q0, q1, q2, q3), evaluate its two
auto-calibration constraints, and eliminate C11 between them to give:

(q2
0+q2

3)(q
2
1 +q2

2) ((q0q1+q2q3)C13 + (q0q2−q1q3)C23)=0

One of the 3 factors must vanish. If the first vanishes the motion is an optical axis rotation,
q2
1 +q2

2 = 0. If the second vanishes it is a 180◦ flip about an axis orthogonal to the optical one,
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Auto-calibration Critical motions Reconstruction
constraint ambiguity

Known calibration twisted pair duality projective
Unknown focal length (i) optical axis rotation affine
but otherwise known (ii) motion on two planar conics projective
calibration (iii) optical axis translation projective
Unknown focal length (i) intersecting optical axes projective
(two images only) (ii) orthogonal optical axis planes projective
Zero skew and (i) two viewing directions affine
unit aspect ratio (ii) complicated algebraic variety projective

Table 1: Summary of critical motions in auto-calibration.

q2
0+q2

3 = 0. In both cases the viewing direction remains unchanged and no additional constraint is
enforced on Cf . Finally, if the third factor vanishes, solving for Cf in terms of q gives a linear family
of solutions of the form

Cf ' α I + β (o1 oT
2 + o2 oT

1 ) (11)

where o1 = (0, 0, 1)T and o2 = (the third row of R2(q)) are the two viewing directions and (α, β) are
arbitrary parameters. Conversely, given any potential AC Cf 6' I, there is always exactly one pair of
real viewing directions o1,o2 that make Cf critical under (11). The linear family α′ I+β′ Cf contains
three rank 2 members, one for each eigenvalue λ of Cf (with β′/α′ = −λ). Explicit calculation shows
that each rank 2 member can be decomposed uniquely (up to sign) into a pair of viewing direction
vectors o1,o2 supporting (11), but only the pair corresponding to the middle eigenvalue is real.
(Coincident eigenvalues correspond to coincident viewing directions and can be ignored). Hence, no
potential AC Cf can be critical for three or more real directions simultaneously.

For potential absolute conics outside Π∞ things are more complicated. For each image, there
are two auto-calibration constraints. So in order to single out the true absolute conic (which has
8 degrees of freedom), at least 4 images are necessary. For a given Ω∗

f the polynomial constraints
in (9) and (10) determine a variety in the space of rigid motions. We currently know of no easy
geometrical interpretation of this manifold.

It is easy to see that given a critical camera motion, the ambiguity is not resolved by rotation
around the camera’s optical axis.

5.4 Summary

A summary of the critical motions for auto-calibration under the auto-calibration constraints studied
is given in Table 1. The reconstruction ambiguity is classified as projective if the plane at infinity
cannot be uniquely recovered, and affine if it is possible. As mentioned earlier, the twisted pair
duality is not a true critical motion, since the positive-depth constraint can always resolve the
ambiguity.

6 Particular Motions

Some critical motions occur frequently in practice. In this section, a selection of them is analyzed
in more detail.

6.1 Pure rotation

In the case of a stationary camera performing arbitrary rotations, no 3D reconstruction is possible.
There always exist many potential absolute conics outside Π∞.
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Figure 6: Rotations around the vertical axes with arbitrary translations.

However, it is still possible to recover the internal camera calibration, provided there are no
potential absolute conics on Π∞, cf. [37]. Proposition 5.2 and Proposition 5.5, regarding critical
motions and potential ACs on Π∞ tells us when such auto-calibration is possible for a purely rotating
camera.

6.2 Pure translation

If a sequence of movements only consists of arbitrary translations and no rotations, all proper,
virtual conics on Π∞ are potential absolute conics. Still, one could hope to recover the plane at
infinity correctly, and thus get an affine reconstruction.

Proposition 6.1. Let (ti)
m
i=1 be a general sequence of translations, where m is sufficiently large.

Then, the motion is

(i) always critical w.r.t. affine reconstruction under the constraints zero skew and unit aspect ratio.

(ii) not critical w.r.t. affine reconstruction under the constraints zero skew, unit aspect ratio and
vanishing principal point.

Proof. (i) We need to show that there exists a potential DAC Ω∗

f outside Π∞, which is valid for all

(ti)
m
i=1. Choose a coordinate system such that Pi =

[

I | − ti

]

. Then for instance Ω∗
f = diag(1, 1, 0, 1)

is a potential DAC (multiply PiΩ
∗
f PT

i to get ω∗ and check that it fulfills (9) and (10)). (ii) follows
directly from Proposition 5.3.

Note that translating only along the optical axis in case (ii) above results in a critical motion.

6.3 Parallel axis rotations

Sequences of rotations around parallel axes with arbitrary translations are interesting in several
aspects. They occur frequently in practice and are one of the major degeneracies for auto-calibration
with constant intrinsic parameters [36, 43]. See Figure 6.

It follows directly from Proposition 5.5 that given zero skew, unit aspect ratio and general
rotation angles, the fixed-axis motion is not critical unless it is around the optical axis. If we
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further add the vanishing principal point constraint, the optical axis remains critical according to
Proposition 5.2. If we know only that the skew vanishes, we have the following proposition.

Proposition 6.2. Let (Ri, ti)
m
i=1 be a general motion whose rotations are all about parallel axes,

where R1 = I and m is sufficiently large. Given Π∞, the motion is critical w.r.t. zero skew if and
only if the rotation is around one of the following axes:

(i) (0, ∗, ∗) or (∗, 0, ∗),

(ii) (1, 1, 0) or (1,−1, 0),

where each ∗ denotes an arbitrary real number.

Proof. Let Cf denote a false AC on Π∞. The zero skew constraint in (9) using the parameterization
in (7) gives C12 = 0 for camera 1. An arbitrary rotation around a fixed axis (q1, q2, q3) can be
parameterized by λ(q1, q2, q3), λ ∈ R. Inserting this into the zero skew constraint in (9) yields a
polynomial in R[λ]. Since λ can be arbitrary all coefficients of the polynomial must vanish. The
solutions to the system of vanishing coefficients are the ones given above.

Some of these critical axes may be resolved by requiring that the camera calibration should be
constant. In [37], it is shown that parallel axis rotations under constant intrinsic parameters are
always critical and give rise to the following pencil of potential absolute conics:

Cf (µ) = I + µ[q1, q2, q3][q1, q2, q3]
T . (12)

Combining constant intrinsic parameters, and some a priori known values of the intrinsic parameters,
some of the critical axes are still critical.

Corollary 6.1. Let (Ri, ti)
m
i=1 be a general motion with parallel axis rotations, where R1 = I and m

is sufficiently large. Given Π∞, and constant intrinsic parameters, the following axes are the only
ones still critical:

(i) (0, ∗, ∗) and (∗, 0, ∗) w.r.t. zero skew,

(ii) (0, 0, 1) w.r.t. zero skew and unit aspect ratio,

(iii) (0, 0, 1) w.r.t. an internally calibrated camera except for focal length.

Proof. (i) Using the potential ACs in (12) in the proof of Proposition 6.2, one finds that the only
critical axes remaining under the zero skew constraint are (0, ∗, ∗) and (∗, 0, ∗). (ii) and (iii) are
proved analogously.

7 Experiments

In practice, a motion is never exactly degenerate due to measurement noise and modeling discrep-
ancies. However, if the motion is close to a critical manifold it is likely that the reconstructed
parameters will be inaccurately estimated. To illustrate the typical effects of critical motions, we
have included some simple synthetic experiments for case of two cameras with unknown focal lengths
but other intrinsic parameters known. We focus on the question of how far from critical the two
cameras must be to give reasonable estimates of focal length and 3D Euclidean structure [20]. The
experimental setup is as follows: two unit focal length perspective cameras view 25 points distributed
uniformly within the unit sphere. The camera centres are placed at (−2,−2, 0) and (2,−2, 0) and
their optical axes intersect at the origin, similar to the setup in Figure 5(a). Independent Gaussian
noise of 1 pixel standard deviation is added to each image point in the 512× 512 images.

In the experiment, the elevation angles are varied, upwards for the left camera and downwards
for the right one, so that their optical axes are skewed and no longer meet. For each pose, the
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Figure 7: Relative errors vs. camera elevation for two cameras.

projective structure and the fundamental matrix are estimated by a projective bundle adjustment
that minimises the image distance between the measured and reprojected points [3]. Then, the focal
lengths are computed analytically with Bougnoux’ method [4]. For comparison, a calibrated bundle
adjustment with known focal lengths is also applied to the same data. The resulting 3D error is
calculated by Euclidean alignment of the true and reconstructed point sets.

Figure 7 shows the resulting root mean square errors over 100 trials as a function of elevation
angle. At zero elevation, the two optical axes intersect at the origin. This is a critical configuration
according to Proposition 5.4. A second critical configuration occurs when the epipolar planes of the
optical axes become orthogonal at around 35◦ elevation. Both of these criticalities are clearly visible
in both graphs. For geometries more than about 5-10◦ from criticality, the focal lengths can be
recovered quite accurately and the resulting Euclidean 3D structure is very similar to the optimal
3D structure obtained with known calibration.

8 Conclusion

In this paper, the critical motions in auto-calibration under several auto-calibration constraints have
been derived. The various constraints on the intrinsic parameters have been expressed as subgroup
conditions on the 3 × 3 upper triangular camera matrices. With this type of condition, we showed
that the critical motions are independent of the specific values of the intrinsic parameters.

It is important to be aware of the critical motions when trying to auto-calibrate a camera.
Additional scene or motion constraints may help to resolve the ambiguity, but clearly the best way
to avoid degeneracies is to use motions that are “far” from critical. Some synthetic experiments
have been performed that give some practical insight to the numerical conditioning of near-critical
and critical stereo configurations.
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Appendix

Lemma A.1. Let A be a real, symmetric 3 × 3 matrix of the form

A = σ1e1e
T
1 + σ2e2e

T
2 + σ3e3e

T
3 + ρttT ,

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), t a non-zero real 3 vector and ρ a non-zero real
scalar. Let σ1,σ2 and σ3 be given real scalars. Then, necessary and sufficient conditions on (t,ρ)
for A to have two equal eigenvalues can be divided into three cases:

(i) If σ1 6= σ2 6= σ3, then tT ei = 0 for at least one i (where i = 1, 2 or 3). Furthermore, ρ can
take the values:

ρ =
(σi − σj)(σi − σk)

t2j (σi − σk) + t2k(σi − σj)
,

for any i for which tT ei = 0 (where j 6= k 6= i).

(ii) If σi = σj 6= σk, then

a. tT ei = tT ej = 0 and ρ arbitrary, or

b. tT ek = 0 and ρ = σk−σi

t2
i
+t2

j

.

(iii) If σ1 = σ2 = σ3, then t and ρ arbitrary.

Proof. It follows from the Spectral Theorem [5] that if A is real and symmetric with two equal
eigenvalues µ, then there is a third eigenvector v and a scalar ν such that A = µI + νvvT . (The
eigenvalue corresponding to v is µ + ν). This gives

σ1e1e
T
1 + σ2e2e

T
2 + σ3e3e

T
3 + ρttT − νvvT − µI = 0.

Multiplying this matrix equation with e1, e2 and e3, results in three vector equations,

(σ1 − µ)e1 + ρt1t − νv1v = 0

(σ2 − µ)e2 + ρt2t − νv2v = 0

(σ3 − µ)e3 + ρt3t − νv3v = 0.

(13)

To prove (i), assume σ1 6= σ2 6= σ3. The orthogonal bases e1, e2 and e3 are linearly independent
and cannot all be linear combinations of t and v, so one of σi −µ must vanish, and thereby exactly
one. Suppose µ = σ1. Then,

ρt1t − νv1v = 0.

If one of the coefficients is non-zero, then t and v would be linearly dependent. However, this is
impossible because e2 and e3 are linearly independent and σ2−µ 6= 0, σ3−µ 6= 0. Analogously, ρ 6= 0
because otherwise e2 and e3 would be linearly dependent according to (13). Therefore tT e1 = 0.

If t is orthogonal to e1 and µ = σ1, some easy calculations yield that ρ must be chosen as

ρ =
(σ1 − σ2)(σ1 − σ3)

t22(σ1 − σ3) + t23(σ1 − σ2)
,

which is also sufficient.
When two or three of σi (i = 1, 2, 3) are equal, similar arguments can be used to deduce (ii) and

(iii).
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Résumé
Estimer la pose d’une caméra signifie calculer sa position
et son oritentation, à l’aide de ses paramètres internes,
ainsi que de la connaissance de la position de points 3D
de référence et de leurs projections dans l’image. On va
brièvement passer en revue différentes méthodes exis-
tantes pour le calcul de la pose, puis on introduira 4 nou-
veaux algorithmes. Tous ces algorithmes sont basés sur
l’algèbre linéaire. Le premier est basé sur le calcul de va-
leur propre d’une matrice 5×5. Elle permet de résoudre le
problème de pose avec 3 points et donc, donne plusieurs
solutions. Les 3 autres algorithmes, qui permettent le cal-
cul de la pose à partir de quatre points, donne une unique
solution, qui est le noyau d’une matrice. Ce noyau est cal-
culé à l’aide d’une SVD. Ces techniques sont basées sur
les matrices de résultants : la méthode 24×24 est une mé-
thode de résultant de Macaulay, et les méthodes 12×12 et
9 × 9 sont des versions compressées, obtenues après éli-
mination gaussienne. Un des avantages de ces méthodes
est leur simplicité. En particulier, les coefficients des ma-
trices ne sont que des fonctions simples des données. Les
expériences numériques donnent une comparaison entre
les nouveaux algorithmes et ceux déja existant.

Mots clés : Calibration, Estimation de la pose, Résolution
de systèmes de polynômes, Matrices de résultant, Résec-
tion.

Abstract
Camera pose estimation is the problem of determining
the position and orientation of an internally calibrated ca-
mera from known 3D reference points and their images.
We briefly survey existing methods for pose estimation,
then introduce four new algorithms based on efficient ma-
trix computations. The first is based on eigendecompo-
sition of a 5 × 5 matrix and returns the four intrinsic
solutions to the problem of pose from 3 points. The re-

.Ce papier fut publié dans les actes de Reconnaissance des Formas et
Intelligence Artificielle 2002. c© AFCET 2002.

maining three methods give a unique linear solution from
four points by SVD null space computation on resultant
matrices. The 24×24 method is the raw resultant matrix,
and the 12 × 12 and 9 × 9 methods are compressed ver-
sions of this obtained by Gaussian elimination with pivo-
ting on constant entries. All of these methods are simple
to implement. In particular, the matrix entries are simple
functions of the input data. Numerical experiments are
given comparing the performance of the new algorithms
with several existing methods.

Keywords : Calibration, Pose Estimation, Resection, Po-
lynomial Solving, Resultant Matrices.

1 Introduction
L’estimation de la pose d’une caméra consiste à détermi-
ner la position et l’orientation de la caméra à partir de
la calibration de celle-ci, ainsi que de la donnée de co-
ordonnées de points de référence et de la position res-
pective de leurs projections sur l’image. Ce problème est
aussi appelé resection par les photogramètres, et a été
bien étudié dans le passé. Avec 3 points, le problème de
pose possède dans le cas général 4 solutions. De nom-
breuses méthodes sont connues pour calculer ces solu-
tions. La plus ancienne est probablement due à Lagrange
en 1795. Voir [20, 7, 8, 9, 17]. Fischler & Bolles [7] ont
donné une méthode devenue populaire en vision par ordi-
nateur, lorsqu’ils ont introduit la méthode RANSAC pour
la détection des valeurs abérrantes dans les données ini-
tiales. Haralick et al [9] a montré différentes variations,
nouvelles et anciennes, de la méthode basique utilisant 3
points, et étudié les différentes stabilités suivants la ma-
nière de procéder aux substitutions et éliminations. Pour
les problèmes redondants, des méthodes itératives ont été
développées [13, 21, 3]. Des méthodes ont aussi été déve-
loppées pour le calcul de pose à partir de correspondances
de lignes et d’autres primitives. [10, 4, 1, 14, 12].
La méthode de 3 points possède des solutions multiples.
Si l’on veut obtenir une solution unique, il faut ajouter des
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données. Par exemple, si l’on ajoute un quatrième point
de référence, en général, il existe une solution unique.
Aussi, dans certains cas dégénérés, même un nombre in-
fini de points ne donne pas de solution unique. Ces confi-
gurations critiques sont connues précisément. Voir [18,
20] pour les détails. Brièvement, ces configurations cor-
respondent au cas où la caméra est sur une cubique twisté
(l’horoptère) dans l’espace, qui est tracé sur un cylindre
(Le cylindre dangereux). On peut noter les cas suivants
qui sont dégénérés : (1) tous les points sont à l’infini (la
translation de la caméra ne peut être estimée); (2) une
droite et un cercle, avec la droite orthogonale au plan
du cercle. Ce dernier cas est particulièrement ennuyeux,
pour le calcul de pose à partir de 3 points, ou à partir de
4 points coplanaires et formant un rectangle, lorsque la
caméra est dans le proche voisinage des points. On mon-
trera les effets de ces cas dégénérés dans quelques expé-
riences.

L’article est motivé par le fait qu’il n’y ait que peu de
méthodes donnant directement la solution unique du pro-
blème de pose dans le cas de données redondantes. Des
familles d’algorithmes linéaires sont présentées dans [16,
19]. Malheureusement, ces méthodes possèdent les mêmes
inconvénients que les méthodes algébriques en ce sens
que les coefficients des matrices utilisées sont compli-
qués, extraits de polynômes de degré 4, ce qui alourdit
considérablement l’implémentation. Dans cet article, on
propose : (1) un nouvel algorithme pour le calcul de pose
à partir de 3 points, basé sur le calcul des valeurs propres
d’une matrice 5 × 5 obtenue par la méthode de résultant
de Bezout-Cayley-Dixon; (2) Trois algorithmes linéaires
pour le calcul de pose à partir de 4 points, basé sur le cal-
cul du noyau de matrices 9× 9, 12× 12 et 24× 24, dont
les coefficients sont simples.

L’article est organisé comme suis. Dans la section 2, on
reprend les bases géométriques du calcul de pose. La sec-
tion 3 passe en revue une méthode pour résoudre linéai-
rement des systèmes de polynômes. Dans la section 4, on
présente une méthode de valeurs propres pour la méthode
de 3 points. Les 3 nouveaux algorithmes linéaires sont
présentés dans la section 5. La section 6 donne quelques
premiers résultats d’expérimentation qui comparent an-
cienne et nouvelles méthodes, et ceci sur des données
simulées. Enfin, la section 7 résume les contributions et
donne quelques conclusions.

2 Géométrie pour le calcul de pose
à partir de points

Étant donnée une caméra calibrée centrée en c et des cor-
respondances entre des points de référence 3D pi et leurs

u

u

p 

p

c

i

j

i

j

FIG. 1 – La détermination de la géométrie de base pour
le calcul de pose à partir de paires de correspondances
de points pi ↔ ui et pj ↔ uj entre des points 3D et
leurs projections dans les images.

images ui. Chaque paire de correspondances de points
donne une contrainte sur les distances inconnues entre
les points de référence et le centre de la caméra, xi =
||pi − c||. Les contraintes s’écrivent (cf. Figure 1) :

Pij(xi,xj) :≡ : xi
2 + xj

2 + cij xi xj − dij
2 := : 0

(1)

cij :≡ : −2 cos θij (2)

où dij = ||pi−pj || est la distance connue entre les points
de référence numéro i et j, et θij l’angle entre les demi-
droites [cpi) et [cpj). Le cosinus de cet angle peut aisé-
ment être déduit de la position des projections des points
dans l’image et de la matrice K de calibration de la ca-
méra de la manière suivante :

cos θij := :
uT

i Cuj
√

(uT
i Cui)(uT

j Cuj)
,

où C = (KKT )−1.

Pour n = 3, on obtient le système de polynômes suivant.






P12(x1,x2) = 0,
P13(x1,x3) = 0,
P23(x2,x3) = 0

où les trois inconnues sont les distances x1,x2,x3. Le
théorème de Bezout [2] borne le nombre de solutions du
système à 8 = 23 solutions. Cependant, n’ayant que des
termes en des puissances paires des xi, le système est in-
variant par la transformation xi 7→ −xi. Ainsi, les so-
lutions peuvent être classées par paires de solutions op-
posées. En utilisant le résultant de Sylvester 2 fois, on
peut éliminer les variables x2 et x3, de manière à obte-
nir un polynôme de degré 8 en x1, dont tout les termes
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ont un degré pair, c’est-à-dire un polynôme de degré 4 en
x = x2

1 :.

g(x) = a4 x4 + a3 x3 + a2 x2 + a1 x + a0 = 0.

Cette équation possède au plus 4 solutions en x et peut-
être résolue de manière explicite. Comme les xi sont po-
sitifs, x1 =

√
x.

Dans la méthode, et pour les autres qui vont suivre, on
calcule les distances xi afin d’estimer les coordonnées
des points de référence 3D dans un repère attaché et cen-
tré sur la caméra : p̃i = xi K

−1ui. Pour trouver la pose
de la caméra, il suffit alors d’estimer le mouvement ri-
gide qui aligne le mieux les points dans leurs repères res-
pectifs. Les centres de gravité des deux nuages de points
donnent la translation. La rotation s’en déduit facilement
par la méthode des quaternions ou par SVD [11, 6].

3 Les méthodes issues de l’algèbre
linéaire

Les matrices de résultant L’algèbre linéaire est un outil
puissant pour manipuler les polynômes [15, 5, 2]. Un po-
lynôme Pi(x) := :

∑

α cα,i xα en les variables x := :
(x1, . . . ,xn) est une somme finie de coefficients cα,i mul-
tipliés par des monômes xα := : xα1

1 ·xα2

2 · . . . ·xαn

n , avec
α := : (α1, . . . ,αn) ∈ Z

n qui est appelé multi-index
ou vecteur exposant. L’idée clé est de regarder les poly-
nômes comme produits de vecteurs lignes de coefficients
par des vecteurs colonnes de monômes. De manière simi-
laire, on peut voir un système de polynôme comme une
matrice de coefficients que multiplie un vecteur colonne
de monômes. La structure interne des polynômes n’ap-
paraît ainsi que de manière implicite. C’est une manière
de “sur-paramètrer” le problème, mais qui a l’avantage
d’être linéaire.

Considérons un système de polynômes quelconque :










P1(x1, . . . ,xn) = 0
...

Pq(x1, . . . ,xn) = 0,

On va résoudre ce système par linéarisation. Pour cela,
on va choisir des polynômes (Qj)j∈{1,...,n} de l’idéal en-
gendré par les Pi, de sorte que n soit plus grand que le
nombre de monômes distincts présents dans l’écriture des
Qj . Avec les polynômes Qj , on peut appliquer le procédé
expliqué ci-dessus, c’est-à-dire écrire le système de poly-
nômes {Qj = 0, j ∈ {1, . . . ,n} sous la forme d’un pro-
duit d’une matrice de coefficients par un vecteur colonne
de monôme :

Mv = 0.

Comme les polynômes Qj sont choisit en plus grand nombre
que les monômes, la matrice M possède plus de ligne
que de colonnes. La matrice M s’appelle matrice résul-
tante du système de polynômes. Dans les cas favorables,
le système possède une unique solution, et le noyau de
la matrice résultante est de dimension 1. Dans ce cas,
l’unique solution du système de polynômes est facile à
extraire. Les polynômes permettant la construction de la
matrice résultante, peuvent être soit trouvés à la main, soit
en utilisant une méthode automatique [15]. Bien que ces
constructions automatiques donnent des solutions conve-
nables, en général, elles ne garantissent pas la minimalité
de la taille de la matrice obtenue. Dans notre cas, la ma-
trice a été construite à la main.

La Méthode de Bezout-Cayley-Dixon Une autre tech-
nique pour résoudre les systèmes de polynômes est la
méthode de Bezout-Cayley-Dixon [15]. Considérons un
système de polynômes général :











P1(x1, . . . ,xn) = 0
...

Pn+1(x1, . . . ,xn) = 0.

Introduisons les nouvelles variables y1, . . . ,yn et construi-
sons la matrice :

M =







P1(Z0) P1(Z1) . . . P1(Zn)
...

...
...

Pn+1(Z0) Pn+1(Z1) . . . Pn+1(Zn)






.

Où, Zi = (y1, . . . ,yi,xi+1, . . . ,xn), avec i ∈ {0, . . . ,n}.
Dans chaque colonne, on convertit un x de plus en un
y (Le résultat dépend en général de l’ordre des variables
qu’on choisit). Si (x1, . . . ,xn) est une solution du sys-
tème, la première colonne s’annule et ainsi det(M) = 0.
En plus, le déterminant est divisible par (x1−y1) . . . (xn−
yn) parce que Pi(. . . ,xi, . . .) − Pi(. . . ,yi, . . .) est divi-
sible par (xi − yi) (s’annule si yi = xi). Si nous posons :

P (x,y) =
detM

∏n

i=1(xi − yi)

P (x,y) est bien un polynôme, et nous avons :

P (x,y) := :
∑

cα,βxαyβ := : wT Cv

où v = (. . . xα . . .)T et w = (. . . yβ . . .)T sont des vec-
teurs de monômes et C est une matrice de coefficients
cα,β. Résoudre le système polynomial se réduit à la réso-
lution du système linéaire

C · v = 0.
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En effet, comme les y peuvent prendre des valeurs arbi-
traires, chaque monôme yα est linéairement indépendant
de tous les autres.

4 L’algorithme de vecteur propre pour
la pose de 3 points

Nous appliquons maintenant la méthode de Bézout-Cayley-
Dixon au calcul de pose à partir de 3 points. Pour cela, on
divise chacun des Pij par x2

1. On pose ensuite :

u1 = 1/x1, u2 = x2/x1, u3 = x3/x1.

On obtient ainsi 3 polynômes Q12, Q13, Q23 en les va-
riables u1, u2, et u3. On considère maintenant ces po-
lynômes comme étant des polynômes en u2,u3 à coef-
ficients en u1 et cij ,dij , et on applique la méthode ci-
dessus. Ceci donne :

wT Mv = 0, (3)

avec :

v =





1
y2

y3

y2 y3

y2

2



 w =

( 1
u2

u3

u2

3

u2 u3

)

Et, M = M1 + M2u
2
1, où :

M2 =





−d23 c12 c13 −d13 c12 c23+c13 (d12−d23)
c13 (d12−d23) −d13 c23

−d12 c13 c23+c12 (d13−d23) −d23+d13+d12

−d12 c23 0
−d23+d13+d12 0

c12 (−d23+d13) −d23+d13+d12 −d13 c23

−d23+d13+d12 0 0
−d12 c23 0 0

0 0 0
0 0 0





M1 =





0 c12 c23−c13 −c12 −2 c23

−c13 c23−c12 c13 −2 −c12 0
−c12+c13 c23 −2+c13 c12 c23 c23−c12 c13 −c13 c13 c23

c23 c12 c23 0 0 c23

−2 −c12 −c13 −c23 0





Résoudre l’équation (3) signifie trouver u1 tel que :

(u−2
1 I + M−1

1 M2)v = 0,

puisque M1 est génériquement non-singulière. Mais ceci
est équivalent à trouver les valeurs propres de la matrice
M−1

1 M2. Le calcul de x1 = 1/u1 se ramène donc a un
calcul de valeurs propres.

5 Algorithme linéaire pour la pose
de 4 points

Maintenant, nous appliquons les méthodes de résultant
au problème de pose. Pour 4 points, le système d’entrée

possède 6 équations (1) à 4 variables : {Pij(xi,xj) :=
: 0 | 1 ≤ i < j ≤ 4}. Chaque solution de ce système
satisfait donc :

{xi Pjk(xj ,xk) = 0 | i,j < k = 1,2,3,4}

Ce nouveau système contient 24 polynômes en 24 mo-
nômes : 4 de la forme x3

i , 12 de la forme x2
i xj xk et 4 de

la forme xi xj xk (où i,j,k sont distincts), et finallement
4 xi. Il s’avère que (si les entrées cij et dij sont correctes)
la matrice résultante correspondante 24×24 a générique-
menet un noyau de dimension 1, qui contient les deux
solutions algébriques possibles x et −x, mais aussi la so-
lution trivialle x = 0 qui provient de la multiplication de
Pjk par xi. Mais il est facile de choisir la solution dési-
rée, puisque les profondeurs xi doivent être positives. En
détail, la matrice 24× 24 et la liste des monômes étiquet-
tant ses colonnes sont sur la figure 2.
Les coefficients de la matrice sont de très simples fonc-
tions des données d’entrée. Une fois que le vecteur de
monômes v du noyau est trouvé par SVD de la matrice, la
solution pour les profondeurs x peut être calculée comme
suit. Nous pouvons simplement prendre quelques ratios
fixé des éléments, comme

(x1,x2,x3,x4) := :

(√

v1

v21
,

√

v2

v22
,

√

v3

v23
,

√

v4

v24

)

.

Une méthode quelque peu plus appropriée est calculer le
facteur d’échelle à l’aide des composantes les plus grandes
du vecteur solution. En effet, en procédant ainsi, on utilise
les composantes qui présentent le moins de risque d’être
affectées par le bruit, ce qui donnera le meilleur facteur
d’échelle possible. On procède ensuite de même pour le
calcul des xi à partir du facteur d’échelle.

Génériquement, si les coefficients ci,j et di,j ne corres-
pondent pas à une géométrie 3D cohérente, la matrice va
être de rang maximal. Donc le déterminant de la matrice
24 × 24 est un multiple (non-trivial) du polynôme résul-
tant du système.

5.1 Les méthodes linéaires 12 × 12 et 9 × 9

Une matrice résultante peut être réduite en une matrice
plus petite par élimination Gaussienne symbolique par-
tielle. Ici, le fait que la matrice d’entrée est très creuse
et a un grand nombre de constantes d’entrée qui peuvent
être utilisées comme pivots reconnus comme stables, per-
met l’élimination symbolique pour aller assez loin avant
que les coefficients ne deviennent trop compliqués pour
une implémentation convenable et/ou que le conditionne-
ment numérique soit perdu. C’est un compromis entre la
complexité des entrées et la taille de la matrice résultante.
Mais l’élimination ne doit pas aller trop loin pour ne pas
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FIG. 2 – Le problème linéarisé

rendre trop difficile l’extraction de la solution à partir des
monômes restants. De plus, la réduction change la taille
de l’erreur effective, de sorte que cela peut affecter la pré-
cision des résultats.

Dans ce cas, nous expérimentons avec les réductions 12×
12 et 9 × 9. A chaque étape de la réduction Gaussienne
nous choisissons un pivot constant de sorte à ne pas avoir
de division polynomiale, et permutons les lignes en consé-
quence. La version 12 × 12 élimine tous les termes avec
des x1, x2 ou x3 au carré ou au cube. En éliminant aussi
les termes x2

4 et x3
4 cela donne une matrice 8 × 8 en:

(x1 x2 x3, . . . ,x2 x3 x4, x1, . . . ,x4)

. Mais nous jugeons les coefficients beaucoup trop com-
plexes, et en éliminant le terme x3

4 cela rend la récupéra-
tion de l’échelle de la solution plus difficile, aussi nous
préferrons laisser x3

4 et avoir une matrice résultante 9×9.
Les matrices 12 × 12 et 9 × 9 sont un peu trop grandes
pour être présentées ici, mais peuvent être demandées aux
auteurs.

6 Résultats expérimentaux
Cette section présente un comparatif entre des expériences
testant le nouvel algorithme développé ici et, quelques al-
gorithmes plus anciens. Les méthodes portent les noms
abrégés comme suit :

4pt 3 × 3 L’algorithme des 4 points présenté dans [16].
3pt L’élimination classique basée sur la méthode

des 3 points [16].
3pt 5 × 5 La méthode 5 × 5 des 3 points du système propre.
4pt 9 × 9 La méthode 9 × 9 pour 4 points.
4pt 12 × 12 La méthode 12 × 12 pour 4 points.
4pt 24 × 24 La méthode 24 × 24 pour 4 points.

Nous avons donc testé une variante de chaque algorithme
qui réordonne heuristiquement les points d’entrée de sorte
que les points de référence qui sont utilisés par l’algo-
rithme soient aussi dispersés que possible dans l’image.

Dans toutes les expériences, les points sont projetés avec
une distance focale de 1024 pixels dans une image 512×
512. Un bruit gaussien est additionné, avec un sigma par
défaut de 1 pixel.

Chaque point des graphs représente 200 tirages de points
3D généré au hasard dans un nuage gaussien de déviation
standard 1 unité, vu par environ 5 unités plus loin. Cepen-
dant, dans l’expérience sur les singularités, il y a eu 500
essais par point et seul le bruit a varié entre les essais,
pas les points 3D. Dans l’expérience sur la coplanarité, le
nuage est d’abord projeté sur un plan. Les résultats repré-
sentent les erreurs médianes, relatives à la taille totale de
la translation et à la rotation de 1 radian. Le taux d’échec
a été mesuré plutôt arbitrairement, comme le pourcentage
d’essais total où, soit l’erreur de rotation, soit l’erreur de
translation était supérieur à 0.5 unités.
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FIG. 3 – Erreur de translation relative et taux d’échec
versus le nombre de points d’entrée.
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FIG. 4 – Translation relative et erreur de rotation et taux d’échec quand la caméra bouge d’une configuration critique
à une autre pour le problème de pose, à la position parametre 0 et

√
2.

La figure 10 montre le comportement des différentes mé-
thodes avec 4 points d’entrée, quand le niveau de bruit
augmente. La figure 3 montre le comportement quand des
points supplémentaires sont additionnés à l’ensemble de
données, pour les méthodes qui peuvent gérer des points
supplémentaires.

Comme mentionné dans l’introduction, le problème de
pose possède quelques cas singuliers qui cause souvent
des problèmes dans la pratique. La figure 4 montre les
résultats des erreurs et taux d’échec pour une telle confi-
guration. Les données sont 4 points coplanaires dans un
carré [−1,1] × [−1,1] et la caméra commence à la ‘po-
sition=0’, en un point singulier (pour la méthode de 4
points) directement au-dessus de leur centre. La caméra
bouge ensuite parallèlement au plan des quatres points se-
lon une droite, en se dirigeant vers un des angles du carré.
A la ‘position=

√
2’ unités elle croise le coté du cylindre

circulaire vertical qui correspond aux 4 points de donnée,
où une autre singularité se produit.

La principale conclusion de ces expériences est que —
en se basant sur le fait qu’elles retournent des solutions
possibles multiples qui peuvent ne pas convenir — l’al-
gorithme des 3-points surpasse significativement tous les
algorithmes de 4 points linéaires. Même si les méthodes
linéaires utilisent plus de données et intègrent des redon-
dances, leurs erreurs relatives et leurs taux d’échec sont
souvent 2 à 10 fois supérieurs à ceux des méthodes 3
points. La normalisation des données conventionnelles ne
semble pas aider ici, mais des méthodes plus sophisti-
quées sont possibles.

Les points coplanaires ne sont pas un cas singulier pour
aucune des méthodes testées ici, et d’une manière géné-
rale leur performances sont similaires au cas non-coplanaires,
excepté que l’avantage de performance des méthodes 3
points est décroissant. En augmentant le nombre de points
pour les algorithmes linéaires cela améliore légèrement

les résultats, mais pas suffisament pour égaler les mé-
thodes des trois points. Pour les méthodes qui traitent les
points asymétriquement, en choisissant des points image
éparpillés comme points de base, cela semble améliorer
les résultat en moyenne. Il existe sûrement de meilleures
heuristiques que le choix de points éparpillés pour trou-
ver des configurations de base stable. En particulier, avec
de nombreux points dans un nuage gaussien, il y a une
légère tendance, en choisissant des points éparpillés, de
choisir des configurations proche de la dégénéréscence
‘camera au dessus du cercle de points’, qui réduit la sta-
bilité moyenne.

L’élimination traditionelle et la nouvelle méthode, basé
sur un calcul de vecteur propre, pour le calcul de pose à
partir de 3 points ont des performances très proches dans
tous les cas testés, la méthode du vecteur propre ayant
peut être une toute petite avance.

La performance des méthodes linéaires 24× 24, 12× 12
et 9 × 9 est ainsi similaire, avec 24 × 24 ayant un léger
avantage dans la précision globale, mais étant significa-
tivement plus lent que la méthode 9 × 9. Ce ne sont que
des tendances statistiques — dans chaque problème il est
très difficile de prévoir laquelle va le mieux fonctionner.

Les erreurs, et spécialement les taux d’échec, de toutes
les méthodes sont significativement plus élevées que ce
que l’on voudrait, spécialement pour les méthodes de 4
points. Ceci est en partie du à la génération alléatoire des
données qui est souvent proche d’une configuration par-
ticulière.

Nous avons aussi effectué des tests avec des méthodes
robustes sur l’algorithme algébrique, et l’algorithme li-
néaire 24×24. Nous avons comparé ces résultats avec une
“méthode combinée” qui calcule la solution avec l’un et
l’autre des algorithmes puis choisit celui ayant le moins
de valeurs abérrantes entre les deux méthodes sur 300
échantillons aléatoires sur 30 points aléatoires. L’algo-
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rithme RANSAC pour la méthode combinée a moitié moins
d’itérations que les autres méthodes pour obtenir la même
efficacité en temps. Le nombre de valeurs abérrantes est
estimé à partir d’un seuil fixé sur les erreurs de reprojec-
tion. Nous utilisons 1, 3 et 5 pixels comme seuils.
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FIG. 5 – Comparaison des 3 méthodes avec 1 pixel
comme seuil de reprojection.
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FIG. 6 – Comparaison des 3 méthodes avec 3 pixels
comme seuil de reprojection.

Nous avons remarqué que l’algorithme combiné est un
tout petit peu plus robuste (voir Figure 6). Nous avons
effectué 7500 tests pour chacune des trois méthodes, en-
suite nous avons trié les erreurs résiduelles et finallement
zoomé sur les 100 pires tests de chaque méthode. L’al-
gorithme combiné réduit la zone d’instabilité de l’esti-
mation sur les méthodes individuelles ayant différentes
configurations instables.

Les résultats avec les expériences sur des images réelles
avec des données de calibration connues sont présentés à
la Figure 9.

7 Conclusions
Nous avons présenté une nouvelle méthode pour l’esti-
mation de pose à partir de 3 points, basé sur un calcul
de vecteur propre, et trois nouveaux algorithmes linéaires
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FIG. 7 – Comparaison des 3 méthodes avec 5 pixels
comme seuil de reprojection.
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FIG. 8 – La robustesse de la méthode combiné.

pour l’estimation de pose à partir de 4 points. Le principal
avantage des algorithmes linéaires est qu’ils génèrent une
solution unique. Aucune des méthodes ne dégénère pour
des points (génériques) coplanaires. Toutes les méthodes
développées ici sont faciles à implémenter dans le sens
où leur matrices sont des fonctions relativement simples
des coordonnées d’entrée. La méthode du vecteur propre
surpasse légèrement l’élimination traditionnelle et est re-
commandée pour être utilisée en applications. Les mé-
thodes linéaires à 4 points demandent des méthodes de
normalisation des données plus sophistiquées pour être
plus pratique.
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FIG. 10 – L’erreur de translation relative et le taux d’échec versus le niveau de bruit en pixels, pour 4 points. Les deux
premières lignes sont pour les données non coplanaires, les deux suivantes pour les données coplanaires. Les première
et troisième lignes utilisent l’ordre des points d’entrée, la seconde et la quatrième réordonnent heuristiquement les
points pour une meilleure stabilité avant de lancer les méthodes de pose. La tendance de l’erreur de rotation est très
proche de celle de la translation, et n’est pas montrée par manque de place.
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Abstract

We study the special form that the general multi-image tensor formalism takes under the plane
+ parallax decomposition, including matching tensors and constraints, closure and depth recovery
relations, and inter-tensor consistency constraints. Plane + parallax alignment greatly simplifies
the algebra, and uncovers the underlying geometric content. We relate plane + parallax to the
geometry of translating, calibrated cameras, and introduce a new parallax-factorizing projective
reconstruction method based on this. Initial plane + parallax alignment reduces the problem to a
single rank-one factorization of a matrix of rescaled parallaxes into a vector of projection centres
and a vector of projective heights above the reference plane. The method extends to 3D lines
represented by via-points and 3D planes represented by homographies.
Keywords: Plane + parallax, matching tensors, projective reconstruction, factorization, structure
from motion.

1 Introduction

This paper studies the special forms that matching tensors take under the plane + parallax decom-
position, and uses this to develop a new projective reconstruction method based on rank-1 parallax
factorization. The main advantage of the plane + parallax analysis is that it greatly simplifies the
usually rather opaque matching tensor algebra, and clarifies the way in which the tensors encode the
underlying 3D camera geometry. The new plane + parallax factorizing reconstruction method ap-
pears to be even stabler than standard projective factorization, especially for near-planar scenes. It
is a one-step, closed form, multi-point, multi-image factorization for projective structure, and in this
sense improves on existing minimal-configuration and iterative depth recovery plane + parallax SFM
methods [19,4,23,22,45]. As with standard projective factorization [37], it can be extended to handle
3D lines (via points) and planes (homographies) alongside 3D points.

Matching tensors [29,8,36] are the image signature of the camera geometry. Given several
perspective images of the same scene taken from different viewpoints, the 3D camera geometry is
encoded by a set of 3× 4 homogeneous camera projection matrices. These depend on the chosen 3D
coordinate system, but the dependence can be eliminated algebraically to give four series of multi-
image tensors (multi-index arrays of components), each interconnecting 2–4 images. The different

Published in European Conference on Computer Vision, 2000. c© Springer-Verlag 2000.
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images of a 3D feature are constrained by multilinear matching relations with the tensors as coeffi-
cients. These relations can be used to estimate the tensors from an initial set of correspondences, and
the tensors then constrain the search for further correspondences. The tensors implicitly character-
ize the relative projective camera geometry, so they are a useful starting point for 3D reconstruction.
Unfortunately, they are highly redundant, obeying a series of complicated internal self-consistency
constraints whose general form is known but too complex to use easily, except in the simplest cases
[36,5,17,6].

On the other hand, a camera is simply a device for recording incoming light in various directions
at the camera’s optical centre. Any two cameras with the same centre are equivalent in the sense that
— modulo field-of-view and resolution constraints which we ignore for now — they see exactly the
same set of incoming light rays. So their images can be warped into one another by a 1-1 mapping
(for projective cameras, a 2D homography). Anything that can be done using one of the images can
equally well be done using the other, if necessary by pre-warping to make them identical.

From this point of view, it is clear that the camera centres are the essence of the 3D camera ge-
ometry. Changing the camera orientations or calibrations while leaving the centres fixed amounts to a
‘trivial’ change of image coordinates, which can be undone at any time by homographic (un)warping.
In particular, the algebraic structure (degeneracy, number of solutions, etc.) of the matching con-
straints, tensors and consistency relations — and a fortiori that of any visual reconstruction based on
these — is essentially a 3D matter, and hence depends only on the camera centres.

It follows that much of the complexity of the matching relations is only apparent. At bottom, the
geometry is simply that of a configuration of 3D points (the camera centres). But the inclusion of
arbitrary calibration-orientation homographies everywhere in the formulae makes the algebra appear
much more complicated than need be. One of the main motivations for this work was to study the
matching tensors and relations in a case — that of projective plane + parallax alignment — where
most of the arbitrariness due to the homographies has been removed, so that the underlying geometry
shows up much more clearly.

The observation that the camera centres lie at the heart of the projective camera geometry is by
no means new. It is the basis of Carlsson’s ‘duality’ between 3D points and cameras (i.e. centres)
[2,43,3,10], and of Heyden & Åström’s closely related ‘reduced tensor’ approach [13,14,15,17].
The growing geometry tradition in the plane + parallax literature [19,23,22,4,45] is also particularly
relevant here.

Organization: §2 introduces our plane + parallax representation and shows how it applies to the
basic feature types; §3 displays the matching tensors and constraints in the plane + parallax represen-
tation; §4 discusses tensor scaling, redundancy and consistency; §5 considers the tensor closure and
depth recovery relations under plane + parallax ; §6 introduces the new parallax factorizing projective
reconstruction method; §7 shows some initial experimental results; and §8 concludes.

Notation: Bold italic ‘x’ denotes 3-vectors, bold sans-serif ‘x’ 4-vectors, upper case ‘H, H’ matrices,
Greek ‘λ, µ’ scalars (e.g. homogeneous scale factors). We use homogeneous coordinates for 3D
points x and image points x, but usually inhomogeneous ones c for projection centres c = ( c

1 ). We
use P for 3 × 4 camera projection matrices, e for epipoles. 3D points x = ( x

w ) are parametrized by
a point x on the reference plane and a ‘projective height’ w above it. ∧ denotes cross-product, [− ]×
the associated 3× 3 skew matrix [ x ]× y = x ∧ y, and [ a, b, c ] the triple product.
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2 The Plane + Parallax Representation

Data analysis is often simplified by working in terms of small corrections against a reference model.
Image analysis is no exception. In plane + parallax, the reference model is a real or virtual reference
plane whose points are held fixed throughout the image sequence by image warping (see, e.g. [24,
33,19] and their references). The reference is often a perceptually dominant plane in the scene such
as the ground plane. Points that lie above the plane are not exactly fixed, but their motion can be
expressed as a residual parallax with respect to the plane. The parallax is often much smaller than the
uncorrected image motion, particularly when the camera motion is mainly rotational. This simplifies
feature extraction and matching. For each projection centre, alignment implicitly defines a unique
reference orientation and calibration, and in this sense entirely cancels any orientation and calibration
variations. Moreover, the residual parallaxes directly encode useful structural information about the
size of the camera translation and the distance of the point above the plane. So alignment can be
viewed as a way of focusing on the essential 3D geometry — the camera centres and 3D points —
by eliminating the ‘nuisance variables’ associated with orientation and calibration. The ‘purity’ of
the parallax signal greatly simplifies many geometric computations. In particular, we will see that it
dramatically simplifies the otherwise rather cumbersome algebra of the matching tensors and relations
(c.f . also [19,22,4]).

The rest of this section describes our “plane at infinity + parallax” representation. It is projec-
tively equivalent to the more common “ground plane + parallax” representation (e.g. [19,42]), but has
algebraic advantages — simpler formulae for scale factors, and the link to translating cameras — that
will be discussed below.

Coordinate frame: We suppose given a 3D reference plane with a predefined projective coordinate
system, and a 3D reference point not on the plane. The plane may be real or virtual, explicit or
implicit. The plane coordinates might derive from an image or be defined by features on the plane.
The reference point might be a 3D point, a projection centre, or arbitrary. We adopt a projective 3D
coordinate system that places the reference point at the 3D origin (0 0 0 1)>, and the reference plane
at infinity in standard position (i.e. its reference coordinates coincide with the usual coordinates on
the plane at infinity). Examining the possible residual 4 × 4 homographies shows that this fixes the
3D projective frame up to a single global scale factor. If H =

( A t
b> λ

)

, then the constraint that H fixes
each point ( x

0 ) on the reference plane implies that A = µ I and b = 0, and the constraint that H
fixes the origin ( 0

1 ) implies that t = 0. So H =
(

µ I 0
0 λ

)

, which is a global scaling by µ/λ.

3D points: 3D points are represented as linear combinations of the reference point/origin and a point
on the reference plane:

x ≡
(

x
w

)

=

(

x
0

)

+ w

(

0
1

)

(1)

x is the intersection with the reference plane, of the line through x and the origin. w is called x’s
projective height above the plane. w = 0 is the reference plane, w = ∞ the origin. w depends on
the normalization convention for x. If the reference plane is made finite (z = 0) by interchanging z
and w coordinates, w becomes the vertical height above the plane. But in our projective, plane-at-
infinity based frame with affine normalization xz = 1, w is the inverse z-distance (or with spherical
normalization ‖x‖ = 1, the inverse “Euclidean” distance) of x from the origin.

Camera matrices: Plane + parallax aligned cameras fix the image of the reference plane, so their



206 Chapter 5. Geometric Vision & Scene Reconstruction

leading 3× 3 submatrix is the identity. They are parametrized simply by their projection centres:

P =
(

u I3×3 − c
)

with projection centre c =

(

c
u

)

(2)

Hence, any 3D point can be viewed as a plane + parallax aligned camera and vice versa. But, whereas
points often lie on or near the reference plane (w → 0), cameras centred on the plane (u→ 0) are too
singular to be useful — they project the entire 3D scene to their centre point c.

We will break the nominal symmetry between points and cameras. Points will be treated projec-
tively, as general homogeneous 4-component quantities with arbitrary height component w. But cam-
era centres c = ( c

u ) will be assumed to lie outside the reference plane and scaled affinely (u → 1),
so that they and their camera matrices P =

(

u I − c
)

are parametrized by their inhomogeneous
centre 3-vector c alone.

This asymmetry is critical to our approach. Our coordinate frame and reconstruction methods
are essentially projective and are most naturally expressed in homogeneous coordinates. Conversely,
scaling u to 1 freezes the scales of the projection matrices, and everywhere that matching tensors
are used, it converts formulae that would be bilinear or worse in the c’s and u’s, to ones that are
merely linear in the c’s. This greatly simplifies the tensor estimation process compared to the general
unaligned case. The representation becomes singular for cameras near the reference plane, but that
is not too much of a restriction in practice. In any case it had to happen — no minimal linear
representation can be globally valid, as the general redundant tensor one is.

Point projection: In image i, the image Pi xp of a 3D point xp = ( xp
wp ) is displaced linearly from its

reference image1 xp towards the centre of projection ci , in proportion to its height wp :

λip xip = Pi xp =
(

I −ci

)

(

xp

wp

)

= xp − wp ci (3)

Here λip is a projective depth [32,37] — an initially-unknown projective scale factor that compen-
sates for the loss of the scale information in Pi xp when xip is measured in its image. Although the
homogeneous rescaling freedom of xp makes them individually arbitrary, the combined projective
depths of a 3D point — or more precisely its vector of rescaled image points (λip xip)i=1...m —
implicitly define its 3D structure. This is similar to the general projective case, except that in plane +
parallax the projection matrix scale freedom is already frozen: while the homogeneous scale factors
of xp and xip are arbitrary, ci has a fixed scale linked to its camera’s position.

Why not a ground plane?: In many applications, the reference plane is nearby. Pushing it out to
infinity forces a deeply projective 3D frame. It might seem preferable to use a finite reference plane,
as in, e.g. [19,42]. For example, interchanging the z and w coordinates puts the plane at z = 0,
the origin at the vertical infinity (0 0 1 0)>, and (modulo Euclidean coordinates on the plane itself)
creates an obviously rectilinear 3D coordinate system, where x gives the ground coordinates and w
the vertical height above the plane. However, a finite reference plane would hide a valuable insight
that is obvious from (2): The plane + parallax aligned camera geometry is projectively equivalent
to translating calibrated cameras. Any algorithm that works for these works for projective plane +
parallax, and (up to a 3D projectivity!) vice versa. Although not new (see, e.g. [14]), this analogy
deserves to be better known. It provides simple algebra and geometric intuition that were very helpful
during this work. It explicitly realizes — albeit in a weak, projectively distorted sense, with the

1The origin/reference point need not coincide with a physical camera, but can still be viewed as a reference camera
P0 =

`

I 0
´

, projecting 3D points xp to their reference images xp.
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reference plane mapped to infinity — the suggestion that plane + parallax alignment cancels the
orientation and calibration, leaving only the translation [22].

3D Lines: Any 3D line L can be parametrized by a homogeneous 6-tuple of Plücker coordinates (l, z)
where: (i) l is a line 3-vector — L’s projection from the origin onto the reference plane; (ii) z is a
point 3-vector — L’s intersection with the reference plane; (iii) z lies on l, l · z = 0 (this is the
Plücker constraint); (iv) the relative scaling of l and z is fixed and gives L’s ‘steepness’: lines on the
plane have z → 0, while the ray from the origin to z has l → 0. This parametrization of L relates to
the usual 3D projective Plücker (4× 4 skew rank 2 matrix) representations as follows:

L∗ =
(

[ l ]
×

z>

−z 0

)

contravariant
form L∗ =

(

[ z ]
×

l>

−l 0

)

covariant
form (4)

The line from ( x
w ) to ( y

v ) is (l, z) = (x ∧ y, w y − v x). A 3D point x = ( x
w ) lies on L iff

L∗ x =
(

w l+z∧ x
l · x

)

= 0. In a camera at ci, L projects to:

µi li = l + z ∧ ci (5)

This vanishes if ci lies on L.

Displacements and epipoles: Given two cameras with centres ci = ( ci
1 ) and cj = ( cj

1 ), the 3D
displacement vector between their two centres is cij = ci − cj . The scale of cij is meaningful,
encoding the relative 3D camera position. Forgetting this scale factor gives the epipole eij — the 2D
projective point at which the ray from cj to ci crosses the reference plane:

eij ' cij ≡ ci − cj (6)

We will see below that it is really the inter-camera displacements cij and not the epipoles eij that ap-
pear in tensor formulae. Correct relative scalings are essential for geometric coherence, but precisely
because of this they are also straightforward to estimate. Once found, the displacements cij amount
to a reconstruction of the plane + parallax aligned camera geometry. To find a corresponding set of
camera centres, simply fix the 3D coordinates of one centre (or function of the centres) arbitrarily,
and the rest follow immediately by adding displacement vectors.

Parallax: Subtracting two point or line projection equations (3, 5) gives the following important
parallax equations:

λi xi − λj xj = −w cij (7)

µi li − µj lj = z ∧ cij (8)

Given the correct projective depths λ, µ, the relative parallax caused by a camera displacement is
proportional to the displacement vector. The RHS of (7) already suggests the possibility of factoring a
multi-image, multi-point matrix of rescaled parallaxes into (w) and (cij) matrices. Results equivalent
to (7) appear in [19,22], albeit with more complicated scale factors owing to the use of different
projective frames.

Equation (7) has a trivial interpretation in terms of 3D displacements. For a point x = ( x
w ) above

the reference plane, scaling to w = 1 gives projection equations λi xi = Pi x = x − ci, so λi xi is
the 3D displacement vector from ci to x. (7) just says that the sum of displacements around the 3D
triangle ci cj x vanishes. On the reference plane, this entails the alignment of the 2D points xi, xj and
eij (along the line of intersection of the 3D plane of ci cj x with the reference plane — see fig. 1),
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and hence the vanishing of the triple product [ xi, eij , xj ] = 0. However the 3D information in the
relative scale factors is more explicit in (7).
3D Planes: The 3D plane p = (n> d) has equation p ·x = n ·x+dw = 0. It intersects the reference
plane in the line n ·x = 0. The relative scaling of n and d gives the ‘steepness’ of the 3D plane: n = 0
for the reference plane, d = 0 for planes through the origin. A point xj in image j back-projects to
the 3D point Bj xj on p, which induces an image j to image i homography Hij , where:

Bj(p) ≡
(

I − cj n>/(n·cj+d)

−n>/(n·cj+d)

)

Hij(p) = Pi Bj = I +
cij n>

n · cj + d
(9)

For any i, j and any p, this fixes the epipole eij and each point on the intersection line n · x = 0. Hij

is actually a planar homology [30,11] — it has a double eigenvalue corresponding to the points on
the fixed line.

Any chosen plane p = (n> d) can be made the reference plane by applying a 3D homography H
and compensating image homographies Hi :

H =
(

I 0
n>/d 1

)

=
(

I 0
−n>/d 1

)

−1

Hi = I − ci n>
n·ci+d

=
(

I + ci n>
d

)

−1

Reference positions x are unchanged, projective heights are warped by an affinity w → w + n · x/d,
and camera centres are rescaled c → d

n·c+d c (infinitely, if they lie on the plane p):

x = ( x
w ) −→ H x =

( x
w+n·x/d

)

(10)

p =
(

n> d
)

−→ p H−1 = (0 d) (11)

Pi =
(

I −ci

)

−→ Hi Pi H−1 =
(

I −d ci

n·ci+d

)

(12)

When p is the true plane at infinity, the 3D frame becomes affine and the aligned camera motion
becomes truly translational.

Given multiple planes pk and images i, and choosing some fixed base image 0, the 3 columns
of each Hi0(pk) can be viewed as three point vectors and incorporated into the rank-one factor-
ization method below to reconstruct the ci0 and n>

k/ (nk · c0 + dk). Consistent normalizations for
the different Hi0 are required. If ei0 is known, the correct normalization can be recovered from
[ ei0 ]× Hi0 = [ ei0 ]×. This amounts to the point depth recovery equation (19) below applied to the
columns of Hi0 and H00 = I. Alternatively, Hi0 = I + . . . has two repeated unit eigenvalues, and
the right (left) eigenvectors of the remaining eigenvalue are ei0 (n>). This allows the normalization,
epipole and plane normal to be recovered from an estimated Hi0. Less compact rank 4 factorization
methods also exist, based on writing Hi0 as a 9-vector, linear in the components of I and either ci0 or
nk [28,44,45].
Carlsson duality: Above we gave the plane + parallax correspondence between 3D points and (the
projection centres of aligned) cameras [19,22]:

x =

(

x
w

)

←−
−→ P =

(

w I − x
)

Carlsson [2,3] (see also [13,14,43,10,42]) defined a related but more ‘twisted’ duality mapping based
on the alignment of a projective basis rather than a plane:

x =

(

x
w

)

←−
−→ P =

(

1/x −1/w
1/y −1/w

1/z −1/w

)

'
(

x
y

z

)

−1
(

w I − x
)
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Provided that x, y, z are non-zero, the two mappings differ only by an image homography. Plane
+ parallax aligns a 3D plane pointwise, thus forcing the image −x of the origin to depend on the
projection centre. Carlsson aligns a 3D projective basis, fixing the image of the origin and just 3
points on the plane (and incidentally introducing potentially troublesome singularities for projection
centres on the x, y and z coordinate planes, as well as on the w = 0 one). In either case the point-
camera “duality” (isomorphism would be a better description) allows some or all points to be treated
as cameras and vice versa. This has been a fruitful approach for generating new algorithms [2,43,
3,10,42,19,22,4]. All of the below formulae can be dualized, with the proviso that camera centres
should avoid the reference plane and be affinely normalized, while points need not and must be treated
homogeneously.

3 Matching Tensors and Constraints in Plane + Parallax

Matching Tensors: The matching tensors for aligned projections are very simple functions of the
scaled epipoles / projection centre displacements. From a tensorial point of view2, the simplest way
to derive them is to take the homography-epipole decompositions of the generic matching tensors
[29,8,36], and substitute identity matrices for the homographies:

c12 = c1 − c2 displacement from c2 to c1

F12 = [ c12 ]× = [ c1 − c2 ]× image 1-2 fundamental matrix

T 23
1 = I 2

1 ⊗ c13 − c12 ⊗ I 3
1 image 1-2-3 trifocal tensor

QA1A2A3A4 =
∑3

i=1(−1)i−1
ε
A1...Âi...A4 · cAi

i4 image 1-2-3-4 quadrifocal tensor

The plane + parallax fundamental matrix and trifocal tensor have also been studied in [22,4]. The use
of affine scaling ui → 1 for the centres ci = ( ci

ui ) is essential here, otherwise T is bilinear and Q
quadrilinear in c, u.

Modulo scaling, c12 is the epipole e12 — the intersection of the ray from c2 to c1 with the ref-
erence plane. Coherent relative scaling of the terms of the trifocal and quadrifocal tensor sums is
indispensable here, as in most other multi-term tensor relations. But for this very reason, the correct
scales can be found using these relations. As discussed above, the correctly scaled cij’s characterize
the relative 3D camera geometry very explicitly, as a network of 3D displacement vectors. It is actu-
ally rather misleading to think in terms of epipolar points on the reference plane: the cij are neither
estimated (e.g. from the trifocal tensor) nor used (e.g. for reconstruction) like that, and treating their
scale factors as arbitrary only confuses the issue.
Matching constraints: The first few matching relations simplify as follows:

[ x1, c12, x2 ] = 0 epipolar point (13)

(x1 ∧ x2) (c13 ∧ x3)
>− (c12 ∧ x2) (x1 ∧ x3)

> = 0 trifocal point (14)

(l1 ∧ l2) (l3 · c13)− (l2 · c12) (l1 ∧ l3) = 0 trifocal line (15)

(l2 · x1) (l3 · c13)− (l2 · c12) (l3 · x1) = 0 trifocal point-line (16)

(l2 ∧ l3) (l1 · c14) + (l3 ∧ l1) (l2 · c24)
+ (l1 ∧ l2) (l3 · c34) = 0 quadrifocal 3-line (17)

2There is no space here to display the general projective tensor analogues of the plane + parallax expressions given here
and below — see [35].
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Figure 1: The geometry of the trifocal constraint.

Equation (16) is the primitive trifocal constraint. Given three images xi|i=1...3 of a 3D point x, and
arbitrary image lines l2, l3 through x2, x3, (16) asserts that the 3D optical ray of x1 meets the 3D
optical planes of l2, l3 in a common 3D point (x). The tri- and quadrifocal 3-line constraints (16,17)
both require that the optical planes of l1, l2, l3 intersect in a common 3D line. The quadrifocal 4-point
constraint is straightforward but too long to give here.

The trifocal point constraint contains [29,35,22,4] two epipolar constraints in the form x ∧ x ′ '
c ∧ x′, plus a proportionality-of-scale relation for these parallel 3-vectors:

(x1 ∧ x2) : (c12 ∧ x2) = (x1 ∧ x3) : (c13 ∧ x3) (18)

The homogeneous scale factors of the x’s cancel. This equation essentially says that x3 must progress
from e13 to x1 in step with x2 as it progresses from e12 to x1 (and both in step with x as it progresses
from c1 to x1 on the plane — see fig. 1). In terms of 3D displacement vectors c and λ x (or if the
figure is projected generically into another image), the ratio on the LHS of (18) is 1, being the ratio
of two different methods of calculating the area of the triangle c1 c2 x. Similarly for the RHS with
c1 c3 x. Both sides involve x, hence the lock-step.

Replacing the lines in the line constraints (15,16,17) with corresponding tangents to iso-intensity
contours gives tensor brightness constraints on the normal flow at a point. The Hanna-Okamoto-
Stein-Shashua brightness constraint (16) predominates for small, mostly-translational image displace-
ments like residual parallaxes [7,31]. But for more general displacements, the 3 line constraints give
additional information.

4 Redundancy, Scaling and Consistency

A major advantage of homography-epipole parametrizations is the extent to which they eliminate
the redundancy that often makes the general tensor representation rather cumbersome. With plane +
parallax against a fixed reference plane, the redundancy can be entirely eliminated. The aligned m
camera geometry has 3m− 4 d.o.f.: the positions of the centres modulo an arbitrary choice of origin
and a global scaling. These degrees of freedom are explicitly parametrized by, e.g., the displacements
ci1 | i=2...m, again modulo global rescaling. The remaining displacements can be found from cij =
ci − cj = ci1 − cj1, and all of the matching tensors are simple linear functions of these. Conversely,
the matching constraints are linear in the tensors and hence in the basic displacements ci1, so the
complete vector of basic displacements with the correct relative scaling can be estimated linearly from
image correspondences. These properties clearly simplify reconstruction. They are possible only
because plane + parallax is a local representation — unlike the general, redundant tensor framework,



Paper 14: Plane + Parallax, Tensors and Factorization — ECCV’00 211

e
e

ec
c

ki

jk

i
k

ij

cj

Figure 2: The various image projections of each triplet of 3D points and/or camera centres are in
Desargues correspondence [22,4].

it becomes singular whenever a camera approaches the reference plane. However, the domain of
validity is large enough for most real applications.

Consistency relations: As above, if they are parametrized by an independent set of inter-centre dis-
placements, individual matching tensors in plane + parallax have no remaining internal consistency
constraints and can be estimated linearly. The inter-tensor consistency constraints reduce to vari-
ous more or less involved ways of enforcing the coincidence of versions of the same inter-camera
displacement vector cij derived from different tensors, and the vanishing of cyclic sums of displace-
ments:

cji ∧ cij = 0 cij ∧ (cij)
′ = 0 cij + cjk + ckl + . . . + cmi = 0

In particular, each cyclic triplet of non-coincident epipoles is not only aligned, but has a unique
consistent relative scaling cij ≡ λij eij :

[ eij , ejk, eki ] = 0 ⇐⇒ cij + cjk + cki = 0

This and similar cyclic sums can be used to linearly recover the missing displacement scales. How-
ever, this fails if the 3D camera centres are aligned: the three epipoles coincide, so the vanishing of
their cyclic sum still leaves 1 d.o.f. of relative scaling freedom. This corresponds to the well-known
singularity of many fundamental matrix based reconstruction and transfer methods for aligned cen-
tres [40]. Trifocal or observation (depth recovery) based methods [32,37] must be used to recover the
missing scale factors in this case.

The cyclic triplet relations essentially encode the coplanarity of triplets of optical centres. All
three epipoles lie on the line of intersection of this plane with the reference plane. Also, the three
images of any fourth point or camera centre form a Desargues theorem configuration with the three
epipoles (see fig. 2). A multi-camera geometry induces multiple, intricately interlocking Desargues
configurations — the reference plane ‘signature’ of its coherent 3D geometry.

5 Depth Recovery and Closure Relations

Closure relations: In the general projective case, the closure relations are the bilinear constraints
between the (correctly scaled) matching tensors and the projection matrices, that express the fact that
the former are functions of the latter [35,40]. Closure based reconstruction [38,40] uses this to
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recover the projection matrices linearly from the matching tensors. In plane + parallax, the closure
relations trivialize to identities of the form cij ∧ (ci − cj) = 0 (since cij = ci − cj). Closure based
reconstruction just reads off a consistent set of ci’s from these linear constraints, with an arbitrary
choice of origin and global scaling. ci ≡ ci1 is one such solution.

Depth recovery relations: Attaching the projection matrices in the closure relations to a 3D point
gives depth recovery relations linking the matching tensors to correctly scaled image points [35,32,
40]. These are used, e.g. for projective depth (scale factor) recovery in factorization based projective
reconstruction [32,37]. For plane + parallax registered points and lines with unknown relative scales,
the first few depth recovery relations reduce to:

cij ∧ (λixi − λjxj) = 0 epipolar (19)

cij (λk xk − λi xi)
>− (λj xj − λi xi) (cik)

> = 0 trifocal (20)

(µi li − µj lj) · cij = 0 line (21)

These follow immediately from the parallax equations (7,8). As before, the trifocal point relations
contain two epipolar ones, plus an additional relative vector scaling proportionality: (λi xi−λj xj) :
cij = (λi xi − λk xk) : cik . See fig. 1.

6 Reconstruction by Parallax Factorization

Now consider factorization based projective reconstruction under plane + parallax. Recall the gen-
eral projective factorization reconstruction method [32,37]: m cameras with 3 × 4 camera matrices
Pi | i=1...m view n 3D points xp | p=1...n to produce mn image points λip xip = Pi xp. These projection
equations can be gathered into a 3m× n matrix:







λ11 x11 . . . λ1n x1n
...

. . .
...

λm1 xm1 . . . λmn xmn






=







P1
...

Pm







(

x1 . . . xn

)

(22)

So the (λ x) matrix factorizes into rank 4 factors. Any such factorization amounts to a projective
reconstruction: the freedom is exactly a 4× 4 projective change of coordinates H, with xp → H xp

and Pi → Pi H−1. With noisy data the factorization is not exact, but we can use a numerical method
such as truncated SVD to combine the measurements and estimate an approximate factorization and
structure. To implement this with image measurements, we need to recover the unknown projective
depths (scale factors) λip. For this we use matching tensor based depth recovery relations such as
Fij (λjp xjp) = ej i ∧ (λip xip) [35,32,37]. Rescaling the image points amounts to an implicit
projective reconstruction, which the factorization consolidates and concretizes. For other factorization
based SFM methods, see (among others) [34,27,18,25,26].

Plane + parallax point factorization: The general rank 4 method continues to work under plane +
parallax with aligned points xip , but in this case a more efficient rank 1 method exists, that exploits
the special form of the aligned projection matrices:

1. Align the mn image points to the reference plane and (as for the general-case factorization) es-
timate their scale factors λip by chaining together a network of plane + parallax depth recovery
relations (19) or (20).
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2. Choose a set of arbitrary weights ρi with
∑m

i=1 ρi = 1. We will work in a 3D frame based at
the weighted average of the projection centres: i.e. c̄ =

∑m
i=1 ρi ci will be set to 0. For the

experiments we work in an average-of-centres frame ρi = 1
m . Alternatively, we could choose

some image j as a base image, ρi = δij .

3. Calculate the weighted mean of the rescaled images of each 3D point, and their residual paral-
laxes relative to this in each image. The theoretical values are given for reference, based on (3)
and our choice of frame c̄→ 0 :

x̄p ≡
∑m

i=1 ρi (λip xip) ≈ xp − wp c̄ −→ xp (23)

δxip ≡ λip xip − x̄p ≈ − (ci − c̄) wp −→ − ci wp (24)

4. Factorize the combined residual parallax matrix to rank 1, to give the projection centres ci and
point depths wp, with their correct relative scales:







δx11 . . . δx1n
...

. . .
...

δxm1 . . . δxmn






≈







−c1
...
−cm







(

w1 . . . wn

)

(25)

The ambiguity in the factorization is a single global scaling ci → µ ci, wp → wp/µ (the
length scale of the scene).

5. The final reconstructions are Pi =
(

I − ci

)

and xp =
( x̄p

wp

)

.

This process requires the initial plane + parallax alignment, and estimates of the epipoles for projec-
tive depth recovery. It returns the 3D structure and camera centres in a projective frame that places
the reference plane at infinity and the origin at the weighted average of camera centres.

With affine coordinates on the reference plane, the heights wp reduce to inverse depths 1/zp

(w.r.t. the projectively distorted frame). Several existing factorization based SFM methods try to can-
cel the camera rotation and then factor the resulting translational motion into something like (inverse
depth)·(translation), e.g. [12,25,21]. Owing to perspective effects, this is usually only achieved ap-
proximately, which leads to an iterative method. Here we require additional knowledge — a known,
alignable reference plane and known epipoles for depth recovery — and we recover only projective
structure, but this allows us to achieve exact results from perspective images with a single non-iterative
rank 1 factorization. It would be interesting to investigate the relationships between our method and
[25,26,21], but we have not yet done so.

Line Factorization: As in the general projective case, lines can be integrated into the point factoriza-
tion method using via points. Each line is parametrized by choosing two arbitrary (but well-spaced)
points on it in one image. The corresponding points on other images of the line are found by epipolar
or trifocal point transfer, and the 3D via points are reconstructed using factorization. It turns out that
the transfer process automatically gives the correct scale factor (depth) for the via points:

xi ≡ −
li ∧ (Fij xj)

li·eji

general
case xj ≡ xi +

lj ·xi

lj ·eij
eij

plane + parallax
case (26)

Under plane + parallax, all images z ∧ ci + l of a line (l, z) intersect in a common point z. If we
estimate this first, only one additional via point is needed for the line.
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Plane factorization: As mentioned in §2, inter-image homographies Hi0 induced by 3D planes
against a fixed base image 0 can also be incorporated in the above factorization, simply by treat-
ing their three columns as three separate point 3-vectors. Under plane + parallax, once they are scaled
correctly as in §2, the homographies take the form (9). Averaging over i as above gives an H̄i0 of the
same form, with ci0 replaced by c̄ − c0 → −c0. So the corresponding “homography parallaxes”
δHi0 = ci n>

n·c0+d factor as for points, with n>
n·c0+d in place of wp. Alternatively, if c0 is taken as origin

and the δ’s are measured against image 0, I rather than H̄i0 is subtracted.

Optimality properties: Ideally, we would like our structure and motion estimates to be optimal
in some sense. For point estimators like maximum likelihood or MAP, this amounts to globally
minimizing a measure of the (robustified, covariance-weighted) total squared image error, perhaps
with overfitting penalties, etc. Unfortunately — as with all general closed-form projective SFM
methods that we are aware of, and notwithstanding its excellent performance in practice — plane +
parallax factorization uses an algebraically simple but statistically suboptimal error model. Little can
be done about this, beyond using the method to initialize an iterative nonlinear refinement procedure
(e.g. bundle adjustment). As in other estimation problems, it is safest to refine the results after each
stage of the process, to ensure that the input to the next stage is as accurate and as outlier-free as
possible. But even if the aligning homographies are refined in this way before being used (c.f . [9,
1,11]), the projective centering and factorization steps are usually suboptimal because the projective
rescaling λip 6= 1 skews the statistical weighting of the input points. In more detail, by pre-weighting
the image data matrix before factorization, affine factorization [34] can be generalized to give optimal
results under an image error model as general as a per-image covariance times a per-3D-point weight3.
But this is no longer optimal in projective factorization: even if the input errors are uniform, rescaling
by the non-constant factors λip distorts the underlying error model. In the plane + parallax case,
the image rectification step further distorts the error model whenever there is non-negligible camera
rotation. In spite of this, our experiments suggest that plane + parallax factorization gives near-optimal
results in practice.

7 Experiments

Figure 3 compares the performance of the plane + parallax point factorization method described
above, with conventional projective factorization using fundamental matrix depth recovery [32,37],
and also with projective bundle adjustment initialized from the plane + parallax solution. Cameras
about 5 radii from the centre look inwards at a synthetic spherical point cloud cut by a reference
plane. Half the points (but at least 4) lie on the plane, the rest are uniformly distributed in the sphere.
The image size is 512× 512, the focal length 1000 pixels. The cameras are uniformly spaced around
a 90◦ arc centred on the origin. The default number of views is 4, points 20, Gaussian image noise 1
pixel. In the scene flatness experiment, the point cloud is progressively flattened onto the plane. The
geometry is strong except under strong flattening and for small numbers of points.

The main conclusions are that plane + parallax factorization is somewhat more accurate than
3I.e. image point xip has covariance ρp Ci, where Ci is a fixed covariance matrix for image i and ρp a fixed weight for

3D point p. Under this error model, factoring the weighted data matrix (ρ
−1/2

p C−1/2

i xip) into weighted camera matrices
C−1/2 Pi and 3D point vectors ρ

−1/2

p xp gives statistically optimal results. Side note: For typical images at least 90–95% of
the image energy is in edge-like rather than corner-like structures (“the aperture problem”). So assuming that the (residual)
camera rotations are small, an error model that permitted each 3D point to have its own highly anisotropic covariance
matrix would usually be more appropriate than a per-image covariance. Irani & Anandan [20] go some way towards this
by introducing an initial reduction based on a higher rank factorization of transposed weighted point vectors.
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Figure 3: A comparison of 3D reconstruction errors for plane + parallax SFM factorization, funda-
mental matrix based projective factorization [32,37], and projective bundle adjustment.

the standard fundamental matrix method, particularly for near planar scenes and linear fundamental
matrix estimates, and often not far from optimal. In principle this was to be expected given that plane
+ parallax applies additional scene constraints (known coplanarity of some of the observed points).
However, additional processing steps are involved (plane alignment, point centring), so it was not
clear a priori how effectively the coplanarity constraints could be used. In fact, the two factorizations
have very similar average reprojection errors in all the experiments reported here, which suggests that
the additional processing introduces very little bias. The plane + parallax method’s greater stability
is confirmed by the fact that its factorization matrix is consistently a little better conditioned than that
of the fundamental matrix method (i.e. the ratio of the smallest structure to the largest noise singular
value is larger).

8 Summary

Plane + parallax alignment greatly simplifies multi-image projective geometry, reducing matching
tensors and constraints, closure, depth recovery and inter-tensor consistency relations to fairly simple
functions of the (correctly scaled!) epipoles. Choosing projective plane + parallax coordinates with
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the reference plane at infinity helps this process by providing a (weak, projective) sense in which
reference plane alignment cancels out precisely the camera rotation and calibration changes. This
suggests a fruitful analogy with the case of translating calibrated cameras and a simple interpretation
of plane + parallax geometry in terms of 3D displacement vectors.

The simplified parallax formula allows exact projective reconstruction by a simple rank-one (cen-
tre of projection)·(height) factorization. Like the general projective factorization method [32,37], an
initial scale recovery step based on estimated epipoles is needed. When the required reference plane is
available, the new method appears to perform at least as well as the general method, and significantly
better in the case of near-planar scenes. Lines and homography matrices can be integrated into the
point-based method, as in the general case.

Future work: We are still testing the plane + parallax factorization and refinements are possible. It
would be interesting to relate it theoretically to affine factorization [34], and also to Oliensis’s family
of bias-corrected rotation-cancelling multiframe factorization methods [25,26]. Bias correction might
be useful here too, although our centred data is probably less biased than the key frames of [25,26].

The analogy with translating cameras is open for exploration, and more generally, the idea of
using a projective choice of 3D and image frames to get closer to a situation with a simple, special-
case calibrated method, thus giving a simplified projective one. E.g. we find that suitable projective
rectification of the images often makes affine factorization [34] much more accurate as a projective
reconstruction method.

One can also consider autocalibration in the plane + parallax framework. It is easy to derive ana-
logues of [41] (if only structure on the reference plane is used), or [16,39] (if the off-plane parallaxes
are used as well). But so far this has not lead to any valuable simplifications or insights. Reference
plane alignment distorts the camera calibrations, so the aligning homographies can not (immediately)
be eliminated from the problem.
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Abstract

This paper is a survey of the theory and methods of photogrammetric bundle adjustment,
aimed at potential implementors in the computer vision community. Bundle adjustment is the
problem of refining a visual reconstruction to produce jointly optimal structure and viewing pa-
rameter estimates. Topics covered include: the choice of cost function and robustness; numerical
optimization including sparse Newton methods, linearly convergent approximations, updating
and recursive methods; gauge (datum) invariance; and quality control. The theory is developed
for general robust cost functions rather than restricting attention to traditional nonlinear least
squares.
Keywords: Bundle Adjustment, Scene Reconstruction, Gauge Freedom, Sparse Matrices, Opti-
mization.

1 Introduction

This paper is a survey of the theory and methods of bundle adjustment aimed at the computer vision
community, and more especially at potential implementors who already know a little about bundle
methods. Most of the results appeared long ago in the photogrammetry and geodesy literatures, but
many seem to be little known in vision, where they are gradually being reinvented. By providing an
accessible modern synthesis, we hope to forestall some of this duplication of effort, correct some com-
mon misconceptions, and speed progress in visual reconstruction by promoting interaction between
the vision and photogrammetry communities.
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Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal
3D structure and viewing parameter (camera pose and/or calibration) estimates. Optimal means that
the parameter estimates are found by minimizing some cost function that quantifies the model fitting
error, and jointly that the solution is simultaneously optimal with respect to both structure and camera
variations. The name refers to the ‘bundles’ of light rays leaving each 3D feature and converging on
each camera centre, which are ‘adjusted’ optimally with respect to both feature and camera positions.
Equivalently — unlike independent model methods, which merge partial reconstructions without up-
dating their internal structure — all of the structure and camera parameters are adjusted together ‘in
one bundle’.

Bundle adjustment is really just a large sparse geometric parameter estimation problem, the pa-
rameters being the combined 3D feature coordinates, camera poses and calibrations. Almost every-
thing that we will say can be applied to many similar estimation problems in vision, photogrammetry,
industrial metrology, surveying and geodesy. Adjustment computations are a major common theme
throughout the measurement sciences, and once the basic theory and methods are understood, they
are easy to adapt to a wide variety of problems. Adaptation is largely a matter of choosing a numerical
optimization scheme that exploits the problem structure and sparsity. We will consider several such
schemes below for bundle adjustment.

Classically, bundle adjustment and similar adjustment computations are formulated as nonlinear
least squares problems [19,46,100,21,22,69,5,73,109]. The cost function is assumed to be quadratic
in the feature reprojection errors, and robustness is provided by explicit outlier screening. Although
it is already very flexible, this model is not really general enough. Modern systems often use non-
quadratic M-estimator-like distributional models to handle outliers more integrally, and many include
additional penalties related to overfitting, model selection and system performance (priors, MDL).
For this reason, we will not assume a least squares / quadratic cost model. Instead, the cost will
be modelled as a sum of opaque contributions from the independent information sources (individual
observations, prior distributions, overfitting penalties. . . ). The functional forms of these contributions
and their dependence on fixed quantities such as observations will usually be left implicit. This
allows many different types of robust and non-robust cost contributions to be incorporated, without
unduly cluttering the notation or hiding essential model structure. It fits well with modern sparse
optimization methods (cost contributions are usually sparse functions of the parameters) and object-
centred software organization, and it avoids many tedious displays of chain-rule results. Implementors
are assumed to be capable of choosing appropriate functions and calculating derivatives themselves.

One aim of this paper is to correct a number of misconceptions that seem to be common in the
vision literature:
• “Optimization / bundle adjustment is slow”: Such statements often appear in papers introducing

yet another heuristic Structure from Motion (SFM) iteration. The claimed slowness is almost
always due to the unthinking use of a general-purpose optimization routine that completely ignores
the problem structure and sparseness. Real bundle routines are much more efficient than this, and
usually considerably more efficient and flexible than the newly suggested method (§6, 7). That is
why bundle adjustment remains the dominant structure refinement technique for real applications,
after 40 years of research.

• “Only linear algebra is required”: This is a recent variant of the above, presumably meant to
imply that the new technique is especially simple. Virtually all iterative refinement techniques
use only linear algebra, and bundle adjustment is simpler than many in that it only solves linear
systems: it makes no use of eigen-decomposition or SVD, which are themselves complex iterative
methods.
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• “Any sequence can be used”: Many vision workers seem to be very resistant to the idea that
reconstruction problems should be planned in advance (§11), and results checked afterwards to
verify their reliability (§10). System builders should at least be aware of the basic techniques
for this, even if application constraints make it difficult to use them. The extraordinary extent to
which weak geometry and lack of redundancy can mask gross errors is too seldom appreciated, c.f .
[34,50,30,33].

• “Point P is reconstructed accurately”: In reconstruction, just as there are no absolute references
for position, there are none for uncertainty. The 3D coordinate frame is itself uncertain, as it
can only be located relative to uncertain reconstructed features or cameras. All other feature and
camera uncertainties are expressed relative to the frame and inherit its uncertainty, so statements
about them are meaningless until the frame and its uncertainty are specified. Covariances can look
completely different in different frames, particularly in object-centred versus camera-centred ones.
See §9.

There is a tendency in vision to develop a profusion of ad hoc adjustment iterations. Why should you
use bundle adjustment rather than one of these methods? :
• Flexibility: Bundle adjustment gracefully handles a very wide variety of different 3D feature and

camera types (points, lines, curves, surfaces, exotic cameras), scene types (including dynamic and
articulated models, scene constraints), information sources (2D features, intensities, 3D informa-
tion, priors) and error models (including robust ones). It has no problems with missing data.

• Accuracy: Bundle adjustment gives precise and easily interpreted results because it uses accurate
statistical error models and supports a sound, well-developed quality control methodology.

• Efficiency: Mature bundle algorithms are comparatively efficient even on very large problems.
They use economical and rapidly convergent numerical methods and make near-optimal use of
problem sparseness.

In general, as computer vision reconstruction technology matures, we expect that bundle adjustment
will predominate over alternative adjustment methods in much the same way as it has in photogram-
metry. We see this as an inevitable consequence of a greater appreciation of optimization (notably,
more effective use of problem structure and sparseness), and of systems issues such as quality control
and network design.

Coverage: We will touch on a good many aspects of bundle methods. We start by considering the
camera projection model and the parametrization of the bundle problem §2, and the choice of er-
ror metric or cost function §3. §4 gives a rapid sketch of the optimization theory we will use. §5
discusses the network structure (parameter interactions and characteristic sparseness) of the bundle
problem. The following three sections consider three types of implementation strategies for adjust-
ment computations: §6 covers second order Newton-like methods, which are still the most often
used adjustment algorithms; §7 covers methods with only first order convergence (most of the ad
hoc methods are in this class); and §8 discusses solution updating strategies and recursive filtering
bundle methods. §9 returns to the theoretical issue of gauge freedom (datum deficiency), including
the theory of inner constraints. §10 goes into some detail on quality control methods for monitoring
the accuracy and reliability of the parameter estimates. §11 gives some brief hints on network design,
i.e. how to place your shots to ensure accurate, reliable reconstruction. §12 completes the body of
the paper by summarizing the main conclusions and giving some provisional recommendations for
methods. There are also several appendices. §A gives a brief historical overview of the development
of bundle methods, with literature references. §B gives some technical details of matrix factorization,
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updating and covariance calculation methods. §C gives some hints on designing bundle software, and
pointers to useful resources on the Internet. The paper ends with a glossary and references.

General references: Cultural differences sometimes make it difficult for vision workers to read
the photogrammetry literature. The collection edited by Atkinson [5] and the manual by Karara
[69] are both relatively accessible introductions to close-range (rather than aerial) photogrammetry.
Other accessible tutorial papers include [46,21,22]. Kraus [73] is probably the most widely used
photogrammetry textbook. Brown’s early survey of bundle methods [19] is well worth reading. The
often-cited manual edited by Slama [100] is now quite dated, although its presentation of bundle
adjustment is still relevant. Wolf & Ghiliani [109] is a text devoted to adjustment computations, with
an emphasis on surveying. Hartley & Zisserman [62] is an excellent recent textbook covering vision
geometry from a computer vision viewpoint. For nonlinear optimization, Fletcher [29] and Gill et al
[42] are the traditional texts, and Nocedal & Wright [93] is a good modern introduction. For linear
least squares, Björck [11] is superlative, and Lawson & Hanson is a good older text. For more general
numerical linear algebra, Golub & Van Loan [44] is the standard. Duff et al [26] and George & Liu
[40] are the standard texts on sparse matrix techniques. We will not discuss initialization methods for
bundle adjustment in detail, but appropriate reconstruction methods are plentiful and well-known in
the vision community. See, e.g., [62] for references.

Notation: The structure, cameras, etc., being estimated will be parametrized by a single large state
vector x. In general the state belongs to a nonlinear manifold, but we linearize this locally and work
with small linear state displacements denoted δx. Observations (e.g. measured image features) are
denoted z. The corresponding predicted values at parameter value x are denoted z = z(x), with
residual prediction error 4z(x) ≡ z − z(x). However, observations and prediction errors usually
only appear implicitly, through their influence on the cost function f(x) = f(predz(x)). The cost
function’s gradient is g ≡ df

dx , and its Hessian is H ≡ d2f
dx2 . The observation-state Jacobian is

J ≡ dz
dx . The dimensions of δx, δz are nx, nz.

2 Projection Model and Problem Parametrization

2.1 The Projection Model

We begin the development of bundle adjustment by considering the basic image projection model and
the issue of problem parametrization. Visual reconstruction attempts to recover a model of a 3D scene
from multiple images. As part of this, it usually also recovers the poses (positions and orientations)
of the cameras that took the images, and information about their internal parameters. A simple scene
model might be a collection of isolated 3D features, e.g., points, lines, planes, curves, or surface
patches. However, far more complicated scene models are possible, involving, e.g., complex objects
linked by constraints or articulations, photometry as well as geometry, dynamics, etc. One of the great
strengths of adjustment computations — and one reason for thinking that they have a considerable
future in vision — is their ability to take such complex and heterogeneous models in their stride.
Almost any predictive parametric model can be handled, i.e. any model that predicts the values of
some known measurements or descriptors on the basis of some continuous parametric representation
of the world, which is to be estimated from the measurements.

Similarly, many possible camera models exist. Perspective projection is the standard, but the
affine and orthographic projections are sometimes useful for distant cameras, and more exotic models
such as push-broom and rational polynomial cameras are needed for certain applications [56,63]. In
addition to pose (position and orientation), and simple internal parameters such as focal length and
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principal point, real cameras also require various types of additional parameters to model internal
aberrations such as radial distortion [17,18,19,100,69,5].

For simplicity, suppose that the scene is modelled by individual static 3D features Xp, p = 1 . . . n,
imaged in m shots with camera pose and internal calibration parameters Pi, i = 1 . . . m. There may
also be further calibration parameters Cc, c = 1 . . . k, constant across several images (e.g., depending
on which of several cameras was used). We are given uncertain measurements xip of some subset of
the possible image features xip (the true image of feature Xp in image i). For each observation xip,
we assume that we have a predictive model xip = x(Cc,Pi,Xp) based on the parameters, that can
be used to derive a feature prediction error:

4xip(Cc,Pi,Xp) ≡ xip − x(Cc,Pi,Xp) (1)

In the case of image observations the predictive model is image projection, but other observation
types such as 3D measurements can also be included.

To estimate the unknown 3D feature and camera parameters from the observations, and hence
reconstruct the scene, we minimize some measure (discussed in §3) of their total prediction error.
Bundle adjustment is the model refinement part of this, starting from given initial parameter estimates
(e.g., from some approximate reconstruction method). Hence, it is essentially a matter of optimizing
a complicated nonlinear cost function (the total prediction error) over a large nonlinear parameter
space (the scene and camera parameters).

We will not go into the analytical forms of the various possible feature and image projection
models, as these do not affect the general structure of the adjustment network, and only tend to
obscure its central simplicity. We simply stress that the bundle framework is flexible enough to
handle almost any desired model. Indeed, there are so many different combinations of features,
image projections and measurements, that it is best to regard them as black boxes, capable of giving
measurement predictions based on their current parameters. (For optimization, first, and possibly
second, derivatives with respect to the parameters are also needed).

For much of the paper we will take quite an abstract view of this situation, collecting the scene and
camera parameters to be estimated into a large state vector x, and representing the cost (total fitting
error) as an abstract function f(x). The cost is really a function of the feature prediction errors4x ip =
xip − x(Cc,Pi,Xp). But as the observations xip are constants during an adjustment calculation, we
leave the cost’s dependence on them and on the projection model x(·) implicit, and display only its
dependence on the parameters x actually being adjusted.

2.2 Bundle Parametrization

The bundle adjustment parameter space is generally a high-dimensional nonlinear manifold — a large
Cartesian product of projective 3D feature, 3D rotation, and camera calibration manifolds, perhaps
with nonlinear constraints, etc. The state x is not strictly speaking a vector, but rather a point in this
space. Depending on how the entities that it contains are represented, x can be subject to various
types of complications including singularities, internal constraints, and unwanted internal degrees of
freedom. These arise because geometric entities like rotations, 3D lines and even projective points and
planes, do not have simple global parametrizations. Their local parametrizations are nonlinear, with
singularities that prevent them from covering the whole parameter space uniformly (e.g. the many
variants on Euler angles for rotations, the singularity of affine point coordinates at infinity). And their
global parametrizations either have constraints (e.g. quaternions with ‖q‖2 = 1), or unwanted internal
degrees of freedom (e.g. homogeneous projective quantities have a scale factor freedom, two points
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Figure 1: Vision geometry and its error model are essen-
tially projective. Affine parametrization introduces an ar-
tificial singularity at projective infinity, which may cause
numerical problems for distant features.

defining a line can slide along the line). For more complicated compound entities such as matching
tensors and assemblies of 3D features linked by coincidence, parallelism or orthogonality constraints,
parametrization becomes even more delicate.

Although they are in principle equivalent, different parametrizations often have profoundly dif-
ferent numerical behaviours which greatly affect the speed and reliability of the adjustment iteration.
The most suitable parametrizations for optimization are as uniform, finite and well-behaved as pos-
sible near the current state estimate. Ideally, they should be locally close to linear in terms of their
effect on the chosen error model, so that the cost function is locally nearly quadratic. Nonlinearity
hinders convergence by reducing the accuracy of the second order cost model used to predict state up-
dates (§6). Excessive correlations and parametrization singularities cause ill-conditioning and erratic
numerical behaviour. Large or infinite parameter values can only be reached after excessively many
finite adjustment steps.

Any given parametrization will usually only be well-behaved in this sense over a relatively small
section of state space. So to guarantee uniformly good performance, however the state itself may
be represented, state updates should be evaluated using a stable local parametrization based on
increments from the current estimate. As examples we consider 3D points and rotations.

3D points: Even for calibrated cameras, vision geometry and visual reconstructions are intrinsically
projective. If a 3D (X Y Z)> parametrization (or equivalently a homogeneous affine (X Y Z 1)>

one) is used for very distant 3D points, large X,Y,Z displacements are needed to change the image
significantly. I.e., in (X Y Z) space the cost function becomes very flat and steps needed for cost
adjustment become very large for distant points. In comparison, with a homogeneous projective
parametrization (X Y Z W )>, the behaviour near infinity is natural, finite and well-conditioned
so long as the normalization keeps the homogeneous 4-vector finite at infinity (by sending W →
0 there). In fact, there is no immediate visual distinction between the images of real points near
infinity and virtual ones ‘beyond’ it (all camera geometries admit such virtual points as bona fide
projective constructs). The optimal reconstruction of a real 3D point may even be virtual in this
sense, if image noise happens to push it ‘across infinity’. Also, there is nothing to stop a reconstructed
point wandering beyond infinity and back during the optimization. This sounds bizarre at first, but
it is an inescapable consequence of the fact that the natural geometry and error model for visual
reconstruction is projective rather than affine. Projectively, infinity is just like any other place. Affine
parametrization (X Y Z 1)> is acceptable for points near the origin with close-range convergent
camera geometries, but it is disastrous for distant ones because it artificially cuts away half of the
natural parameter space, and hides the fact by sending the resulting edge to infinite parameter values.
Instead, you should use a homogeneous parametrization (X Y Z W )> for distant points, e.g. with
spherical normalization

∑

X2
i = 1.

Rotations: Similarly, experience suggests that quasi-global 3 parameter rotation parametrizations
such as Euler angles cause numerical problems unless one can be certain to avoid their singularities
and regions of uneven coverage. Rotations should be parametrized using either quaternions subject to
‖q‖2 = 1, or local perturbations R δR or δR R of an existing rotation R, where δR can be any well-
behaved 3 parameter small rotation approximation, e.g. δR = (I + [ δr ]×), the Rodriguez formula,
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local Euler angles, etc.

State updates: Just as state vectors x represent points in some nonlinear space, state updates x→ x+
δx represent displacements in this nonlinear space that often can not be represented exactly by vector
addition. Nevertheless, we assume that we can locally linearize the state manifold, locally resolving
any internal constraints and freedoms that it may be subject to, to produce an unconstrained vector δx
parametrizing the possible local state displacements. We can then, e.g., use Taylor expansion in δx
to form a local cost model f(x + δx) ≈ f(x) + df

dx δx + 1
2δx> d2f

dx2 δx, from which we can estimate the
state update δx that optimizes this model (§4). The displacement δx need not have the same structure
or representation as x — indeed, if a well-behaved local parametrization is used to represent δx, it
generally will not have — but we must at least be able to update the state with the displacement to
produce a new state estimate. We write this operation as x → x + δx, even though it may involve
considerably more than vector addition. For example, apart from the change of representation, an
updated quaternion q → q + dq will need to have its normalization ‖q‖2 = 1 corrected, and a small
rotation update of the form R→ R(1 + [ r ]×) will not in general give an exact rotation matrix.

3 Error Modelling

We now turn to the choice of the cost function f(x), which quantifies the total prediction (image
reprojection) error of the model parametrized by the combined scene and camera parameters x. Our
main conclusion will be that robust statistically-based error metrics based on total (inlier + outlier) log
likelihoods should be used, to correctly allow for the presence of outliers. We will argue this at some
length as it seems to be poorly understood. The traditional treatments of adjustment methods consider
only least squares (albeit with data trimming for robustness), and most discussions of robust statistics
give the impression that the choice of robustifier or M-estimator is wholly a matter of personal whim
rather than data statistics.

Bundle adjustment is essentially a parameter estimation problem. Any parameter estimation
paradigm could be used, but we will consider only optimal point estimators, whose output is by
definition the single parameter vector that minimizes a predefined cost function designed to mea-
sure how well the model fits the observations and background knowledge. This framework covers
many practical estimators including maximum likelihood (ML) and maximum a posteriori (MAP),
but not explicit Bayesian model averaging. Robustification, regularization and model selection terms
are easily incorporated in the cost.

A typical ML cost function would be the summed negative log likelihoods of the prediction errors
of all the observed image features. For Gaussian error distributions, this reduces to the sum of squared
covariance-weighted prediction errors (§3.2). A MAP estimator would typically add cost terms giving
certain structure or camera calibration parameters a bias towards their expected values.

The cost function is also a tool for statistical interpretation. To the extent that lower costs are
uniformly ‘better’, it provides a natural model preference ordering, so that cost iso-surfaces above
the minimum define natural confidence regions. Locally, these regions are nested ellipsoids centred
on the cost minimum, with size and shape characterized by the dispersion matrix (the inverse of the
cost function Hessian H = d2f

dx2 at the minimum). Also, the residual cost at the minimum can be used
as a test statistic for model validity (§10). E.g., for a negative log likelihood cost model with Gaussian
error distributions, twice the residual is a χ2 variable.
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3.1 Desiderata for the Cost Function

In adjustment computations we go to considerable lengths to optimize a large nonlinear cost model,
so it seems reasonable to require that the refinement should actually improve the estimates in some
objective (albeit statistical) sense. Heuristically motivated cost functions can not usually guarantee
this. They almost always lead to biased parameter estimates, and often severely biased ones. A large
body of statistical theory points to maximum likelihood (ML) and its Bayesian cousin maximum
a posteriori (MAP) as the estimators of choice. ML simply selects the model for which the total
probability of the observed data is highest, or saying the same thing in different words, for which
the total posterior probability of the model given the observations is highest. MAP adds a prior
term representing background information. ML could just as easily have included the prior as an
additional ‘observation’: so far as estimation is concerned, the distinction between ML / MAP and
prior / observation is purely terminological.

Information usually comes from many independent sources. In bundle adjustment these include:
covariance-weighted reprojection errors of individual image features; other measurements such as
3D positions of control points, GPS or inertial sensor readings; predictions from uncertain dynamical
models (for ‘Kalman filtering’ of dynamic cameras or scenes); prior knowledge expressed as soft
constraints (e.g. on camera calibration or pose values); and supplementary sources such as overfit-
ting, regularization or description length penalties. Note the variety. One of the great strengths of
adjustment computations is their ability to combine information from disparate sources. Assuming
that the sources are statistically independent of one another given the model, the total probability for
the model given the combined data is the product of the probabilities from the individual sources. To
get an additive cost function we take logs, so the total log likelihood for the model given the combined
data is the sum of the individual source log likelihoods.

Properties of ML estimators: Apart from their obvious simplicity and intuitive appeal, ML and
MAP estimators have strong statistical properties. Many of the most notable ones are asymptotic,
i.e. they apply in the limit of a large number of independent measurements, or more precisely in the
central limit where the posterior distribution becomes effectively Gaussian1. In particular:
• Under mild regularity conditions on the observation distributions, the posterior distribution of the

ML estimate converges asymptotically in probability to a Gaussian with covariance equal to the
dispersion matrix.

• The ML estimate asymptotically has zero bias and the lowest variance that any unbiased estimator
can have. So in this sense, ML estimation is at least as good as any other method2.
1Cost is additive, so as measurements of the same type are added the entire cost surface grows in direct proportion to

the amount of data nz. This means that the relative sizes of the cost and all of its derivatives — and hence the size r of the
region around the minimum over which the second order Taylor terms dominate all higher order ones — remain roughly
constant as nz increases. Within this region, the total cost is roughly quadratic, so if the cost function was taken to be
the posterior log likelihood, the posterior distribution is roughly Gaussian. However the curvature of the quadratic (i.e.
the inverse dispersion matrix) increases as data is added, so the posterior standard deviation shrinks as O

`
σ/

√
nz − nx

´
,

where O(σ) characterizes the average standard deviation from a single observation. For nz − nx � (σ/r)2, essentially
the entire posterior probability mass lies inside the quadratic region, so the posterior distribution converges asymptotically
in probability to a Gaussian. This happens at any proper isolated cost minimum at which second order Taylor expansion is
locally valid. The approximation gets better with more data (stronger curvature) and smaller higher order Taylor terms.

2This result follows from the Cramér-Rao bound (e.g. [23]), which says that the covariance of any unbiased estimator
is bounded below by the Fisher information or mean curvature of the posterior log likelihood surface 〈(bx−x)(bx−x)>〉 �
−〈d2 log p

dx2 〉 where p is the posterior probability, x the parameters being estimated, bx the estimate given by any unbiased
estimator, x the true underlying x value, and A � B denotes positive semidefiniteness of A − B. Asymptotically, the
posterior distribution becomes Gaussian and the Fisher information converges to the inverse dispersion (the curvature of
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Figure 2: Beware of treating any bell-shaped observation distribution as a Gaussian. Despite being
narrower in the peak and broader in the tails, the probability density function of a Cauchy distribution,
p(x) =

(

π(1 + x2)
)

−1, does not look so very different from that of a Gaussian (top left). But their
negative log likelihoods are very different (bottom left), and large deviations (“outliers”) are much
more probable for Cauchy variates than for Gaussian ones (right). In fact, the Cauchy distribution
has infinite covariance.

Non-asymptotically, the dispersion is not necessarily a good approximation for the covariance of
the ML estimator. The asymptotic limit is usually assumed to be a valid for well-designed highly-
redundant photogrammetric measurement networks, but recent sampling-based empirical studies of
posterior likelihood surfaces [35,80,68] suggest that the case is much less clear for small vision
geometry problems and weaker networks. More work is needed on this.

The effect of incorrect error models: It is clear that incorrect modelling of the observation distri-
butions is likely to disturb the ML estimate. Such mismodelling is to some extent inevitable because
error distributions stand for influences that we can not fully predict or control. To understand the
distortions that unrealistic error models can cause, first realize that geometric fitting is really a special
case of parametric probability density estimation. For each set of parameter values, the geometric
image projection model and the assumed observation error models combine to predict a probability
density for the observations. Maximizing the likelihood corresponds to fitting this predicted obser-
vation density to the observed data. The geometry and camera model only enter indirectly, via their
influence on the predicted distributions.

Accurate noise modelling is just as critical to successful estimation as accurate geometric mod-
elling. The most important mismodelling is failure to take account of the possibility of outliers
(aberrant data values, caused e.g., by blunders such as incorrect feature correspondences). We stress
that so long as the assumed error distributions model the behaviour of all of the data used in the

the posterior log likelihood surface at the cost minimum), so the ML estimate attains the Cramér-Rao bound.
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fit (including both inliers and outliers), the above properties of ML estimation including asymptotic
minimum variance remain valid in the presence of outliers. In other words, ML estimation is natu-
rally robust : there is no need to robustify it so long as realistic error distributions were used in the
first place. A distribution that models both inliers and outliers is called a total distribution. There is
no need to separate the two classes, as ML estimation does not care about the distinction. If the total
distribution happens to be an explicit mixture of an inlier and an outlier distribution (e.g., a Gaussian
with a locally uniform background of outliers), outliers can be labeled after fitting using likelihood
ratio tests, but this is in no way essential to the estimation process.

It is also important to realize the extent to which superficially similar distributions can differ
from a Gaussian, or equivalently, how extraordinarily rapidly the tails of a Gaussian distribution
fall away compared to more realistic models of real observation errors. See figure 2. In fact, un-
modelled outliers typically have very severe effects on the fit. To see this, suppose that the real
observations are drawn from a fixed (but perhaps unknown) underlying distribution p0(z). The
law of large numbers says that their empirical distributions (the observed distribution of each set
of samples) converge asymptotically in probability to p0(z). So for each model, the negative log
likelihood cost sum −∑i log pmodel(zi|x) converges to −nz

∫

p0(z) log(pmodel(z|x)) dz. Up to a
model-independent constant, this is nz times the relative entropy or Kullback-Leibler divergence
∫

p0(z) log(p0(z)/pmodel(z|x)) dz of the model distribution w.r.t. the true one p0(z). Hence, even if
the model family does not include p0, the ML estimate converges asymptotically to the model whose
predicted observation distribution has minimum relative entropy w.r.t. p0. (See, e.g. [96, proposition
2.2]). It follows that ML estimates are typically very sensitive to unmodelled outliers, as regions
which are relatively probable under p0 but highly improbable under the model make large contri-
butions to the relative entropy. In contrast, allowing for outliers where none actually occur causes
relatively little distortion, as no region which is probable under p0 will have large − log pmodel.

In summary, if there is a possibility of outliers, non-robust distribution models such as Gaussians
should be replaced with more realistic long-tailed ones such as: mixtures of a narrow ‘inlier’ and a
wide ‘outlier’ density, Cauchy or α-densities, or densities defined piecewise with a central peaked
‘inlier’ region surrounded by a constant ‘outlier’ region3. We emphasize again that poor robustness
is due entirely to unrealistic distributional assumptions: the maximum likelihood framework itself is
naturally robust provided that the total observation distribution including both inliers and outliers is
modelled. In fact, real observations can seldom be cleanly divided into inliers and outliers. There is
a hard core of outliers such as feature correspondence errors, but there is also a grey area of features
that for some reason (a specularity, a shadow, poor focus, motion blur. . . ) were not as accurately
located as other features, without clearly being outliers.

3.2 Nonlinear Least Squares

One of the most basic parameter estimation methods is nonlinear least squares. Suppose that we
have vectors of observations zi predicted by a model zi = zi(x), where x is a vector of model
parameters. Then nonlinear least squares takes as estimates the parameter values that minimize the
weighted Sum of Squared Error (SSE) cost function:

f(x) ≡ 1
2

∑

i

4zi(x)> Wi4zi(x) , 4zi(x) ≡ zi − zi(x) (2)

3The latter case corresponds to a hard inlier / outlier decision rule: for any observation in the ‘outlier’ region, the density
is constant so the observation has no influence at all on the fit. Similarly, the mixture case corresponds to a softer inlier /
outlier decision rule.
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Here,4zi(x) is the feature prediction error and Wi is an arbitrary symmetric positive definite (SPD)
weight matrix. Modulo normalization terms independent of x, the weighted SSE cost function coin-
cides with the negative log likelihood for observations zi perturbed by Gaussian noise of mean zero
and covariance W−1

i . So for least squares to have a useful statistical interpretation, the Wi should be
chosen to approximate the inverse measurement covariance of zi. Even for non-Gaussian noise with
this mean and covariance, the Gauss-Markov theorem [37,11] states that if the models zi(x) are
linear, least squares gives the Best Linear Unbiased Estimator (BLUE), where ‘best’ means minimum
variance4 .

Any weighted least squares model can be converted to an unweighted one (Wi = 1) by pre-
multiplying zi, zi,4zi by any L>

i satisfying Wi = Li L>

i . Such an Li can be calculated efficiently
from Wi or W−1

i using Cholesky decomposition (§B.1). 4zi = L>

i 4zi is called a standardized
residual, and the resulting unweighted least squares problem minx

1
2

∑

i ‖4zi(x)‖2 is said to be in
standard form. One advantage of this is that optimization methods based on linear least squares
solvers can be used in place of ones based on linear (normal) equation solvers, which allows ill-
conditioned problems to be handled more stably (§B.2).

Another peculiarity of the SSE cost function is its indifference to the natural boundaries between
the observations. If observations zi from any sources are assembled into a compound observation
vector z ≡ (z>

1 , . . . , z>

k)>, and their weight matrices Wi are assembled into compound block diagonal
weight matrix W ≡ diag(W1, . . . , Wk), the weighted squared error f(x) ≡ 1

2 4z(x)> W4z(x) is the
same as the original SSE cost function, 1

2

∑

i 4zi(x)> Wi4zi(x). The general quadratic form of
the SSE cost is preserved under such compounding, and also under arbitrary linear transformations
of z that mix components from different observations. The only place that the underlying structure
is visible is in the block structure of W. Such invariances do not hold for essentially any other cost
function, but they simplify the formulation of least squares considerably.

3.3 Robustified Least Squares

The main problem with least squares is its high sensitivity to outliers. This happens because the
Gaussian has extremely small tails compared to most real measurement error distributions. For robust
estimates, we must choose a more realistic likelihood model (§3.1). The exact functional form is
less important than the general way in which the expected types of outliers enter. A single blunder
such as a correspondence error may affect one or a few of the observations, but it will usually leave
all of the others unchanged. This locality is the whole basis of robustification. If we can decide
which observations were affected, we can down-weight or eliminate them and use the remaining
observations for the parameter estimates as usual. If all of the observations had been affected about
equally (e.g. as by an incorrect projection model), we might still know that something was wrong, but
not be able to fix it by simple data cleaning.

We will adopt a ‘single layer’ robustness model, in which the observations are partitioned into
independent groups zi, each group being irreducible in the sense that it is accepted, down-weighted
or rejected as a whole, independently of all the other groups. The partitions should reflect the types
of blunders that occur. For example, if feature correspondence errors are the most common blunders,
the two coordinates of a single image point would naturally form a group as both would usually be
invalidated by such a blunder, while no other image point would be affected. Even if one of the co-
ordinates appeared to be correct, if the other were incorrect we would usually want to discard both

4It may be possible (and even useful) to do better with either biased (towards the correct solution), or nonlinear estima-
tors.
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for safety. On the other hand, in stereo problems, the four coordinates of each pair of correspond-
ing image points might be a more natural grouping, as a point in one image is useless without its
correspondent in the other one.

Henceforth, when we say observation we mean irreducible group of observations treated as a
unit by the robustifying model. I.e., our observations need not be scalars, but they must be units,
probabilistically independent of one another irrespective of whether they are inliers or outliers.

As usual, each independent observation zi contributes an independent term fi(x | zi) to the total
cost function. This could have more or less any form, depending on the expected total distribution of
inliers and outliers for the observation. One very natural family are the radial distributions, which
have negative log likelihoods of the form:

fi(x) ≡ 1
2 ρi(4zi(x)> Wi4zi(x) ) (3)

Here, ρi(s) can be any increasing function with ρi(0) = 0 and d
ds

ρi(0) = 1. (These guarantee that

at 4zi = 0, f vanishes and d2fi
dz2

i
= Wi). Weighted SSE has ρi(s) = s, while more robust variants

have sublinear ρi, often tending to a constant at∞ so that distant outliers are entirely ignored. The
dispersion matrix W−1

i determines the spatial spread of zi, and up to scale its covariance (if this is
finite). The radial form is preserved under arbitrary affine transformations of zi , so within a group,
all of the observations are on an equal footing in the same sense as in least squares. However, non-
Gaussian radial distributions are almost never separable: the observations in zi can neither be split
into independent subgroups, nor combined into larger groups, without destroying the radial form.
Radial cost models do not have the remarkable isotropy of non-robust SSE, but this is exactly what
we wanted, as it ensures that all observations in a group will be either left alone, or down-weighted
together.

As an example of this, for image features polluted with occasional large outliers caused by cor-
respondence errors, we might model the error distribution as a Gaussian central peak plus a uni-
form background of outliers. This would give negative log likelihood contributions of the form
f(x) = − log

(

exp(−1
2χ2

ip) + ε
)

instead of the non-robust weighted SSE model f(x) = 1
2χ2

ip, where

χ2
ip = 4x>

ip Wip4xip is the squared weighted residual error (which is a χ2 variable for a correct
model and Gaussian error distribution), and ε parametrizes the frequency of outliers.
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3.4 Intensity-based methods

The above models apply not only to geometric image features, but also to intensity-based matching of
image patches. In this case, the observables are image gray-scales or colors I rather than feature co-
ordinates u, and the error model is based on intensity residuals. To get from a point projection model
u = u(x) to an intensity based one, we simply compose with the assumed local intensity model
I = I(u) (e.g. obtained from an image template or another image that we are matching against), pre-
multiply point Jacobians by point-to-intensity Jacobians dI

du , etc. The full range of intensity models
can be implemented within this framework: pure translation, affine, quadratic or homographic patch
deformation models, 3D model based intensity predictions, coupled affine or spline patches for sur-
face coverage, etc., [1,52,55,9,110,94,53,97,76,104,102]. The structure of intensity based bundle
problems is very similar to that of feature based ones, so all of the techniques studied below can be
applied.

We will not go into more detail on intensity matching, except to note that it is the real basis
of feature based methods. Feature detectors are optimized for detection not localization. To lo-
calize a detected feature accurately we need to match (some function of) the image intensities in
its region against either an idealized template or another image of the feature, using an appropri-
ate geometric deformation model, etc. For example, suppose that the intensity matching model is
f(u) = 1

2

∫∫

ρ(‖δI(u)‖2) where the integration is over some image patch, δI is the current intensity
prediction error, u parametrizes the local geometry (patch translation & warping), and ρ(·) is some
intensity error robustifier. Then the cost gradient in terms of u is g>

u = df
du =

∫∫

ρ′ δI> dI
du . Similarly,

the cost Hessian in u in a Gauss-Newton approximation is Hu = d2f
du2 ≈

∫∫

ρ′′ ( dI
du)> dI

du . In a feature
based model, we express u = u(x) as a function of the bundle parameters, so if Ju = du

dx we have
a corresponding cost gradient and Hessian contribution g>

x = g>

u Ju and Hx = J>

u Hu Ju. In other
words, the intensity matching model is locally equivalent to a quadratic feature matching one on the
‘features’ u(x), with effective weight (inverse covariance) matrix Wu = Hu. All image feature error
models in vision are ultimately based on such an underlying intensity matching model. As feature
covariances are a function of intensity gradients

∫∫

ρ′′ ( dI
du)> dI

du , they can be both highly variable
between features (depending on how much local gradient there is), and highly anisotropic (depending
on how directional the gradients are). E.g., for points along a 1D intensity edge, the uncertainty is
large in the along edge direction and small in the across edge one.

3.5 Implicit models

Sometimes observations are most naturally expressed in terms of an implicit observation-constraining
model h(x, z) = 0, rather than an explicit observation-predicting one z = z(x). (The associated
image error still has the form f(z − z)). For example, if the model is a 3D curve and we observe
points on it (the noisy images of 3D points that may lie anywhere along the 3D curve), we can
predict the whole image curve, but not the exact position of each observation along it. We only have
the constraint that the noiseless image of the observed point would lie on the noiseless image of the
curve, if we knew these. There are basically two ways to handle implicit models: nuisance parameters
and reduction.
Nuisance parameters: In this approach, the model is made explicit by adding additional ‘nuisance’
parameters representing something equivalent to model-consistent estimates of the unknown noise
free observations, i.e. to z with h(x, z) = 0. The most direct way to do this is to include the entire
parameter vector z as nuisance parameters, so that we have to solve a constrained optimization prob-
lem on the extended parameter space (x, z), minimizing f(z − z) over (x, z) subject to h(x, z) = 0.
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This is a sparse constrained problem, which can be solved efficiently using sparse matrix techniques
(§6.3). In fact, for image observations, the subproblems in z (optimizing f(z − z) over z for fixed z
and x) are small and for typical f rather simple. So in spite of the extra parameters z, optimizing this
model is not significantly more expensive than optimizing an explicit one z = z(x) [14,13,105,106].
For example, when estimating matching constraints between image pairs or triplets [60,62], instead
of using an explicit 3D representation, pairs or triplets of corresponding image points can be used as
features zi, subject to the epipolar or trifocal geometry contained in x [105,106].

However, if a smaller nuisance parameter vector than z can be found, it is wise to use it. In the
case of a curve, it suffices to include just one nuisance parameter per observation, saying where along
the curve the corresponding noise free observation is predicted to lie. This model exactly satisfies the
constraints, so it converts the implicit model to an unconstrained explicit one z = z(x,λ), where λ

are the along-curve nuisance parameters.
The advantage of the nuisance parameter approach is that it gives the exact optimal parameter

estimate for x, and jointly, optimal x-consistent estimates for the noise free observations z.
Reduction: Alternatively, we can regard h(x, z) rather than z as the observation vector, and hence
fit the parameters to the explicit log likelihood model for h(x, z). To do this, we must transfer the
underlying error model / distribution f(4z) on z to one f(h) on h(x, z). In principle, this should be
done by marginalization: the density for h is given by integrating that for 4z over all4z giving the
same h. Within the point estimation framework, it can be approximated by replacing the integration
with maximization. Neither calculation is easy in general, but in the asymptotic limit where first
order Taylor expansion h(x, z) = h(x, z + 4z) ≈ 0 + dh

dz 4z is valid, the distribution of h is a
marginalization or maximization of that of4z over affine subspaces. This can be evaluated in closed
form for some robust distributions. Also, standard covariance propagation gives (more precisely, this
applies to the h and4z dispersions):

〈h(x, z)〉 ≈ 0 , 〈h(x, z) h(x, z)>〉 ≈ dh
dz 〈4z4z>〉 dh

dz
>

= dh
dz W−1 dh

dz
>

(4)

where W−1 is the covariance of 4z. So at least for an outlier-free Gaussian model, the reduced
distribution remains Gaussian (albeit with x-dependent covariance).

4 Basic Numerical Optimization

Having chosen a suitable model quality metric, we must optimize it. This section gives a very rapid
sketch of the basic local optimization methods for differentiable functions. See [29,93,42] for more
details. We need to minimize a cost function f(x) over parameters x, starting from some given initial
estimate x of the minimum, presumably supplied by some approximate visual reconstruction method
or prior knowledge of the approximate situation. As in §2.2, the parameter space may be nonlinear,
but we assume that local displacements can be parametrized by a local coordinate system / vector of
free parameters δx. We try to find a displacement x→ x+δx that locally minimizes or at least reduces
the cost function. Real cost functions are too complicated to minimize in closed form, so instead we
minimize an approximate local model for the function, e.g. based on Taylor expansion or some other
approximation at the current point x. Although this does not usually give the exact minimum, with
luck it will improve on the initial parameter estimate and allow us to iterate to convergence. The art
of reliable optimization is largely in the details that make this happen even without luck: which local
model, how to minimize it, how to ensure that the estimate is improved, and how to decide when
convergence has occurred. If you not are interested in such subjects, use a professionally designed
package (§C.2): details are important here.
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4.1 Second Order Methods

The reference for all local models is the quadratic Taylor series one:

f(x + δx) ≈ f(x) + g> δx + 1
2δx> H δx g ≡ df

dx(x) H ≡ d2f
dx2 (x)

quadratic local model gradient vector Hessian matrix
(5)

For now, assume that the Hessian H is positive definite (but see below and §9). The local model is
then a simple quadratic with a unique global minimum, which can be found explicitly using linear
algebra. Setting df

dx(x + δx) ≈ H δx + g to zero for the stationary point gives the Newton step:

δx = −H−1 g (6)

The estimated new function value is f(x + δx) ≈ f(x) − 1
2δx> H δx = f(x) − 1

2g> H−1 g. Iterating
the Newton step gives Newton’s method. This is the canonical optimization method for smooth cost
functions, owing to its exceptionally rapid theoretical and practical convergence near the minimum.
For quadratic functions it converges in one iteration, and for more general analytic ones its asymptotic
convergence is quadratic: as soon as the estimate gets close enough to the solution for the second
order Taylor expansion to be reasonably accurate, the residual state error is approximately squared
at each iteration. This means that the number of significant digits in the estimate approximately
doubles at each iteration, so starting from any reasonable estimate, at most about log2(16) + 1 ≈
5–6 iterations are needed for full double precision (16 digit) accuracy. Methods that potentially
achieve such rapid asymptotic convergence are called second order methods. This is a high accolade
for a local optimization method, but it can only be achieved if the Newton step is asymptotically
well approximated. Despite their conceptual simplicity and asymptotic performance, Newton-like
methods have some disadvantages:
• To guarantee convergence, a suitable step control policy must be added (§4.2).

• Solving the n× n Newton step equations takes time O
(

n3
)

for a dense system (§B.1), which can
be prohibitive for large n. Although the cost can often be reduced (very substantially for bundle
adjustment) by exploiting sparseness in H, it remains true that Newton-like methods tend to have
a high cost per iteration, which increases relative to that of other methods as the problem size
increases. For this reason, it is sometimes worthwhile to consider more approximate first order
methods (§7), which are occasionally more efficient, and generally simpler to implement, than
sparse Newton-like methods.

• Calculating second derivatives H is by no means trivial for a complicated cost function, both com-
putationally, and in terms of implementation effort. The Gauss-Newton method (§4.3) offers a
simple analytic approximation to H for nonlinear least squares problems. Some other methods
build up approximations to H from the way the gradient g changes during the iteration are in use
(see §7.1, Krylov methods).

• The asymptotic convergence of Newton-like methods is sometimes felt to be an expensive luxury
when far from the minimum, especially when damping (see below) is active. However, it must be
said that Newton-like methods generally do require significantly fewer iterations than first order
ones, even far from the minimum.

4.2 Step Control

Unfortunately, Newton’s method can fail in several ways. It may converge to a saddle point rather
than a minimum, and for large steps the second order cost prediction may be inaccurate, so there is no
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guarantee that the true cost will actually decrease. To guarantee convergence to a minimum, the step
must follow a local descent direction (a direction with a non-negligible component down the local
cost gradient, or if the gradient is zero near a saddle point, down a negative curvature direction of the
Hessian), and it must make reasonable progress in this direction (neither so little that the optimization
runs slowly or stalls, nor so much that it greatly overshoots the cost minimum along this direction). It
is also necessary to decide when the iteration has converged, and perhaps to limit any over-large steps
that are requested. Together, these topics form the delicate subject of step control.

To choose a descent direction, one can take the Newton step direction if this descends (it may
not near a saddle point), or more generally some combination of the Newton and gradient directions.
Damped Newton methods solve a regularized system to find the step:

(H + λ W) δx = −g (7)

Here, λ is some weighting factor and W is some positive definite weight matrix (often the identity,
so λ → ∞ becomes steepest descent δx ∝ −g). λ can be chosen to limit the step to a dynamically
chosen maximum size (trust region methods), or manipulated more heuristically, to shorten the step
if the prediction is poor (Levenberg-Marquardt methods).

Given a descent direction, progress along it is usually assured by a line search method, of which
there are many based on quadratic and cubic 1D cost models. If the suggested (e.g. Newton) step is
δx, line search finds the α that actually minimizes f along the line x +α δx, rather than simply taking
the estimate α = 1.

There is no space for further details on step control here (again, see [29,93,42]). However note
that poor step control can make a huge difference in reliability and convergence rates, especially for
ill-conditioned problems. Unless you are familiar with these issues, it is advisable to use profession-
ally designed methods.

4.3 Gauss-Newton and Least Squares

Consider the nonlinear weighted SSE cost model f(x) ≡ 1
2 4z(x)> W4z(x) (§3.2) with prediction

error4z(x) = z−z(x) and weight matrix W. Differentiation gives the gradient and Hessian in terms
of the Jacobian or design matrix of the predictive model, J ≡ dz

dx :

g ≡ df
dx = 4z> W J H ≡ d2f

dx2 = J> W J +
∑

i(4z> W)i
d2zi

dx2 (8)

These formulae could be used directly in a damped Newton method, but the d2zi

dx2 term in H is likely
to be small in comparison to the corresponding components of J> W J if either: (i) the prediction
error4z(x) is small; or (ii) the model is nearly linear, d2zi

dx2 ≈ 0. Dropping the second term gives the
Gauss-Newton approximation to the least squares Hessian, H ≈ J> W J. With this approximation,
the Newton step prediction equations become the Gauss-Newton or normal equations:

(J> W J) δx = −J> W4z (9)

The Gauss-Newton approximation is extremely common in nonlinear least squares, and practically
all current bundle implementations use it. Its main advantage is simplicity: the second derivatives of
the projection model z(x) are complex and troublesome to implement.

In fact, the normal equations are just one of many methods of solving the weighted linear least
squares problem5 min δx

1
2(J δx − 4z)> W (J δx −4z). Another notable method is that based on

5Here, the dependence of J on x is ignored, which amounts to the same thing as ignoring the d2zi

dx2 term in H.
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QR decomposition (§B.2, [11,44]), which is up to a factor of two slower than the normal equations,
but much less sensitive to ill-conditioning in J 6.

Whichever solution method is used, the main disadvantage of the Gauss-Newton approximation
is that when the discarded terms are not negligible, the convergence rate is greatly reduced (§7.2).
In our experience, such reductions are indeed common in highly nonlinear problems with (at the
current step) large residuals. For example, near a saddle point the Gauss-Newton approximation is
never accurate, as its predicted Hessian is always at least positive semidefinite. However, for well-
parametrized (i.e. locally near linear, §2.2) bundle problems under an outlier-free least squares cost
model evaluated near the cost minimum, the Gauss-Newton approximation is usually very accurate.
Feature extraction errors and hence 4z and W−1 have characteristic scales of at most a few pixels. In
contrast, the nonlinearities of z(x) are caused by nonlinear 3D feature-camera geometry (perspective
effects) and nonlinear image projection (lens distortion). For typical geometries and lenses, neither
effect varies significantly on a scale of a few pixels. So the nonlinear corrections are usually small
compared to the leading order linear terms, and bundle adjustment behaves as a near-linear small
residual problem.

However note that this does not extend to robust cost models. Robustification works by intro-
ducing strong nonlinearity into the cost function at the scale of typical feature reprojection errors.
For accurate step prediction, the optimization routine must take account of this. For radial cost func-
tions (§3.3), a reasonable compromise is to take account of the exact second order derivatives of the
robustifiers ρi(·), while retaining only the first order Gauss-Newton approximation for the predicted
observations zi(x). If ρ′i and ρ′′ are respectively the first and second derivatives of ρi at the current
evaluation point, we have a robustified Gauss-Newton approximation:

gi = ρ′i J>

i Wi4zi Hi ≈ J>

i

(

ρ′i Wi + 2 ρ′′i (Wi4zi) (Wi4zi)
>
)

Ji (10)

So robustification has two effects: (i) it down-weights the entire observation (both gi and Hi) by ρ′i ;
and (ii) it makes a rank-one reduction7 of the curvature Hi in the radial (4zi) direction, to account
for the way in which the weight changes with the residual. There are reweighting-based optimization
methods that include only the first effect. They still find the true cost minimum g = 0 as the gi

are evaluated exactly8, but convergence may be slowed owing to inaccuracy of H, especially for the
mainly radial deviations produced by non-robust initializers containing outliers. Hi has a direction of
negative curvature if ρ′′i 4z>

i Wi4zi < −1
2ρ′i, but if not we can even reduce the robustified Gauss-

Newton model to a local unweighted SSE one for which linear least squares methods can be used.
For simplicity suppose that Wi has already reduced to 1 by premultiplying zi and Ji by L>

i where
Li L>

i = Wi. Then minimizing the effective squared error 1
2‖δzi − Ji δx‖2 gives the correct second

6The QR method gives the solution to a relative error of about O(Cε), as compared to O
`
C2ε

´
for the normal equations,

where C is the condition number (the ratio of the largest to the smallest singular value) of J, and ε is the machine precision
(10−16 for double precision floating point).

7The useful robustifiers ρi are sublinear, with ρ′
i < 1 and ρ′′

i < 0 in the outlier region.
8Reweighting is also sometimes used in vision to handle projective homogeneous scale factors rather than error weight-

ing. E.g., suppose that image points (u/w, v/w)> are generated by a homogeneous projection equation (u, v, w)> =
P (X, Y, Z, 1)>, where P is the 3 × 4 homogeneous image projection matrix. A scale factor reweighting scheme might
take derivatives w.r.t. u, v while treating the inverse weight w as a constant within each iteration. Minimizing the resulting
globally bilinear linear least squares error model over P and (X, Y, Z)> does not give the true cost minimum: it zeros the
gradient-ignoring-w-variations, not the true cost gradient. Such schemes should not be used for precise work as the bias
can be substantial, especially for wide-angle lenses and close geometries.
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order robust state update, where α ≡ RootOf( 1
2α2 − α− ρ′′i /ρ

′
i ‖4zi‖2) and:

δzi ≡
√

ρ′i
1− α

4zi(x) Ji ≡
√

ρ′i

(

1− α
4zi4z>

i

‖4zi‖2
)

Ji (11)

In practice, if ρ′′i ‖4zi‖2 . −1
2ρ′i, we can use the same formulae but limit α ≤ 1− ε for some small

ε. However, the full curvature correction is not applied in this case.

4.4 Constrained Problems

More generally, we may want to minimize a function f(x) subject to a set of constraints c(x) = 0 on
x. These might be scene constraints, internal consistency constraints on the parametrization (§2.2),
or constraints arising from an implicit observation model (§3.5). Given an initial estimate x of the
solution, we try to improve this by optimizing the quadratic local model for f subject to a linear local
model of the constraints c. This linearly constrained quadratic problem has an exact solution in linear
algebra. Let g, H be the gradient and Hessian of f as before, and let the first order expansion of the
constraints be c(x + δx) ≈ c(x) + C δx where C ≡ dc

dx . Introduce a vector of Lagrange multipliers
λ for c. We seek the x+δx that optimizes f+c> λ subject to c = 0, i.e. 0 = d

dx (f+c> λ)(x+δx) ≈
g+H δx+C> λ and 0 = c(x+δx) ≈ c(x)+C δx. Combining these gives the Sequential Quadratic
Programming (SQP) step:

(

H C>

C 0

)(

δx
λ

)

= −
(

g
c

)

, f(x + δx) ≈ f(x)− 1
2

(

g> c>
)

(

H C>

C 0

)−1(g
c

)

(12)

(

H C>

C 0

)−1

=

(

H−1− H−1 C> D−1 C H−1 H−1 C> D−1

D−1 C H−1 −D−1

)

, D ≡ C H−1 C> (13)

At the optimum δx and c vanish, but C> λ = −g, which is generally non-zero.
An alternative constrained approach uses the linearized constraints to eliminate some of the

variables, then optimizes over the rest. Suppose that we can order the variables to give partitions
x = (x1 x2)

> and C = (C1 C2), where C1 is square and invertible. Then using C1 x1 + C2 x2 =
C x = −c, we can solve for x1 in terms of x2 and c: x1 = −C−1

1 (C2x2 + c). Substituting this into
the quadratic cost model has the effect of eliminating x1, leaving a smaller unconstrained reduced
problem H22 x2 = −g2, where:

H22 ≡ H22 − H21 C−1

1 C2 − C>

2 C−>

1 H12 + C>

2 C−>

1 H11 C−1

1 C2 (14)

g2 ≡ g2 −C>

2 C−>

1 g1 − (H21 − C>

2 C−>

1 H11) C−1

1 c (15)

(These matrices can be evaluated efficiently using simple matrix factorization schemes [11]). This
method is stable provided that the chosen C1 is well-conditioned. It works well for dense problems,
but is not always suitable for sparse ones because if C is dense, the reduced Hessian H22 becomes
dense too.

For least squares cost models, constraints can also be handled within the linear least squares
framework, e.g. see [11].

4.5 General Implementation Issues

Before going into details, we mention a few points of good numerical practice for large-scale opti-
mization problems such as bundle adjustment:
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Exploit the problem structure: Large-scale problems are almost always highly structured and bun-
dle adjustment is no exception. In professional cartography and photogrammetric site-modelling,
bundle problems with thousands of images and many tens of thousands of features are regularly
solved. Such problems would simply be infeasible without a thorough exploitation of the natural
structure and sparsity of the bundle problem. We will have much to say about sparsity below.

Use factorization effectively: Many of above formulae contain matrix inverses. This is a convenient
short-hand for theoretical calculations, but numerically, matrix inversion is almost never used. In-
stead, the matrix is decomposed into its Cholesky, LU, QR, etc., factors and these are used directly,
e.g. linear systems are solved using forwards and backwards substitution. This is much faster and
numerically more accurate than explicit use of the inverse, particularly for sparse matrices such as
the bundle Hessian, whose factors are still quite sparse, but whose inverse is always dense. Explicit
inversion is required only occasionally, e.g. for covariance estimates, and even then only a few of
the entries may be needed (e.g. diagonal blocks of the covariance). Factorization is the heart of the
optimization iteration, where most of the time is spent and where most can be done to improve ef-
ficiency (by exploiting sparsity, symmetry and other problem structure) and numerical stability (by
pivoting and scaling). Similarly, certain matrices (subspace projectors, Householder matrices) have
(diagonal)+(low rank) forms which should not be explicitly evaluated as they can be applied more
efficiently in pieces.

Use stable local parametrizations: As discussed in §2.2, the parametrization used for step prediction
need not coincide with the global one used to store the state estimate. It is more important that it
should be finite, uniform and locally as nearly linear as possible. If the global parametrization is in
some way complex, highly nonlinear, or potentially ill-conditioned, it is usually preferable to use a
stable local parametrization based on perturbations of the current state for step prediction.

Scaling and preconditioning: Another parametrization issue that has a profound and too-rarely rec-
ognized influence on numerical performance is variable scaling (the choice of ‘units’ or reference
scale to use for each parameter), and more generally preconditioning (the choice of which linear
combinations of parameters to use). These represent the linear part of the general parametrization
problem. The performance of steepest descent and most other linearly convergent optimization meth-
ods is critically dependent on preconditioning, to the extent that for large problems, they are seldom
practically useful without it.

One of the great advantages of the Newton-like methods is their theoretical independence of such
scaling issues9 . But even for these, scaling makes itself felt indirectly in several ways: (i) Step control
strategies including convergence tests, maximum step size limitations, and damping strategies (trust
region, Levenberg-Marquardt) are usually all based on some implicit norm ‖δx‖2, and hence change
under linear transformations of x (e.g., damping makes the step more like the non-invariant steepest
descent one). (ii) Pivoting strategies for factoring H are highly dependent on variable scaling, as
they choose ‘large’ elements on which to pivot. Here, ‘large’ should mean ‘in which little numerical
cancellation has occurred’ but with uneven scaling it becomes ‘with the largest scale’. (iii) The choice
of gauge (datum, §9) may depend on variable scaling, and this can significantly influence convergence
[82,81].

For all of these reasons, it is important to choose variable scalings that relate meaningfully to the
problem structure. This involves a judicious comparison of the relative influence of, e.g., a unit of
error on a nearby point, a unit of error on a very distant one, a camera rotation error, a radial distortion

9Under a linear change of coordinates x → Tx we have g → T−>g and H → T−>H T−1, so the Newton step δx =
−H−1g varies correctly as δx → T δx, whereas the gradient one δx ∼ g varies incorrectly as δx → T−>

δx. The Newton
and steepest descent steps agree only when T> T = H.
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Figure 3: The network graph, parameter connection graph, Jacobian structure and Hessian structure
for a toy bundle problem with five 3D features A–E, four images 1–4 and two camera calibrations K1

(shared by images 1,2) and K2 (shared by images 3,4). Feature A is seen in images 1,2; B in 1,2,4;
C in 1,3; D in 2–4; and E in 3,4.

error, etc. For this, it is advisable to use an ‘ideal’ Hessian or weight matrix rather than the observed
one, otherwise the scaling might break down if the Hessian happens to become ill-conditioned or
non-positive during a few iterations before settling down.

5 Network Structure

Adjustment networks have a rich structure, illustrated in figure 3 for a toy bundle problem. The free
parameters subdivide naturally into blocks corresponding to: 3D feature coordinates A,. . . , E; camera
poses and unshared (single image) calibration parameters 1,. . . , 4; and calibration parameters shared
across several images K1,K2. Parameter blocks interact only via their joint influence on image
features and other observations, i.e. via their joint appearance in cost function contributions. The
abstract structure of the measurement network can be characterized graphically by the network graph
(top left), which shows which features are seen in which images, and the parameter connection
graph (top right) which details the sparse structure by showing which parameter blocks have direct
interactions. Blocks are linked if and only if they jointly influence at least one observation. The
cost function Jacobian (bottom left) and Hessian (bottom right) reflect this sparse structure. The
shaded boxes correspond to non-zero blocks of matrix entries. Each block of rows in the Jacobian
corresponds to an observed image feature and contains contributions from each of the parameter
blocks that influenced this observation. The Hessian contains an off-diagonal block for each edge of
the parameter connection graph, i.e. for each pair of parameters that couple to at least one common
feature / appear in at least one common cost contribution10 .

10The Jacobian structure can be described more directly by a bipartite graph whose nodes correspond on one side to
the observations, and on the other to the parameter blocks that influence them. The parameter connection graph is then
obtained by deleting each observation node and linking each pair of parameter nodes that it connects to. This is an example
of elimination graph processing (see below).
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Two layers of structure are visible in the Hessian. The primary structure consists of the subdi-
vision into structure (A–E) and camera (1–4, K1–K2) submatrices. Note that the structure submatrix
is block diagonal: 3D features couple only to cameras, not to other features. (This would no longer
hold if inter-feature measurements such as distances or angles between points were present). The
camera submatrix is often also block diagonal, but in this example the sharing of unknown calibration
parameters produces off-diagonal blocks. The secondary structure is the internal sparsity pattern of
the structure-camera Hessian submatrix. This is dense for small problems where all features are seen
in all images, but in larger problems it often becomes quite sparse because each image only sees a
fraction of the features.

All worthwhile bundle methods exploit at least the primary structure of the Hessian, and advanced
methods exploit the secondary structure as well. The secondary structure is particularly sparse and
regular in surface coverage problems such grids of photographs in aerial cartography. Such problems
can be handled using a fixed ‘nested dissection’ variable reordering (§6.3). But for the more irregu-
lar connectivities of close range problems, general sparse factorization methods may be required to
handle secondary structure.

Bundle problems are by no means limited to the above structures. For example, for more complex
scene models with moving or articulated objects, there will be additional connections to object pose
or joint angle nodes, with linkages reflecting the kinematic chain structure of the scene. It is often
also necessary to add constraints to the adjustment, e.g. coplanarity of certain points. One of the
greatest advantages of the bundle technique is its ability to adapt to almost arbitrarily complex scene,
observation and constraint models.

6 Implementation Strategy 1: Second Order Adjustment Methods

The next three sections cover implementation strategies for optimizing the bundle adjustment cost
function f(x) over the complete set of unknown structure and camera parameters x. This section is
devoted to second-order Newton-style approaches, which are the basis of the great majority of current
implementations. Their most notable characteristics are rapid (second order) asymptotic convergence
but relatively high cost per iteration, with an emphasis on exploiting the network structure (the sparsity
of the Hessian H = d2f

dx2 ) for efficiency. In fact, the optimization aspects are more or less standard (§4,
[29,93,42]), so we will concentrate entirely on efficient methods for solving the linearized Newton
step prediction equations δx = −H−1g, (6). For now, we will assume that the Hessian H is non-
singular. This will be amended in §9 on gauge freedom, without changing the conclusions reached
here.

6.1 The Schur Complement and the Reduced Bundle System

Schur complement: Consider the following block triangular matrix factorization:

M =

(

A B
C D

)

=

(

1 0
C A−1 1

)(

A 0
0 D

)(

1 A−1 B
0 1

)

, D ≡ D−C A−1 B (16)

(

A B
C D

)

−1
=
(

1 −A−1B
0 1

)

(

A−1 0
0 D

−1

)

( 1 0
−C A−1 1

)

=
(

A−1+A−1 B D
−1

C A−1 −A−1 B D
−1

−D
−1

C A−1 D
−1

)

(17)

Here A must be square and invertible, and for (17), the whole matrix must also be square and invert-
ible. D is called the Schur complement of A in M. If both A and D are invertible, complementing on
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D rather than A gives

(

A B
C D

)

−1
=
(

A
−1

−A
−1

B D−1

−D C A
−1

D−1+D−1C A
−1

B D−1

)

, A = A− B D−1 C

Equating upper left blocks gives the Woodbury formula:

(A± B D−1 C)−1 = A−1∓ A−1 B (D±C A−1 B)−1 C A−1 (18)

This is the usual method of updating the inverse of a nonsingular matrix A after an update (especially
a low rank one) A→ A± B D−1 C . (See §8.1).

Reduction: Now consider the linear system
(

A B
C D

)

( x1
x2

) =
( b1

b2

)

. Pre-multiplying by
( 1 0
−C A−1 1

)

gives
( A B

0 D

)

( x1
x2

) =
(

b1

b2

)

where b2 ≡ b2 − C A−1 b1. Hence we can use Schur complement and

forward substitution to find a reduced system D x2 = b2, solve this for x2, then back-substitute and
solve to find x1 :

D ≡ D− C A−1B
b2 ≡ b2 − C A−1 b1

Schur complement +
forward substitution

D x2 = b2 A x1 = b1 − B x2

reduced system back-substitution
(19)

Note that the reduced system entirely subsumes the contribution of the x1 rows and columns to the
network. Once we have reduced, we can pretend that the problem does not involve x1 at all — it
can be found later by back-substitution if needed, or ignored if not. This is the basis of all recursive
filtering methods. In bundle adjustment, if we use the primary subdivision into feature and camera
variables and subsume the structure ones, we get the reduced camera system HCC xC = gC , where:

HCC ≡ HCC − HCS H−1

SS HSC = HCC −
∑

pHCp H−1
pp HpC

gC ≡ gC − HCS H−1

SS gS = gC −
∑

pHCp H−1
pp gp

(20)

Here, ‘S’ selects the structure block and ‘C’ the camera one. HSS is block diagonal, so the reduction
can be calculated rapidly by a sum of contributions from the individual 3D features ‘p’ in S. Brown’s
original 1958 method for bundle adjustment [16,19,100] was based on finding the reduced camera
system as above, and solving it using Gaussian elimination. Profile Cholesky decomposition (§B.3)
offers a more streamlined method of achieving this.

Occasionally, long image sequences have more camera parameters than structure ones. In this
case it is more efficient to reduce the camera parameters, leaving a reduced structure system.

6.2 Triangular decompositions

If D in (16) is further subdivided into blocks, the factorization process can be continued recursively.
In fact, there is a family of block (lower triangular)*(diagonal)*(upper triangular) factorizations A =
L D U:

( A11 A12 ··· A1n
A21 A22 ··· A2n...

... . .. ...
Am1 Am2 ··· Amn

)

=







L11
L21 L22...

... . ..
...

...
...

Lm1 Lm2 ··· Lmr







( D1
D2 . ..

Dr

)( U11 U12 ··· ··· U1n
U22 ··· ··· U2n. .. ...

··· Urn

)

(21)
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See §B.1 for computational details. The main advantage of triangular factorizations is that they make
linear algebra computations with the matrix much easier. In particular, if the input matrix A is square
and nonsingular, linear equations A x = b can be solved by a sequence of three recursions that
implicitly implement multiplication by A−1 = U−1 D−1 L−1 :

L c = b ci ← L−1

ii

(

bi −
∑

j<i Lij cj

)

forward substitution (22)

D d = c di ← D−1

i ci diagonal solution (23)

U x = d xi ← U−1

ii

(

di −
∑

j>i Uij xj

)

back-substitution (24)

Forward substitution corrects for the influence of earlier variables on later ones, diagonal solution
solves the transformed system, and back-substitution propagates corrections due to later variables
back to earlier ones. In practice, this is usual method of solving linear equations such as the Newton
step prediction equations. It is stabler and much faster than explicitly inverting A and multiplying by
A−1.

The diagonal blocks Lii, Di, Uii can be set arbitrarily provided that the product Lii Di Uii remains
constant. This gives a number of well-known factorizations, each optimized for a different class of
matrices. Pivoting (row and/or column exchanges designed to improve the conditioning of L and/or
U, §B.1) is also necessary in most cases, to ensure stability. Choosing Lii = Dii = 1 gives the (block)
LU decomposition A = L U, the matrix representation of (block) Gaussian elimination. Pivoted by
rows, this is the standard method for non-symmetric matrices. For symmetric A, roughly half of the
work of factorization can be saved by using a symmetry-preserving LDL> factorization, for which D
is symmetric and U = L>. The pivoting strategy must also preserve symmetry in this case, so it has
to permute columns in the same way as the corresponding rows. If A is symmetric positive definite
we can further set D = 1 to get the Cholesky decomposition A = L L>. This is stable even without
pivoting, and hence extremely simple to implement. It is the standard decomposition method for al-
most all unconstrained optimization problems including bundle adjustment, as the Hessian is positive
definite near a non-degenerate cost minimum (and in the Gauss-Newton approximation, almost ev-
erywhere else, too). If A is symmetric but only positive semidefinite, diagonally pivoted Cholesky
decomposition can be used. This is the case, e.g. in subset selection methods of gauge fixing (§9.5).
Finally, if A is symmetric but indefinite, it is not possible to reduce D stably to 1. Instead, the Bunch-
Kaufman method is used. This is a diagonally pivoted LDL> method, where D has a mixture of
1× 1 and 2× 2 diagonal blocks. The augmented Hessian

(

H C
C> 0

)

of the Lagrange multiplier method
for constrained optimization problems (12) is always symmetric indefinite, so Bunch-Kaufman is the
recommended method for solving constrained bundle problems. (It is something like 40% faster than
Gaussian elimination, and about equally stable).

Another use of factorization is matrix inversion. Inverses can be calculated by factoring, invert-
ing each triangular factor by forwards or backwards substitution (53), and multiplying out: A−1 =
U−1 D−1 L−1. However, explicit inverses are rarely used in numerical analysis, it being both stabler and
much faster in almost all cases to leave them implicit and work by forward/backward substitution
w.r.t. a factorization, rather than multiplication by the inverse. One place where inversion is needed
in its own right, is to calculate the dispersion matrix (inverse Hessian, which asymptotically gives the
posterior covariance) as a measure of the likely variability of parameter estimates. The dispersion
can be calculated by explicit inversion of the factored Hessian, but often only a few of its entries
are needed, e.g. the diagonal blocks and a few key off-diagonal parameter covariances. In this case
(54) can be used, which efficiently calculates the covariance entries corresponding to just the nonzero
elements of L, D, U.
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6.3 Sparse factorization

To apply the above decompositions to sparse matrices, we must obviously avoid storing and manipu-
lating the zero blocks. But there is more to the subject than this. As a sparse matrix is decomposed,
zero positions tend to rapidly fill in (become non-zero), essentially because decomposition is based
on repeated linear combination of matrix rows, which is generically non-zero wherever any one of
its inputs is. Fill-in depends strongly on the order in which variables are eliminated, so efficient
sparse factorization routines attempt to minimize either operation counts or fill-in by re-ordering the
variables. (The Schur process is fixed in advance, so this is the only available freedom). Globally
minimizing either operations or fill-in is NP complete, but reasonably good heuristics exist (see be-
low). Variable order affects stability (pivoting) as well as speed, and these two goals conflict to some
extent. Finding heuristics that work well on both counts is still a research problem.

Algorithmically, fill-in is characterized by an elimination graph derived from the parameter cou-
pling / Hessian graph [40,26,11]. To create this, nodes (blocks of parameters) are visited in the given
elimination ordering, at each step linking together all unvisited nodes that are currently linked to the
current node. The coupling of block i to block j via visited block k corresponds to a non-zero Schur
contribution Lik D−1

k Ukj , and at each stage the subgraph on the currently unvisited nodes is the cou-
pling graph of the current reduced Hessian. The amount of fill-in is the number of new graph edges
created in this process.

6.3.1 Pattern matrices

We seek variable orderings that approximately minimize the total operation count or fill-in over the
whole elimination chain. For many problems a suitable ordering can be fixed in advance, typically
giving one of a few standard pattern matrices such as band or arrowhead matrices, perhaps with such
structure at several levels.

























































































bundle Hessian arrowhead matrix block tridiagonal matrix

(25)

The most prominent pattern structure in bundle adjustment is the primary subdivision of the Hessian
into structure and camera blocks. To get the reduced camera system (19), we treat the Hessian as
an arrowhead matrix with a broad final column containing all of the camera parameters. Arrowhead
matrices are trivial to factor or reduce by block 2×2 Schur complementation, c.f . (16, 19). For bundle
problems with many independent images and only a few features, one can also complement on the
image parameter block to get a reduced structure system.

Another very common pattern structure is the block tridiagonal one which characterizes all singly
coupled chains (sequences of images with only pairwise overlap, Kalman filtering and other time
recursions, simple kinematic chains). Tridiagonal matrices are factored or reduced by recursive block
2× 2 Schur complementation starting from one end. The L and U factors are also block tridiagonal,
but the inverse is generally dense.

Pattern orderings are often very natural but it is unwise to think of them as immutable: structure
often occurs at several levels and deeper structure or simply changes in the relative sizes of the various
parameter classes may make alternative orderings preferable. For more difficult problems there are
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Hessian Natural Cholesky

Minimum Degree Reverse Cuthill-McKee

Figure 4: A bundle Hessian for an irregular coverage problem with only local connections, and its
Cholesky factor in natural (structure-then-camera), minimum degree, and reverse Cuthill-McKee or-
dering.

two basic classes of on-line ordering strategies. Bottom-up methods try to minimize fill-in locally
and greedily at each step, at the risk of global short-sightedness. Top-down methods take a divide-
and-conquer approach, recursively splitting the problem into smaller sub-problems which are solved
quasi-independently and later merged.

6.3.2 Top-down Ordering Methods

The most common top-down method is called nested dissection or recursive partitioning [64,57,19,
38,40,11]. The basic idea is to recursively split the factorization problem into smaller sub-problems,
solve these independently, and then glue the solutions together along their common boundaries. Split-
ting involves choosing a separating set of variables, whose deletion will separate the remaining vari-
ables into two or more independent subsets. This corresponds to finding a (vertex) graph cut of
the elimination graph, i.e. a set of vertices whose deletion will split it into two or more disconnected
components. Given such a partitioning, the variables are reordered into connected components, with
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the separating set ones last. This produces an ‘arrowhead’ matrix, e.g. :
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(26)

The arrowhead matrix is factored by blocks, as in reduction or profile Cholesky, taking account of
any internal sparsity in the diagonal blocks and the borders. Any suitable factorization method can be
used for the diagonal blocks, including further recursive partitionings.

Nested dissection is most useful when comparatively small separating sets can be found. A trivial
example is the primary structure of the bundle problem: the camera variables separate the 3D structure
into independent features, giving the standard arrowhead form of the bundle Hessian. More interest-
ingly, networks with good geometric or temporal locality (surface- and site-covering networks, video
sequences) tend to have small separating sets based on spatial or temporal subdivision. The classic
examples are geodesic and aerial cartography networks with their local 2D connections — spatial
bisection gives simple and very efficient recursive decompositions for these [64,57,19].

For sparse problems with less regular structure, one can use graph partitioning algorithms to find
small separating sets. Finding a globally minimal partition sequence is NP complete but several ef-
fective heuristics exist. This is currently an active research field. One promising family are multilevel
schemes [70,71,65,4] which decimate (subsample) the graph, partition using e.g. a spectral method,
then refine the result to the original graph. (These algorithms should also be very well-suited to graph
based visual segmentation and matching).

6.3.3 Bottom-up Ordering Methods

Many bottom-up variable ordering heuristics exist. Probably the most widespread and effective is
minimum degree ordering. At each step, this eliminates the variable coupled to the fewest remain-
ing ones (i.e. the elimination graph node with the fewest unvisited neighbours), so it minimizes the
number O(n2

neighbours) of changed matrix elements and hence FLOPs for the step. The minimum de-
gree ordering can also be computed quite rapidly without explicit graph chasing. A related ordering,
minimum deficiency, minimizes the fill-in (newly created edges) at each step, but this is considerably
slower to calculate and not usually so effective.

Fill-in or operation minimizing strategies tend to produce somewhat fragmentary matrices that
require pointer- or index-based sparse matrix implementations (see fig. 4). This increases complexity
and tends to reduce cache locality and pipeline-ability. An alternative is to use profile matrices
which (for lower triangles) store all elements in each row between the first non-zero one and the
diagonal in a contiguous block. This is easy to implement (see §B.3), and practically efficient so
long as about 30% or more of the stored elements are actually non-zero. Orderings for this case aim
to minimize the sum of the profile lengths rather than the number of non-zero elements. Profiling
enforces a multiply-linked chain structure on the variables, so it is especially successful for linear /
chain-like / one dimensional problems, e.g. space or time sequences. The simplest profiling strategy
is reverse Cuthill-McKee which chooses some initial variable (very preferably one from one ‘end’ of
the chain), adds all variables coupled to that, then all variables coupled to those, etc., then reverses the



Paper 15: Bundle Adjustment — A Modern Synthesis — VisAlgs’99 245

ordering (otherwise, any highly-coupled variables get eliminated early on, which causes disastrous
fill-in). More sophisticated are the so-called banker’s strategies, which maintain an active set of
all the variables coupled to the already-eliminated ones, and choose the next variable — from the
active set (King [72]), it and its neighbours (Snay [101]) or all uneliminated variables (Levy [75]) —
to minimize the new size of the active set at each step. In particular, Snay’s banker’s algorithm is
reported to perform well on geodesy and aerial cartography problems [101,24].

For all of these automatic ordering methods, it often pays to do some of the initial work by hand,
e.g. it might be appropriate to enforce the structure / camera division beforehand and only order the
reduced camera system. If there are nodes of particularly high degree such as inner gauge constraints,
the ordering calculation will usually run faster and the quality may also be improved by removing
these from the graph and placing them last by hand.

The above ordering methods apply to both Cholesky / LDL> decomposition of the Hessian and
QR decomposition of the least squares Jacobian. Sparse QR methods can be implemented either
with Givens rotations or (more efficiently) with sparse Householder transformations. Row ordering
is important for the Givens methods [39]. For Householder ones (and some Givens ones too) the
multifrontal organization is now usual [41,11], as it captures the natural parallelism of the problem.

7 Implementation Strategy 2: First Order Adjustment Methods

We have seen that for large problems, factoring the Hessian H to compute the Newton step can
be both expensive and (if done efficiently) rather complex. In this section we consider alternative
methods that avoid the cost of exact factorization. As the Newton step can not be calculated, such
methods generally only achieve first order (linear) asymptotic convergence: when close to the final
state estimate, the error is asymptotically reduced by a constant (and in practice often depressingly
small) factor at each step, whereas quadratically convergent Newton methods roughly double the
number of significant digits at each step. So first order methods require more iterations than second
order ones, but each iteration is usually much cheaper. The relative efficiency depends on the relative
sizes of these two effects, both of which can be substantial. For large problems, the reduction in work
per iteration is usually at least O(n), where n is the problem size. But whereas Newton methods
converge from O(1) to O

(

10−16
)

in about 1 + log2 16 = 5 iterations, linearly convergent ones take
respectively log 10−16/ log(1 − γ) = 16, 350, 3700 iterations for reduction γ = 0.9, 0.1, 0.01 per
iteration. Unfortunately, reductions of only 1% or less are by no means unusual in practice (§7.2),
and the reduction tends to decrease as n increases.

7.1 First Order Iterations

We first consider a number of common first order methods, before returning to the question of why
they are often slow.

Steepest descent: The simplest first order method is steepest descent or gradient descent. It “slides
down the gradient” by taking δx ∼ g or Ha = 1. Line search is needed, to find an appropriate scale
for the step. Even with exact line search (i.e. the minimum along the line is found exactly), steepest
descent is spectacularly inefficient for most problems (see §7.2), unless the Hessian actually happens
to be very close to a multiple of 1. This can be arranged by preconditioning with a linear transform
L, x → L x, g → L−>g and H → L−>H L−1, where L L> ∼ H is an approximate Cholesky factor (or
other left square root) of H, so that H → L−>H L−1 ∼ 1. In this very special case, preconditioned
steepest descent approximates the Newton method. Strictly speaking, “steepest” descent is a cheat.
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The gradient is a covector (linear form on vectors) rather than a vector. It does not define a preferred
direction in search space, but merely gives the rate of descent along any given gradient vector. The
sensitivity of steepest descent to the coordinate system is one symptom of this.

Alternation: Another simple approach is alternation: partition the variables into groups and cycle
through the groups optimizing over each in turn, with the other groups held fixed. This is most
appropriate when the subproblems are significantly easier to optimize than the full one. A natural and
often-rediscovered alternation for the bundle problem is resection-intersection, which interleaves
steps of resection (finding the camera poses and if necessary calibrations from fixed 3D features) and
intersection (finding the 3D features from fixed camera poses and calibrations). The subproblems for
individual features and cameras are independent, so only the diagonal blocks of H are required.

Alternation can be used in several ways. One extreme is to optimize (or perhaps only perform one
step of optimization) over each group in turn, with a state update and re-evaluation of (the relevant
components of) g, H after each group. Alternatively, some of the re-evaluations can be simulated by
evaluating the linearized effects of the parameter group update on the other groups. E.g., for resection-
intersection with structure update δxS = −HSS gS(xS , xC) (where ‘S’ selects the structure variables
and ‘C’ the camera ones), the updated camera gradient is exactly the gradient of the reduced camera
system, gC(xS + δxS , xC) ≈ gC(xS , xC) + HCSδxS = gC − HCS H−1

SS gC . So the total update

for the cycle is
(

δxS
δxC

)

= −
(

H−1
SS 0

−H−1
CC HCS H−1

SS H−1
CC

)

( gS
gC

)

=
( HSS 0

HCS HCC

)−1( gS
gC

)

. In general, this

correction propagation amounts to solving the system as if the above-diagonal triangle of H were
zero. Once we have cycled through the variables, we can update the full state and relinearize. This
is the nonlinear Gauss-Seidel method. Alternatively, we can split the above-diagonal triangle of H
off as a correction (back-propagation) term and continue iterating

( HSS 0
HCS HCC

)(

δxS
δxC

)

(k)
= −

( gS
gC

)

−
(

0 HSC
0 0

)(

δxS
δxC

)

(k−1)
until (hopefully)

(

δxS
δxC

)

converges to the full Newton step δx = −H−1g. This
is the linear Gauss-Seidel method applied to solving the Newton step prediction equations. Finally,
alternation methods always tend to underestimate the size of the Newton step because they fail to
account for the cost-reducing effects of including the back-substitution terms. Successive Over-
Relaxation (SOR) methods improve the convergence rate by artificially lengthening the update steps
by a heuristic factor 1 < γ < 2.

Most if not all of the above alternations have been applied to both the bundle problem and the
independent model one many times, e.g. [19,95,2,108,91,20]. Brown considered the relatively so-
phisticated SOR method for aerial cartography problems as early as 1964, before developing his
recursive decomposition method [19]. None of these alternations are very effective for traditional
large-scale problems, although §7.4 below shows that they can sometimes compete for smaller highly
connected ones.

Krylov subspace methods: Another large family of iterative techniques are the Krylov subspace
methods, based on the remarkable properties of the power subspaces
Span({Ak b|k = 0 . . . n}) for fixed A, b as n increases. Krylov iterations predominate in many
large-scale linear algebra applications, including linear equation solving.

The earliest and greatest Krylov method is the conjugate gradient iteration for solving a positive
definite linear system or optimizing a quadratic cost function. By augmenting the steepest descent
step with a carefully chosen multiple of the previous step, this manages to minimize the quadratic
model function over the entire kth Krylov subspace at the kth iteration, and hence (in exact arith-
metic) over the whole space at the nth

x one. This no longer holds when there is round-off error, but
O(nx) iterations usually still suffice to find the Newton step. Each iteration is O

(

n2
x
)

so this is not
in itself a large gain over explicit factorization. However convergence is significantly faster if the
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eigenvalues of H are tightly clustered away from zero: if the eigenvalues are covered by intervals
[ai, bi]i=1...k, convergence occurs in O

(

∑k
i=1

√

bi/ai

)

iterations [99,47,48]11. Preconditioning (see
below) aims at achieving such clustering. As with alternation methods, there is a range of possible
update / re-linearization choices, ranging from a fully nonlinear method that relinearizes after each
step, to solving the Newton equations exactly using many linear iterations. One major advantage of
conjugate gradient is its simplicity: there is no factorization, all that is needed is multiplication by H.
For the full nonlinear method, H is not even needed — one simply makes a line search to find the cost
minimum along the direction defined by g and the previous step.

One disadvantage of nonlinear conjugate gradient is its high sensitivity to the accuracy of the line
search. Achieving the required accuracy may waste several function evaluations at each step. One way
to avoid this is to make the information obtained by the conjugation process more explicit by building
up an explicit approximation to H or H−1. Quasi-Newton methods such as the BFGS method do this,
and hence need less accurate line searches. The quasi-Newton approximation to H or H−1 is dense and
hence expensive to store and manipulate, but Limited Memory Quasi-Newton (LMQN) methods
often get much of the desired effect by maintaining only a low-rank approximation.

There are variants of all of these methods for least squares (Jacobian rather than Hessian based)
and for constrained problems (non-positive definite matrices).

7.2 Why Are First Order Methods Slow?

To understand why first order methods often have slow convergence, consider the effect of approxi-
mating the Hessian in Newton’s method. Suppose that in some local parametrization x centred at a
cost minimum x = 0, the cost function is well approximated by a quadratic near 0: f(x) ≈ 1

2x> H x
and hence g(x) ≡ H x, where H is the true Hessian. For most first order methods, the predicted step
is linear in the gradient g. If we adopt a Newton-like state update δx = −H−1

a g(x) based on some
approximation Ha to H, we get an iteration:

xk+1 = xk − H−1
a g(xk) ≈ (1− H−1

a H) xk ≈ (1− H−1
a H)k+1 x0 (27)

The numerical behaviour is determined by projecting x0 along the eigenvectors of 1−H−1
a H. The com-

ponents corresponding to large-modulus eigenvalues decay slowly and hence asymptotically domi-
nate the residual error. For generic x0, the method converges ‘linearly’ (i.e. exponentially) at rate
‖1− H−1

a H‖2, or diverges if this is greater than one. (Of course, the exact Newton step δx = −H−1g
converges in a single iteration, as Ha = H). Along eigen-directions corresponding to positive eigen-
values (for which Ha overestimates H), the iteration is over-damped and convergence is slow but
monotonic. Conversely, along directions corresponding to negative eigenvalues (for which Ha under-
estimates H), the iteration is under-damped and zigzags towards the solution. If H is underestimated
by a factor greater than two along any direction, there is divergence. Figure 5 shows an example of
the typical asymptotic behaviour of first and second order methods in a small bundle problem.

Ignoring the camera-feature coupling: As an example, many approximate bundle methods ignore
or approximate the off-diagonal feature-camera blocks of the Hessian. This amounts to ignoring the
fact that the cost of a feature displacement can be partially offset by a compensatory camera dis-
placement and vice versa. It therefore significantly over-estimates the total ‘stiffness’ of the network,
particularly for large, loosely connected networks. The fact that off-diagonal blocks are not negligible
compared to the diagonal ones can be seen in several ways:

11For other eigenvalue based based analyses of the bundle adjustment covariance, see [103,92].
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Figure 5: An example of the typical behaviour of first and second order convergent methods near
the minimum. This is a 2D projection of a small but ill-conditioned bundle problem along the two
most variable directions. The second order methods converge quite rapidly, whether they use exact
(Gauss-Newton) or iterative (diagonally preconditioned conjugate gradient) linear solver for the New-
ton equations. In contrast, first order methods such as resection-intersection converge slowly near the
minimum owing to their inaccurate model of the Hessian. The effects of mismodelling can be reduced
to some extent by adding a line search.

• Looking forward to §9, before the gauge is fixed, the full Hessian is singular owing to gauge
freedom. The diagonal blocks by themselves are well-conditioned, but including the off-diagonal
ones entirely cancels this along the gauge orbit directions. Although gauge fixing removes the
resulting singularity, it can not change the fact that the off-diagonal blocks have enough weight to
counteract the diagonal ones.

• In bundle adjustment, certain well-known ambiguities (poorly-controlled parameter combinations)
often dominate the uncertainty. Camera distance and focal length estimates, and structure depth
and camera baseline ones (bas-relief), are both strongly correlated whenever the perspective is
weak and become strict ambiguities in the affine limit. The well-conditioned diagonal blocks of
the Hessian give no hint of these ambiguities: when both features and cameras are free, the overall
network is much less rigid than it appears to be when each treats the other as fixed.

• During bundle adjustment, local structure refinements cause ‘ripples’ that must be propagated
throughout the network. The camera-feature coupling information carried in the off-diagonal
blocks is essential to this. In the diagonal-only model, ripples can propagate at most one feature-
camera-feature step per iteration, so it takes many iterations for them to cross and re-cross a sparsely
coupled network.

These arguments suggest that any approximation Ha to the bundle Hessian H that suppresses or sig-
nificantly alters the off-diagonal terms is likely to have large ‖1−H−1

a H‖ and hence slow convergence.
This is exactly what we have observed in practice for all such methods that we have tested: near the
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minimum, convergence is linear and for large problems often extremely slow, with ‖1−H−1
a H‖2 very

close to 1. The iteration may either zigzag or converge slowly and monotonically, depending on the
exact method and parameter values.

Line search: The above behaviour can be improved to some extent by adding a line search to the
method. In principle, this is enough to ensure convergence for any positive definite Ha. However,
accurate modelling of H is still highly desirable. Even with an exactly quadratic cost function and
exact line searches (i.e. the minimum along the line is found exactly), the approximate Newton method
(or, with Ha = 1, steepest descent) converges at a rate12 :

‖xk+1‖ ≤
(

1− C−1

1 + C−1

)k+1

‖x0‖ ≈ C�1
(1− 2C−1)k+1 ‖x0‖ (28)

Here, C is the condition number (ratio of largest to smallest eigenvalues) of H−1
a H. If ‖Ha‖ ≈ ‖H‖,

which is often the case in practice, adding a line search roughly halves the number of steps for a given
final accuracy, as the convergence rate becomes (1− 2C−1) instead of ‖1−H−1

a H‖ ≈ (1−C−1). (Of
course, the line search itself is likely to require several function evaluations, so each step is now more
expensive). More adaptive methods such as conjugate gradient and quasi-Newton also require a line
search, but — at least in principle and in the absence of rounding errors — they can converge inO(nx)
iterations. For large bundle problems with thousands of parameters this is still prohibitive, so to make
the method useful the number of iterations must be reduced further by incorporating knowledge about
H via a suitable preconditioner.

7.3 Preconditioning

Steepest descent and Krylov methods are sensitive to the coordinate system and their practical success
depends critically on good preconditioning. The aim is to find a linear transformation x → T x and
hence g → T−>g and H → T−>H T for which the transformed H is near 1, or at least has only a
few clusters of eigenvalues well separated from the origin. Ideally, T should be an accurate, low-cost
approximation to the left Cholesky factor of H. (Exactly evaluating this would give the expensive
Newton method again). In the experiments below, we tried conjugate gradient with preconditioners
based on the diagonal blocks of H, and on partial Cholesky decomposition, dropping either all filled-
in elements, or all that are smaller than a preset size when performing Cholesky decomposition. These
methods were not competitive with the exact Gauss-Newton ones in the ‘strip’ experiments below,
but for large enough problems it is likely that a preconditioned Krylov method would predominate,
especially if more effective preconditioners could be found.

An exact Cholesky factor of H from a previous iteration is often a quite effective preconditioner.
This gives hybrid methods in which H is only evaluated and factored every few iterations, with the
Newton step at these iterations and well-preconditioned steepest descent or conjugate gradient at the
others.

7.4 Experiments

Figure 6 shows the relative performance of several methods on two synthetic projective bundle ad-
justment problems. In both cases, the number of 3D points increases in proportion to the number
of images, so the dense factorization time is O

(

n3
)

where n is the number of points or images.

12Strictly speaking, this is only an upper bound, but it is usually an accurate estimate in practice. See, e.g., [93, theorem
3.3].
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Figure 6: Relative speeds of various bundle optimization methods for strong ‘spherical cloud’ and
weak ‘strip’ geometries.

The following methods are shown: ‘Sparse Gauss-Newton’ — sparse Cholesky decomposition with
variables ordered naturally (features then cameras); ‘Dense Gauss-Newton’ — the same, but (inef-
ficiently) ignoring all sparsity of the Hessian; ‘Diag. Conj. Gradient’ — the Newton step is found
by an iterative conjugate gradient linear system solver, preconditioned using the Cholesky factors
of the diagonal blocks of the Hessian; ‘Resect-Intersect’ — the state is optimized by alternate steps
of resection and intersection, with relinearization after each. In the ‘spherical cloud’ problem, the
points are uniformly distributed within a spherical cloud, all points are visible in all images, and the
camera geometry is strongly convergent. These are ideal conditions, giving a low diameter network
graph and a well-conditioned, nearly diagonal-dominant Hessian. All of the methods converge quite
rapidly. Resection-intersection is a competitive method for larger problems owing to its low cost per
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iteration. Unfortunately, although this geometry is often used for testing computer vision algorithms,
it is atypical for large-scale bundle problems. The ‘strip’ experiment has a more representative geom-
etry. The images are arranged in a long strip, with each feature seen in about 3 overlapping images.
The strip’s long thin weakly-connected network structure gives it large scale low stiffness ‘flexing’
modes, with correspondingly poor Hessian conditioning. The off-diagonal terms are critical here,
so the approximate methods perform very poorly. Resection-intersection is slower even than dense
Cholesky decomposition ignoring all sparsity. For 16 or more images it fails to converge even after
3000 iterations. The sparse Cholesky methods continue to perform reasonably well, with the natural,
minimum degree and reverse Cuthill-McKee orderings all giving very similar run times in this case.
For all of the methods that we tested, including resection-intersection with its linear per-iteration cost,
the total run time for long chain-like geometries scaled roughly as O

(

n3
)

.

8 Implementation Strategy 3: Updating and Recursion

8.1 Updating rules

It is often convenient to be able to update a state estimate to reflect various types of changes, e.g. to
incorporate new observations or to delete erroneous ones (‘downdating’). Parameters may have to
be added or deleted too. Updating rules are often used recursively, to incorporate a series of obser-
vations one-by-one rather than solving a single batch system. This is useful in on-line applications
where a rapid response is needed, and also to provide preliminary predictions, e.g. for correspondence
searches. Much of the early development of updating methods was aimed at on-line data editing in
aerial cartography workstations.

The main challenge in adding or deleting observations is efficiently updating either a factorization
of the Hessian H, or the covariance H−1. Given either of these, the state update δx is easily found by
solving the Newton step equations H δx = −g, where (assuming that we started at an un-updated
optimum g = 0) the gradient g depends only on the newly added terms. The Hessian update H →
H±B W B> needs to have relatively low rank, otherwise nothing is saved over recomputing the batch
solution. In least squares the rank is the number of independent observations added or deleted, but
even without this the rank is often low in bundle problems because relatively few parameters are
affected by any given observation.

One limitation of updating is that it is seldom as accurate as a batch solution owing to build-
up of round-off error. Updating (adding observations) itself is numerically stable, but downdating
(deleting observations) is potentially ill-conditioned as it reduces the positivity of the Hessian, and
may cause previously good pivot choices to become arbitrarily bad. This is particularly a problem if
all observations relating to a parameter are deleted, or if there are repeated insertion-deletion cycles
as in time window filtering. Factorization updating methods are stabler than Woodbury formula /
covariance updating ones.

Consider first the case where no parameters need be added nor deleted, e.g. adding or deleting an
observation of an existing point in an existing image. Several methods have been suggested [54,66].
Mikhail & Helmering [88] use the Woodbury formula (18) to update the covariance H−1. This simple
approach becomes inefficient for problems with many features because the sparse structure is not
exploited: the full covariance matrix is dense and we would normally avoid calculating it in its
entirety. Grün [51,54] avoids this problem by maintaining a running copy of the reduced camera
system (20), using an incremental Schur complement / forward substitution (16) to fold each new
observation into this, and then re-factorizing and solving as usual after each update. This is effective
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when there are many features in a few images, but for larger numbers of images it becomes inefficient
owing to the re-factorization step. Factorization updating methods such as (56, 57) are currently
the recommended update methods for most applications: they allow the existing factorization to be
exploited, they handle any number of images and features and arbitrary problem structure efficiently,
and they are numerically more accurate than Woodbury formula methods. The Givens rotation method
[12,54], which is equivalent to the rank 1 Cholesky update (57), is probably the most common such
method. The other updating methods are confusingly named in the literature. Mikhail & Helmering’s
method [88] is sometimes called ‘Kalman filtering’, even though no dynamics and hence no actual
filtering is involved. Grün’s reduced camera system method [51] is called ‘triangular factor update
(TFU)’, even though it actually updates the (square) reduced Hessian rather than its triangular factors.

For updates involving a previously unseen 3D feature or image, new variables must also be added
to the system. This is easy. We simply choose where to put the variables in the elimination sequence,
and extend H and its L,D,U factors with the corresponding rows and columns, setting all of the
newly created positions to zero (except for the unit diagonals of LDL>’s and LU’s L factor). The
factorization can then be updated as usual, presumably adding enough cost terms to make the extended
Hessian nonsingular and couple the new parameters into the old network. If a direct covariance update
is needed, the Woodbury formula (18) can be used on the old part of the matrix, then (17) to fill in the
new blocks (equivalently, invert (55), with D1 ← A representing the old blocks and D2 ← 0 the new
ones).

Conversely, it may be necessary to delete parameters, e.g. if an image or 3D feature has lost most
or all of its support. The corresponding rows and columns of the Hessian H (and rows of g, columns of
J) must be deleted, and all cost contributions involving the deleted parameters must also be removed
using the usual factorization downdates (56, 57). To delete the rows and columns of block b in a matrix
A, we first delete the b rows and columns of L, D, U. This maintains triangularity and gives the correct
trimmed A, except that the blocks in the lower right corner Aij =

∑

k≤min(i,j) Lik Dk Ukj, i, j > b are
missing a term Lib Db Ubj from the deleted column b of L / row b of U. This is added using an update
+L∗b Db Ub∗, ∗ > b. To update A−1 when rows and columns of A are deleted, permute the deleted
rows and columns to the end and use (17) backwards: (A11)

−1 = (A−1)11 − (A−1)12 (A−1)−1

22 (A−1)21.
It is also possible to freeze some live parameters at fixed (current or default) values, or to add

extra parameters / unfreeze some previously frozen ones, c.f . (49, 50) below. In this case, rows and
columns corresponding to the frozen parameters must be deleted or added, but no other change to
the cost function is required. Deletion is as above. To insert rows and columns Ab∗, A∗b at block b
of matrix A, we open space in row and column b of L, D, U and fill these positions with the usual
recursively defined values (52). For i, j > b, the sum (52) will now have a contribution Lib Db Ubj

that it should not have, so to correct this we downdate the lower right submatrix ∗ > b with a cost
cancelling contribution −L∗b Db Ub∗.

8.2 Recursive Methods and Reduction

Each update computation is roughly quadratic in the size of the state vector, so if new features and
images are continually added the situation will eventually become unmanageable. We must limit
what we compute. In principle parameter refinement never stops: each observation update affects all
components of the state estimate and its covariance. However, the refinements are in a sense trivial for
parameters that are not directly coupled to the observation. If these parameters are eliminated using
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reduction (19), the observation update can be applied directly to the reduced Hessian and gradient13 .
The eliminated parameters can then be updated by simple back-substitution (19) and their covariances
by (17). In particular, if we cease to receive new information relating to a block of parameters (an
image that has been fully treated, a 3D feature that has become invisible), they and all the observations
relating to them can be subsumed once-and-for-all in a reduced Hessian and gradient on the remaining
parameters. If required, we can later re-estimate the eliminated parameters by back-substitution.
Otherwise, we do not need to consider them further.

This elimination process has some limitations. Only ‘dead’ parameters can be eliminated: to
merge a new observation into the problem, we need the current Hessian or factorization entries for
all parameter blocks relating to it. Reduction also commits us to a linearized / quadratic cost ap-
proximation for the eliminated variables at their current estimates, although to the extent that this
model is correct, the remaining variables can still be treated nonlinearly. It is perhaps best to view
reduction as the first half-iteration of a full nonlinear optimization: by (19), the Newton method for
the full model can be implemented by repeated cycles of reduction, solving the reduced system, and
back-substitution, with relinearization after each cycle, whereas for eliminated variables we stop after
solving the first reduced system. Equivalently, reduction evaluates just the reduced components of the
full Newton step and the full covariance, leaving us the option of computing the remaining eliminated
ones later if we wish.

Reduction can be used to refine estimates of relative camera poses (or fundamental matrices,
etc.) for a fixed set of images, by reducing a sequence of feature correspondences to their camera
coordinates. Or conversely, to refine 3D structure estimates for a fixed set of features in many images,
by reducing onto the feature coordinates.

Reduction is also the basis of recursive (Kalman) filtering. In this case, one has a (e.g. time)
series of system state vectors linked by some probabilistic transition rule (‘dynamical model’), for
which we also have some observations (‘observation model’). The parameter space consists of the
combined state vectors for all times, i.e. it represents a path through the states. Both the dynamical
and the observation models provide “observations” in the sense of probabilistic constraints on the full
state parameters, and we seek a maximum likelihood (or similar) parameter estimate / path through
the states. The full Hessian is block tridiagonal: the observations couple only to the current state
and give the diagonal blocks, and dynamics couples only to the previous and next ones and gives the
off-diagonal blocks (differential observations can also be included in the dynamics likelihood). So
the model is large (if there are many time steps) but very sparse. As always with a tridiagonal matrix,
the Hessian can be decomposed by recursive steps of reduction, at each step Schur complementing to
get the current reduced block Ht from the previous one Ht−1, the off-diagonal (dynamical) coupling
Ht t−1 and the current unreduced block (observation Hessian) Ht : Ht = Ht − Ht t−1 H

−1

t−1 H>

t t−1.
Similarly, for the gradient gt = gt − Ht t−1 H−1

t−1 gt−1, and as usual the reduced state update is
δxt = −H

−1

t gt.
This forwards reduction process is called filtering. At each time step it finds the optimal (lin-

earized) current state estimate given all of the previous observations and dynamics. The correspond-
ing unwinding of the recursion by back-substitution, smoothing, finds the optimal state estimate at
each time given both past and future observations and dynamics. The usual equations of Kalman
filtering and smoothing are easily derived from this recursion, but we will not do this here. We em-
phasize that filtering is merely the first half-iteration of a nonlinear optimization procedure: even for
nonlinear dynamics and observation models, we can find the exact maximum likelihood state path by

13In (19), only D and b2 are affected by the observation as it is independent of the subsumed components A, B, C, b1.
So applying the update to D, b2 has the same effect as applying it to D, b2.
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Figure 7: The residual state estimation error of the VSDF sequential bundle algorithm for progres-
sively increasing sizes of rolling time window. The residual error at image t = 16 is shown for rolling
windows of 1–5 previous images, and also for a ‘batch’ method (all previous images) and a ‘sim-
ple’ one (reconstruction / intersection is performed independently of camera location / resection). To
simulate the effects of decreasing amounts of image data, 0%, 15% and 70% of the image measure-
ments are randomly deleted to make runs with 100%, 85% and only 30% of the supplied image data.
The main conclusion is that window size has little effect for strong data, but becomes increasingly
important as the data becomes weaker.

cyclic passes of filtering and smoothing, with relinearization after each.
For long or unbounded sequences it may not be feasible to run the full iteration, but it can still be

very helpful to run short sections of it, e.g. smoothing back over the last 3–4 state estimates then filter-
ing forwards again, to verify previous correspondences and anneal the effects of nonlinearities. (The
traditional extended Kalman filter optimizes nonlinearly over just the current state, assuming all
previous ones to be linearized). The effects of variable window size on the Variable State Dimension
Filter (VSDF) sequential bundle algorithm [85,86,83,84] are shown in figure 7.

9 Gauge Freedom

Coordinates are a very convenient device for reducing geometry to algebra, but they come at the
price of some arbitrariness. The coordinate system can be changed at any time, without affecting the
underlying geometry. This is very familiar, but it leaves us with two problems: (i) algorithmically,
we need some concrete way of deciding which particular coordinate system to use at each moment,
and hence breaking the arbitrariness; (ii) we need to allow for the fact that the results may look quite
different under different choices, even though they represent the same underlying geometry.

Consider the choice of 3D coordinates in visual reconstruction. The only objects in the 3D space
are the reconstructed cameras and features, so we have to decide where to place the coordinate system
relative to these . . . Or in coordinate-centred language, where to place the reconstruction relative to
the coordinate system. Moreover, bundle adjustment updates and uncertainties can perturb the recon-
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structed structure almost arbitrarily, so we must specify coordinate systems not just for the current
structure, but also for every possible nearby one. Ultimately, this comes down to constraining the co-
ordinate values of certain aspects of the reconstructed structure — features, cameras or combinations
of these — whatever the rest of the structure might be. Saying this more intrinsically, the coordinate
frame is specified and held fixed with respect to the chosen reference elements, and the rest of the
geometry is then expressed in this frame as usual. In measurement science such a set of coordinate
system specifying rules is called a datum, but we will follow the wider mathematics and physics
usage and call it a gauge14. The freedom in the choice of coordinate fixing rules is called gauge
freedom.

As a gauge anchors the coordinate system rigidly to its chosen reference elements, perturbing the
reference elements has no effect on their own coordinates. Instead, it changes the coordinate system
itself and hence systematically changes the coordinates of all the other features, while leaving the
reference coordinates fixed. Similarly, uncertainties in the reference elements do not affect their own
coordinates, but appear as highly correlated uncertainties in all of the other reconstructed features.
The moral is that structural perturbations and uncertainties are highly relative. Their form depends
profoundly on the gauge, and especially on how this changes as the state varies (i.e. which elements
it holds fixed). The effects of disturbances are not restricted to the coordinates of the features actually
disturbed, but may appear almost anywhere depending on the gauge.

In visual reconstruction, the differences between object-centred and camera-centred gauges are
often particularly marked. In object-centred gauges, object points appear to be relatively certain
while cameras appear to have large and highly correlated uncertainties. In camera-centred gauges,
it is the camera that appears to be precise and the object points that appear to have large correlated
uncertainties. One often sees statements like “the reconstructed depths are very uncertain”. This may
be true in the camera frame, yet the object may be very well reconstructed in its own frame — it all
depends on what fraction of the total depth fluctuations are simply due to global uncertainty in the
camera location, and hence identical for all object points.

Besides 3D coordinates, many other types of geometric parametrization in vision involve arbitrary
choices, and hence are subject to gauge freedoms [106]. These include the choice of: homogeneous
scale factors in homogeneous-projective representations; supporting points in supporting-point based
representations of lines and planes; reference plane in plane + parallax representations; and homo-
graphies in homography-epipole representations of matching tensors. In each case the symptoms and
the remedies are the same.

9.1 General Formulation

The general set up is as follows: We take as our state vector x the set of all of the 3D feature co-
ordinates, camera poses and calibrations, etc., that enter the problem. This state space has internal
symmetries related to the arbitrary choices of 3D coordinates, homogeneous scale factors, etc., that
are embedded in x. Any two state vectors that differ only by such choices represent the same under-
lying 3D geometry, and hence have exactly the same image projections and other intrinsic properties.
So under change-of-coordinates equivalence, the state space is partitioned into classes of intrinsically
equivalent state vectors, each class representing exactly one underlying 3D geometry. These classes
are called gauge orbits. Formally, they are the group orbits of the state space action of the relevant
gauge group (coordinate transformation group), but we will not need the group structure below. A

14Here, gauge just means reference frame. The sense is that of a reference against which something is judged (O.Fr.
jauger, gauger). Pronounce gēidj.
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Figure 8: Gauge orbits in state space, two gauge cross-sections and their covariances.

state space function represents an intrinsic function of the underlying geometry if and only if it is con-
stant along each gauge orbit (i.e. coordinate system independent). Such quantities are called gauge
invariants. We want the bundle adjustment cost function to quantify ‘intrinsic merit’, so it must be
chosen to be gauge invariant.

In visual reconstruction, the principal gauge groups are the 3 + 3 + 1 = 7 dimensional group
of 3D similarity (scaled Euclidean) transformations for Euclidean reconstruction, and the 15 dimen-
sional group of projective 3D coordinate transformations for projective reconstruction. But other
gauge freedoms are also present. Examples include: (i) The arbitrary scale factors of homogeneous
projective feature representations, with their 1D rescaling gauge groups. (ii) The arbitrary positions
of the points in ‘two point’ line parametrizations, with their two 1D motion-along-line groups. (iii)
The underspecified 3× 3 homographies used for ‘homography + epipole’ parametrizations of match-
ing tensors [77,62,106]. For example, the fundamental matrix can be parametrized as F = [ e ]× H
where e is its left epipole and H is the inter-image homography induced by any 3D plane. The choice
of plane gives a freedom H→ H + e a> where a is an arbitrary 3-vector, and hence a 3D linear gauge
group.

Now consider how to specify a gauge, i.e. a rule saying how each possible underlying geometry
near the current one should be expressed in coordinates. Coordinatizations are represented by state
space points, so this is a matter of choosing exactly one point (structure coordinatization) from each
gauge orbit (underlying geometry). Mathematically, the gauge orbits foliate (fill without crossing)
the state space, and a gauge is a local transversal ‘cross-section’ G through this foliation. See fig. 8.
Different gauges represent different but geometrically equivalent coordinatization rules. Results can
be mapped between gauges by pushing them along gauge orbits, i.e. by applying local coordinate
transformations that vary depending on the particular structure involved. Such transformations are
called S-transforms (‘similarity’ transforms) [6,107,22,25]. Different gauges through the same cen-
tral state represent coordinatization rules that agree for the central geometry but differ for perturbed
ones — the S-transform is the identity at the centre but not elsewhere.

Given a gauge, only state perturbations that lie within the gauge cross-section are authorized. This
is what we want, as such state perturbations are in one-to-one correspondence with perturbations of
the underlying geometry. Indeed, any state perturbation is equivalent to some on-gauge one under
the gauge group (i.e. under a small coordinate transformation that pushes the perturbed state along
its gauge orbit until it meets the gauge cross-section). State perturbations along the gauge orbits are
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uninteresting, because they do not change the underlying geometry at all.
Covariances are averages of squared perturbations and must also be based on on-gauge pertur-

bations (they would be infinite if we permitted perturbations along the gauge orbits, as there is no
limit to these — they do not change the cost at all). So covariance matrices are gauge-dependent and
in fact represent ellipsoids tangent to the gauge cross-section at the cost minimum. They can look
very different for different gauges. But, as with states, S-transforms map them between gauges by
projecting along gauge orbits / state equivalence classes.

Note that there is no intrinsic notion of orthogonality on state space, so it is meaningless to ask
which state-space directions are ‘orthogonal’ to the gauge orbits. This would involve deciding when
two different structures have been “expressed in the same coordinate system”, so every gauge believes
its own cross section to be orthogonal and all others to be skewed.

9.2 Gauge constraints

We will work near some point x of state space, perhaps a cost minimum or a running state estimate.
Let nx be the dimension of x and ng the dimension of the gauge orbits. Let f, g, H be the cost function
and its gradient and Hessian, and G be any nx × ng matrix whose columns span the local gauge
orbit directions at x 15. By the exact gauge invariance of f, its gradient and Hessian vanish along
orbit directions: g> G = 0 and H G = 0. Note that the gauged Hessian H is singular with (at least)
rank deficiency ng and null space G. This is called gauge deficiency. Many numerical optimization
routines assume nonsingular H, and must be modified to work in gauge invariant problems. The
singularity is an expression of indifference: when we come to calculate state updates, any two updates
ending on the same gauge orbit are equivalent, both in terms of cost and in terms of the change in the
underlying geometry. All that we need is a method of telling the routine which particular update to
choose.

Gauge constraints are the most direct means of doing this. A gauge cross-section G can be spec-
ified in two ways: (i) constrained form: specify ng local constraints d(x) with d(x) = 0 for points
on G ; (ii) parametric form: specify a function x(y) of nx − ng independent local parameters y, with
x = x(y) being the points of G. For example, a trivial gauge is one that simply freezes the values of
ng of the parameters in x (usually feature or camera coordinates). In this case we can take d(x) to be
the parameter freezing constraints and y to be the remaining unfrozen parameters. Note that once the
gauge is fixed the problem is no longer gauge invariant — the whole purpose of d(x), x(y) is to break
the underlying gauge invariance.

Examples of trivial gauges include: (i) using several visible 3D points as a ‘projective basis’ for
reconstruction (i.e. fixing their projective 3D coordinates to simple values, as in [27]); and (ii) fixing
the components of one projective 3× 4 camera matrix as (I 0), as in [61] (this only partially fixes the
3D projective gauge — 3 projective 3D degrees of freedom remain unfixed).
Linearized gauge: Let the local linearizations of the gauge functions be:

d(x + δx) ≈ d(x) + D δx D ≡ dd
dx (29)

x(y + δy) ≈ x(y) + Y δy Y ≡ dx
dy (30)

Compatibility between the two gauge specification methods requires d(x(y)) = 0 for all y, and hence
D Y = 0. Also, since G must be transversal to the gauge orbits, D G must have full rank ng and

15A suitable G is easily calculated from the infinitesimal action of the gauge group on x. For example, for spatial
similarities the columns of G would be the ng = 3 + 3 + 1 = 7 state velocity vectors describing the effects of infinitesimal
translations, rotations and changes of spatial scale on x.
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(Y G) must have full rank nx. Assuming that x itself is on G, a perturbation x + δxG is on G to first
order iff D δxG = 0 or δxG = Y δy for some δy.

Two nx×nx rank nx−ng matrices characterize G. The gauge projection matrix PG implements
linearized projection of state displacement vectors δx along their gauge orbits onto the local gauge
cross-section: δx → δxG = PG δx. (The projection is usually non-orthogonal: P>

G 6= PG). The
gauged covariance matrix VG plays the role of the inverse Hessian. It gives the cost-minimizing
Newton step within G, δxG = −VG g, and also the asymptotic covariance of δxG . PG and VG have
many special properties and equivalent forms. For convenience, we display some of these now16 —
let V ≡ (H + D> B D)−1 where B is any nonsingular symmetric ng × ng matrix, and let G ′ be any
other gauge:

VG ≡ Y (Y> H Y)−1 Y> = V H V = V−G (D G)−1 B−1 (D G)−>G> (31)

= PG V = PG VG = PG VG′ P>

G (32)

PG ≡ 1−G (D G)−1 D = Y (Y> H Y)−1 Y> H = V H = VG H = PG PG′ (33)

PG G = 0 , PG Y = Y , D PG = D VG = 0 (34)

g> PG = g> , H PG = H , VG g = V g (35)

These relations can be summarized by saying that VG is the G-supported generalized inverse of H
and that PG : (i) projects along gauge orbits (PG G = 0); (ii) projects onto the gauge cross-section G
(D PG = 0, PG Y = Y, PGδx = δxG and VG = PG VG′ P>

G ); and (iii) preserves gauge invariants (e.g.
f(x + PG δx) = f(x + δx), g> PG = g> and H PG = H). Both VG and H have rank nx − ng. Their
null spaces D> and G are transversal but otherwise unrelated. PG has left null space D and right null
space G.

State updates: It is straightforward to add gauge fixing to the bundle update equations. First consider
the constrained form. Enforcing the gauge constraints d(x + δxG) = 0 with Lagrange multipliers λ

gives an SQP step:
(

H D>

D 0

)(

δxG
λ

)

= −
(

g
d

)

,

(

H D>

D 0

)−1

=

(

VG G (D G)−1

(D G)−>G> 0

)

(36)

so δxG = − (VG g + G (D G)−1 d) , λ = 0 (37)

This is a rather atypical constrained problem. For typical cost functions the gradient has a component
pointing away from the constraint surface, so g 6= 0 at the constrained minimum and a non-vanishing
force λ 6= 0 is required to hold the solution on the constraints. Here, the cost function and its
derivatives are entirely indifferent to motions along the orbits. Nothing actively forces the state to
move off the gauge, so the constraint force λ vanishes everywhere, g vanishes at the optimum, and
the constrained minimum value of f is identical to the unconstrained minimum. The only effect of the
constraints is to correct any gradual drift away from G that happens to occur, via the d term in δxG .

A simpler way to get the same effect is to add a gauge-invariance breaking term such as 1
2d(x)> B d(x)

to the cost function, where B is some positive ng × ng weight matrix. Note that 1
2d(x)> B d(x)

has a unique minimum of 0 on each orbit at the point d(x) = 0, i.e. for x on G. As f is constant

16These results are most easily proved by inserting strategic factors of (Y G) (Y G)−1 and using H G = 0,

D Y = 0 and (Y G)−1 =

(

(Y> H Y)−1Y> H
(D G)−1 D

)

. For any ng × ng B including 0,
(

Y>

G>

) `
H + D> B D

´
(Y G) =

(

Y> H Y 0
0 (D G)> B (D G)

)

. If B is nonsingular, V =
`
H + D> B D

´
−1

= Y (Y> H Y)−1Y> + G (D G)−1B−1 (D G)−>G>.
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along gauge orbits, optimization of f(x) + 1
2d(x)> B d(x) along each orbit enforces G and hence re-

turns the orbit’s f value, so global optimization will find the global constrained minimum of f. The
cost function f(x) + 1

2d(x)> B d(x) is nonsingular with Newton step δxG = V (g + D> B d) where
V = (H + D> B D)−1 is the new inverse Hessian. By (35, 31), this is identical to the SQP step (37),
so the SQP and cost-modifying methods are equivalent. This strategy works only because no force
is required to keep the state on-gauge — if this were not the case, the weight B would have to be
infinite. Also, for dense D this form is not practically useful because H + D> B D is dense and hence
slow to factorize, although updating formulae can be used.

Finally, consider the parametric form x = x(y) of G. Suppose that we already have a current
reduced state estimate y. We can approximate f(x(y + δy)) to get a reduced system for δy, solve this,
and find δxG afterwards if necessary:

(Y> H Y) δy = −Y> g , δxG = Y δy = −VG g (38)

The (nx − ng)× (nx − ng) matrix Y> H Y is generically nonsingular despite the singularity of H. In
the case of a trivial gauge, Y simply selects the submatrices of g, H corresponding to the unfrozen
parameters, and solves for these. For less trivial gauges, both Y and D are often dense and there is a
risk that substantial fill-in will occur in all of the above methods.

Gauged covariance: By (31) and standard covariance propagation in (38), the covariance of the
on-gauge fluctuations δxG is E

[

δxG δx>

G

]

= Y (Y> H Y)−1 Y> = VG . δxG never moves off G, so
VG represents a rank nx − ng covariance ellipsoid ‘flattened onto G’. In a trivial gauge, VG is the
covariance (Y> H Y)−1 of the free variables, padded with zeros for the fixed ones.

Given VG , the linearized gauged covariance of a function h(x) is dh
dx VG

dh
dx

>

as usual. If h(x)
is gauge invariant (constant along gauge orbits) this is just its ordinary covariance. Intuitively, VG

and dh
dx VG

dh
dx

>

depend on the gauge because they measure not absolute uncertainty, but uncertainty
relative to the reference features on which the gauge is based. Just as there are no absolute reference
frames, there are no absolute uncertainties. The best we can do is relative ones.

Gauge transforms: We can change the gauge at will during a computation, e.g. to improve sparse-
ness or numerical conditioning or re-express results in some standard gauge. This is simply a matter
of an S-transform [6], i.e. pushing all gauged quantities along their gauge orbits onto the new gauge
cross-section G. We will assume that the base point x is unchanged. If not, a fixed (structure inde-
pendent) change of coordinates achieves this. Locally, an S-transform then linearizes into a linear
projection along the orbits spanned by G onto the new gauge constraints given by D or Y. This is
implemented by the nx × nx rank nx − ng non-orthogonal projection matrix PG defined in (33). The
projection preserves all gauge invariants — e.g. f(x + PG δx) = f(x +δx) — and it cancels the effects
of projection onto any other gauge: PG PG′ = PG .

9.3 Inner Constraints

Given the wide range of gauges and the significant impact that they have on the appearance of the
state updates and covariance matrix, it is useful to ask which gauges give the “smallest” or “best
behaved” updates and covariances. This is useful for interpreting and comparing results, and it also
gives beneficial numerical properties. Basically it is a matter of deciding which features or cameras
we care most about and tying the gauge to some stable average of them, so that gauge-induced cor-
relations in them are as small as possible. For object reconstruction the resulting gauge will usually
be object-centred, for vehicle navigation camera-centred. We stress that such choices are only a mat-
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ter of superficial appearance: in principle, all gauges are equivalent and give identical values and
covariances for all gauge invariants.

Another way to say this is that it is only for gauge invariants that we can find meaningful (co-
ordinate system independent) values and covariances. But one of the most fruitful ways to create
invariants is to locate features w.r.t. a basis of reference features, i.e. w.r.t. the gauge based on them.
The choice of inner constraints is thus a choice of a stable basis of compound features w.r.t. which
invariants can be measured. By including an average of many features in the compound, we reduce
the invariants’ dependence on the basis features.

As a performance criterion we can minimize some sort of weighted average size, either of the
state update or of the covariance. Let W be an nx × nx information-like weight matrix encoding the
relative importance of the various error components, and L be any left square root for it, L L> = W.
The local gauge at x that minimizes the weighted size of the state update δx>

G W δxG , the weighted
covariance sum Trace(W VG) = Trace(L> VG L), and the L2 or Frobenius norm of L> VG L, is given
by the inner constraints [87,89,6,22,25]17 :

D δx = 0 where D ≡ G> W (39)

The corresponding covariance VG is given by (31) with D = G> W, and the state update is δxG =
−VG g as usual. Also, if W is nonsingular, VG is given by the weighted rank nx − ng pseudo-inverse
L−> (L−1 H L−>)† L−1, where W = L L> is the Cholesky decomposition of W and (·)† is the Moore-
Penrose pseudo-inverse.

The inner constraints are covariant under global transformations x → t(x) provided that W is
transformed in the usual information matrix / Hessian way W → T−>W T−1 where T = dt

dx
18. How-

ever, such transformations seldom preserve the form of W (diagonality, W = 1, etc.). If W represents
an isotropic weighted sum over 3D points19, its form is preserved under global 3D Euclidean trans-
formations, and rescaled under scalings. But this extends neither to points under projective transfor-
mations, nor to camera poses, 3D planes and other non-point-like features even under Euclidean ones.
(The choice of origin has a significant influence For poses, planes, etc. : changes of origin propagate
rotational uncertainties into translational ones).

Inner constraints were originally introduced in geodesy in the case W = 1 [87]. The meaning of
this is entirely dependent on the chosen 3D coordinates and variable scaling. In bundle adjustment
there is little to recommend W = 1 unless the coordinate origin has been carefully chosen and the
variables carefully pre-scaled as above, i.e. x→ L> x and hence H→ L−1 H L−>, where W ∼ L L> is a

17 Sketch proof : For W = 1 (whence L = 1) and diagonal H =
(

Λ 0
0 0

)

, we have G = ( 0
1 ) and g =

(

g′

0

)

as

g> G = 0. Any gauge G transversal to G has the form D = (−B C) with nonsingular C. Premultiplying by C
−1

reduces
D to the form D = (−B 1) for some ng × (nx − ng) matrix B. It follows that PG =

(

1 0
B 0

)

and VG = ( 1
B )Λ

−1 (1 B>),
whence δx>

G W δxG = g> VG W VG g = g′>
Λ

−1
`
1 + B> B

´
Λ

−1g′ and Trace(VG) = Trace(Λ−1) + Trace
`
B Λ

−1 B>
´
.

Both criteria are clearly minimized by taking B = 0, so D = (0 1) = G> W as claimed. For nonsingular W = L L>,
scaling the coordinates by x → L x reduces us to W → 1, g> → g>L−1 and H → L−1 H L−>. Eigen-decomposition
then reduces us to diagonal H. Neither transformation affects δx>

G W δxG or Trace(W VG), and back substituting gives
the general result. For singular W, use a limiting argument on D = G> W. Similarly, using VG as above, B → 0, and
hence the inner constraint, minimizes the L2 and Frobenius norms of L> VG L. Indeed, by the interlacing property of
eigenvalues [44, §8.1], B → 0 minimizes any strictly non-decreasing rotationally invariant function of L> VG L (i.e. any
strictly non-decreasing function of its eigenvalues). �

18G → T G implies that D → D T−1, whence VG → T VG T>, PG → T PG T−1, and δxG → T δxG . So δx>

G W δxG and
Trace(W VG) are preserved.

19This means that it vanishes identically for all non-point features, camera parameters, etc., and is a weighted identity
matrix Wi = wi I3×3 for each 3D point, or more generally it has the form W ⊗ I3×3 on the block of 3D point coordinates,
where W is some npoints × npoints inter-point weighting matrix.
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fixed weight matrix that takes account of the fact that the covariances of features, camera translations
and rotations, focal lengths, aspect ratios and lens distortions, all have entirely different units, scales
and relative importances. For W = 1, the gauge projection PG becomes orthogonal and symmetric.

9.4 Free Networks

Gauges can be divided roughly into outer gauges, which are locked to predefined external reference
features giving a fixed network adjustment, and inner gauges, which are locked only to the recovered
structure giving a free network adjustment. (If their weight W is concentrated on the external refer-
ence, the inner constraints give an outer gauge). As above, well-chosen inner gauges do not distort
the intrinsic covariance structure so much as most outer ones, so they tend to have better numerical
conditioning and give a more representative idea of the true accuracy of the network. It is also useful
to make another, slightly different fixed / free distinction. In order to control the gauge deficiency,
any gauge fixing method must at least specify which motions are locally possible at each iteration.
However, it is not indispensable for these local decisions to cohere to enforce a global gauge. A
method is globally fixed if it does enforce a global gauge (whether inner or outer), and globally free
if not. For example, the standard photogrammetric inner constraints [87,89,22,25] give a globally
free inner gauge. They require that the cloud of reconstructed points should not be translated, ro-
tated or rescaled under perturbations (i.e. the centroid and average directions and distances from the
centroid remain unchanged). However, they do not specify where the cloud actually is and how it is
oriented and scaled, and they do not attempt to correct for any gradual drift in the position that may
occur during the optimization iterations, e.g. owing to accumulation of truncation errors. In contrast,
McLauchlan globally fixes the inner gauge by locking it to the reconstructed centroid and scatter
matrix [82,81]. This seems to give good numerical properties (although more testing is required to
determine whether there is much improvement over a globally free inner gauge), and it has the ad-
vantage of actually fixing the coordinate system so that direct comparisons of solutions, covariances,
etc., are possible. Numerically, a globally fixed gauge can be implemented either by including the ‘d’
term in (37), or simply by applying a rectifying gauge transformation to the estimate, at each step or
when it drifts too far from the chosen gauge.

9.5 Implementation of Gauge Constraints

Given that all gauges are in principle equivalent, it does not seem worthwhile to pay a high compu-
tational cost for gauge fixing during step prediction, so methods requiring large dense factorizations
or (pseudo-)inverses should not be used directly. Instead, the main computation can be done in any
convenient, low cost gauge, and the results later transformed into the desired gauge using the gauge
projector20 PG = 1 − G (D G)−1 D. It is probably easiest to use a trivial gauge for the computation.
This is simply a matter of deleting the rows and columns of g, H corresponding to ng preselected
parameters, which should be chosen to give a reasonably well-conditioned gauge. The choice can
be made automatically by a subset selection method (c.f ., e.g. [11]). H is left intact and factored as
usual, except that the final dense (owing to fill-in) submatrix is factored using a stable pivoted method,
and the factorization is stopped ng columns before completion. The remaining ng × ng block (and
the corresponding block of the forward-substituted gradient g) should be zero owing to gauge defi-
ciency. The corresponding rows of the state update are set to zero (or anything else that is wanted)

20The projector PG itself is never calculated. Instead, it is applied in pieces, multiplying by D, etc. The gauged Newton
step δxG is easily found like this, and selected blocks of the covariance VG = PG VG′ P>

G can also be found in this way,
expanding PG and using (54) for the leading term, and for the remaining ones finding L−1D>, etc., by forwards substitution.
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and back-substitution gives the remaining update components as usual. This method effectively finds
the ng parameters that are least well constrained by the data, and chooses the gauge constraints that
freeze these by setting the corresponding δxG components to zero.

10 Quality Control

This section discusses quality control methods for bundle adjustment, giving diagnostic tests that
can be used to detect outliers and characterize the overall accuracy and reliability of the parameter
estimates. These techniques are not well known in vision so we will go into some detail. Skip the
technical details if you are not interested in them.

Quality control is a serious issue in measurement science, and it is perhaps here that the philosoph-
ical differences between photogrammetrists and vision workers are greatest: the photogrammetrist
insists on good equipment, careful project planning, exploitation of prior knowledge and thorough er-
ror analyses, while the vision researcher advocates a more casual, flexible ‘point-and-shoot’ approach
with minimal prior assumptions. Many applications demand a judicious compromise between these
virtues.

A basic maxim is “quality = accuracy + reliability”21 . The absolute accuracy of the system
depends on the imaging geometry, number of measurements, etc. But theoretical precision by itself
is not enough: the system must also be reliable in the face of outliers, small modelling errors, and
so forth. The key to reliability is the intelligent use of redundancy: the results should represent an
internally self-consistent consensus among many independent observations, no aspect of them should
rely excessively on just a few observations.

The photogrammetric literature on quality control deserves to be better known in vision, espe-
cially among researchers working on statistical issues. Förstner [33,34] and Grün [49,50] give in-
troductions with some sobering examples of the effects of poor design. See also [7,8,21,22]. All
of these papers use least squares cost functions and scalar measurements. Our treatment generalizes
this to allow robust cost functions and vector measurements, and is also slightly more self-consistent
than the traditional approach. The techniques considered are useful for data analysis and reporting,
and also to check whether design requirements are realistically attainable during project planning.
Several properties should be verified. Internal reliability is the ability to detect and remove large
aberrant observations using internal self-consistency checks. This is provided by traditional outlier
detection and/or robust estimation procedures. External reliability is the extent to which any re-
maining undetected outliers can affect the estimates. Sensitivity analysis gives useful criteria for the
quality of a design. Finally, model selection tests attempt to decide which of several possible models
is most appropriate and whether certain parameters can be eliminated.

10.1 Cost Perturbations

We start by analyzing the approximate effects of adding or deleting an observation, which changes
the cost function and hence the solution. We will use second order Taylor expansion to characterize
the effects of this. Let f−(x) and f+(x) ≡ f−(x) + δf(x) be respectively the total cost functions
without and with the observation included, where δf(x) is the cost contribution of the observation
itself. Let g±, δg be the gradients and H±, δH the Hessians of f±, δf. Let x0 be the unknown true

21‘Accuracy’ is sometimes called ‘precision’ in photogrammetry, but we have preferred to retain the familiar meanings
from numerical analysis: ‘precision’ means numerical error / number of working digits and ‘accuracy’ means statistical
error / number of significant digits.
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underlying state and x± be the minima of f±(x) (i.e. the optimal state estimates with and without the
observation included). Residuals at x0 are the most meaningful quantities for outlier decisions, but x0

is unknown so we will be forced to use residuals at x± instead. Unfortunately, as we will see below,
these are biased. The bias is small for strong geometries but it can become large for weaker ones, so
to produce uniformly reliable statistical tests we will have to correct for it. The fundamental result is:
For any sufficiently well behaved cost function, the difference in fitted residuals f+(x+)− f−(x−) is
asymptotically an unbiased and accurate estimate of δf(x0)

22 :

δf(x0) ≈ f+(x+)− f−(x−) + ν, ν ∼ O
(

‖δg‖/√nz − nx
)

, 〈ν〉 ∼ 0 (40)

Note that by combining values at two known evaluation points x±, we simulate a value at a third
unknown one x0. The estimate is not perfect, but it is the best that we can do in the circumstances.

There are usually many observations to test, so to avoid having to refit the model many times we
approximate the effects of adding or removing observations. Working at x± and using the fact that
g±(x±) = 0, the Newton step δx ≡ x+ − x− ≈ −H−1

∓ δg(x±) implies a change in fitted residual of:

f+(x+)− f−(x−) ≈ δf(x±)± 1
2δx> H∓ δx

= δf(x±)± 1
2δg(x±)> H−1

∓ δg(x±)
(41)

So δf(x+) systematically underestimates f+(x+) − f−(x−) and hence δf(x0) by about 1
2δx> H− δx,

and δf(x−) overestimates it by about 1
2δx> H+ δx. These biases are of order O(1/(nz − nx)) and

hence negligible when there is plenty of data, but they become large at low redundancies. Intuitively,
including δf improves the estimate on average, bringing about a ‘good’ reduction of δf, but it also
overfits δf slightly, bringing about a further ‘bad’ reduction. Alternatively, the reduction in δf on
moving from x− to x+ is bought at the cost of a slight increase in f− (since x− was already the
minimum of f−), which should morally also be ‘charged’ to δf.

When deleting observations, we will usually have already evaluated H−1
+ (or a corresponding fac-

torization of H+) to find the Newton step near x+, whereas (41) requires H−1
−. And vice versa for

addition. Provided that δH � H, it is usually sufficient to use H−1
± in place of H−1

∓ in the simple tests
below. However if the observation couples to relatively few state variables, it is possible to calculate
the relevant components of H−1

∓ fairly economically. If ‘∗’ means ‘select the k variables on which
δH, δg are non-zero’, then δg> H−1δg = (δg∗)>(H−1)∗δg∗ and23 (H−1

∓)∗ =
((

(H−1
±)∗
)

−1∓ δH∗
)−1 ≈

(H−1
±)∗ ± (H−1

±)∗ δH∗ (H−1
±)∗. Even without the approximation, this involves at most a k × k fac-

torization or inverse. Indeed, for least squares δH is usually of even lower rank (= the number of
independent observations in δf), so the Woodbury formula (18) can be used to calculate the inverse
even more efficiently.

22Sketch proof : From the Newton steps δx± ≡ x± − x0 ≈ −H−1

± g±(x0) at x0, we find that f±(x±) − f±(x0) ≈
− 1

2
δx>

± H± δx± and hence ν ≡ f+(x+) − f−(x−) − δf(x0) ≈ 1
2

`
δx>

− H− δx− − δx>

+ H+ δx+

´
. ν is unbiased to

relatively high order: by the central limit property of ML estimators, the asymptotic distributions of δx± are Gaussian
N (0, H−1

±), so the expectation of both δx>

± H± δx± is asymptotically the number of free model parameters nx. Expanding
δx± and using g+ = g− + δg, the leading term is ν ≈ −δg(x0)

> x−, which asymptotically has normal distribution
ν ∼ N (0, δg(x0)

> H−1

− δg(x0)) with standard deviation of order O
`
‖δg‖/√nz − nx

´
, as x− ∼ N (0, H−1

−) and ‖H−‖ ∼
O(nz − nx). �

23C.f . the lower right corner of (17), where the ‘∗’ components correspond to block 2, so that
`
(H−1

±)∗
´
−1 is ‘D2’, the

Schur complement of the remaining variables in H±. Adding δH∗ changes the ‘D’ term but not the Schur complement
correction.
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10.2 Inner Reliability and Outlier Detection

In robust cost models nothing special needs to be done with outliers — they are just normal measure-
ments that happen be downweighted owing to their large deviations. But in non-robust models such
as least squares, explicit outlier detection and removal are essential for inner reliability. An effective
diagnostic is to estimate δf(x0) using (40, 41), and significance-test it against its distribution under the
null hypothesis that the observation is an inlier. For the least squares cost model, the null distribution
of 2 δf(x0) is χ2

k where k is the number of independent observations contributing to δf. So if α is a
suitable χ2

k significance threshold, the typical one-sided significance test is:

α
?
≤ 2 (f(x+)− f(x−)) ≈ 2 δf(x±) ± δg(x±)> H−1

∓ δg(x±) (42)

≈ 4zi(x±)>
(

Wi ±Wi J>

i H−1
∓ Ji Wi

)

4zi(x±) (43)

As usual we approximate H−1
∓ ≈ H−1

± and use x− results for additions and x+ ones for deletions. These
tests require the fitted covariance matrix H−1

± (or, if relatively few tests will be run, an equivalent
factorization of H±), but given this they are usually fairly economical owing to the sparseness of the
observation gradients δg(x±). Equation (43) is for the nonlinear least squares model with residual
error 4zi(x) ≡ zi − zi(x), cost 1

24zi(x)> Wi4zi(x) and Jacobian Ji = dzi

dx . Note that even though
zi induces a change in all components of the observation residual4z via its influence on δx, only the
immediately involved components 4zi are required in (43). The bias-correction-induced change of
weight matrix Wi →Wi±Wi J>

i H−1
∓ Ji Wi accounts for the others. For non-quadratic cost functions,

the above framework still applies but the cost function’s native distribution of negative log likelihood
values must be used instead of the Gaussian’s 1

2 χ2.
In principle, the above analysis is only valid when at most one outlier causes a relatively small

perturbation δx. In practice, the observations are repeatedly scanned for outliers, at each stage re-
moving any discovered outliers (and perhaps reinstating previously discarded observations that have
become inliers) and refitting. The net result is a form of M-estimator routine with an abruptly van-
ishing weight function: outlier deletion is just a roundabout way of simulating a robust cost function.
(Hard inlier/outlier rules correspond to total likelihood functions that become strictly constant in the
outlier region).

The tests (42, 43) give what is needed for outlier decisions based on fitted state estimates x±, but
for planning purposes it is also useful to know how large a gross error must typically be w.r.t. the
true state x0 before it is detected. Outlier detection is based on the uncertain fitted state estimates, so
we can only give an average case result. No adjustment for x± is needed in this case, so the average
minimum detectable gross error is simply:

α
?
≤ 2 δf(x0) ≈ 4z(x0)

> W4z(x0) (44)

10.3 Outer Reliability

Ideally, the state estimate should be as insensitive as possible to any remaining errors in the obser-
vations. To estimate how much a particular observation influences the final state estimate, we can
directly monitor the displacement δx ≡ x+ − x− ≈ H−1

∓ δg±(x±). For example, we might de-
fine an importance weighting on the state parameters with a criterion matrix U and monitor absolute
displacements ‖U δx‖ ≈ ‖U H−1

∓ δg(x±)‖, or compare the displacement δx to the covariance H−1
±

of x± by monitoring δx> H∓ δx ≈ δg±(x±)> H−1
∓ δg±(x±). A bound on δg(x±) of the form24

24This is a convenient intermediate form for deriving bounds. For positive semidefinite matrices A, B, we say that B
dominates A, B � A, if B − A is positive semidefinite. It follows that N (U A U>) ≤ N (U B U>) for any matrix U and
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δg δg> � V for some positive semidefinite V implies a bound δx δx> � H−1
∓ V H−1

∓ on δx and
hence a bound ‖U δx‖2 ≤ N (U H−1

∓ V H−1
∓ U>) whereN (·) can be L2 norm, trace or Frobenius norm.

For a robust cost model in which δg is globally bounded, this already gives asymptotic bounds of
order O(‖H−1‖‖δg‖) ∼ O(‖δg‖/√nz − nx) for the state perturbation, regardless of whether an
outlier occurred. For non-robust cost models we have to use an inlier criterion to limit δg. For the
least squares observation model with rejection test (43),4z4z> � α

(

Wi ±Wi J>

i H−1
∓ Ji Wi

)

−1 and
hence the maximum state perturbation due to a declared-inlying observation zi is:

δx δx> � α H−1
∓ Ji Wi

(

Wi ±Wi J>

i H−1
∓ Ji Wi

)

−1 Wi J>

i H−1
∓

= α
(

H−1
− − H−1

+

)

(45)

≈ α H−1
± Ji W−1

i J>

i H−1
± (46)

so, e.g., δx> H± δx ≤ α Trace
(

Ji H−1
± J>

i W−1

i

)

and ‖U δx‖2 ≤ α Trace
(

Ji H−1
± U> U H−1

± J>

i W−1

i

)

,
where W−1

i is the nominal covariance of zi. Note that these bounds are based on changes in the
estimated state x±. They do not directly control perturbations w.r.t. the true one x0. The combined
influence of several (k � nz − nx) observations is given by summing their δg’s.

10.4 Sensitivity Analysis

This section gives some simple figures of merit that can be used to quantify network redundancy and
hence reliability. First, in δf(x0) ≈ δf(x+) + 1

2 δg(x+)> H−1
− δg(x+), each cost contribution δf(x0)

is split into two parts: the visible residual δf(x+) at the fitted state x+ ; and 1
2 δx> H− δx, the change

in the base cost f−(x) due to the state perturbation δx = H−1
− δg(x+) induced by the observation.

Ideally, we would like the state perturbation to be small (for stability) and the residual to be large
(for outlier detectability). In other words, we would like the following masking factor to be small
(mi � 1) for each observation:

mi ≡
δg(x+)> H−1

− δg(x+)

2 δf(x+) + δg(x+)> H−1
− δg(x+)

(47)

=
4zi(x+)> Wi Ji H−1

− J>

i Wi4zi(x+)

4zi(x+)>
(

Wi + Wi Ji H−1
− J>

i Wi

)

4zi(x+)
(48)

(Here, δf should be normalized to have minimum value 0 for an exact fit). If mi is known, the outlier
test becomes δf(x+)/(1−mi) ≥ α. The masking mi depends on the relative size of δg and δf, which
in general depends on the functional form of δf and the specific deviation involved. For robust cost
models, a bound on δg may be enough to bound mi for outliers. However, for least squares case
(4z form), and more generally for quadratic cost models (such as robust models near the origin), m i

depends only on the direction of 4zi, not on its size, and we have a global L2 matrix norm based
bound mi ≤ ν

1+ν where ν = ‖L> Ji H−1
− J>

i L‖2 ≤ Trace
(

Ji H−1
− J>

i W
)

and L L> = Wi is a Cholesky
decomposition of Wi. (These bounds become equalities for scalar observations).

The stability of the state estimate is determined by the total cost Hessian (information matrix) H.
A large H implies a small state estimate covariance H−1 and also small responses δx ≈ −H−1δg

any matrix function N (·) that is non-decreasing under positive additions. Rotationally invariant non-decreasing functions
N (·) include all non-decreasing functions of the eigenvalues, e.g. L2 norm maxλi, trace

P
λi, Frobenius norm

pP
λ2

i .
For a vector a and positive B, a>B a ≤ k if and only if a a> � k B−1. (Proof: Conjugate by B1/2 and then by a
(B1/2 a)-reducing Householder rotation to reduce the question to the equivalence of 0 � Diag

`
k − u2, k, . . . , k

´
and

u2 ≤ k, where u2 = ‖B1/2 a‖2). Bounds of the form ‖U a‖2 ≤ kN (U B−1U>) follow for any U and any N (·) for which
N (v v>) = ‖v‖2 , e.g. L2 norm, trace, Frobenius norm.



266 Chapter 5. Geometric Vision & Scene Reconstruction

to cost perturbations δg. The sensitivity numbers si ≡ Trace
(

H−1
+δHi

)

are a useful measure of
the relative amount of information contributed to H+ by each observation. They sum to the model
dimension —

∑

i si = nx because
∑

i δHi = H+ — so they count “how many parameters worth” of
the total information the observation contributes. Some authors prefer to quote redundancy numbers
ri ≡ ni − si, where ni is the effective number of independent observations contained in zi . The
redundancy numbers sum to nz − nx, the total redundancy of the system. In the least squares case,
si = Trace

(

Ji H−1
+ J>

i W
)

and mi = si for scalar observations, so the scalar outlier test becomes
δf(x+)/ri ≥ α. Sensitivity numbers can also be defined for subgroups of the parameters in the form
Trace(U H−1δH), where U is an orthogonal projection matrix that selects the parameters of interest.
Ideally, the sensitivities of each subgroup should be spread evenly across the observations: a large
si indicates a heavily weighted observation, whose incorrectness might significantly compromise the
estimate.

10.5 Model Selection

It is often necessary to chose between several alternative models of the cameras or scene, e.g. addi-
tional parameters for lens distortion, camera calibrations that may or may not have changed between
images, coplanarity or non-coplanarity of certain features. Over-special models give biased results,
while over-general ones tend to be noisy and unstable. We will consider only nested models, for
which a more general model is specialized to a more specific one by freezing some of its parameters
at default values (e.g. zero skew or lens distortion, equal calibrations, zero deviation from a plane).
Let: x be the parameter vector of the more general model; f(x) be its cost function; c(x) = 0 be the
parameter freezing constraints enforcing the specialization; k be the number of parameters frozen;
x0 be the true underlying state; xg be the optimal state estimate for the general model (i.e. the un-
constrained minimum of f(x)); and xs be the optimal state estimate for the specialized one (i.e. the
minimum of f(x) subject to the constraints c(x) = 0). Then, under the null hypothesis that the spe-
cialized model is correct, c(x0) = 0, and in the asymptotic limit in which xg−x0 and xs−x0 become
Gaussian and the constraints become locally approximately linear across the width of this Gaussian,
the difference in fitted residuals 2 (f(xs)− f(xg)) has a χ2

k distribution25 . So if 2 (f(xs)− f(xg)) is
less than some suitable χ2

k decision threshold α, we can accept the hypothesis that the additional pa-
rameters take their default values, and use the specialized model rather than the more general one26.

As before, we can avoid fitting one of the models by using a linearized analysis. First suppose that
we start with a fit of the more general model xg. Let the linearized constraints at xg be c(xg + δx) ≈
c(xg) + C δx, where C ≡ dc

dx . A straightforward Lagrange multiplier calculation gives:

2 (f(xs)− f(xg)) ≈ c(xg)
> (C H−1 C>)

−1 c(xg)

xs ≈ xg − H−1 C> (C H−1C>)
−1 c(xg)

(49)

Conversely, starting from a fit of the more specialized model, the unconstrained minimum is given
by the Newton step: xg ≈ xs − H−1g(xs), and 2 (f(xs)− f(xg)) ≈ g(xs)

> H−1 g(xs), where g(xs)
is the residual cost gradient at xs. This requires the general-model covariance H−1 (or an equivalent
factorization of H), which may not have been worked out. Suppose that the additional parameters

25This happens irrespective of the observation distributions because — unlike the case of adding an observation — the
same observations and cost function are used for both fits.

26In practice, small models are preferable as they have greater stability and predictive power and less computational cost.
So the threshold α is usually chosen to be comparatively large, to ensure that the more general model will not be chosen
unless there is strong evidence for it.
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were simply appended to the model, x → (x, y) where x is now the reduced parameter vector of the
specialized model and y contains the additional parameters. Let the general-model cost gradient at
(xs, ys) be ( 0

h ) where h = df
dy , and its Hessian be

(

H A>

A B

)

. A straightforward calculation shows that:

2 (f(xs, ys)− f(xg, yg)) ≈ h> (B− A H−1 A>)
−1 h

( xg
yg

)

≈ ( xs
ys ) +

(

H−1 A>

−1

)

(B− A H−1A>)
−1 h

(50)

Given H−1 or an equivalent factorization of H, these tests are relatively inexpensive for small k. They
amount respectively to one step of Sequential Quadratic Programming and one Newton step, so the
results will only be accurate when these methods converge rapidly.

Another, softer, way to handle nested models is to apply a prior δfprior(x) peaked at the zero of
the specialization constraints c(x). If this is weak the data will override it when necessary, but the
constraints may not be very accurately enforced. If it is stronger, we can either apply an ‘outlier’ test
(40, 42) to remove it if it appears to be incorrect, or use a sticky prior — a prior similar to a robust
distribution, with a concentrated central peak and wide flat tails, that will hold the estimate near the
constraint surface for weak data, but allow it to ‘unstick’ if the data becomes stronger.

Finally, more heuristic rules are often used for model selection in photogrammetry, for example
deleting any additional parameters that are excessively correlated (correlation coefficient greater than
∼ 0.9) with other parameters, or whose introduction appears to cause an excessive increase in the
covariance of other parameters [49,50].

11 Network Design

Network design is the problem of planning camera placements and numbers of images before a mea-
surement project, to ensure that sufficiently accurate and reliable estimates of everything that needs
to be measured are found. We will not say much about design, merely outlining the basic consider-
ations and giving a few useful rules of thumb. See [5, chapter 6], [79,78], [73, Vol.2 §4] for more
information.

Factors to be considered in network design include: scene coverage, occlusion / visibility and fea-
ture viewing angle; field of view, depth of field, resolution and workspace constraints; and geometric
strength, accuracy and redundancy. The basic quantitative aids to design are covariance estimation
in a suitably chosen gauge (see §9) and the quality control tests from §10. Expert systems have been
developed [79], but in practice most designs are still based on personal experience and rules of thumb.

In general, geometric stability is best for ‘convergent’ (close-in, wide baseline, high perspective)
geometries, using wide angle lenses to cover as much of the object as possible, and large film or CCD
formats to maximize measurement precision. The wide coverage maximizes the overlap between
different sub-networks and hence overall network rigidity, while the wide baselines maximize the
sub-network stabilities. The practical limitations on closeness are workspace, field of view, depth of
field, resolution and feature viewing angle constraints.

Maximizing the overlap between sub-networks is very important. For objects with several faces
such as buildings, images should be taken from corner positions to tie the face sub-networks together.
For large projects, large scale overview images can be used to tie together close-in densifying ones.
When covering individual faces or surfaces, overlap and hence stability are improved by taking im-
ages with a range of viewing angles rather than strictly fronto-parallel ones (e.g., for the same number
of images, pan-move-pan-move or interleaved left-looking and right-looking images are stabler than
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a simple fronto-parallel track). Similarly, for buildings or turntable sequences, using a mixture of low
and high viewpoints helps stability.

For reliability, one usually plans to see each feature point in at least four images. Although two
images in principle suffice for reconstruction, they offer little redundancy and no resistance against
feature extraction failures. Even with three images, the internal reliability is still poor: isolated
outliers can usually be detected, but it may be difficult to say which of the three images they occurred
in. Moreover, 3–4 image geometries with widely spaced (i.e. non-aligned) centres usually give much
more isotropic feature error distributions than two image ones.

If the bundle adjustment will include self-calibration, it is important to include a range of viewing
angles. For example for a flat, compact object, views might be taken at regularly spaced points along
a 30–45◦ half-angle cone centred on the object, with 90◦ optical axis rotations between views.

12 Summary and Recommendations

This survey was written in the hope of making photogrammetric know-how about bundle adjustment
— the simultaneous optimization of structure and camera parameters in visual reconstruction — more
accessible to potential implementors in the computer vision community. Perhaps the main lessons are
the extraordinary versatility of adjustment methods, the critical importance of exploiting the problem
structure, and the continued dominance of second order (Newton) algorithms, in spite of all efforts to
make the simpler first order methods converge more rapidly.

We will finish by giving a series of recommendations for methods. At present, these must be
regarded as very provisional, and subject to revision after further testing.
Parametrization: (§2.2, 4.5) During step prediction, avoid parameter singularities, infinities, strong
nonlinearities and ill-conditioning. Use well-conditioned local (current value + offset) parametriza-
tions of nonlinear elements when necessary to achieve this: the local step prediction parametriza-
tion can be different from the global state representation one. The ideal is to make the parameter
space error function as isotropic and as near-quadratic as possible. Residual rotation or quaternion
parametrizations are advisable for rotations, and projective homogeneous parametrizations for distant
points, lines and planes (i.e. 3D features near the singularity of their affine parametrizations, affine
infinity).
Cost function: (§3) The cost should be a realistic approximation to the negative log likelihood of
the total (inlier + outlier) error distribution. The exact functional form of the distribution is not
too critical, however: (i) Undue weight should not be given to outliers by making the tails of the
distribution (the predicted probability of outliers) unrealistically small. (NB: Compared to most real-
world measurement distributions, the tails of a Gaussian are unrealistically small). (ii) The dispersion
matrix or inlier covariance should be a realistic estimate of the actual inlier measurement dispersion,
so that the transition between inliers and outliers is in about the right place, and the inlier errors are
correctly weighted during fitting.
Optimization method: (§4, 6, 7) For batch problems use a second order Gauss-Newton method
with sparse factorization (see below) of the Hessian, unless:
• The problem is so large that exact sparse factorization is impractical. In this case consider either

iterative linear system solvers such as Conjugate Gradient for the Newton step, or related nonlinear
iterations such as Conjugate Gradient, or preferably Limited Memory Quasi-Newton or (if memory
permits) full Quasi-Newton (§7, [29,93,42]). (None of these methods require the Hessian). If you
are in this case, it would pay to investigate professional large-scale optimization codes such as
MINPACK-2, LANCELOT, or commercial methods from NAG or IMSL (see §C.2).
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• If the problem is medium or large but dense (which is unusual), and if it has strong geometry,
alternation of resection and intersection may be preferable to a second order method. However,
in this case Successive Over-Relaxation (SOR) would be even better, and Conjugate Gradient is
likely to be better yet.

• In all of the above cases, good preconditioning is critical (§7.3).
For on-line problems (rather than batch ones), use factorization updating rather than matrix inverse
updating or re-factorization (§B.5). In time-series problems, investigate the effect of changing the
time window (§8.2, [83,84]), and remember that Kalman filtering is only the first half-iteration of a
full nonlinear method.

Factorization method: (§6.2, B.1) For speed, preserve the symmetry of the Hessian during factor-
ization by using: Cholesky decomposition for positive definite Hessians (e.g. unconstrained problems
in a trivial gauge); pivoted Cholesky decomposition for positive semi-definite Hessians (e.g. uncon-
strained problems with gauge fixing by subset selection §9.5); and Bunch-Kauffman decomposition
(§B.1) for indefinite Hessians (e.g. the augmented Hessians of constrained problems, §4.4). Gaussian
elimination is stable but a factor of two slower than these.

Variable ordering: (§6.3) The variables can usually be ordered by hand for regular networks, but
for more irregular ones (e.g. close range site-modelling) some experimentation may be needed to
find the most efficient overall ordering method. If reasonably compact profiles can be found, profile
representations (§6.3.3, B.3) are simpler to implement and faster than general sparse ones (§6.3).
• For dense networks use a profile representation and a “natural” variable ordering: either features

then cameras, or cameras then features, with whichever has the fewest parameters last. An explicit
reduced system based implementation such as Brown’s method [19] can also be used in this case
(§6.1, A).

• If the problem has some sort of 1D temporal or spatial structure (e.g. image streams, turntable
problems), try a profile representation with natural (simple connectivity) or Snay’s banker’s (more
complex connectivity) orderings (§6.3.3, [101,24]). A recursive on-line updating method might
also be useful in this case.

• If the problem has 2D structure (e.g. cartography and other surface coverage problems) try nested
dissection, with hand ordering for regular problems (cartographic blocks), and a multilevel scheme
for more complex ones (§6.3.2). A profile representation may or may not be suitable.

• For less regular sparse networks, the choice is not clear. Try minimum degree ordering with a
general sparse representation, Snay’s Banker’s with a profile representation, or multilevel nested
dissection.

For all of the automatic variable ordering methods, try to order any especially highly connected
variables last by hand, before invoking the method.

Gauge fixing: (§9) For efficiency, use either a trivial gauge or a subset selection method as a working
gauge for calculations, and project the results into whatever gauge you want later by applying a
suitable gauge projector PG (33). Unless you have a strong reason to use an external reference system,
the output gauge should probably be an inner gauge centred on the network elements you care most
about, i.e. the observed features for a reconstruction problem, and the cameras for a navigation one.

Quality control and network design: (§10) A robust cost function helps, but for overall system
reliability you still need to plan your measurements in advance (until you have developed a good
intuition for this), and check the results afterwards for outlier sensitivity and over-modelling, using a
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Figure 9: A schematic history of bundle adjustment.

suitable quality control procedure. Do not underestimate the extent to which either low redundancy,
or weak geometry, or over-general models can make gross errors undetectable.

A Historical Overview

This appendix gives a brief history of the main developments in bundle adjustment, including litera-
ture references.

Least squares: The theory of combining measurements by minimizing the sum of their squared resid-
uals was developed independently by Gauss and Legendre around 1795–1820 [37,74], [36, Vol.IV,
1–93], about 40 years after robust L1 estimation [15]. Least squares was motivated by estimation
problems in astronomy and geodesy and extensively applied to both fields by Gauss, whose remark-
able 1823 monograph [37,36] already contains almost the complete modern theory of least squares
including elements of the theory of probability distributions, the definition and properties of the Gaus-
sian distribution, and a discussion of bias and the “Gauss-Markov” theorem, which states that least
squares gives the Best Linear Unbiased Estimator (BLUE) [37,11]. It also introduces the LDL> form
of symmetric Gaussian elimination and the Gauss-Newton iteration for nonlinear problems, essen-
tially in their modern forms although without explicitly using matrices. The 1828 supplement on
geodesy introduced the Gauss-Seidel iteration for solving large nonlinear systems. The economic
and military importance of surveying lead to extensive use of least squares and several further devel-
opments: Helmert’s nested dissection [64] — probably the first systematic sparse matrix method —
in the 1880’s, Cholesky decomposition around 1915, Baarda’s theory of reliability of measurement
networks in the 1960’s [7,8], and Meissl [87,89] and Baarda’s [6] theories of uncertain coordinate
frames and free networks [22,25]. We will return to these topics below.

Second order bundle algorithms: Electronic computers capable of solving reasonably large least
squares problems first became available in the late 1950’s. The basic photogrammetric bundle method
was developed for the U.S. Air Force by Duane C. Brown and his co-workers in 1957–9 [16,19].
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The initial focus was aerial cartography, but by the late 1960’s bundle methods were also being
used for close-range measurements27 . The links with geodesic least squares and the possibility of
combining geodesic and other types of measurements with the photogrammetric ones were clear right
from the start. Initially the cameras were assumed to be calibrated28 , so the optimization was over
object points and camera poses only. Self calibration (the estimation of internal camera parameters
during bundle adjustment) was first discussed around 1964 and implemented by 1968 [19]. Camera
models were greatly refined in the early 1970’s, with the investigation of many alternative sets of
additional (distortion) parameters [17,18,19]. Even with stable and carefully calibrated aerial
photogrammetry cameras, self calibration significantly improved accuracies (by factors of around 2–
10). This lead to rapid improvements in camera design as previously unmeasurable defects like film
platten non-flatness were found and corrected. Much of this development was lead by Brown and his
collaborators. See [19] for more of the history and references.

Brown’s initial 1958 bundle method [16,19] uses block matrix techniques to eliminate the struc-
ture parameters from the normal equations, leaving only the camera pose parameters. The resulting
reduced camera subsystem is then solved by dense Gaussian elimination, and back-substitution
gives the structure. For self-calibration, a second reduction from pose to calibration parameters can
be added in the same way. Brown’s method is probably what most vision researchers think of as ‘bun-
dle adjustment’, following descriptions by Slama [100] and Hartley [58,59]. It is still a reasonable
choice for small dense networks29 , but it rapidly becomes inefficient for the large sparse ones that
arise in aerial cartography and large-scale site modelling.

For larger problems, more of the natural sparsity has to be exploited. In aerial cartography, the
regular structure makes this relatively straightforward. The images are arranged in blocks — rect-
angular or irregular grids designed for uniform ground coverage, formed from parallel 1D strips of
images with about 50–70% forward overlap giving adjacent stereo pairs or triplets, about 10–20% side
overlap, and a few known ground control points sprinkled sparsely throughout the block. Features
are shared only between neighbouring images, and images couple in the reduced camera subsystem
only if they share common features. So if the images are arranged in strip or cross-strip ordering, the
reduced camera system has a triply-banded block structure (the upper and lower bands representing,
e.g., right and left neighbours, and the central band forward and backward ones). Several efficient nu-
merical schemes exist for such matrices. The first was Gyer & Brown’s 1967 recursive partitioning
method [57,19], which is closely related to Helmert’s 1880 geodesic method [64]. (Generalizations of
these have become one of the major families of modern sparse matrix methods [40,26,11]). The basic
idea is to split the rectangle into two halves, recursively solving each half and gluing the two solutions
together along their common boundary. Algebraically, the variables are reordered into left-half-only,
right-half-only and boundary variables, with the latter (representing the only coupling between the
two halves) eliminated last. The technique is extremely effective for aerial blocks and similar prob-
lems where small separating sets of variables can be found. Brown mentions adjusting a block of 162
photos on a machine with only 8k words of memory, and 1000 photo blocks were already feasible by
mid-1967 [19]. For less regular networks such as site modelling ones it may not be feasible to choose

27Close range means essentially that the object has significant depth relative to the camera distance, i.e. that there is
significant perspective distortion. For aerial images the scene is usually shallow compared to the viewing height, so focal
length variations are very difficult to disentangle from depth variations.

28Calibration always denotes internal camera parameters (“interior orientation”) in photogrammetric terminology. Ex-
ternal calibration is called pose or (exterior) orientation.

29A photogrammetric network is dense if most of the 3D features are visible in most of the images, and sparse if
most features appear in only a few images. This corresponds directly to the density or sparsity of the off-diagonal block
(feature-camera coupling matrix) of the bundle Hessian.
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an appropriate variable ordering beforehand, but efficient on-line ordering methods exist [40,26,11]
(see §6.3).
Independent model methods: These approximate bundle adjustment by calculating a number of
partial reconstructions independently and merging them by pairwise 3D alignment. Even when the
individual models and alignments are separately optimal, the result is suboptimal because the the
stresses produced by alignment are not propagated back into the individual models. (Doing so would
amount to completing one full iteration of an optimal recursive decomposition style bundle method
— see §8.2). Independent model methods were at one time the standard in aerial photogrammetry
[95,2,100,73], where they were used to merge individual stereo pair reconstructions within aerial
strips into a global reconstruction of the whole block. They are always less accurate than bundle
methods, although in some cases the accuracy can be comparable.
First order & approximate bundle algorithms: Another recurrent theme is the use of approxima-
tions or iterative methods to avoid solving the full Newton update equations. Most of the plausible
approximations have been rediscovered several times, especially variants of alternate steps of resec-
tion (finding the camera poses from known 3D points) and intersection (finding the 3D points from
known camera poses), and the linearized version of this, the block Gauss-Seidel iteration. Brown’s
group had already experimented with Block Successive Over-Relaxation (BSOR — an accelerated
variant of Gauss-Seidel) by 1964 [19], before they developed their recursive decomposition method.
Both Gauss-Seidel and BSOR were also applied to the independent model problem around this time
[95,2]. These methods are mainly of historical interest. For large sparse problems such as aerial
blocks, they can not compete with efficiently organized second order methods. Because some of the
inter-variable couplings are ignored, corrections propagate very slowly across the network (typically
one step per iteration), and many iterations are required for convergence (see §7).
Quality control: In parallel with this algorithmic development, two important theoretical develop-
ments took place. Firstly, the Dutch geodesist W. Baarda led a long-running working group that
formulated a theory of statistical reliability for least squares estimation [7,8]. This greatly clarified
the conditions (essentially redundancy) needed to ensure that outliers could be detected from their
residuals (inner reliability), and that any remaining undetected outliers had only a limited effect on
the final results (outer reliability). A. Grün [49,50] and W. Förstner [30,33,34] adapted this theory
to photogrammetry around 1980, and also gave some early correlation and covariance based model
selection heuristics designed to control over-fitting problems caused by over-elaborate camera models
in self calibration.
Datum / gauge freedom: Secondly, as problem size and sophistication increased, it became increas-
ingly difficult to establish sufficiently accurate control points for large geodesic and photogrammetric
networks. Traditionally, the network had been viewed as a means of ‘densifying’ a fixed control co-
ordinate system — propagating control-system coordinates from a few known control points to many
unknown ones. But this viewpoint is suboptimal when the network is intrinsically more accurate than
the control, because most of the apparent uncertainty is simply due to the uncertain definition of the
control coordinate system itself. In the early 1960’s, Meissl studied this problem and developed the
first free network approach, in which the reference coordinate system floated freely rather than being
locked to any given control points [87,89]. More precisely, the coordinates are pinned to a sort of
average structure defined by so-called inner constraints. Owing to the removal of control-related
uncertainties, the nominal structure covariances become smaller and easier to interpret, and the nu-
merical bundle iteration also converges more rapidly. Later, Baarda introduced another approach to
this theory based on S-transforms — coordinate transforms between uncertain frames [6,21,22,25].
Least squares matching: All of the above developments originally used manually extracted image
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points. Automated image processing was clearly desirable, but it only gradually became feasible
owing to the sheer size and detail of photogrammetric images. Both feature based, e.g. [31,32],
and direct (region based) [1,52,55,110] methods were studied, the latter especially for matching
low-contrast natural terrain in cartographic applications. Both rely on some form of least squares
matching (as image correlation is called in photogrammetry). Correlation based matching techniques
remain the most accurate methods of extracting precise translations from images, both for high con-
trast photogrammetric targets and for low contrast natural terrain. Starting from around 1985, Grün
and his co-workers combined region based least squares matching with various geometric constraints.
Multi-photo geometrically constrained matching optimizes the match over multiple images simul-
taneously, subject to the inter-image matching geometry [52,55,9]. For each surface patch there is a
single search over patch depth and possibly slant, which simultaneously moves it along epipolar lines
in the other images. Initial versions assumed known camera matrices, but a full patch-based bundle
method was later investigated [9]. Related methods in computer vision include [94,98,67]. Globally
enforced least squares matching [53,97,76] further stabilizes the solution in low-signal regions by
enforcing continuity constraints between adjacent patches. Patches are arranged in a grid and matched
using local affine or projective deformations, with additional terms to penalize mismatching at patch
boundaries. Related work in vision includes [104,102]. The inter-patch constraints give a sparsely-
coupled structure to the least squares matching equations, which can again be handled efficiently by
recursive decomposition.

B Matrix Factorization

This appendix covers some standard material on matrix factorization, including the technical details
of factorization, factorization updating, and covariance calculation methods. See [44,11] for more
details.
Terminology: Depending on the factorization, ‘L’ stands for lower triangular, ‘U’ or ‘R’ for upper
triangular, ‘D’ or ‘S’ for diagonal, ‘Q’ or ‘U’,‘V’ for orthogonal factors.

B.1 Triangular decompositions

Any matrix A has a family of block (lower triangular)*(diagonal)*(upper triangular) factorizations
A = L D U:

A = L D U
( A11 A12 ··· A1n

A21 A22 ··· A2n...
... . . . ...

Am1 Am2 ··· Amn

)

=







L11
L21 L22...

... . ..
...

...
...

Lm1 Lm2 ··· Lmr
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D2 .. .
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)( U11 U12 ··· ··· U1n
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)
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Aij ≡ Aij −
∑

k<min(i,j) Lik Dk Ukj

= Aij −
∑

k<min(i,j) Aik A
−1

kk Akj

(52)

Here, the diagonal blocks D1 . . . Dr−1 must be chosen to be square and invertible, and r is determined
by the rank of A. The recursion (52) follows immediately from the product Aij = (L D U)ij =
∑

k≤min(i,j) Lik Dk Ukj. Given such a factorization, linear equations can be solved by forwards and
backwards substitution as in (22–24).
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The diagonal blocks of L, D, U can be chosen freely subject to Lii Dii Uii = Aii, but once this
is done the factorization is uniquely defined. Choosing Lii = Dii = 1 so that Uii = Aii gives
the (block) LU decomposition A = L U, the matrix representation of (block) Gaussian elimination.
Choosing Lii = Uii = 1 so that Di = Aii gives the LDU decomposition. If A is symmetric, the LDU
decomposition preserves the symmetry and becomes the LDL> decomposition A = L D L> where
U = L> and D = D>. If A is symmetric positive definite we can set D = 1 to get the Cholesky
decomposition A = L L>, where Lii L>

ii = Aii (recursively) defines the Cholesky factor Lii of the
positive definite matrix Aii. (For a scalar, Chol(a) =

√
a). If all of the blocks are chosen to be 1× 1,

we get the conventional scalar forms of these decompositions. These decompositions are obviously
equivalent, but for speed and simplicity it is usual to use the most specific one that applies: LU for
general matrices, LDL> for symmetric ones, and Cholesky for symmetric positive definite ones. For
symmetric matrices such as the bundle Hessian, LDL> / Cholesky are 1.5–2 times faster than LDU /
LU. We will use the general form (51) below as it is trivial to specialize to any of the others.
Loop ordering: From (52), the ij block of the decomposition depends only on the the upper left
(m − 1) × (m − 1) submatrix and the first m elements of row i and column j of A, where m =
min(i, j). This allows considerable freedom in the ordering of operations during decomposition,
which can be exploited to enhance parallelism and improve memory cache locality.
Fill in: If A is sparse, its L and U factors tend to become ever denser as the decomposition progresses.
Recursively expanding Aik and Akj in (52) gives contributions of the form±Aik A−1

kk Akl · · ·Apq A−1

qq Aqj

for k, l . . . p, q < min(i, j). So even if Aij is zero, if there is any path of the form i → k → l →
. . . → p → q → j via non-zero Akl with k, l . . . p, q < min(i, j), the ij block of the decomposition
will generically fill-in (become non-zero). The amount of fill-in is strongly dependent on the ordering
of the variables (i.e. of the rows and columns of A). Sparse factorization methods (§6.3) manipulate
this ordering to minimize either fill-in or total operation counts.
Pivoting: For positive definite matrices, the above factorizations are very stable because the pivots
Aii must themselves remain positive definite. More generally, the pivots may become ill-conditioned
causing the decomposition to break down. To deal with this, it is usual to search the undecomposed
part of the matrix for a large pivot at each step, and permute this into the leading position before
proceeding. The stablest policy is full pivoting which searches the whole submatrix, but usually
a less costly partial pivoting search over just the current column (column pivoting) or row (row
pivoting) suffices. Pivoting ensures that L and/or U are relatively well-conditioned and postpones
ill-conditioning in D for as long as possible, but it can not ultimately make D any better conditioned
than A is. Column pivoting is usual for the LU decomposition, but if applied to a symmetric matrix
it destroys the symmetry and hence doubles the workload. Diagonal pivoting preserves symmetry
by searching for the largest remaining diagonal element and permuting both its row and its column
to the front. This suffices for positive semidefinite matrices (e.g. gauge deficient Hessians). For
general symmetric indefinite matrices (e.g. the augmented Hessians

(

H C
C> 0

)

of constrained problems
(12)), off-diagonal pivots can not be avoided30 , but there are fast, stable, symmetry-preserving pivoted
LDL> decompositions with block diagonal D having 1× 1 and 2× 2 blocks. Full pivoting is possible
(Bunch-Parlett decomposition), but Bunch-Kaufman decomposition which searches the diagonal
and only one or at most two columns usually suffices. This method is nearly as fast as pivoted
Cholesky decomposition (to which it reduces for positive matrices), and as stable LU decomposition
with partial pivoting. Åsen’s method has similar speed and stability but produces a tridiagonal D.

30The archetypical failure is the unstable LDL> decomposition of the well-conditioned symmetric indefinite matrix
( ε 1

1 0 ) =
(

1 0
1/ε 1

)(

ε 0
0 −1/ε

)(

1 1/ε
0 1

)

, for ε → 0. Fortunately, for small diagonal elements, permuting the dominant
off-diagonal element next to the diagonal and leaving the resulting 2 × 2 block undecomposed in D suffices for stability.
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The constrained Hessian
(

H C
C> 0

)

has further special properties owing to its zero block, but we will
not consider these here — see [44, §4.4.6 Equilibrium Systems].

B.2 Orthogonal decompositions

For least squares problems, there is an alternative family of decompositions based on orthogonal
reduction of the Jacobian J = dz

dx . Given any rectangular matrix A, it can be decomposed as
A = Q R where R is upper triangular and Q is orthogonal (i.e., its columns are orthonormal unit
vectors). This is called the QR decomposition of A. R is identical to the right Cholesky factor of
A> A = (R> Q>)(Q R) = R> R. The solution of the linear least squares problem minx ‖A x − b‖2
is x = R−1 Q> b, and R−1Q> is the Moore-Penrose pseduo-inverse of A. The QR decomposition is
calculated by finding a series of simple rotations that successively zero below diagonal elements of
A to form R, and accumulating the rotations in Q, Q> A = R. Various types of rotations can be
used. Givens rotations are the fine-grained extreme: one-parameter 2× 2 rotations that zero a single
element of A and affect only two of its rows. Householder reflections are coarser-grained reflections
in hyperplanes 1 − 2 v v>

‖v‖2 , designed to zero an entire below-diagonal column of A and affecting all
elements of A in or below the diagonal row of that column. Intermediate sizes of Householder reflec-
tions can also be used, the 2× 2 case being computationally equivalent, and equal up to a sign, to the
corresponding Givens rotation. This is useful for sparse QR decompositions, e.g. multifrontal meth-
ods (see §6.3 and [11]). The Householder method is the most common one for general use, owing to
its speed and simplicity. Both the Givens and Householder methods calculate R explicitly, but Q is
not calculated directly unless it is explicitly needed. Instead, it is stored in factorized form (as a series
of 2 × 2 rotations or Householder vectors), and applied piecewise when needed. In particular, Q> b
is needed to solve the least squares system, but it can be calculated progressively as part of the de-
composition process. As for Cholesky decomposition, QR decomposition is stable without pivoting
so long as A has full column rank and is not too ill-conditioned. For degenerate A, Householder QR
decomposition with column exchange pivoting can be used. See [11] for more information about QR
decomposition.

Both QR decomposition of A and Cholesky decomposition of the normal matrix A> A can be
used to calculate the Cholesky / QR factor R and to solve least squares problems with design matrix /
Jacobian A. The QR method runs about as fast as the normal / Cholesky one for square A, but becomes
twice as slow for long thin A (i.e. many observations in relatively few parameters). However, the QR
is numerically much stabler than the normal / Cholesky one in the following sense: if A has condition
number (ratio of largest to smallest singular value) c and the machine precision is ε, the QR solution
has relative errorO(cε), whereas the normal matrix A> A has condition number c2 and its solution has
relative error O

(

c2ε
)

. This matters only if c2ε approaches the relative accuracy to which the solution
is required. For example, even in accurate bundle adjustments, we do not need relative accuracies
greater than about 1 : 106. As ε ∼ 10−16 for double precision floating point, we can safely use the
normal equation method for c(J) . 105, whereas the QR method is safe up to c(J) . 1010, where
J is the bundle Jacobian. In practice, the Gauss-Newton / normal equation approach is used in most
bundle implementations.

Individual Householder reflections are also useful for projecting parametrizations of geometric
entities orthogonal to some constraint vector. For example, for quaternions or homogeneous projec-
tive vectors X, we often want to enforce spherical normalization ‖X‖2 = 1. To first order, only
displacements δX orthogonal to X are allowed, X> δX = 0. To parametrize the directions we can
move in, we need a basis for the vectors orthogonal to X. A Householder reflection Q based on X
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L = profile cholesky decomp(A)
for i = 1 to n do

for j = first(i) to i do

a = Aij −
j−1
∑

k=max(first(i),first(j))

Lik Ljk

Lij = (j < i) ? a / Ljj :
√

a

x = profile cholesky forward subs(A, b)
for i = first(b) to n do

xi =

(

bi −
i−1
∑

k=max(first(i),first(b))

Lik xk

)

/ Lii

y = profile cholesky back subs(A, x)
y = x
for i = last(b) to 1 step −1 do

for k = max(first(i), first(y)) to i do
yk = yk − yi Lik

yi = yi / Lii

Figure 10: A complete implementation of profile Cholesky decomposition.

converts X to (1 0 . . . 0)> and hence the orthogonal directions to vectors of the form (0 ∗ . . . ∗)>.
So if U contains rows 2–n of Q, we can reduce Jacobians d

dX to the n − 1 independent parameters
δu of the orthogonal subspace by post-multiplying by U>, and once we have solved for δu, we can
recover the orthogonal δX ≈ U δu by premultiplying by U. Multiple constraints can be enforced by
successive Householder reductions of this form. This corresponds exactly to the LQ method for
solving constrained least squares problems [11].

B.3 Profile Cholesky Decomposition

One of the simplest sparse methods suitable for bundle problems is profile Cholesky decomposition.
With natural (features then cameras) variable ordering, it is as efficient as any method for dense
networks (i.e. most features visible in most images, giving dense camera-feature coupling blocks in
the Hessian). With suitable variable ordering31 , it is also efficient for some types of sparse problems,
particularly ones with chain-like connectivity.

Figure 10 shows the complete implementation of profile Cholesky, including decomposition
L L> = A, forward substitution x = L−1 b, and back substitution y = L−>x. first(b), last(b) are
the indices of the first and last nonzero entries of b, and first(i) is the index of the first nonzero entry
in row i of A and hence L. If desired, L, x, y can overwrite A, b, x during decomposition to save
storage. As always with factorizations, the loops can be reordered in several ways. These have the
same operation counts but different access patterns and hence memory cache localities, which on
modern machines can lead to significant performance differences for large problems. Here we store
and access A and L consistently by rows.

B.4 Matrix Inversion and Covariances

When solving linear equations, forward-backward substitutions (22, 24) are much faster than explic-
itly calculating and multiplying by A−1, and numerically stabler too. Explicit inverses are only rarely
needed, e.g. to evaluate the dispersion (“covariance”) matrix H−1. Covariance calculation is expensive
for bundle adjustment: no matter how sparse H may be, H−1 is always dense. Given a triangular de-
composition A = L D U, the most obvious way to calculate A−1 is via the product A−1 = U−1 D−1 L−1,

31Snay’s Banker’s strategy (§6.3.3, [101,24]) seems to be one of the most effective ordering strategies.
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where L−1 (which is lower triangular) is found using a recurrence based on either L−1 L = 1 or
L L−1 = 1 as follows (and similarly but transposed for U):

(L−1)ii = (Lii)
−1, (L−1)ji = −L−1

jj

(

j−1
∑

k=i

Ljk (L−1)ki

)

= −
(

j
∑

k=i+1

(L−1)jk Lki

)

L−1

ii

i=1...n , j=i+1...n i=n...1 , j=n...i+1

(53)

Alternatively [45,11], the diagonal and the (zero) upper triangle of the linear system U A−1 = D−1 L−1

can be combined with the (zero) lower triangle of A−1 L = U−1 D−1 to give the direct recursion (i =
n . . . 1 and j = n . . . i + 1):

(A−1)ji = −
(

n
∑

k=i+1

(A−1)jk Lki

)

L−1

ii , (A−1)ij = −U−1

ii

(

n
∑

k=i+1

Uik (A−1)kj

)

(A−1)ii = U−1

ii

(

D−1

i L−1

ii −
n
∑

k=i+1

Uik (A−1)ki

)

=

(

U−1

ii D−1

i −
n
∑

k=i+1

(A−1)ik Lki

)

L−1

ii

(54)

In the symmetric case (A−1)ji = (A−1)ij so we can avoid roughly half of the work. If only a few
blocks of A−1 are required (e.g. the diagonal ones), this recursion has the property that the blocks of
A−1 associated with the filled positions of L and U can be calculated without calculating any blocks
associated with unfilled positions. More precisely, to calculate (A−1)ij for which Lji (j > i) or
Uji (j < i) is non-zero, we do not need any block (A−1)kl for which Llk = 0 (l > k) or Ulk = 0
(l < k) 32. This is a significant saving if L, U are sparse, as in bundle problems. In particular, given the
covariance of the reduced camera system, the 3D feature variances and feature-camera covariances
can be calculated efficiently using (54) (or equivalently (17), where A ← Hss is the block diagonal
feature Hessian and D2 is the reduced camera one).

B.5 Factorization Updating

For on-line applications (§8.2), it is useful to be able to update the decomposition A = L D U to
account for a (usually low-rank) change A→ A ≡ A± B W C. Let B ≡ L−1 B and C ≡ C U−1 so that
L−1 A U−1 = D± B W C. This low-rank update of D can be LDU decomposed efficiently. Separating
the first block of D from the others we have:

( D1
D2

)

±
(

B1

B2

)

W ( C1 C2 ) =
(

1
±B2 W C1 D

−1
1 1

)(

D1

D2

)(

1 ±D
−1
1 B1 W C2

1

)

D1 ≡ D1 ± B1 W C1 D2 ≡ D2 ± B2

(

W∓W C1 D
−1

1 B1 W
)

C2

(55)

32This holds because of the way fill-in occurs in the LDU decomposition. Suppose that we want to find (A−1)ij , where
j > i and Lji 6= 0. For this we need (A−1)kj for all non-zero Uik, k > i. But for these Ajk = Lji Di Uik + . . . + Ajk 6= 0,
so (A−1)kj is associated with a filled position and will already have been evaluated.
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D2 is a low-rank update of D2 with the same C2 and B2 but a different W. Evaluating this recursively
and merging the resulting L and U factors into L and U gives the updated decomposition33 A = L D U :

W(1) ← ±W ; B(1) ← B ; C(1) ← C ;
for i = 1 to n do

Bi ← B(i)
i ; Ci ← C(i)

i ; Di ← Di + Bi W(i) Ci ;

W(i+1) ← W(i) −W(i) Ci D
−1

i Bi W(i) =
(

(W(i))−1 + Ci D−1

i Bi

)

−1

;

for j = i + 1 to n do

B(i+1)
j ← B(i)

j − Lji Bi ; Lji ← Lji + B(i+1)
j W(i+1) Ci D−1

i ;

C(i+1)
j ← C(i)

j − Ci Uij ; Uij ← Uij + D−1

i Bi W(i+1) C(i+1)
j ;

(56)

The W−1 form of the W update is numerically stabler for additions (‘+’ sign in A±B W C with positive
W), but is not usable unless W(i) is invertible. In either case, the update takes time O

(

(k2 + b2)N2
)

where A is N×N , W is k×k and the Di are b×b. So other things being equal, k should be kept as
small as possible (e.g. by splitting the update into independent rows using an initial factorization of
W, and updating for each row in turn). The scalar Cholesky form of this method for a rank one update
A→ A + w b b> is:

w(1) ← w ; b(1) ← b ;
for i = 1 to n do

bi ← b(i)
i /Lii ; di ← 1 + w(i) b2

i ; Lii ← Lii

√

di ;

w(i+1) ← w(i)/di ;

for j = i + 1 to n do

b(i+1)
j ← b(i)

j − Lji bi ; Lji ←
(

Lji + b(i+1)
j w(i+1) bi

)

√

di ;

(57)

This takes O
(

n2
)

operations. The same recursion rule (and several equivalent forms) can be derived
by reducing (L b)> to an upper triangular matrix using Givens rotations or Householder transforma-
tions [43,11].

C Software

C.1 Software Organization

For a general purpose bundle adjustment code, an extensible object-based organization is natural. The
measurement network can be modelled as a network of objects, representing measurements and their
error models and the different types of 3D features and camera models that they depend on. It is ob-
viously useful to allow the measurement, feature and camera types to be open-ended. Measurements
may be 2D or 3D, implicit or explicit, and many different robust error models are possible. Features
may range from points through curves and homographies to entire 3D object models. Many types
of camera and lens distortion models exist. If the scene is dynamic or articulated, additional nodes
representing 3D transformations (kinematic chains or relative motions) may also be needed.

The main purpose of the network structure is to predict observations and their Jacobians w.r.t. the
free parameters, and then to integrate the resulting first order parameter updates back into the internal

33Here, B(i)
j = Bj −

Pi−1
k=1 Ljk Bk =

Pj
k=i Ljk Bk and C(i)

j = Cj −
Pi−1

k=1 Ck Lkj =
Pj

k=i Ck Ukj accumulate L−1B
and C U−1. For the L, U updates one can also use W(i+1) Ci D−1

i = W(i) Ci D
−1

i and D−1

i Bi W(i+1) = D
−1

i Bi W(i).
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3D feature and camera state representations. Prediction is essentially a matter of systematically prop-
agating values through the network, with heavy use of the chain rule for derivative propagation. The
network representation must interface with a numerical linear algebra one that supports appropriate
methods for forming and solving the sparse, damped Gauss-Newton (or other) step prediction equa-
tions. A fixed-order sparse factorization may suffice for simple networks, while automatic variable
ordering is needed for more complicated networks and iterative solution methods for large ones.

Several extensible bundle codes exist, but as far as we are aware, none of them are currently
available as freeware. Our own implementations include:
• CARMEN [59] is a program for camera modelling and scene reconstruction using iterative nonlin-

ear least squares. It has a modular design that allows many different feature, measurement and
camera types to be incorporated (including some quite exotic ones [56,63]). It uses sparse matrix
techniques similar to Brown’s reduced camera system method [19] to make the bundle adjustment
iteration efficient.

• HORATIO (http://www.ee.surrey.ac.uk/Personal/P.McLauchlan/horatio/html, [85,86,83,84]) is a C
library supporting the development of efficient computer vision applications. It contains support
for image processing, linear algebra and visualization, and will soon be made publicly available.
The bundle adjustment methods in Horatio, which are based on the Variable State Dimension Filter
(VSDF) [83,84], are being commercialized. These algorithms support sparse block matrix oper-
ations, arbitrary gauge constraints, global and local parametrizations, multiple feature types and
camera models, as well as batch and sequential operation.

• VXL : This modular C++ vision environment is a new, lightweight version of the TargetJr/IUE en-
vironment, which is being developed mainly by the Universities of Oxford and Leuven, and General
Electric CRD. The initial public release on
http://www.robots.ox.ac.uk/∼vxl will include an OpenGL user interface and classes for multiple
view geometry and numerics (the latter being mainly C++ wrappers to well established routines
from Netlib — see below). A bundle adjustment code exists for it but is not currently planned for
release [28,62].

C.2 Software Resources

A great deal of useful numerical linear algebra and optimization software is available on the In-
ternet, although more commonly in FORTRAN than in C/C++. The main repository is NETLIB

at http://www.netlib.org/. Other useful sites include: the ‘Guide to Available Mathematical Soft-
ware’ GAMS at http://gams.nist.gov; the NEOS guide http://www-fp.mcs.anl.gov/otc/Guide/, which
is based in part on Moré & Wright’s guide book [90]; and the Object Oriented Numerics page
http://oonumerics.org. For large-scale dense linear algebra, LAPACK (http://www.netlib.org/lapack,
[3]) is the best package available. However it is optimized for relatively large problems (matrices of
size 100 or more), so if you are solving many small ones (size less than 20 or so) it may be faster
to use the older LINPACK and EISPACK routines. These libraries all use the BLAS (Basic Linear
Algebra Subroutines) interface for low level matrix manipulations, optimized versions of which are
available from most processor vendors. They are all FORTRAN based, but C/C++ versions and inter-
faces exist (CLAPACK, http://www.netlib.org/clapack; LAPACK++, http://math.nist.gov/lapack++).
For sparse matrices there is a bewildering array of packages. One good one is Boeing’s SPOOLES
(http://www.netlib.org/linalg/spooles/spooles.2.2.html) which implements sparse Bunch-Kaufman de-
composition in C with several ordering methods. For iterative linear system solvers implementa-
tion is seldom difficult, but there are again many methods and implementations. The ‘Templates’
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book [10] contains potted code. For nonlinear optimization there are various older codes such as
MINPACK, and more recent codes designed mainly for very large problems such as MINPACK-2
(ftp://info.mcs.anl.gov/pub/MINPACK-2) and LANCELOT (http://www.cse.clrc.ac.uk/Activity/LANCELOT).
(Both of these latter codes have good reputations for other large scale problems, but as far as we are
aware they have not yet been tested on bundle adjustment). All of the above packages are freely
available. Commercial vendors such as NAG (ttp://www.nag.co.uk) and IMSL (www.imsl.com) have
their own optimization codes.

Glossary

This glossary includes a few common terms from vision, photogrammetry, numerical optimization and statis-
tics, with their translations.

Additional parameters: Parameters added to the basic perspective model to represent lens distortion and
similar small image deformations.

α-distribution: A family of wide tailed probability distributions, including the Cauchy distribution (α = 1)
and the Gaussian (α = 2).

Alternation: A family of simplistic and largely outdated strategies for nonlinear optimization (and also itera-
tive solution of linear equations). Cycles through variables or groups of variables, optimizing over each in
turn while holding all the others fixed. Nonlinear alternation methods usually relinearize the equations after
each group, while Gauss-Seidel methods propagate first order corrections forwards and relinearize only at
the end of the cycle (the results are the same to first order). Successive over-relaxation adds momentum
terms to speed convergence. See separable problem. Alternation of resection and intersection is a naı̈ve
and often-rediscovered bundle method.

Asymptotic limit: In statistics, the limit as the number of independent measurements is increased to infinity,
or as the second order moments dominate all higher order ones so that the posterior distribution becomes
approximately Gaussian.

Asymptotic convergence: In optimization, the limit of small deviations from the solution, i.e. as the solution
is reached. Second order or quadratically convergent methods such as Newton’s method square the norm
of the residual at each step, while first order or linearly convergent methods such as steepest descent and
alternation only reduce the error by a constant factor at each step.

Banker’s strategy: See fill in, §6.3.3.
Block: A (possibly irregular) grid of overlapping photos in aerial cartography.
Bunch-Kauffman: A numerically efficient factorization method for symmetric indefinite matrices, A = L D L>

where L is lower triangular and D is block diagonal with 1× 1 and 2× 2 blocks (§6.2, B.1).
Bundle adjustment: Any refinement method for visual reconstructions that aims to produce jointly optimal

structure and camera estimates.
Calibration: In photogrammetry, this always means internal calibration of the cameras. See inner orienta-

tion.
Central limit theorem: States that maximum likelihood and similar estimators asymptotically have Gaussian

distributions. The basis of most of our perturbation expansions.
Cholesky decomposition: A numerically efficient factorization method for symmetric positive definite matri-

ces, A = L L> where L is lower triangular.
Close Range: Any photogrammetric problem where the scene is relatively close to the camera, so that it

has significant depth compared to the camera distance. Terrestrial photogrammetry as opposed to aerial
cartography.

Conjugate gradient: A cleverly accelerated first order iteration for solving positive definite linear systems or
minimizing a nonlinear cost function. See Krylov subspace.

Cost function: The function quantifying the total residual error that is minimized in an adjustment computa-
tion.
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Cramér-Rao bound: See Fisher information.
Criterion matrix: In network design, an ideal or desired form for a covariance matrix.
Damped Newton method: Newton’s method with a stabilizing step control policy added. See Levenberg-

Marquardt.
Data snooping: Elimination of outliers based on examination of their residual errors.
Datum: A reference coordinate system, against which other coordinates and uncertainties are measured. Our

principle example of a gauge.
Dense: A matrix or system of equations with so few known-zero elements that it may as well be treated as

having none. The opposite of sparse. For photogrammetric networks, dense means that the off-diagonal
structure-camera block of the Hessian is dense, i.e. most features are seen in most images.

Descent direction: In optimization, any search direction with a downhill component, i.e. that locally reduces
the cost.

Design: The process of defining a measurement network (placement of cameras, number of images, etc.) to
satisfy given accuracy and quality criteria.

Design matrix: The observation-state Jacobian J = dz
dx .

Direct method: Dense correspondence or reconstruction methods based directly on cross-correlating photo-
metric intensities or related descriptor images, without extracting geometric features. See least squares
matching, feature based method.

Dispersion matrix: The inverse of the cost function Hessian, a measure of distribution spread. In the asymp-
totic limit, the covariance is given by the dispersion.

Downdating: On-the-fly removal of observations, without recalculating everything from scratch. The inverse
of updating.

Elimination graph: A graph derived from the network graph, describing the progress of fill in during sparse
matrix factorization.

Empirical distribution: A set of samples from some probability distribution, viewed as an sum-of-delta-
function approximation to the distribution itself. The law of large numbers asserts that the approximation
asymptotically converges to the true distribution in probability.

Fill-in: The tendency of zero positions to become nonzero as sparse matrix factorization progresses. Vari-
able ordering strategies seek to minimize fill-in by permuting the variables before factorization. Methods
include minimum degree, reverse Cuthill-McKee, Banker’s strategies, and nested dissection. See §6.3.

Fisher information: In parameter estimation, the mean curvature of the posterior log likelihood function,
regarded as a measure of the certainty of an estimate. The Cramér-Rao bound says that any unbiased
estimator has covariance≥ the inverse of the Fisher information.

Free gauge / free network: A gauge or datum that is defined internally to the measurement network, rather
than being based on predefined reference features like a fixed gauge.

Feature based: Sparse correspondence / reconstruction methods based on geometric image features (points,
lines, homographies. . . ) rather than direct photometry. See direct method.

Filtering: In sequential problems such as time series, the estimation of a current value using all of the previ-
ous measurements. Smoothing can correct this afterwards, by integrating also the information from future
measurements.

First order method / convergence: See asymptotic convergence.
Gauge: An internal or external reference coordinate system defined for the current state and (at least) small

variations of it, against which other quantities and their uncertainties can be measured. The 3D coordinate
gauge is also called the datum. A gauge constraint is any constraint fixing a specific gauge, e.g. for the
current state and arbitrary (small) displacements of it. The fact that the gauge can be chosen arbitrarily with-
out changing the underlying structure is called gauge freedom or gauge invariance. The rank-deficiency
that this transformation-invariance of the cost function induces on the Hessian is called gauge deficiency.
Displacements that violate the gauge constraints can be corrected by applying an S-transform, whose linear
form is a gauge projection matrix PG .
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Gauss-Markov theorem: This says that for a linear system, least squares weighted by the true measurement
covariances gives the Best (minimum variance) Linear Unbiased Estimator or BLUE.

Gauss-Newton method: A Newton-like method for nonlinear least squares problems, in which the Hessian
is approximated by the Gauss-Newton one H ≈ J> W J where J is the design matrix and W is a weight
matrix. The normal equations are the resulting Gauss-Newton step prediction equations (J> W J) δx =
−(J W4z).

Gauss-Seidel method: See alternation.
Givens rotation: A 2 × 2 rotation used to as part of orthogonal reduction of a matrix, e.g. QR, SVD. See

Householder reflection.
Gradient: The derivative of the cost function w.r.t. the parameters g = df

dx .
Gradient descent: See steepest descent.

Hessian: The second derivative matrix of the cost function H = d2f
dx2 . Symmetric and positive (semi-)definite at

a cost minimum. Measures how ‘stiff’ the state estimate is against perturbations. Its inverse is the dispersion
matrix.

Householder reflection: A matrix representing reflection in a hyperplane, used as a tool for orthogonal re-
duction of a matrix, e.g. QR, SVD. See Givens rotation.

Independent model method: A suboptimal approximation to bundle adjustment developed for aerial cartog-
raphy. Small local 3D models are reconstructed, each from a few images, and then glued together via
tie features at their common boundaries, without a subsequent adjustment to relax the internal stresses so
caused.

Inner: Internal or intrinsic.
Inner constraints: Gauge constraints linking the gauge to some weighted average of the reconstructed fea-

tures and cameras (rather than to an externally supplied reference system).
Inner orientation: Internal camera calibration, including lens distortion, etc.
Inner reliability: The ability to either resist outliers, or detect and reject them based on their residual errors.
Intersection: (of optical rays). Solving for 3D feature positions given the corresponding image features and

known 3D camera poses and calibrations. See resection, alternation.
Jacobian: See design matrix.
Krylov subspace: The linear subspace spanned by the iterated products {Ak b|k = 0 . . . n} of some square

matrix A with some vector b, used as a tool for generating linear algebra and nonlinear optimization itera-
tions. Conjugate gradient is the most famous Krylov method.

Kullback-Leibler divergence: See relative entropy.
Least squares matching: Image matching based on photometric intensities. See direct method.
Levenberg-Marquardt: A common damping (step control) method for nonlinear least squares problems,

consisting of adding a multiple λD of some positive definite weight matrix D to the Gauss-Newton Hessian
before solving for the step. Levenberg-Marquardt uses a simple rescaling based heuristic for setting λ, while
trust region methods use a more sophisticated step-length based one. Such methods are called damped
Newton methods in general optimization.

Local model: In optimization, a local approximation to the function being optimized, which is easy enough
to optimize that an iterative optimizer for the original function can be based on it. The second order Taylor
series model gives Newton’s method.

Local parametrization: A parametrization of a nonlinear space based on offsets from some current point.
Used during an optimization step to give better local numerical conditioning than a more global parametriza-
tion would.

LU decomposition: The usual matrix factorization form of Gaussian elimination.
Minimum degree ordering: One of the most widely used automatic variable ordering methods for sparse

matrix factorization.
Minimum detectable gross error: The smallest outlier that can be detected on average by an outlier detection
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method.
Nested dissection: A top-down divide-and-conquer variable ordering method for sparse matrix factoriza-

tion. Recursively splits the problem into disconnected halves, dealing with the separating set of connecting
variables last. Particularly suitable for surface coverage problems. Also called recursive partitioning.

Nested models: Pairs of models, of which one is a specialization of the other obtained by freezing certain
parameters(s) at prespecified values.

Network: The interconnection structure of the 3D features, the cameras, and the measurements that are made
of them (image points, etc.). Usually encoded as a graph structure.

Newton method: The basic iterative second order optimization method. The Newton step state update δx =
−H−1g minimizes a local quadratic Taylor approximation to the cost function at each iteration.

Normal equations: See Gauss-Newton method.
Nuisance parameter: Any parameter that had to be estimated as part of a nonlinear parameter estimation

problem, but whose value was not really wanted.
Outer: External. See inner.
Outer orientation: Camera pose (position and angular orientation).
Outer reliability: The influence of unremoved outliers on the final parameter estimates, i.e. the extent to

which they are reliable even though some (presumably small or lowly-weighted) outliers may remain unde-
tected.

Outlier: An observation that deviates significantly from its predicted position. More generally, any observa-
tion that does not fit some preconceived notion of how the observations should be distributed, and which
must therefore be removed to avoid disturbing the parameter estimates. See total distribution.

Pivoting: Row and/or column exchanges designed to promote stability during matrix factorization.
Point estimator: Any estimator that returns a single “best” parameter estimate, e.g. maximum likelihood,

maximum a posteriori.
Pose: 3D position and orientation (angle), e.g. of a camera.
Preconditioner: A linear change of variables designed to improve the accuracy or convergence rate of a

numerical method, e.g. a first order optimization iteration. Variable scaling is the diagonal part of precon-
ditioning.

Primary structure: The main decomposition of the bundle adjustment variables into structure and camera
ones.

Profile matrix: A storage scheme for sparse matrices in which all elements between the first and the last
nonzero one in each row are stored, even if they are zero. Its simplicity makes it efficient even if there are
quite a few zeros.

Quality control: The monitoring of an estimation process to ensure that accuracy requirements were met,
that outliers were removed or down-weighted, and that appropriate models were used, e.g. for additional
parameters.

Radial distribution: An observation error distribution which retains the Gaussian dependence on a squared
residual error r = x> W x, but which replaces the exponential e−r/2 form with a more robust long-tailed
one.

Recursive: Used of filtering-based reconstruction methods that handle sequences of images or measurements
by successive updating steps.

Recursive partitioning: See nested dissection.
Reduced problem: Any problem where some of the variables have already been eliminated by partial fac-

torization, leaving only the others. The reduced camera system (20) is the result of reducing the bundle
problem to only the camera variables. (§6.1, 8.2, 4.4).

Redundancy: The extent to which any one observation has only a small influence on the results, so that it
could be incorrect or missing without causing problems. Redundant consenses are the basis of reliability.
Redundancy numbers r are a heuristic measure of the amount of redundancy in an estimate.

Relative entropy: An information-theoretic measure of how badly a model probability density p1 fits an actual
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one p0 : the mean (w.r.t. p0) log likelihood contrast of p0 to p1, 〈log(p0/p1)〉p0
.

Resection: (of optical rays). Solving for 3D camera poses and possibly calibrations, given image features and
the corresponding 3D feature positions. See intersection.

Resection-intersection: See alternation.
Residual: The error4z in a predicted observation, or its cost function value.
S-transformation: A transformation between two gauges, implemented locally by a gauge projection matrix

PG .
Scaling: See preconditioner.

Schur complement: Of A in
(

A B
C D

)

is D− C A−1B. See §6.1.
Second order method / convergence: See asymptotic convergence.
Secondary structure: Internal structure or sparsity of the off-diagonal feature-camera coupling block of the

bundle Hessian. See primary structure.
Self calibration: Recovery of camera (internal) calibration during bundle adjustment.
Sensitivity number: A heuristic number s measuring the sensitivity of an estimate to a given observation.
Separable problem: Any optimization problem in which the variables can be separated into two or more sub-

sets, for which optimization over each subset given all of the others is significantly easier than simultaneous
optimization over all variables. Bundle adjustment is separable into 3D structure and cameras. Alternation
(successive optimization over each subset) is a naı̈ve approach to separable problems.

Separating set: See nested dissection.
Sequential Quadratic Programming (SQP): An iteration for constrained optimization problems, the con-

strained analogue of Newton’s method. At each step optimizes a local model based on a quadratic model
function with linearized constraints.

Sparse: “Any matrix with enough zeros that it pays to take advantage of them” (Wilkinson).
State: The bundle adjustment parameter vector, including all scene and camera parameters to be estimated.
Steepest descent: Naı̈ve optimization method which consists of descent directly (in some given coordinate

system) down the gradient of the cost function.
Sticky prior: A robust prior with a central peak but wide tails, designed to let the estimate ‘unstick’ from the

peak if there is strong evidence against it.
Subset selection: The selection of a stable subset of ‘live’ variables on-line during pivoted factorization. E.g.,

used as a method for selecting variables to constrain with trivial gauge constraints (§9.5).
Successive Over-Relaxation (SOR): See alternation.
Sum of Squared Errors (SSE): The nonlinear least squares cost function. The (possibly weighted) sum of

squares of all of the residual feature projection errors.
Total distribution: The error distribution expected for all observations of a given type, including both inliers

and outliers. I.e. the distribution that should be used in maximum likelihood estimation.
Trivial gauge: A gauge that fixes a small set of predefined reference features or cameras at given coordinates,

irrespective of the values of the other features.
Trust region: See Levenberg-Marquardt.
Updating: Incorporation of additional observations without recalculating everything from scratch.
Variable ordering strategy: See fill-in.
Weight matrix: An information (inverse covariance) like matrix matrix W, designed to put the correct relative

statistical weights on a set of measurements.
Woodbury formula: The matrix inverse updating formula (18).
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Chapter 6

Pattern Recognition & Statistics

This chapter contains two papers on statistical modelling and pattern recognition, written jointly
with my PhD student Guillaume Bouchard.

Summary of paper 16, “The Trade-off between Generative and Dis-
criminative Classifiers”

This paper was presented at COMPSTAT’04, the IASC International Symposium on Computational
Statistics [BT04b]. It gives a likelihood-based derivation of the difference between discriminatively-
trained and generatively-trained classifiers, and proposes an intermediate approach that is some-
times better than both. The basic idea is that discriminatively-trained classifiers are trained to maxi-
mize the expected log-likelihood of p(class | descriptors), while generatively-trained ones maximize
p(class, descriptors) = p(class | descriptors) p(descriptors). So we can interpolate between the two
by modulating the underlying class-independent likelihood p(descriptors).

Summary of paper 17, “Hierarchical Part-Based Visual Object Cate-
gorization”

This paper has been submitted to the 2005 Conference on Computer Vision and Pattern Recognition
(CVPR) [BT04a]. It describes a statistically motivated, spatially structured local feature based ap-
proach to visual object recognition. Local features are small distinctive image patches representing
possible fragments of a detected object. Several types of local feature detectors exist. Currently,
two of the most successful approaches to visual object recognition are: (i) “bag of local features”
approaches that treat the detected features essentially as independent weak classifiers for object
presence, and combine them using voting, naive Bayes, boosting, and similar ensemble classifier
schemes; and (ii) “constellation” models, that try to capture spatial dependencies by using a few
specific local features, and building a joint spatial density model for them. The bag model is spa-
tially weak but able to exploit large numbers (hundreds) of weakly-informative features, while the
constellation model is spatially strong but limited to only a few (6 or so) relatively informative
ones. The current paper adopts an intermediate approach, using hundreds of relatively weak local
features, but enforcing at least some spatial coherence by learning hierarchical, spatially organized,
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part-subpart based object models. The overall model is expressed as a Gaussian mixture over ap-
pearances and positions and learned using EM. The method is tested on several classes from the
popular Caltech test sets.
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THE TRADE-OFF BETWEEN
GENERATIVE AND DISCRIMINATIVE
CLASSIFIERS

Guillaume Bouchard and Bill Triggs

Key words : Statistical computing, numerical algorithms.

COMPSTAT 2004 section: Classification.

Abstract: Given any generative classifier based on an inexact density model, we
can define a discriminative counterpart that reduces its asymptotic error rate. We
introduce a family of classifiers that interpolate the two approaches, thus providing
a new way to compare them and giving an estimation procedure whose classifica-
tion performance is well balanced between the bias of generative classifiers and the
variance of discriminative ones. We show that an intermediate trade-off between
the two strategies is often preferable, both theoretically and in experiments on real
data.

1 Introduction

In supervised classification, inputs x and their labels y arise from an unknown
joint probability p(x, y). If we can approximate p(x, y) using a parametric family
of models G = {pθ(x, y), θ ∈ Θ}, then a natural classifier is obtained by first
estimating the class-conditional densities, then classifying each new data point to
the class with highest posterior probability. This approach is called generative

classification.
However, if the overall goal is to find the classification rule with the smallest

error rate, this depends only on the conditional density p(y|x). Discriminative

methods directly model the conditional distribution, without assuming anything
about the input distribution p(x). Well known generative-discriminative pairs in-
clude Linear Discriminant Analysis (LDA) vs. Linear logistic regression and naive
Bayes vs. Generalized Additive Models (GAM). Many authors have already stud-
ied these models e.g. [5,6]. Under the assumption that the underlying distributions
are Gaussian with equal covariances, it is known that LDA requires less data than
its discriminative counterpart, linear logistic regression [3]. More generally, it is
known that generative classifiers have a smaller variance than.

Conversely, the generative approach converges to the best model for the joint
distribution p(x, y) but the resulting conditional density is usually a biased clas-
sifier unless its pθ(x) part is an accurate model for p(x). In real world problems
the assumed generative model is rarely exact, and asymptotically, a discrimina-
tive classifier should typically be preferred [9, 5]. The key argument is that the
discriminative estimator converges to the conditional density that minimizes the
negative log-likelihood classification loss against the true density p(x, y) [2]. For
finite sample sizes, there is a bias-variance tradeoff and it is less obvious how to
choose between generative and discriminative classifiers.

In this paper, we will first consider the parameter estimation problem, focusing
on the theoretical distinction between generative and discriminative classifiers.
Then we propose a new technique for combining the two classifiers: the Generative-
Discriminative Trade-off (GDT) estimate. It is based on a continuous class of

Published in the Symposium of the Int. Assoc. for Statistical Computing, CompStat 2004. c©
2004 Physica-Verlag / Springer.
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cost functions that interpolate smoothly between the generative strategy and the
discriminative one. Our method assumes a joint density based parametrization
pθ(x, y), but uses this to model the conditional density p(x|y). The goal is to
find the parameters that maximize classification performance on the underlying
population, but we do this by defining a cost function that is intermediate between
the joint and the conditional log-likelihoods and optimizing this on training and
validation sets.

Given that the generative model based on maximum likelihood (ML) produces
minimum variance — but possibly biased — parameter estimates, while the dis-
criminative one gives the best asymptotic classification performance, there are
good reasons for thinking that an intermediate method such as the GDT estimate
should be preferred. We illustrate this on simulations and on real datasets.

2 Preliminaries

Using independent training samples {xi, yi}, i = 1, . . . , n, xi ∈ R
d,and yi ∈ {1, . . . , K}

sampled from the unknown distribution p(x, y), we aim to find the rule that gives
the lowest error rate on new data. This is closely related to estimating the condi-
tional probability p(y|x).

For each of the K classes, the class-conditional probability p(x|y = k) is mod-
eled by a parametric model fk with parameters θk. The y follows a multinomial
distribution with parameters p1, . . . , pK . The full parametrization of the joint den-
sity is θ = (p1, . . . , pK , θ1, . . . , θK). Given θ, new data points x are classified to
the group k giving the highest posterior probability

Pθ(Y = k|X = x) =
pkfk(x; θk)

∑K
l=1 plfl(xi; θl)

. (1)

The generative and the discriminative approaches differ only in the estimation of
θ.

Generative classifier. Given data {xi, yi}, i = 1, . . . , n, a standard way to
estimate the parameters of densities is the Maximum Likelihood (ML) estimate
(we assume that the solution is unique):

θ̂GEN = arg max
θ∈Θ

LGEN (θ), LGEN (θ) =
∑n

i=1 log pyi
fyi

(xi; θ). (2)

Discriminative classifier. Let D = {pθ(y|x) = pθ(x, y)/
∑

z pθ(x, z), θ ∈ Θ}
be the set of conditional densities derived from the generative model. Our aim is
to find the conditional density in D that minimizes a classification loss function
on the training set. Here, we consider only the negative conditional log-likelihood
−LDISC , which can be viewed as a convex approximation to the error rate:

θ̂DISC = argmax
θ∈Θ

LDISC(θ), LDISC(θ) =
∑n

i=1 log
pyi

fyi
(xi;θ)

P

k
pkfk(xi;θ) . (3)

The discriminative approach allows to eliminate parameters that influence only
p(x) ,not p(y|x) (e.g. shared covariance matrix in Gaussian distributions), leading
to logistic regression over lower dimensional parameter spaces. However, we will
not use this reduction, as we need to maintain a common parametrization for the
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discriminative and generative cases. thus, the solution (3) of the discriminative
classifier may not be unique — there may exist infinitely many parameters that give
the same conditional distribution pθ(x|y). However, the classification performance
is the same for all such solutions.

Relationship. The quantity LDISC can be expanded as follows:

LDISC(θ) =

n∑

i=1

log pyi
fyi

(xi; θ)

︸ ︷︷ ︸

LGEN (θ)

−

n∑

i=1

log

K∑

k=1

pkfk(xi; θ)

︸ ︷︷ ︸

Lx(θ)

(4)

The difference between the generative and discriminative objective functions
LGEN and LDISC is thus

∑n

i=1

∑

k log pθ(xi, k), the log-likelihood of the input
space probability model pθ(x). Equation (4) shows that compared to the discrim-
inative approach, the generative strategy tends to favor parameters that give high
likelihood on the training data.

3 Between Generative and Discriminative classifiers

To get a natural trade-off between the two approaches, we can introduce a new ob-
jective function Lλ based on a parameter λ ∈ [0, 1] that interpolates continuously
between the discriminative and generative objective functions:

Lλ(θ; x, y) = LGEN (θ; x, y) − (1 − λ)Lx(θ; x) (5)

= λLGEN (θ) + (1 − λ)LDISC(θ). (6)

For λ ∈ [0, 1], the GDT estimate is

θ̂λ = arg maxθ∈Θ Lλ(θ). (7)

Taking λ = 0 leads to the discriminative estimate θ̂DISC , while λ = 1 leads to
the generative one θ̂GEN . We expect that the GDT estimates θ̂λ (0 < λ < 1) will
sometimes have better generalization performances than these two extremes. Even
if the discriminative estimate (3) is not unique, the maximum of (7) is unique for

all λ ∈ [0, 1) if the ML estimate θ̂GEN is unique.

Computation of θ̂λ. Since we use a differentiable classification loss, the maxi-
mization problem (7) can be solved by any gradient ascent method. The Newton
algorithm converges rapidly, but requires the computation of the Hessian matrix,
The Conjugate Gradient (CG) algorithm may be more suitable for large scale
problems: it needs only the first derivative and it is possible to avoid the storage
of the quasi-Hessian matrix which can be huge when the number of parameters is
large.

For simplicity, we assume that the parameters θk of the different class densities
are independent. Taking the derivative of (5) with respect to θk and πk, we get

{
∂

∂θk
Lλ(θk) =

∑n

i=1(I{yi=k} − (1 − λ)τki)
∂log fk(xi;θk)

∂θk
∂

∂πk
Lλ(θk) = 1

πk
(nk − (1 − λ)

∑n
i=1 τki)

(8)
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with nk =
∑n

i=1 I{yi=k} and τki = πkfk(xi;θk)
P

K
l=1

πlfl(xi;θl)
. The optimal parameters are

zeros of the equations (8) for k = 1, . . . , K.

For a given class k, these equations are analogous to the ML equations on
weighted data, although unlike ML, the weights can be negative here Each point
has a weight I{yi=k} − (1 − λ)τki. The examples that have most influence on the
θk-gradient are those that belong to the class k but have a low probability to
be in it (τki is small), and conversly those that do not belong to the class k but
that are assigned to it with a high probability. The influence of the assignment
probabilities is controlled by the parameter λ. This remark may ultimately help
us to link our approach to boosting, and similar algorithms that iteratively re-
weight misclassified data. It also shows that the generative estimator (λ=1) is not
affected by the classification rate of the data points.

Choice of λ. The GDT estimate contains a tuning parameter to set, which
functions like the smoothing parameter in regularization methods. λ cannot be set
on the basis of minimum classification loss on the training set, since by definition,
λ = 0 gives the optimal θ for training set classification. Instead, λ is set to the
value λ̂ that minimizes the cross-validation error rate.

If the optimal λ̂ is close to one, the generative classifier is preferred. This
suggests that the bias in pθ(x, y) (if any) does not affect the discrimination of the

model too much. Similarly, if λ̂ is close to 1, it suggests that the model pθ(x, y)
does not fit the data well, and the bias of the generative classifier is too high to
provide good classification results. In this case, a more complex model — i.e. with
more parameters, or less constrained — may be needed to reduce the bias. For
other λ̂, there is an equilibrium between the bias and the variance, meaning that
the model complexity is well adapted to the amount of training data.

4 Simulations

To illustrate the behavior of the GDT method, we study its performance on two
synthetic test problems. We define the true distributions of the data as follows: In
the first experiment, the class conditional probabilities are gaussian with identity
covariance matrix and means m1 = (1.25, 0, 0, 0) and m0 = (−1.25, 0, 0, 0). In
the second case, we simulate x according to a uniform density with correlated
covariates : x(1) ∼ U [0; 1] and x(d) ∼ U [x(d−1); 1 + x(d−1)] with d ∈ {2, 3, 4} and
x(i) denotes the ith covariate. Then y|x is simulated according to a Bernoulli
distribution with parameter 1/ exp(−2.5x(1)). Note that the linear logistic model
is true in the two experiments.

The assumed model is a Gaussian distribution for each class with shared di-
agonal covariance matrices and prior probabilities equal to 1

K
. Hence, the model

does not correspond exactly to the true density in the second experiment, but it
can provide a good approximation when the differences between the variances are
small.

In each case, we estimated the true error rate of the classifiers learned on
training samples of size 50, 100 and 200. The results are plotted in figure (1).
We used standard plug-in estimates for λ = 1 and closed form logistic regression
for λ = 0. For intermediate estimates, the conjugate gradient method was used.
The first row illustrates the fact that the generative classifier performs better than
the other estimates, but this difference tends to decrease when the sample size
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Figure 1: The full lines plot logistic loss computed on test sets of size 105 against
the tuning parameter λ. Each plotted value is the median of 200 experiments. The
rows correspond to the first and second simultations. The columns correspond to
different training sample sizes.

increases. In the second row, the best performance is from the BDG estimate
for all training set sizes, and the optimal value of λ (the one that minimizes the
expected loss) decreases with n since we know that the discriminative approach
becomes optimal when n tends to infinity.

5 Experiments

We tried our classification method on some of the publically available Statlog
datasets. In our implementation of the GDT estimates, the parameter dimension
is limited due to the size of the optimization problem (7). To make the computation
feasible, we reduced the dimension of the data by computing the first four Fisher
discriminant variables and using them as inputs (when the number of classes was
less than 5, so that there were fewer than four discriminant directions, we computed
the remaining directions by PCA on the residuals). These directions are computed
using the training data and do not involve the test data.

We tried four types of density for the class-conditional distributions: 1. Gaus-
sian densities with common covariance matrix (LDA), 2. Gaussian densities with
unconstrained covariance (QDA), 3. Gaussian densities with spherical covariance
matrix (Balls1), 4. Mixture of two Gaussian densities with spherical covariance
matrix (Balls2). These distributions do not exactly fit the data, but they are
distributions that are often used to approximate real datasets. Therefore, when
the training sample is small, the generative approach may still behave better than
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Dataset australian diabetes heart satimage vehicle
Training size 100 100 100 300 200
LDA GEN 0.143 0.253 0.178 0.188 0.237
LDA GDT0.75 0.144 0.252 0.178 0.187 0.235
LDA GDT0.5 0.144 0.249 0.179 0.186 0.235
LDA GDT0.25 0.144 0.250 0.182 0.185 0.236
LDA DISC 0.145 0.249 0.185 0.191 0.243
QDA GEN 0.149 0.262 0.181 0.181 0.235
QDA GDT0.75 0.151 0.261 0.182 0.179 0.234
QDA GDT0.5 0.150 0.262 0.181 0.180 0.235
QDA GDT0.25 0.151 0.262 0.182 0.181 0.234
QDA DISC 0.168 0.270 0.204 0.215 0.267
Balls1 GEN 0.146 0.262 0.168 0.185 0.318
Balls1 GDT0.75 0.145 0.260 0.167 0.183 0.293
Balls1 GDT0.5 0.144 0.259 0.165 0.182 0.271
Balls1 GDT0.25 0.144 0.257 0.169 0.181 0.254
Balls1 DISC 0.150 0.253 0.190 0.194 0.242
Balls2 GEN 0.146 0.266 0.181 0.185 0.239
Balls2 GDT0.75 0.145 0.265 0.180 0.185 0.239
Balls2 GDT0.5 0.146 0.265 0.180 0.184 0.236
Balls2 GDT0.25 0.146 0.268 0.181 0.183 0.232

Balls2 DISC 0.166 0.279 0.211 0.210 0.250

Table 1: Test error rate on real datasets, averaged over 100 trials. For each
trial, training data were randomly chosen and the error rate was computed on the
remaining data. In the heart dataset, a misclassified heart disease has a cost of 5
instead of 1.

the discriminative one. Training sample sizes were set to 50 times the number of
classes so the discriminative classifiers should not have reached their asymptotic
behavior.

We used a Cholesky-based parametrization of the inverse covariance matrix, so
there was no need for a separate positivity constraint on the parameters. Deriva-
tives with respect to this parametrization were obtained for each density, and we
used the generative solution — which is explicit for densities 1-3 and obtained by
the EM algorithm for the densities 4 — to initialize the CG algorithm.

Table (1) shows the generalization performance for each dataset and each model
with different values of λ. These results show that substantial improvements in the
classification rate can be obtained for intermediate values of λ. However, they do
not directly show the performance of the GDT estimate because we fixed λ rather
than selecting it by cross-validation on the training set. The evaluation of the cost
as a function of λ could be used as a model selection criterion. For example, on
the vehicle dataset, the simple Gaussian model (Balls1) gives an optimal λ equal
to 0. This suggests that the bias is dominating the error, and indeed the results
are improved by using two Gaussian densities for each class (Balls2).

One can object that the gain in error rate in these experiments is not sufficient
to really conclude the usefulness of the GDT estimator.
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6 Conclusion

In this study, the relationship between generative and discriminative classifiers has
been clarified: they correspond to two different maximizations in the parameter
space. By interpolating linearly between the two objective functions, we intro-
duced the GDT estimator. This can be seen either as a less biased variant version
of the discriminative solution, or as an improvement of the generative classifier.
The regularization is “natural” in the sense that the parameters are encouraged to
fit the inputs. Our preliminary results on real data showed that the intermediate
model often gives better classification performances than the discriminative and
generative classifiers.

The real interest of the GDT estimate resides in its application to generative
models. Probabilistic models already exist in many areas: time series models,
mixed models and graphical models — including Markov Random Fields and Hid-
den Markov Models — are examples of widely used generative models. When
class-conditional probabilities are modelled generatively, then the GDT estimator
should often improve the classification performances.

Currently, the main difficulty with the GDT method is the choice of the tuning
parameter, as this requires an expensive cross-validation computation. We believe
that more computationally efficient criteria can be developed by analyzing the
solutions on the training set, in the spirit of the Bayesian Information Criterion [7].
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Abstract

We propose a generative model that codes the geometry
and appearance of generic visual object categories as a
loose hierarchy of parts, with probabilistic spatial rela-
tions linking parts to subparts, soft assignment of sub-
parts to parts, and scale invariant keypoint based local
features at the lowest level of the hierarchy. The method
is designed to efficiently handle categories containing
hundreds of redundant local features, such as those re-
turned by current keypoint detectors. This robustness al-
lows it to outperform constellation style models, despite
their stronger spatial models. The model is initialized
by robust bottom-up voting over location-scale pyramids,
and optimized by Expectation-Maximization. Training is
rapid, and objects do not need to be marked in the train-
ing images. Experiments on several popular datasets
show the method’s ability to capture complex natural ob-
ject classes.
Keywords: visual categorization, object recognition, gen-
erative models, local features.

1 Introduction

In object categorization from digital images, existing ge-
ometrical models are typically very specific to a partic-
ular object class (for example 3D human body models).
There is a need for generic models that are suitable for
more general object categories. “Part” or “fragment”
based models that combine local image features or re-
gions into loose geometric assemblies offer one possible
solution to this [9,11,5,4,8]. Constellation models [5,4]
provide a probabilistic way to mix the appearance and
location of local descriptors. One of their major limi-
tations is the fact that they require an explicit enumer-
ation over possible matchings of model features to im-
age ones. This optimal, but combinatorially expensive,
step limits the model to relatively few detected features
(‘parts’), typically 6 or at most 7. This in turn means that
a good deal of the available image information must of-
ten be ignored, especially in cases where the objects have

many parts, either naturally, or because fine grained lo-
cal visual features are being used to characterize them.
Indeed, such structural approaches often fail to compete
with geometry-free “bag of features” style approaches
because the latter make better use of the available image
information [9,10,1]. Hence it is useful to investigate
structural models that can handle models with hundreds
of local features efficiently.

Secondly, many natural object categories (humans and
animals, man made classes with variable forms) have rel-
atively rigid local shape, but significant large scale shape
variability, so that nearby object features have strongly
correlated positions while more distant ones are much
more weakly correlated. But these correlations are not al-
ways local and can be very complex, as it can be seen in
human face expressions and 3D objects having small pose
variations, for which a part-based model can approximate
the pixels displacement at different depths. Another ad-
vantage of part-based models is that they can easily rep-
resent this kind of covariance structure. But to do this
well, it is natural to include some levels of part hierar-
chy, with loosely connected parts containing more tightly
connected subparts. Hence the overall model becomes a
tree-structured graphical model [7].

In this paper, we propose a hierarchical model that
is capable of handling hundreds of feature classes effi-
ciently, so that the model is suitable for use with very
basic feature detectors. The position of the object in the
training images and the model structure are unknown and
treated as hidden variables, to be estimated using E-M
after a suitable initialization. The method is totally scale-
invariant, and all of the model parameters are learned by
maximum likelihood, so the only tuning needed is the
number of parts at each level. Cross-validation shows that
using multi-part models is often advantageous.

Below, we first present the probabilistic model. Then
the learning method, including including initialization
and EM steps, is explained. Finally experiments on real
images show that the model is effective for object catego-
rization.

301
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Figure 1: The overall structure of our hierarchical object
model.

2 Model Structure

Our model (see figure 1) is a hierarchy of parts and
subparts, with the object at the top level, and position-
appearance classes of local image features that will be
attached to observed image features at the bottom. In
each layer of the hierarchy, the parts are softly assigned
to parents from the preceding layer. Soft assignment is
included mainly to help the model structure adapt to the
object class during training: once the models have been
learned, most of the parts tend to have relatively certain
parent assignments.

Spatial structure: Parts and their sub-trees are at-
tached to their parents by uncertain spatial transforma-
tions. In the experiments below, we have used trans-
lations and rescalings, i.e. transformations of the form

Tqp =

(

s 0 u

0 s v

0 0 1

)

where s is the relative scale and (u, v)

is the relative translation of part p relative to its parent q
from the previous layer1. We assume that Tqp is sampled
from a Normal distribution over translations and a log-
Normal distribution over relative scales. We write the
corresponding mean and variance symbolically as Tqp

and Var (Tqp). These are model parameters that need
to be learned. Formally, Tqp is a non-random transfor-
mation and Var (Tqp) can be thought of as a 3 × 3 co-
variance matrix for (u, v, log s), which is assumed to be
diagonal below.

There is a minor complexity relating to the fact that we
use soft parent assignments. We do not introduce sepa-
rate model parameters for the transformation of each part
relative to each of its possible parents. This would be a
huge number of parameters, and those with low parent-

1
Tqp is the transformation taking point coordinates in the frame of

p to point coordinates in the frame of q, e.g. a point at the origin of p

with scale 1 has scale s and position (u, v) with respect to q.

ing probabilities would not be estimated stably. Instead,
we expect parts to represent stable, identifiable regions
of the object class with their own identities and posi-
tions. Parent attributions are uncertain only because it
is unclear before training which parent best codes the tar-
get part’s overall position variability, i.e. parts are essen-
tially assigned to the parent whose spatial position vari-
ations best explain (covary most strongly over the train-
ing set with) their own. To capture this notion, each part
p is given just one set of mean transformation parame-
ters Tp, representing the mean position of p relative the
root of the object frame, and a corresponding set of (re-
duced) variance parameters2 Var (Tp). Given a parent
attribution q for p, the uncertain transformation Tqp is
then sampled with mean Tqp ≡ T

−1

q Tp and the corre-
spondingly back-transformed variance, which we can de-
note by T

−1

q (Var (Tp)) say. (In our case, this is just the
3 × 3 (u, v, log s) covariance Var (Tp) with its (u, v)
block scaled by 1/s2

q). In this way, the same few pa-
rameters control the part’s position, whatever its parent
assignment. If we suppose that the (random) parent loca-
tions Tq are already known, the part location relative to
the object frame is a mixture of random transformations
Tq Tqp, where Tqp is a random transformation (Gaus-
sian in (u, v, log s)) and the mixture weights are τ p(q),
the model parameters representing the prior probabilities
of p’s parent being q :

ploc
p (Tp | {Tq}) =

∑

q

τ p(q)N (TqT
−1

p |Tqp,Var (Tqp))

(1)

This mixture has the peculiarity that if all of the possible
parents q are in their mean positions Tq, all of its com-
ponents coincide exactly — it becomes multimodal only
when several parents have nonzero mixing proportions
τ p(q) and deviate from their means.

Image correspondence: The lowest level of the spatial
hierarchy contains elementary parts representing appear-
ance classes of scale-invariant local features, similar to
those used in other constellation and bag of features mod-
els [12,5,4,3,9,10,1]. When the model is in use, each
elementary part acts as a “bonding site” for a nearby im-
age feature of similar appearance. Image features are
characterized by their locations (positions and scales) and
their appearance vectors a. In the experiments below
they are SIFT descriptors calculated over scale-invariant
Harris keypoints [9,10], but any other feature / descrip-
tor combination could be used. Each elementary part p
has the usual location model Tp, and also a correspond-
ing feature appearance model — here, a Gaussian with

2This is not the variance of the full uncertain transformation Tp,
just the part of this variance that is introduced at the level of part p.
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model parameters ap and Var (ap). When an image fea-
ture is bound to an elementary part, the part’s location is
instantiated to the feature’s location and scale, and its ap-
pearance is instantiated to the feature’s appearance. The
model is designed to support large numbers (hundreds)
of elementary parts, only some of which are seen in any
given image. So it is important to allow parts to remain
effectively unassigned. In practice we nominally assign
every part to some feature, but we use a robust assignment
probability that effectively discounts any overly distant
assignments:

pp(a,T) = (1 − πp)pbkgd(a,T) + πp papp
p (a)ploc

p (T)

(2)

Here: a, T are the appearance and location of the as-
signed feature f ; πp is a learned inlier proportion for el-
ementary part / feature class p; pbkgd is a background
model, uniform in appearance and position; papp

p is p’s
appearance model, a Gaussian with mean ap and variance
Var (ap); and ploc

p is the above mentioned spatial mix-
ture over p’s location, parametrized by Tp,Var (Tp),
the corresponding parameters of all p’s parents, grand-
parents, etc., and the corresponding mixing proportions
τ p(q) for all parents q, etc.

When the model is in use, each elementary model part
is bound to the single observed image feature that is most
probable according to the above likelihood model given
the current model parameters.

One could also use soft assignments to several nearby
image features. This would be more consistent with our
overall philosophy, but at present we do not do it, mainly
because it would make part-feature matching much less
efficient.

During testing, we do nothing to prevent several el-
ementary parts from binding to the same image feature.
This is again for efficiency reasons — otherwise a com-
binatorial matching process would be needed to find the
best set of correspondences. However during model
training we do enforce unique assignments by greedy
matching, as otherwise the learned appearance classes of
nearby parts tend to merge.

We effectively ignore any unbound features (some-
times even the majority of the features detected). This
prevents problems when there are multiple detections of
essentially the same feature, but it also means that the
current model has no efficient means of representing tex-
tured regions. We are currently investigating the use of a
Poisson field binding model, where elementary parts can
bind to many similar features at once. This also suggests
that the model may have problems with hallucinations in
very cluttered regions where many types of features oc-
cur.

3 Training
The model is fitted to a given image, and also trained over
the full training set, using Expectation-Maximization.
The model parameters to be adjusted during training are:
for each part, the mean and variance of its location and
scale, Tp,Var (Tp), and its vector of parent assignment
probabilities τ p ; and for each elementary part, the mean
and variance of its feature appearance ap,Var (ap), and
its probability of occurrence πp. In addition, in each im-
age there are continuous hidden variables to be estimated
for the part locations Tp ; and discrete ones for the ele-
mentary part to feature bindings, the background / fore-
ground decision for each bound feature, and the parent
assignment for each part.

The E-M processes are straightforward to implement.
Once initialized, the method converges in about 5–10 it-
erations. Training takes around 1 second per image in
MATLAB, most of this time being spent in the (currently
unoptimized) part to feature assignment process. Note
that every parameter of the model is learned using E-M:
apart from the number of parts in each layer and some
thresholds used during initialization, the model has no
hand-set parameters, regularization terms, etc.

3.1 Instantiating the Model in an Image
The effective cost function has many local minima so a
robust instantiation method is needed. We use a hier-
archical, Hough transform like heuristic voting method,
based on voting into a position/scale pyramid of possible
locations (Tp values) for each part.

1. For each part q in the penultimate layer of the hierar-
chy (the direct parents of the elementary parts), each
image feature f (with appearance af and location
Tf ) votes into a position/scale pyramid for q’s loca-
tion Tq , essentially by taking the expected mixture
distribution over feature appearances and locations
generated by q’s elementary subparts, and using it
backwards as a likelihood for voting:

Voteq(Tq) =
∑

f

max
p

τ p(q)

wp

papp
p (af ) ploc

p (Tf |Tq)

(3)

wp ≡
∑

f

papp
p (af ) (4)

Here the sum is over features f , and the maximum
is over the elementary parts p whose best parent is
q. For speed, the vote uses just the best elemen-
tary part attribution p for f . Note that we re-weight
each elementary part’s vote by the estimated number
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of image features assigned to its appearance class,
wp =

∑

f papp
p (af ). This helps to suppress com-

mon background features and enhance rarer object
ones.

2. We work up the spatial tree, combining votes for
subpart locations into votes for their parent’s loca-
tions using the mean location offsets learned for the
model:

Voteq(Tq) = S(
∑

p

log(1 + Votep(Tq Tqp))

(5)

Here, the sum is over subparts p for which q is
the most probable parent (arg maxq′ τ p(q

′) = q)
— again we use such hard assignments for speed.
The log(1 + . . .) nonlinearity makes it harder for
high peaks in outlier subparts to dominate the valid
contributions of the other subparts. S is a heuristic
smoothing function, currently a Gaussian convolu-
tion. To be more rigorous, we should smooth by
using Tp = Tq Tqp as the argument and integrating
over samples from the uncertain transform Tqp.

3. Maxima in the voting pyramid for the top-level part
0 give potential object placements T0.

4. For the best (or eventually, each) maximum, work
back down the tree assigning part positions. If the
part’s voting pyramid has a good maximum near the
resulting expected part position, use this value. Oth-
erwise, assume that the part was not seen and use its
default offset Tqp.

This procedure gives reasonably reliable automatic model
initialization results on test sets such as the Caltech ones,
even when the object has unknown position and scale and
is surrounded by a moderate amount of background clut-
ter. However it can not replace a fully-fledged object de-
tector.

3.2 Training — Model Initialization

The above procedure assumes a fully trained model. We
also automatically initialize the entire training process,
so that no manual location or pre-segmentation of the ob-
jects in the training images is required. The method as-
sumes that each training image contains an instance of
the class, but the instance’s position and scale can be un-
known and background clutter is tolerated. It also as-
sumes that the number of parts in each layer of the hier-
archy has been fixed by hand. It works as follows:

1. Heuristically rank the training images according to
their expected quality as training examples (see be-
low), and use just the best image to estimate the ini-
tial model parameters. If this fails we could poten-
tially use the second, third,. . . images, but this has
not been necessary in our experiments.

2. Using K-means, cluster all of the features in the ini-
tial image into n location-appearance classes, where
n is the desired number of elementary parts, and
initialize an elementary part at each cluster center.
The experiments below actually assume that n is the
number of observed features, so that there is one el-
ementary part per observed feature. Some of the ele-
mentary parts will correspond to background clutter.
We do not currently attempt to remove these. Some
feature classes may have the same appearance but
different locations. This is intentional: it allows for
(small numbers of) repeated features such as eyes
and car wheels.

3. Work up the hierarchy, clustering the subpart cen-
ters into the desired number of parent part centres,
and initializing one parent for each cluster. Cluster
membership gives initial (hard) parent assignments
for the subparts. The corresponding τ matrix is ini-
tialized to a slightly softer version of these. The
cluster centre gives the part location, and the me-
dian scale of the part’s children gives its initial scale
estimate.

The use of a single initial image in the first step could
certainly be criticised, but so far our attempts to initialize
from averages over several or many images have given
much worse results. The critical point seems to be to pro-
vide an initial model with cleanly separated appearances
and parts, from which a relatively unambiguous training
phase can proceed. Averaging tends to confuse the part
relationships and produce a less effective overall model.

Our method of ranking the training images by their
probable quality as model initializers is as follows:

1. Use K-means to cluster the features from all (posi-
tive) training images into about 500 classes. Encode
each image as a 500-D signature vector S (the vector
of class counts).

2. Rank the feature classes by an informativeness mea-
sure (see below) and select about the 30 most infor-
mative ones. Rank the images according to the num-
ber of these classes that they contain (i.e. the number
of classes c for which Sc 6= 0).

For the feature informativeness ranking, we have stud-
ied two methods, one supervised, the other unsupervised.
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Figure 2: Model fitting on test horse toy images. The
bottom right points are the model average positions of
the subparts.

The supervised method requires a negative training set
of non-class images as well as the positive one of class
images. It trains a linear classifier to predict the image
class (±1 for positive or negative) from the binarized sig-
nature vector (S 6= 0). The features with the highest
weights are chosen as the most informative ones. Any ap-
propriate classification method can be used: linear SVM
or RVM, LASSO, etc.

The unsupervised method is somewhat more heuristic,
but it seems to work equally well and it requires no neg-
ative images. For each feature, it counts the number of
(positive) images in which it occurs exactly once (or al-
ternatively, exactly 1–2 times), and chooses the features
with the highest counts as the most informative. This
works because it selects distinctive features representing
unique object parts. Many object classes contain such
features, whereas background features are much more
variable and seldom occur exactly once per image. This
method would fail for object classes dominated by repet-
itive texture though.

4 Experiments

In this paper we consider only a three-layer, object - part -
feature class model. Figure 2 illustrates this model’s abil-
ity to handle local image deformations, for which rigid
matching would fail. We learned the model from 6 im-
ages of the same toy horse seen from different viewing
positions, using 100 feature classes and 4 parts. The
model was then instantiated on 6 test images with the

F. L. M. A. C.
Faces 198 12 5 1 1
Leopards 0 92 8 0 0
Motorbikes 0 6 383 10 0
Airplanes 0 4 15 351 30
Car sides 0 0 0 1 60

Table 1: The confusion matrix for part based multiclass
categorization on the original Caltech 7 class dataset.

one-level model
Acc Air Anc Ant Bar

Accordion 18 0 0 9 0
Airplanes 0 359 6 35 0
Anchor 0 1 4 12 4
Ant 0 2 1 17 1
Barrel 0 3 1 9 10

Two-level, three part model
Accordion 25 0 1 1 0
Airplanes 1 384 0 12 0
Anchor 0 3 6 12 0
Ant 0 4 1 18 1
Barrel 0 6 0 8 9

Table 2: Confusion matrix for best-class classifiers based
on 80 feature classes, on the first few classes of the Cal-
tech 101 class dataset.

method described earlier. The change of viewing angle
between views is considerable, but the model still finds
and locks on to the correct object parts, even if only a
few points points are found on a given part.

Datasets: We used five different image classes from the
“Caltech 101 Object Categories” dataset3 [4], which con-
tains many example images from 101 objects categories,
including for example faces (435 images), leopards (200),
motorbikes (800), aeroplanes (800) and side views of cars
(123). These datasets have already been used by several
groups [12,6,4,3]. Half of the images in each class were
held out for testing.

Some examples of learned models are shown in fig-
ure 3.

To test whether the models really managed to learn the
most important appearance parameters and spatial inter-
relationships, and whether they were sufficiently selective
for a given object category, we assessed their discrim-
inative power by fitting several class models to unseen
test images, using model likelihoods as decision vari-
ables. For each class, a decision threshold was computed
to minimize the average training error rate. We used 10
EM iterations during training and 5 during testing. Con-

3Available at http://www.vision.caltech.edu/feifeili/Datasets.htm
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Figure 3: Examples of fits to images from the motorbikes
and leopard datasets. The first line shows a close-up of
the initialisation based on location/scale voting.
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Figure 4: The test error rate of the leaves/faces classi-
fier against the number of parts (top) and feature classes
(bottom).

fusion matrices are given in table 1 for the original 7 class
Caltech dataset using 200 feature classes, and in table 2
for the one-level and two level hierarchical models on
the first few classes of the Caltech 101 dataset using just
80 feature classes. The number of errors depends on the
class, but the results seem to be competitive with the state
of the art on these datasets [2,5]. The basic rigid model is
already highly discriminative for these data sets, but us-
ing a 3 part model still reduces the error rates by a factor
of about two.

Figure 4 shows that the results are not too sensitive to
the number of parts, although over-fitting starts to worsen
the results beyond about 8–10 parts. Relatively large
numbers of elementary parts are needed to get optimal

results — about 200 in this case.

Soft vs. hard assignments: The matrix τ coding for the
structure can be constrained to have only ones and zeros,
so that a given part can only be generated by a single par-
ent. To illustrate the advantages of soft parenting, for bi-
nary classification of motorbikes against background im-
ages using 40 training images, 200 feature classes and 4
parts, hard assignment based learning produces a test-set
classification rate of 83%, while our standard soft assign-
ments gave 88%. Similar results occur for other datasets
and training parameters.

5 Conclusions and Future Work
We have described a multi-layered part-based generative
model for category-level visual object recognition using
large numbers of local features. The model managed to
adapt very well to the object categories tested in super-
vised classification experiments. Reasons for this are its
well-graded spatial flexibility, and the fact that it can ef-
ficiently incorporate a large number of interest points,
each carrying a worthwhile amount of discriminant in-
formation. This lead to a full multiclass object classifier
that reaches state of the art performances on benchmark
databases. We also showed experimentally that so long
as the model uses sufficiently many detected points, the
matching of elementary parts to image features does not
need to be very accurate. We showed how a simple three-
layer hierarchy of object, parts and features can give sat-
isfying visual intuition and probabilistic accuracy.

Future work: The model applies to arbitrary spatial
transformations between parts and their subparts, and ar-
bitrary numbers of layers, although here we applied it
only with translation-scale transformations and 3 layers.
Future work will study the advantages of more general
transformations and additional layers. The main diffi-
culty is likely to be getting a good initialization for these
more complex models. Another promising direction is
to learn mixtures of such generative models, for image
clustering or to handle more complex classes such as 3D
models viewed from all possible directions.
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