
Learning to Track 3D Human Motion from Silhouettes

Ankur Agarwal ANKUR .AGARWAL @INRIALPES.FR

Bill Triggs BILL .TRIGGS@INRIALPES.FR

GRAVIR-INRIA-CNRS, 655 Avenue de l’Europe, Montbonnot 38330, France

Abstract
We describe a sparse Bayesian regression method
for recovering 3D human body motion directly
from silhouettes extracted from monocular video
sequences. No detailed body shape model is
needed, and realism is ensured by training on real
human motion capture data. The tracker esti-
mates 3D body pose by using Relevance Vector
Machine regression to combine a learned autore-
gressive dynamical model with robust shape de-
scriptors extracted automatically from image sil-
houettes. We studied several different combina-
tion methods, the most effective being to learn
a nonlinear observation-update correction based
on joint regression with respect to the predicted
state and the observations. We demonstrate the
method on a 54-parameter full body pose model,
both quantitatively using motion capture based
test sequences, and qualitatively on a test video
sequence.

1. Introduction

We consider the problem of estimating and tracking the 3D
configurations of complex articulated objects from monoc-
ular images,e.g.for applications requiring 3D human body
pose or hand gesture analysis. There are two main schools
of thought on this. Model-based approachespresuppose
an explicitly known parametric body model, and estimate
the pose by either: (i) directly inverting the kinemat-
ics, which requires known image positions for each body
part (Taylor, 2000); or(ii) numerically optimizing some
form of model-image correspondence metric over the pose
variables, using a forward rendering model to predict the
images, which is expensive and requires a good initial-
ization, and the problem always has many local minima
(Sminchisescu & Triggs, 2003). An important sub-case is
model-based tracking, which focuses on tracking the pose
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estimate from one time step to the next starting from a
known initialization, based on an approximate dynamical
model (Bregler & Malik, 1998,Sidenbladh et al., 2002). In
contrast,learning based approachestry to avoid the need
for accurate 3D modelling and rendering, and to capitalize
on the fact that the set oftypicalhuman poses is far smaller
than the set of kinematically possible ones, by estimating
(learning) a model that directly recovers pose estimates
from observable image quantities (Grauman et al., 2003).
In particular, example based methodsexplicitly store a
set of training examples whose 3D poses are known,
and estimate pose by searching for training image(s) sim-
ilar to the given input image, and interpolating from
their poses (Athitsos & Sclaroff, 2003,Stenger et al., 2003,
Mori & Malik, 2002,Shakhnarovich et al., 2003).

In this paper we take a learning based approach, but in-
stead of explicitly storing and searching for similar training
examples, we use sparse Bayesian nonlinear regression to
distill a large training database into a single compact model
that generalizes well to unseen examples. We regress the
current pose (body joint angles) against both image descrip-
tors (silhouette shape) and a pose estimate computed from
previous poses using a learned dynamical model. High di-
mensionality and the intrinsic ambiguity in recovering pose
from monocular observations makes the regression nontriv-
ial. Our algorithm can be related to probabilistic tracking,
but we eliminate the need for:(i) an exact body model
that must be projected to predict an image; and(ii) a pre-
defined error model to evaluate the likelihood of the ob-
served image signal given this projection. Instead, pose
is estimated directly, by regressing it against a dynamics-
based prediction and an observed shape descriptor vector.
Regressing on shape descriptors allows appearance varia-
tions to be learned automatically, enabling us to work with
a simple generic articular skeleton model; while including
an estimate of the pose in the regression allows the method
to overcome the inherent many-to-one projection ambigui-
ties present in monocular image observations.

Our strategy makes good use of the sparsity and generaliza-
tion properties of our nonlinear regressor, which is a variant
of the Relevance Vector Machine (RVM)(Tipping, 2000).



RVM’s have been used,e.g., to build kernel regressors for
2D displacement updates in correlation-based patch track-
ing (Williams et al., 2003). Human pose recovery is sig-
nificantly harder — more ill-conditioned and nonlinear,
and much higher dimensional — but by selecting a suffi-
ciently rich set of image descriptors, it turns out that we
can still obtain enough information for successful regres-
sion (Agarwal & Triggs, 2004a).

Our motion capture based training data models each joint
as a spherical one, so formally, we represent 3D body pose
by 55-D vectorsx including 3 joint angles for each of the
18 major body joints. The input images are reduced to
100-D observation vectorsz that robustly encode the shape
of a human image silhouette. Given a temporal sequence
of observationszt, the goal is to estimate the correspond-
ing sequence of pose vectorsxt. We work as follows:
At each time step, we obtain an approximate preliminary
pose estimatěxt from the previous two pose vectors, us-
ing a dynamical model learned by linear least squares re-
gression. We then update this to take account of the ob-
servationszt using a joint RVM regression oveřxt andzt

— x = r(x̌, z) — learned from a set of labelled training
examples{(zi,xi) | i = 1 . . . n}. The regressor is a lin-
ear combinationr(x, z) ≡

∑
k ak φk(x, z) of prespecified

scalar basis functions{φk(x, z) | k = 1 . . . p} (here, instan-
tiated Gaussian kernels). The learned regressor is regular
in the sense that the weight vectorsak are well-damped to
control over-fitting, and sparse in the sense that many of
them are zero. Sparsity occurs because the RVM actively
selects only the ‘most relevant’ basis functions — the ones
that really need to have nonzero coefficients to complete the
regression successfully.

Previous work: There is a good deal of prior work on hu-
man pose analysis, but relatively little on directly learning
3D pose from image measurements. (Brand, 1999) models
a dynamical manifold of human body configurations with a
Hidden Markov Model and learns using entropy minimiza-
tion. (Athitsos & Sclaroff, 2000) learn a perceptron map-
ping between the appearance and parameter spaces. Human
pose is hard to ground truth, so most papers in this area use
only heuristic visual inspection to judge their results. How-
ever, the interpolated-k-nearest-neighbor learning method
of (Shakhnarovich et al., 2003) used a human model ren-
dering package (POSER from Curious Labs) to synthesize
ground-truthed training and test images of 13 degree of
freedom upper body poses with a limited (±40◦) set of ran-
dom torso movements and view points, obtaining RMS es-
timation errors of about20◦ per d.o.f. In comparison, our
regression algorithm estimates full 54 d.o.f. body pose and
orientation — a problem whose high dimensionality would
really stretch the capacity of an example based method such
as (Shakhnarovich et al., 2003) — with mean errors of only
about4◦. We also used POSER to synthesize a large set

Figure 1. Different 3D poses can have very similar image obser-
vations, causing the regression from image silhouettes to 3D pose
to be inherently multi-valued.

of training and test images from different viewpoints, but
rather than using random synthetic poses, we used poses
taken from real human motion capture sequences. Our re-
sults thus relate to real poses and we also capture the dy-
namics of typical human motions for temporal consistency.
The motion capture data was taken from the public website
www.ict.usc.edu/graphics/animWeb/humanoid.

(Howe et al., 1999) developed a Bayesian learning frame-
work to recover 3D pose from known image locations of
body joint centres, based on a training set of pose-centre
pairs obtained from resynthesized motion capture data.
(Mori & Malik, 2002) estimate the centres using shape con-
text image matching against a set of training images with
pre-labelled centres, then reconstruct 3D pose using the al-
gorithm of (Taylor, 2000). Rather than working indirectly
via joint centres, we chose to estimate pose directly from
the underlying image descriptors, as we feel that this is
likely to prove both more accurate and more robust, pro-
viding a generic framework for estimating and tracking any
prespecified set of parameters from image observations.

(Pavlovic et al., 2000,Ormoneit et al., 2000) learn dynami-
cal models for specific human motions. Particle filters and
MCMC methods have widely been used in probabilistic
tracking frameworkse.g. (Sidenbladh et al., 2002). Most
of the previous learning based methods for human track-
ing take a generative, model based approach, whereas our
approach is essentially discriminative.

2. Observations as Shape Descriptors

To improve resistance to segmentation errors and occlu-
sions, we use a robust representation for our image ob-
servations. Of the many different image descriptors that
could be used for human pose estimation, and in line with
(Brand, 1999,Athitsos & Sclaroff, 2000), we have chosen
to base our system on image silhouettes. There are two



main problems with silhouettes: (i) Artifacts such as
shadow attachment and poor background segmentation tend
to distort their local form. This often causes problems when
global descriptors such as shape moments are used, as in
(Brand, 1999,Athitsos & Sclaroff, 2000), because each lo-
cal error pollutes every component of the descriptor. To
be robust, shape descriptors must have good spatial local-
ity. (ii ) Silhouettes make several discrete and continuous
degrees of freedom invisible or poorly visible. It is diffi-
cult to tell frontal views from back ones, whether a person
seen from the side is stepping with the left leg or the right
one, and what are the exact poses of arms or hands that
fall within (are ‘occluded’ by) the torso’s silhouette (see
fig. 1). These factors limit the performance attainable from
silhouette-based methods.

Histograms of edge information are a good way to encode
local shape robustly (Lowe, 1999). Here, we use shape con-
texts (histograms of local edge pixels into log-polar bins)
(Belongie et al., 2002) to encode silhouette shape quasi-
locally over a range of scales, making use of their locality
properties and capability to encode approximate spatial po-
sition on the silhouette — see (Agarwal & Triggs, 2004a).
Unlike Belognieet al, we use quite small image regions
(roughly the size of a limb) to compute our shape contexts,
and for increased locality, we normalize each shape con-
text histogram only by the number of points in its region.
This is essential for robustness against occlusions, shad-
ows,etc. The shape context distributions of all edge points
on a silhouette are reduced to 100-D histograms by vec-
tor quantizing the 60-D shape context space using Gaussian
weights to vote softly into the few histogram centres nearest
to the contexts. This softening allows us to compare his-
tograms using simple Euclidean distance rather than, say,
Earth Movers Distance (Rubner et al., 1998). Each image
observation (silhouette) is thus finally reduced to a 100-D
quantized-distribution-of-shape-context vector, giving rea-
sonably good robustness to occlusions and to local silhou-
ette segmentation failures.

3. Tracking and Regression

The 3D pose can only be observed indirectly via ambiguous
and noisy image measurements, so it is appropriate to start
by considering the Bayesian tracking framework in which
our knowledge about the state (pose)xt given the observa-
tions up to timet is represented by a probability distribu-
tion, the posterior state densityp(xt|zt, zt−1, . . . , z0).

Given an image observationzt and a prior p(xt) on
the corresponding posext, the posterior likelihood for
xt is usually evaluated using Bayes’ rule,p(xt|zt) ∝
p(zt|xt) p(xt), wherep(zt|xt) is a precise ‘generative’ ob-
servation model that predictszt and its uncertainty given
xt. Unfortunately, when tracking objects as complicated as

the human body, the observations depend on a great many
factors that are difficult to control, ranging from lighting
and background to body shape and clothing style and tex-
ture, so any hand-built observation model is necessarily a
gross oversimplification.

One way around this would be to learn the generative model
p(z|x) from examples, then to work backwards via its Ja-
cobian to get a linearized state update, as in the extended
Kalman filter. However, this approach is somewhat indirect,
and it may waste a considerable amount of effort modelling
appearance details that are irrelevant for predicting pose.
Instead, we prefer to learn a ‘discriminative’ (diagnostic or
anti-causal) modelp(x|z) for the posex given the obser-
vationsz — c.f. the difference between generative and dis-
criminative classification, and the regression based trackers
of (Jurie & Dhome, 2002,Williams et al., 2003). Similarly,
in the context of maximum likelihood pose estimation, we
would prefer to learn a ‘diagnostic’ regressorx = x(z),
i.e. a point estimator for the most likely statex given the
observationsz, not a generative predictorz = z(x).

Unfortunately, this brings up a second problem. In monocu-
lar human pose reconstruction, image projection suppresses
most of the depth (camera-object distance) information, so
the state-to-observation mapping is always many-to-one. In
fact, even when the labelled image positions of the pro-
jected joint centers are known exactly, there may still be
some hundreds or thousands of kinematically possible 3D
poses, linked by ‘kinematic flipping’ ambiguities (c.f. e.g.
(Sminchisescu & Triggs, 2003)). Using silhouettes as im-
age observations allows relatively robust feature extraction,
but induces further ambiguities owing to the lack of limb
labelling: it can be hard to tell back views from front ones,
and which leg or arm is which in side views. These ambi-
guities make learning to regressx from z difficult because
the true mapping is actually multi-valued. A single-valued
least squares regressor will tend to either zig-zag erratically
between different training poses, or (if highly damped) to
reproduce their arithmetic mean (Bishop, 1995), neither of
which is desirable. Introducing a robustified cost func-
tion might help the regressor to focus on just one branch
of the solution space so that different regressors could be
learned for different branches, but applying this in a heav-
ily branched 54-D target space is not likely to be straight-
forward.

To reduce the ambiguity, we can take advantage of the fact
that we are tracking and work incrementally from the pre-
vious statext−1

1 (e.g. (D’Souza et al., 2001)). The basic
assumption of discriminative tracking is that state informa-
tion from the current observation is independent of state in-

1As an alternative we tried regressing the posext against a
sequence of the last few silhouettes(zt, zt−1, . . .), but the ambi-
guities are found to persist for several frames.



formation from previous states (dynamics):

p(xt | zt,xt−1, . . .) ∝ p(xt | zt) p(xt |xt−1, . . .) (1)

The pose reconstruction ambiguity is reflected in the fact
that the likelihoodp(xt | zt) is typically multimodal (e.g.
it is obtained by using Bayes’ rule to invert the many-
to-one generative modelp(z|x)). Probabilistically this
is fine, but to handle it in the context of point estima-
tion / maximum likelihood tracking, we would in princi-
ple need to learn amulti-valuedregressor forxt(zt) and
then fuse each of the resulting pose estimates with the esti-
mate from the dynamics-based regressorxt(xt−1, . . .). In-
stead, we adopt the working hypothesis that given the dy-
namics based estimate — or any other rough initial esti-
matex̌t for xt — it will usually be the case that only one
of the observation-based estimates is at all likely a poste-
riori. Thus, we can use thěxt value to “select the correct
solution” for the observation-based reconstructionxt(zt).
Formally this gives a regressorxt = xt(zt, x̌t), wherex̌t

serves mainly as a key to select which branch of the pose-
from-observation space to use, not as a useful prediction of
xt in its own right. (To work like this, this regressor must
be nonlinear and well-localized iňxt). Taking this one step
further, if x̌t is actually a useful estimate ofxt (e.g. from
a dynamical model), we can use a single regressor of the
same form,xt = xt(zt, x̌t), but now with a stronger de-
pendence oňxt, to capture the net effect of implicitly recon-
structing an observation-estimatext(zt) and then fusing it
with x̌t to get a better estimate ofxt.

4. Learning the Regression Models

In this section we detail the regression methods that we use
for recovering 3D human body pose. Poses are represented
as real vectorsx ∈ Rm. For a full body model, these are
55-dimensional, including 3 joint angles for each of the 18
major body joints2. This is not a minimal representation of
the true human pose degrees of freedom, but it corresponds
to our motion capture based training data, and our regres-
sion methods handle such redundant output representations
without problems.

4.1. Dynamical (Prediction) Model

Human body dynamics can be modelled fairly accurately
with a second order linear autoregressive process,xt =
x̌t + ε, wherex̌t ≡ Ã xt−1 + B̃ xt−2 is the second or-
der dynamical estimate ofxt andε is a residual error vector
(c.f. e.g. (Agarwal & Triggs, 2004b)). To ensure dynamical

2The subject’s overall azimuth (compass heading angle)θ can
wrap around through 360◦. We maintain continuity by regressing
(a, b) = (cos θ, sin θ) rather thanθ, usingatan2(b, a) to recover
θ from the not-necessarily-normalized vector returned by regres-
sion. We thus have3×18+1 = 55 parameters to estimate.
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Figure 2. An example of mistracking caused by an over-narrow
pose kernelKx. The kernel width is set to 1/10 of the optimal
value, causing the tracker to lose track from aboutt=120, after
which the state estimate drifts away from the training region and
all kernels stop firing by aboutt=200. Top: the variation of one
parameter (left hip angle) for a test sequence of a person walk-
ing in a spiral.Bottom: The temporal activity of the 120 kernels
(training examples) during this track. The banded pattern occurs
because the kernels are samples taken from along a similar 2.5 cy-
cle spiral walking sequence, each circuit involving about 8 steps.
The similarity between adjacent steps and between different cir-
cuits is clearly visible, showing that the regressor can locally still
generalize well.

stability and avoid over-fitting, we actually learn the autore-
gression fořxt in the following form:

x̌t ≡ (I + A)(2xt−1 − xt−2) + Bxt−1 (2)

whereI is them × m identity matrix. We estimateA and
B by regularized least squares regression againstxt, mini-
mizing‖ε‖2

2 + λ(‖A‖2
Frob + ‖B‖2

Frob) over the training set,
with the regularization parameterλ set by cross-validation
to give a well-damped solution with good generalization.

4.2. Likelihood (Correction) Model

Now consider the observation model. As discussed above,
the underlying densityp(xt | zt) is highly multimodal ow-
ing to the pervasive ambiguities in reconstructing 3D pose
from monocular images, so no single-valued regression
function xt = xt(zt) can give acceptable point estimates
for xt. This is confirmed in practice: although we have
managed to learn moderately successful pose regressors
x = x(z), they tend to systematically underestimate pose
angles (owing to effective averaging over several possible



0.7 0.75 0.8 0.85 0.9 0.95 1
4

4.5

5

5.5

Damping factor (s)

R
M

S
 e

rr
or

Figure 3. The variation of the RMS test-set tracking error with
damping factors. See the text for discussion.

solutions) and to be subject to occasional glitches where
the wrong solution is selected (Agarwal & Triggs, 2004a).
Although such regressors can be combined with dynamics-
based predictors, this only smooths the results: it cannot
remove the underlying underestimation and ‘glitchiness’.

In default of a reliable method for multi-valued regression,
we include a non-linear dependence onx̌t with zt in the
observation-based regressor. Our full regression model
also includes an expliciťxt term to represent the direct con-
tribution of the dynamics to the overall state estimate, so
the final model becomesxt ≡ x̂t + ε′ whereε′ is a residual
error to be minimized, and:

x̂t ≡ Cx̌t +
p∑

k=1

dk φk(x̌t, zt) =
(
C D

) (
x̌t

f(x̌t, zt)

)
(3)

Here, {φk(x, z) | k = 1 . . . p} is a set of scalar-valued
basis functions for the regression, anddk are the corre-
spondingRm-valued weight vectors. For compactness, we
gather these into anRp-valued feature vectorf(x, z) ≡
(φ1(x, z), . . . , φp(x, z))> and anm×p weight matrixD ≡
(d1, . . . ,dp). In the experiments reported here, we used
instantiated-kernel bases of the form:

φk(x, z) = Kx(x,xk) ·Kz(z, zk) (4)

where(xk, zk) is a training example andKx,Kz are (here,
independent Gaussian) kernels onx-space andz-space,
Kx(x,xk) = e−βx‖x−xk‖2

andKz(z, zk) = e−βz‖z−zk‖2
.

Building the basis from Gaussians based at training exam-
ples in joint (x, z) space forces examples to become rel-
evant only if they have similar estimated posesand simi-
lar image silhouettes. It is essential to choose the relative
widths of the kernels appropriately. In particular, if the
x-kernel is chosen too wide, the method tends to average
over (or zig-zag between) several alternative pose-from-
observation solutions, which defeats the purpose of includ-
ing x̌ in the observation regression. On the other hand, by
locality, the observation-based state corrections are effec-
tively ‘switched off’ whenever the state happens to wander
too far from the observed training examplesxk. So if the
x-kernel is set too narrow, observation information is only
incorporated sporadically and mistracking can easily occur.

RVM Training Algorithm

0. Initialize A with ridge regression. Initialize the run-
ning scale estimatesascale = ‖a‖ for the components or
vectorsa.

1. Approximate theν log ‖a‖ penalty terms with
“quadratic bridges”ν (a/ascale)2 + const (the gradients
match atascale);

2. Solve the resulting linear least squares problem inA;

3. Remove any componentsa that have become zero, up-
date the scale estimatesascale = ‖a‖, and continue from
1 until convergence.

Figure 4. Our RVM training algorithm.

Fig. 2 illustrates this effect, for anx-kernel a factor of 10
narrower than the optimum. The method initially seemed to
be sensitive to the kernel width parameters, but after select-
ing optimal parameters by cross-validation on an indepen-
dent motion sequence we observed accurate performance
over a sufficiently wide range of both the kernel widths: a
tolerance factor of∼2 onβx and∼4 onβz.

The coefficient matrixC in (3) plays an interesting role.
SettingC ≡ I forces the correction model to act as a differ-
ential update oňxt. On the other extreme,C ≡ 0 gives
largely observation-based state estimates with only a la-
tent dependence on the dynamics. An intermediate setting,
however, turns out to give best overall results. Damping
the dynamics slightly ensures stability and controls drift —
in particular, preventing the observations from disastrously
‘switching off’ because the state has drifted too far from
the training examples — while still allowing a reasonable
amount of dynamical smoothing. Usually we estimate the
full (regularized) matrixC from the training data, but to get
an idea of the trade-offs involved, we also studied the effect
of explicitly settingC = sI for s ∈ [0, 1]. We find that a
small amount of damping,sopt ≈ .98 gives the best results
overall, maintaining a good lock on the observations with-
out losing too much dynamical smoothing (see fig. 3.) This
simple heuristic setting gives very similar results to the full
model obtained by learning an unconstrainedC.

4.3. Relevance Vector Regression

The regressor is learned using a Relevance Vector Machine
(Tipping, 2001). This sparse Bayesian approach gives sim-
ilar results to methods such as damped least squares / ridge
regression, but selects a much more economical set of ac-
tive training examples for the kernel basis. We have also
tested a number of other training methods (including ridge
regression) and bases (including the linear basis). These are
not reported here, but the results turn out to be relatively in-
sensitive to the training method used, with the kernel bases
having a slight edge.
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(b) Pure observation model on test set
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(c) Joint regression model on test set
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(d) Pure dynamical model on test set
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(e) Pure observation model on test set
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(f) Joint regression model on test set
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Figure 5. Tracking results on a spiral walking test sequence. (a) Variation of a joint-angle parameter, as predicted by a pure dynamical
model initialized att = {0, 1}, (b) Estimated values of this angle from regression on observations alone (i.e. no initialization or temporal
information), (c) Results from our novel joint regressor, obtained by combining dynamical and state+observation based regression
models. (d,e,f) Similar plots for the overall body rotation angle. Note that this angle wraps around360◦, i.e. θ ∼= θ ± 360◦.

When regressingy on x (using generic notation), we use
Euclidean norm to measurey-space prediction errors, so
the estimation problem takes the form:

A := arg min
A

{
n∑

i=1

‖Af(xi)− yi‖2 + R(A)

}
(5)

whereR(−) is a regularizer onA. RVM’s take either in-
dividual parameters or groups of parametersa (in our case,
columns ofA), and imposeν log ‖a‖ regularizers or priors
on each group. Rather than using the (Tipping, 2000) al-
gorithm for training, we use a continuation method based
on successively approximating theν log ‖a‖ regularizers
with quadratic “bridges”ν (‖a‖/ascale)2 chosen to match
the prior gradient atascale, a running scale estimate fora.
The bridging functions allow parameters to pass through
zero if they need to, without too much risk of premature
trapping at zero. The algorithm is sketched in fig. 4. Regu-
larizing over whole columns (rather than individual compo-
nents) ofA ensures a sparse expansion, as it swaps entire
basis functions in or out.

5. Experimental Results & Analysis

We conducted experiments using a database of motion cap-
ture data for anm = 54 d.o.f. body model (3 angles for each
of 18 joints, including body orientation w.r.t. the camera).
We report mean (over all angles) RMS (over time) absolute
difference errors between the true and estimated joint angle
vectors, in degrees:

D(x,x′) =
1
m

m∑
i=1

|(xi − x′i) mod± 180◦| (6)

The training silhouettes were created by using Curious
Labs’ POSERto re-render poses obtained from real human
motion capture data, and reduced to 100-D shape descrip-
tor vectors as in§2. We used 8 different sequences totalling
∼2000 instantaneous poses for training, and another two
sequences of∼400 points each as validation and test sets.

The dynamical model is learned from the training data ex-
actly as described in§4.1, but when training the obser-
vation model, we find that its coverage and capture ra-
dius can be increased by including a wider selection ofx̌t

values than those produced by the dynamical predictions.
Hence, we train the modelx = xt(x̌, z) using a combina-
tion of ‘observed’ samples(x̌t, zt) (with x̌t computed from
(2)) and artificial samples generated by Gaussian sampling
N (xt,Σ) around the training statext. The observationzt

corresponding toxt is still used, forcing the observation
based part of the regressor to rely mainly on the observa-
tions,i.e. on recoveringxt (or at least an update tǒxt) from
zt, usingx̌t mainly as a hint about the inverse solution to
choose. The covariance matrixΣ is chosen to reflect the
local scatter of the training examples, with a larger variance
along the tangent to the trajectory at each point to ensure
that phase lag between the state estimate and the true state
is reliably detected and corrected.

Fig. 5 illustrates the relative contributions of the different
terms in our model by plotting tracking results for a mo-
tion capture test sequence in which the subject walks in a



decreasing spiral. (This sequence was not included in the
training set, although similar ones were). The purely dy-
namical model (2) provides good estimates for a few time
steps, but gradually damps and drifts out of phase. (Such
damped oscillations are characteristic of second order linear
autoregressive dynamics, trained with enough regulariza-
tion to ensure model stability). At the other extreme, using
observations alone without any temporal information (i.e.
C = 0 andKx = 1) provides noisy reconstructions with
occasional ‘glitches’ due to incorrect reconstructions. Pan-
els (c),(f) show that joint regression on both dynamics and
observations gives smoother and stabler tracking. There is
still some residual misestimation of the hip angle in (c) at
aroundt=140 andt=380. Here, the subject is walking di-
rectly towards the camera (heading angleθ∼0◦), so the only
cue for hip angle is the position of the corresponding foot,
which is sometimes occluded by the opposite leg. Even
humans have difficulty estimating this angle from the sil-
houette at these points.

Fig. 6 shows some silhouettes and corresponding maximum
likelihood pose reconstructions, for the same test sequence.
The 3D poses for the first two time steps were set by hand to
initialize the dynamical predictions. The average RMS esti-
mation error over all joints using the RVM regressor in this
test is4.1◦. Well-regularized least squares regression over
the same basis gives similar errors, but has much higher
storage requirements. The Gaussian RVM gives a sparse
regressor for (3) involving only 348 of the 1927 training ex-
amples, thus allowing a significant reduction in the amount
of training data that needs to be stored. Reconstruction re-
sults on a test video sequence are shown in fig. 7. The re-
construction quality demonstrates the generalized dynami-
cal behavior captured by the model as well as the method’s
robustness to imperfect visual features, as a naive back-
ground subtraction method was used to extract somewhat
imperfect silhouettes from the images.

In terms of computational time, the final RVM regressor al-
ready runs in real time in Matlab. Silhouette extraction and
shape-context descriptor computations are currently done
offline, but would be doable online in real time. The (of-
fline) learning process takes about 26 min for the RVM with
∼2000 data points, and about the same again for (Matlab)
Shape Context extraction and clustering.

The method is reasonably robust to initialization errors. The
results shown in figs. 5 and 6 were obtained by initializing
from ground truth, but we also tested the effects of auto-
matic (and hence potentially incorrect) initialization. In an
experiment in which the tracker was automatically initial-
ized at each time step in turn using the pure observation
model, then tracked forwards and backwards using the dy-
namical tracker, the initialization lead to successful track-
ing in 84% of the cases. The failures occur at the ‘glitches’,

t=001 t=060 t=120 t=180 t=240 t=300

Figure 6. Some sample pose reconstructions for a spiral walking
sequence not included in the training data, corresponding to fig-
ures 5(c) & (f). The reconstructions were computed with a Gaus-
sian kernel RVM, using only 348 of the 1927 training examples.
The average RMS estimation error per d.o.f. over the whole se-
quence is4.1◦.

where the observation model gave completely incorrect ini-
tializations.

6. Discussion & Conclusions

We have presented a method that recovers 3D human body
pose from sequences of monocular silhouettes by direct
nonlinear regression of joint-angles against histogram-of-
shape-context silhouette shape descriptors and dynamics
based pose estimates. No 3D body model or labelling of
image positions of body parts is required. Regressing the
pose jointly on image observations and previous poses al-
lows the intrinsic ambiguity of the pose-from-monocular-
observations problem to be overcome, thus producing sta-
ble, temporally consistent tracking. We use a kernel-based
Relevance Vector Machine for the regression, thus selecting
a sparse set of relevant training examples as exemplars. The
method shows promising results on tracking unseen video
sequences, giving an average RMS error of4.1◦ per body-
joint-angle on real motion capture data.

Future work: We plan to investigate the extension of
our regression based system to a complete discriminative
Bayesian tracking framework, including multiple hypothe-
ses and robust error models. We would also like to include
richer features, such as internal edges in addition to silhou-
ette boundaries to reduce susceptibility to poor image seg-
mentation.
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Figure 7. 3D poses reconstructed from a test video sequence (obtained from www.nada.kth.se/∼hedvig/data.html). The presence of
shadows and holes in the extracted silhouettes demonstrates the robustness of our shape descriptors — however, a weak or noisy
observation signal sometimes causes failure to track accurately.E.g. at t = 8, 14, the pose estimates are dominated by the dynamical
predictions, which do ensure smooth and natural motion but may cause slight mistracking of some parameters.
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