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Abstract
We present a method for recovering 3D human body motion from

monocular video sequences using robust image matching, joint lim-
its and non-self-intersection constraints, and a new sample-and-
refine search strategy guided by rescaled cost-function covariances.
Monocular 3D body tracking is challenging: for reliable track-
ing at least 30 joint parameters need to be estimated, subject to
highly nonlinear physical constraints; the problem is chronically ill-
conditioned as about 1/3 of the d.o.f. (the depth-related ones) are
almost unobservable in any given monocular image; and matching
an imperfect, highly flexible, self-occluding model to cluttered im-
age features is intrinsically hard. To reduce correspondence ambi-
guities we use a carefully designed robust matching-cost metric that
combines robust optical flow, edge energy, and motion boundaries.
Even so, the ambiguity, nonlinearity and non-observability make the
parameter-space cost surface multi-modal, unpredictable and ill-
conditioned, so minimizing it is difficult. We discuss the limitations of
CONDENSATION-like samplers, and introduce a novel hybrid search
algorithm that combines inflated-covariance-scaled sampling and
continuous optimization subject to physical constraints. Experi-
ments on some challenging monocular sequences show that robust
cost modelling, joint and self-intersection constraints, and informed
sampling are all essential for reliable monocular 3D body tracking.

Keywords: 3D human body tracking, particle filtering, high-
dimensional search, constrained optimization, robust matching.

1 Introduction

Extracting 3D human motion from natural monocular video
sequences poses difficult modelling and computation prob-
lems: (i) Even a minimal human model is very complex,
with at least 30 joint parameters and many more body shape
ones, subject to joint limits and non-self-intersection con-
straints. (ii ) Unlike the 2D and multi-camera 3D cases, in any
given monocular image about 1/3 of the degrees of freedom
are nearly unobservable (mainly motions in (relative) depth,
but also rotations of near-cylindrical limbs about their axes).
(iii ) Matching a complex, imperfectly known, self-occluding
model to a cluttered scene is inherently hard. These difficul-
ties interact: minor body modelling or feature matching errors
often lead to large compensatory biases in estimated depths,
which eventually cause mis-prediction and tracking failure.
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We believe that a successful monocular 3D body track-
ing system must pay attention to each of these three diffi-
culties. We control correspondence errors with a carefully
designed robust matching metric that combines robust opti-
cal flow, edge energy, and motion boundaries (§3). Our sys-
tem is the first to enforce both hard joint angle limits and
body non-self-intersection constraints, and also includes full
3D occlusion prediction. The various ambiguities and nonlin-
earities make the parameter-space cost function multi-modal,
ill-conditioned and highly nonlinear, so some form of non-
local search is required. Existing approaches that we are
aware of (§1.2) do not work well in this context, so we intro-
duce a novel hybrid search scheme that combines covariance-
scaled ‘oversized’ sampling with local optimization subject
to joint and non-self-intersection constraints (§4). We fin-
ish with experimental results on some challenging monocu-
lar sequences, that illustrate the need for each of robust cost
modelling, joint and self-intersection constraints, and well-
controlled sampling plus local optimization.

1.1 High-Dimensional Search Strategies

Locating good poses in a high-dimensional body configura-
tion space is intrinsically difficult. Three main classes of
search strategies exist:local descentincrementally improves
an existing estimate,e.g. using local Taylor models to predict
good search directions [6, 23, 18, 28, 22];regular sampling
evaluates the cost function at a predefined pattern of points in
(a slice of) parameter space,e.g. a local rectangular grid [11];
andstochastic samplinggenerates random sampling points
according to some hypothesis distribution encoding “good
places to look” [9, 25]. Densely sampling the entire param-
eter space would guarantee a good solution but is infeasible
in more than 2–3 dimensions. In 30 dimensions any feasi-
ble sample must be extremely sparse and hence likely to miss
significant cost minima. Descent methods at least (at some
expense) findlocal minima, but can not guarantee global opti-
mality. Our method tries to balance local and global effort us-
ing a combination of carefully controlled sampling and local
optimization. Effective focusing of effort is the key to high-
dimensional search. This is an active research area [9, 14, 7],
but no existing method can guarantee a global minimum.

During tracking, the search method is applied time-
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recursively, the starting point(s) for the current search be-
ing obtained from the optimized results at the previous time
step, perhaps according to some noisy dynamical model. To
the (often limited!) extent that the dynamics and the image
matching cost are realistic statistical models, Bayes-law prop-
agation of a probability density for the true state is possible.
For linearized monomodal dynamics and observation mod-
els under Gaussian noise, this leads to (Extended) Kalman
Filtering. For likelihood-weighted random sampling under
general multimodal observation models, CONDENSATIONre-
sults. In both cases the various hyperparameters must be
carefully tuned for good performance. Visual tracking usu-
ally works in the ‘shotgun in the dark’ regime: observation
likelihoods are quite sharply peaked but multimodal, so to
avoid mistracking, the dynamical noise has to be turned up
until it produces a scatter of samples just big enough to cover
typically-nearby peaks. In this regime there is negligible tra-
jectory smoothing so Kalman-style covariance updating is su-
perfluous: the previous posterior determines the locations and
weights of the search regions, the dynamical noise determines
their breadth, and the observation likelihood determines the
location and shape of the new posterior peak(s) within each
region.

Many existing methods use inflated dynamical noise as an
empirical search focusing parameter [7, 14, 9], but we find
that it produces poorly shaped search regions. An efficient
high-dimensional search must adapt to the local cost surface.
Rather than inflating the dynamical noise, we will argue that
one should use realistic dynamics, then modestly inflate the
resultingprior (previous posterior after dynamics) covariance
to define the search region. This inflates the posterior un-
certainty as well as the dynamical one, allowing far deeper
sampling along the most uncertain directions (e.g. poorly ob-
servable depth d.o.f.), and thus preventing mistracking due
to inadequate exploration of these hard-to-estimate parameter
combinations. This simple change makes a huge difference
in practice. For example, for the 32 d.o.f. cost spectrum in
fig. 3 with inflation large enough to double the sampling ra-
dius along the most uncertain direction (e.g., for a modest
search for local minima along this cost valley), the uniform
dynamical noise method would produce a search volume1054

times larger than that of our prior-based one.

1.2 Previous Work

We will compare our method to several existing ones, which
we briefly summarize here without attempting a full litera-
ture review. 3D body tracking from monocular sequences
is significantly harder than 2D [7, 17] or multi-camera 3D
[18, 11, 6, 22] tracking and surprisingly few works have ad-
dressed it [9, 25, 28, 15, 5]. The main additional difficulty is
the omnipresence of depth ambiguities. Every limb or body
segment lying near a frontoparallel plane has a first-order ob-

servability singularity: small rotations towards or away from
the camera leave the image unchanged to first order. Sim-
ilarly, finite towards- and away-from-camera rotations give
very similar images, so even if the segment matching cost
is monomodal in the image, it is always multimodal in pa-
rameter space. To handle these difficulties, time integration
or additional domain constraints such as joint limits and body
non-self-intersection must be incorporated.

Deutscher [9] uses a sophisticated ‘annealed sampling’
strategy to speed up CONDENSATION, but for his main se-
quence uses 3 cameras and a black background. Sidenbladh
[25] uses a similar importance sampling technique with a
strong learned prior walking model to track a walking per-
son in an outdoor sequence. Our method does not yet include
a motion model (we optimize static poses), but it is true that
when they hold, prior motion models are very effective track-
ing stabilizers. It is possible, but expensive, to track using a
bank of motion models [4]. Partitioned sampling [20] is an-
other notable sampling technique for articulated models, un-
der certain labelling assumptions [20, 9].

Heap & Hogg [14] and Cham & Rehg [7] combine
CONDENSATION-style sampling with local optimization, but
they consider only the simpler case of 2D tracking. Cham
& Rehg combine their heuristic 2D Scaled Prismatic Model
(SPM) body representation with a first order motion model
and a piecewise Gaussian resampling method for the CON-
DENSATION step. The Gaussian covariances are obtained
from the Hessians at the fitted optima, as in our method,
but the search region widths are controlled by the traditional
method of adding a large dynamical noise. This appears to
work reasonably well for 2D SPM tracking, which is essen-
tially free of observability singularities. But we find (§5) that
it can not handle the much less well-conditioned monocu-
lar 3D case. One puzzling point in [7] is the presence of
closely-spaced minima with overlapping peaks, which mo-
tivated Cham & Rehg to introduce their piecewise Gaussian
distribution model. We do not observe such overlaps, and
we suspect that they were caused by incomplete convergence
in the optimizer, presumably due to either over-loose conver-
gence criteria, or a noisy cost function (we took considerable
pains to make ours smooth).

2 Human Body Model

Our human body model (fig. 1a,b) consists of kinematic
‘skeletons’ of articulated joints controlled by angular joint
parameters covered by ‘flesh’ built from superquadric ellip-
soids with additional tapering and bending parameters [1]. A
typical model has about 30joint parameters xa; 8 internal
proportion parametersxi encoding the positions of the hip,
clavicle and skull tip joints; and 9deformable shapeparam-
eters for each body part, gathered into a vectorxd. A com-
plete model can be encoded as a single large parameter vector



Figure 1: Two views of our human body model, and examples
of our robust low-level feature extraction: original image (c),
motion boundaries (d), intensity-edge energy (e), and robust
horizontal flow field (f).

x = (xa,xd,xi). During tracking we usually estimate only
joint parameters, but our initialization method also estimates
the most important internal proportions and shape parame-
ters, subject to a soft prior based on standard humanoid di-
mensions from [13] updated using collected image evidence.
Although far from photorealistic, this model suffices for high-
level interpretation and realistic occlusion prediction, and of-
fers a good trade-off between computational complexity and
coverage.

The model is used as follows. Superquadric surfaces are
discretized as meshes parametrized by angular coordinates in
a 2D topological domain. Mesh nodesui are transformed
into 3D pointspi = pi(x) and then into predicted image
pointsri = ri(x) using composite nonlinear transformations
ri(x) = P (pi(x)) = P (A(xa,xi, D(xd,ui))), whereD
represents a sequence of parametric deformations that con-
struct the corresponding part in its own reference frame,A
represents a chain of rigid transformations that map it through
the kinematic chain to its 3D position, andP represents per-
spective image projection. During model estimation, robust
prediction-to-image matching cost metrics are evaluated for
each predicted image featureri, and the results are summed
over all features to produce the image contribution to the
overall parameter space cost function. We use both image-
based cost metrics such as robustified normalized edge en-
ergy, and extracted-feature-based ones. The latter associate
the predictionsri with one or more nearby image features
r̄i (with additional subscripts if there are several matches).
The cost is then a robust function of the prediction errors
∆ri(x) = r̄i − ri(x).

3 Problem Formulation

We aim towards a probabilistic interpretation and optimal
estimates of the model parameters by maximizing the total
probability according to Bayes rule:

p(x|r̄) ∝ p(r̄|x) p(x) = exp
(−∫ e(r̄i|x) di

)
p(x) (1)

wheree(r̄i|x) is the cost density associated with observation
i, the integral is over all observations, andp(x) is the prior on
the model parameters. Discretizing the continuous problem,
our MAP approach minimizes the negative log-likelihood for
the total posterior probability:

f(x) = − log p(r̄|x) − log p(x) = fl(x) + fp(x)

3.1 Observation Likelihood

Whether continuous or discrete, the search process depends
critically on the observation likelihood component of the
parameter-space cost function. Besides smoothness proper-
ties, the likelihood should be designed to limit the number of
spurious local minima in parameter space. Our method em-
ploys a combination of robust edge and intensity information
on top of a multiple assignment strategy based on a weight-
ing scheme that focuses attention towards motion boundaries.
Feature contributions are fused using robust (heavy-tailed) er-
ror distributions,i.e. both robustly extracted image cues and
robust parameter space estimation are used. The former pro-
vides “good features to track”, while the latter directly ad-
dresses the model-image association problem.

Robust Error Distributions: MAP parameter estimation is
naturally robust so long as it is based on realistic ‘total like-
lihoods’ for the combined inlier and outlier distributions of
the observations. We model these as robust penalty functions
ρi(si) of the normalized squared errorssi = ‖∆ri‖2/σ2

i .
Eachρi(s) is an increasing sublinear function withρi(0) = 0
and d

dsρi(0) = 1, corresponding to a radially symmetric er-
ror distribution with a central peak of widthσ. Here we
used the ‘Lorentzian’ρ(s) = ν log(1 + s/ν) and ‘Leclerc’
ρ(s) = ν(1 − exp(−s/ν)) potentials, whereν is a strength
parameter related to the frequency of outliers.

Normalizing by the number of nodesN in each mesh, the
cost adopted for theith observation ise(r̄i|x) = 1

N ei(x),
whereWi is a positive definite weighting matrix and:

ei(x) =




1
2ρi(∆ri(x)Wi ∆ri(x)>) if i is assigned
νbf = ν if back-facing
νocc = kν, k > 1 if occluded

The total robust observation likelihood is thus:

fl(x) = − log p(r̄|x) = fa(x) + Nbf νbf + Nocc νocc

(2)

wherefa(x) represents the term associated with the image
assigned model nodes, whileNocc andNbf are the numbers
of occluded and back-facing (self-occluded) model nodes.

Cue Integration and Assigned Image Descriptors:We use
both edge and intensity features in our cost function. For
edges, the images are smoothed with a Gaussian kernel, con-
trast normalized, and a Sobel edge detector is applied. For
intensities, a robust multi-scale optical flow method based on



Black’s implementation [2] gives both a flow field and an as-
sociated outlier map. The outlier map conveys useful infor-
mation about the motion boundaries and is used to weight
the significance of edges (see fig. 1d). The motion bound-
aries are processed similarly to obtain a smooth image. For
visible nodes on model occluding contours (O), we perform
line search along the normal and retain all possible assign-
ments within the search window, weighting them by their im-
portance qualified by the motion boundary map. For visible
nodes lying inside the object (I), we use intensity informa-
tion derived from the robust optical flow. The assigned data
term (2) thus becomes:

fa(x) =
1
2

∑
i∈O,e∈Ei

ρie

(
∆rie(x)Wie ∆rie(x)>

)

+
1
2

∑
j∈I

ρjf

(
∆rjf

(x)Wjf
∆rjf

(x)>
)

where the subscripts onie andjf denote respectively multi-
ple edgesEi assigned to model predictioni and flow terms
assigned to model predictionj.

3.2 Model Priors

The complete prior penalty over model parameters is a sum
of negative log likelihoodsfp = fa + fs + fpa corresponding
to the following prior densitiespa, ps, pfs:

Anthropometric data pa: The internal proportions for a
standard humanoid are collected from [13] and used effec-
tively as a Gaussian prior,pa = N (µa,Σa), to estimate a
concrete model for the subject to be tracked. Left-right sym-
metry of the body is assumed: only “one side” of the internal
proportions parameters are estimated while collecting image
measurements from the entire body.

Parameter stabilizersps: Certain details are far more impor-
tant than intuition would suggest. For example, it is impos-
sible to track common turning and reaching motions unless
the clavicle joints in the shoulder are modelled accurately.
However, such parameters have fairly well defined equilib-
rium positions and leaving them unconstrained would often
lead to ambiguities. We model them with Gaussian stabiliz-
ers around their equilibria,ps = N (µs,Σs).
Anatomical joint angle limits Cjl: 3D consistency requires
that the values of joint angles evolve within anatomically con-
sistent intervals. We model this with a set of inequalities of
the formCjl · x < 0, whereCjl is a constraint matrix.

Body part inter-penetration avoidanceppa: Physical con-
sistency requires that different body parts do not inter-
penetrate during estimation. We avoid this by introducing
repulsive potentials that decay rapidly outside the surface of
each body part,fpa = exp(−f(x) |f(x)|p−1) wheref(x)
defines the implicit surface of the body part andp controls the
decay rate.

3.3 Distribution Representation

We represent posterior distributions as sets of separate modes
mi ∈ M, each having an associated probability, mean and
covariance matrixmi = (ci, µi,Σi). This can be viewed as
a Gaussian mixture approximation. Cham & Rehg [7] use a
similar model but need a special piecewise representation as
their modes seem to occur in clusters after optimization. We
believe that this is an artifact of their cost function design. Our
modes result from running local continuous optimizations to
convergence, so they are necessarily either well separated or
confounded. Our sampling method is also significantly dif-
ferent from [7], as explained in§4.2.

3.4 Temporal Propagation

Equation (1) gives the model likelihood in a static image,
under model priors but without initial state or temporal pri-
ors. Adding temporal models with observationsRt =
{r̄1, . . . , r̄t}, the posterior distribution becomes:

p(xt|Rt) ∝ p(r̄t|xt) p(xt)
∫
xt−1

p(xt|xt−1) p(xt−1|Rt−1)

Herep(xt|xt−1) is the dynamical model andp(xt−1|Rt−1)
is the prior distribution fromt − 1. Together they form the
prior p(xt|Rt−1) for the static image search (1).

4 Optimization Algorithm

Our search technique combines robust constraint-consistent
local optimization and more global discrete sampling.

4.1 Robust Constrained Mode Search

The robustified gradient and Hessian corresponding to the
model featurei with possible assignmentsa ∈ A can be de-
rived using the model-image JacobianJi = ∂ri

∂x :

gi = J>
i

(∑
a∈A

ρ′ia
Wia ∆ria

)

Hi ≈ J>
i

(∑
a∈A

ρ′ia
Wia + 2ρ′′ia

(Wia∆ria)(Wia∆ria)>
)

Ji

The gradient and Hessian contributions from all observations
are assembled, together with negative log prior contributions:

g = go + ∇fa + ∇fs + ∇fpa

H = Ho + ∇2fa + ∇2fs + ∇2fpa

We use a second order trust region method for local optimiza-
tion. This chooses a descent direction by solving the regular-
ized subproblem [10]:

(H + λW)∆x = −g subject to Cjl x < 0
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Figure 2: (a) Displaced minimum due to joint limits con-
straints, (b) Joint limits without body non-self-intersection
constraints do not suffice for physical consistency.

whereW is a symmetric positive-definite matrix andλ is a
dynamically chosen weighting factor. Joint limitsCjl are
handled as hard bound constraints in the optimizer, by pro-
jecting the gradient onto the current active constraint set.
Adding joint constraints changes the effective shape of the
cost function and hence the minimum reached. Fig. 2 plots a
1D slice through the constrained cost function together with
a second order Taylor expansion of the unconstrained cost.
The gradient is nonzero at the constrained minimum owing
to the presence of the bounds. The constrained cost gradi-
ent changes abruptly because active-set projection changes
the motion direction during the slice to maintain consistency
with the constraints.

4.2 Covariance Scaled Sampling

Although representations based on propagating multiple
modes, hypotheses or samples do tend to increase the ro-
bustness of model estimation, the great difficulty with high-
dimensional distributions is finding a sampleable proposal
density that hits theirtypical sets — the areas where most
of their probability mass is concentrated. Here we develop a
proposal density based on local parameter estimation uncer-
tainties. Local optimization gives us not only local modes,
but also their (robust, constraint consistent) Hessians and
hence estimates of their local parameter estimation uncertain-
ties. The main insight is that alternative cost minima are
most likely to occur along local valleys in the cost surface,
i.e. along highly uncertain directions of the covariance. It is
along these directions that cost modelling imperfections, 3D
nonlinearities and constraints have the most influence, as the
cost function is shallowest and the 3D movements are largest
there. This is particularly true for monocular 3D estimation,
where the covariance is unusually ill-conditioned owing to the
many unobservable motion-in-depth d.o.f. Some examples
of such multimodal behaviour along high covariance eigen-
directions are given in fig. 3. Also, it is seldom enough to
sample at the scale of the estimated covariance — signifi-
cantly deeper sampling is needed to capture nearby but non-
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Figure 3: Typical covariance eigenvalue spectra.σmax/σmin

is 350 for the 8 d.o.f. arm model, 2000 for the 32 d.o.f. body
one.

overlapping modes lying further up the valley. Hence, we
sample according to rescaled covariances, typically scaling
up by a factor of around 10. One can sample either randomly
or according to a regular pattern. Our current implementation
samples regularly, in fact only along the lines corresponding
to the lowest few covariance eigen-directions. Although this
gives an exceedingly sparse sample, we find that it works well
in practice.

Proposal Density for Modemi = (ci, µi,Σi)
1. Eigen-decomposeΣi, select itsk most uncertain eigen-
directionsvj , and reconstitute the subspace covariance
matrixΣ′

i =
∑k

j=1 λj vj v>
j .

2. The proposal density ispi ∼ N (µi, sΣ′
i). The stretch-

ing factors is 8–14 in our experiments.

Covariance Scaled Sampler
Until the desired number of samples are obtained:
1. Choose a modemi with probabilityci

2. Sample frommi’s proposal densitypi

Multiple-Mode Tracker
For each time-frame:
1. Starting from the above samples, generate samplesxi

from p(xt|Rt−1).
2. Refine each samplexi using continuous optimization
(§4.1) to obtain(ci, µi,Σi). Prune redundant samples
converging to the same minimum.
3. Weight the samples by their prior likelihoods, assuming
that they came from the closest (most probablea poste-
riori ) prior mode. Prune to keep the bestk modes, and
renormalize the weights to computeci.

We have empirically studied the shape of the cost surface by
sampling along uncertain directions for various model config-
urations. With our carefully selected image descriptors, the
cost surface is smooth and our local optimizer reliably finds a
local minimum. Multiple modes occur for certain configura-
tions, as in fig. 4, which shows the two most uncertain modes
of the fig. 6 human tracking sequence at times 0.8 s and 0.9 s.
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Figure 4: Multimodal behaviour along highest uncertainty
eigen-directions (0.8 and 0.9 s in cluttered body tracking se-
quence).
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Figure 5: (a) Cost function slices at large scales, (b) Com-
parison of sampling methods: (1) CONDENSATION (dashed
circle coverage) randomizes each sample by dynamic noise,
(2) MHT ([7], solid circle) samples within covariance support
(dashed ellipse) and applies the same noise policy as (1), fi-
nally, our (3)Covariance Scaled Sampling(pattern ellipse)
targets good cost minima (flat filled ellipses) by inflating the
highly uncertain subspace of the current sample robust covari-
ance estimation (dashed ellipse))

We have also studied the cost surface at much larger scales
in parameter space — see fig. 5a. Note that we recover the
expected robust shape of the distribution, with some but not
too many spurious local minima. Hence, the combination of
our robust cost function and informed search is likely to be
comparatively efficient computationally.

5 Experiments

To illustrate our method we show results for an 8 second arm
tracking sequence and two full body ones (1.2 s and 4 s). All
of these sequences contain both self-occlusion and signifi-
cant relative motion in depth. The first two (fig. 6) were shot
at 25 frames (50 fields) per second against a cluttered, un-
evenly illuminated background. The third (fig. 7) is at 50 non-
interlaced frames per second against a dark background, but
involves a more complex model and motions. In our unopti-
mized implementation, a 270 MHz SGI O2 required about 5 s
per field to process the arm experiment and 180 s per field for
the full body ones, most of the time being spent evaluating the

cost function. The figures overlay the current best candidate
model on the original images.

Cluttered background sequences:These sequences explore
3D estimation behaviour with respect to image assignment
and depth ambiguities, for a bending rotating arm under
an 8 d.o.f. model and a pivoting full-body motion under a
30 d.o.f. one. They have cluttered backgrounds, specular
lighting and loose fitting clothing. In the arm sequence, the
deformations of the arm muscles are significant and other im-
perfections in our arm model are also apparent.

The Gaussian single mode trackermanages to track 2D
frontoparallel motions in moderate clutter, although it grad-
ually slips out of registration when the arm passes the strong
edges of the white pillar (0.5 s and 2.2 s for the arm sequence
and 0.3 s for the human body sequence). Any significant mo-
tion in depth is untrackable.

The robust single mode trackertracks frontoparallel mo-
tions reasonably well even in clutter, but quickly loses track
during in-depth motions, which it tends to misinterpret as
frontoparallel ones. In the arm tracking sequence, shoulder
motion towards the camera is ‘explained’ as frontoparallel el-
bow motion, and the error persists until the upper bound of the
elbow joint is hit at 2.6 s and tracking fails. In the full body
sequence, the pivoting of the torso is underestimated, being
partly interpreted as quasi-frontoparallel motion of the left
shoulder and elbow joints. Despite the presence of anatomical
joint constraints, the fist eventually collapses into the body if
non-self-intersection constraints are not present.

The robust joint-limit-consistent multi-mode trackercor-
rectly estimates the motion of the entire arm and body se-
quence. We retain just the 3 best modes found by sam-
pling along the 3 most uncertain directions for the arm se-
quence, and the 7 best modes from the 6 most uncertain di-
rections for the full human body sequence. As discussed
in §4.2, multimodal behaviour occurs mainly during signifi-
cantly non-frontoparallel motions, between 2.2–4.0s for the
arm sequence, and over nearly the whole full body sequence
(0.2–1.2s). For the latter, the modes mainly reflect the am-
biguity between true pivoting motion and its incorrect “fron-
toparallel explanation”.

We also compared our sampling method with a 3D version
of Cham & Rehg’s MHT [7] for the body turn sequence. (But
the original method used non-robust optimization and did not
incorporate physical constraints or model priors). We used 10
modes to represent the distribution in our 30 d.o.f. 3D model,
as [7] used 10 for their 38 d.o.f. 2D SPM model. Our first set
of experiments used a nonrobust SSD image matching met-
ric and a Levenberg-Marquardt routine for local sample opti-
mization, as in [7] (except that we use analytical Jacobians).
With this cost function, we find that outliers cause large fluc-
tuations, bias and frequent convergence to physically invalid
configurations. Registration is lost early in the turn (0.5 s), as
soon as the motion becomes significantly non-frontoparallel.



Figure 6: Arm tracking and full body tracking against a cluttered background.

Our second experiments used our robust cost function and op-
timizer, but still with MHT-style sampling. The track survived
further into the turn, but was lost at 0.7 s when the depth vari-
ation became larger. As expected, we find that a dynamical
noise large enough to provide usefully deep sampling along
uncertain directions produces much too deep sampling along
well-controlled ones, so that most of the samples are wasted
on uninformative high-cost configurations. Similar arguments
apply to standard CONDENSATION, as can be seen in the
monocular 3D experiments of Deutscher [9].

Black background sequence:In this experiment we focus
on 3D errors, in particular depth ambiguities and the influ-
ence of physical constraints and parameter stabilization pri-
ors. We use an improved body model with 34 d.o.f. The four
extra parameters control the left and right clavicle joints in the
shoulder complex, which we find to be essential for following
many arm motions. Snapshots from the full 4 s sequence are
shown in fig. 7, and various failures modes in fig. 8.

TheGaussian single mode trackermanages to follow near-
frontoparallel motions fairly reliably owing to the absence of
clutter, but it eventually loses track after 0.5 s (fig. 8 a-d). The
robust single mode trackertracks the non-frontoparallel mo-
tion somewhat longer (about 1 s, fig. 8 e-f), although it sig-
nificantly mis-estimates the depth — the right leg, shoulder
and head are too far forward compared to the “correct” pose
in fig. 7 — and eventually loses track during the turn. The
robust multi-mode tracker with joint-limitsmanages to track
quite well, but as body non-self-intersection constraints are
not enforced the modes eventually converge to physically in-

feasible configurations (fig. 8 g) with terminal consequences
for tracking. Finally, therobust fully constrained multi-mode
tracker is able to deal with significantly more complex mo-
tions and tracks the full sequence without failure (fig. 7).

6 Conclusions and Future Work

We have presented a new method for monocular 3D human
body tracking, based on optimizing a robust model-image
matching cost metric combining robustly extracted edges,
flow and motion boundaries, subject to 3D joint limits, non-
self-intersection constraints, and model priors. Optimiza-
tion is performed using Covariance Scaled Sampling, a novel
high-dimensional search strategy based on sampling a hy-
pothesis distribution followed by robust constraint-consistent
local refinement to find a nearby cost minima. The hypothesis
distribution is determined by combining the posterior at the
previous time step (represented as a Gaussian mixture defined
by the observed cost minima and their Hessians / covariances)
and the assumed dynamics to find the current-time-step prior,
then inflating the prior covariances to sample more broadly.
Our experiments on real sequences show that this is signifi-
cantly more effective than using inflated dynamical noise es-
timates as in previous approaches.

Future work will compare stochastic and regular sampling
CSS and variant covariance scaled hypothesis distributions
such as longer-tailed or coreless distributions. It should also
be possible to extend the benefits of CSS to CONDENSATION

by using inflated (diluted weight) posteriors and dynamics for



Figure 7: Human tracking under complex motion

Figure 8: Various components failure modes

sample generation, then reweighting the results,c.f. [9]. Our
human tracking work will focus on incorporating better pose
and motion priors.
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