





Matching is Fundamental

o B
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matching is the hard part, once this is solved everything else

iS just equation shuffling...

— Object Recognition;

having established optimal correspondence between
features on the image and within a model one can determine

~ the appropriateness of the model.



Tutorial Overview

¢ Section 1: Generative models for matching In
object recognition and structure from motion

& Section 2: Algorithms for Matching.

¢ Section 3: ICP.




Section 1
Generative

Matching Overview




Section 1
Generative Matching Overview

¢ 1.1 Explain Generative model of matching
— Useful for structure and motion recovery
— And object recognition

¢ 1.2 Probabilistic interpretation, likelihood of a model
depends on the matching.

¢ 1.3 Marginalizing over the matching: either (a) for
object recognition or (b) for learning the shape and

appearance.
¢ 1.4 Strong priors on shape.






Generative Model of Matching

One way to consider matching is the use of generative
models:

¢ Features generated from some model

¢ Bayesian analysis easy: Analysis by Synthesis,
[inspired by Grenander 1970], why is this good: can

learn appearance and shape!.



Generative model

¢ Patches on the model generate patches in the

Image; together with some score for goodness of
match.



Feature Generation

¢ Flow is to generate features in an image and
detect objects based on this.

¢ Features need to be
— Discriminative.

— Reproducible (appear on same part of the object
In different scenes).

———Rich, i.e. the more the better, don't throw away
iInformation



Types of Features

¢ Typical Features include:
— Harris corners
— Canny edges
— SIFT operator (Lowe)

— Entropy operator (Kadir and Brady).

— Maximally Stable Extremal Regions.

— Learnt Templates, specific to object (e.g nose, eyes)
— Etc.

& Learning which features useful is an interesting topic
of research.
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Generative Model for Object
Recognition

Once features extracted, what 1S
relation between them?

L. A

relation?



Examples of Relations for faces

Model Poor prior score

@ @

SC

¢ Weber suggests | '




Block Diagram of Weber Method to
learn features.
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Possible Features




Section 1.2
Generative Model, Probabilistic
Interpretation




Probabilistic Formulation

¢ Weber ECCV 2000
p(X7,x" h).

¢ Means: joint probability of
— XO the responses of our feature detectors
— XM the position of the object parts

— h anindicator as to whether a feature is foreground or
background.




Probabilistic Formulation

¢ Fergus et al 2003

p(X,S,A|6) =) p(X,S,A h|8) =

il

hcH

> p(A|X,S,h,6)p(X]|S,h,06) p(S|h, 6) p(h|6)

Appearance Shape Rel. Scale Other

— X Locations of features detected in the image.
— S Scale of features

— A appearance of features
— U parameters of model



Is an object in the Scene?

¢ Fergus et al: calculate ratio R: if R>1 then

yes: | ..
p(Object| X, S, A)

p(No object| X, S, A

)
p(X,S, A|Object) p(Object)
p(X,S, A|No object) p(No object)
p(X,S, A|0) p(Object)
p(X,S, Al|f;,) p(No object)

¢ Should really marginalize over 0D




Section 1.3
Generative Model, Marginalizing out
matches...




To Marginalize or Maximize the
matching?
¢ So given a generative model AND a matching

we can say how likely our image is under our
model for it.

¢ By evaluating this for a set of models we can
determine which model is best.

¢ However we could also marginalize out the

matches.



Why marginalize

¢ If all we are interested in is whether an object
IS present then we do not really care about

what matches what so we marginalize out the
matching (tricky, more later).

¢ No direct analogue with SFM



Learning Shape without matching

¢ If we want to learn the appearance and shape
of the model then we could also marginalize
out the matches.

¢ Interestingly this can be done both for object
recognition and for SFM as explored by
Dellaert, and also Davidson.




Roadmap

¢ Next we describe how matches might be
marginalized out.

¢ The following features the work of Dellaert et

~altodo this, first ignoring uniqueness of
matches and then second using MCMC to
iInclude matching unigueness.

¢ The conclusion is that it doesn’t work too well

for structure estimation so matching is not
irrelevant!



Structure from Motion




Traditionally: 2 Problems !

Correspondence

Optimization




A Correspondence Problem




An Optimization Problem

¢ Find the structure and motion ®




Optimization
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HOW CARIWeEeCoVver:

SiFUcCUre-and moeien-wita
unknown correspondence *




Combinatorial Explosion

# In general, #J i1s combinatorial in m,n
¢ 3 images, 4 features: 4!°=13,824

- & 5images, 30 features: 30!°=1.3131e+162
¢ (number of stars:1e+20, atoms: 1e+79)

4




EM for marginalizing

L. E-step: Calculate the expected log likelihood ) (©):

Q'©) =) f(I)logL(©;U,J) (6)
J

2. M-step: Find the ML estimate ®*! for structure and
motion, by maximizing Q*(©):

Ot = argmax Qf(O)

@)




Clever Observation!

L. E-step: Calculate the weights f’;, from the distribu-
tion over assignments. Then, in each of the m 1mages
calculate n virtual measurements vy ;.

). M-step: Find the structure and motion estimate @f+?
that minimizes the (weighted) re-projection error given

the virtual measurements:

Trl

Ot = "I_['E[T]]['l ——— ||vi; — h(m;, x;)||*
.?| (Tt J "

i=1 7=1




Clever Observation

¢ In other words we can compute a set of
virtual measurements (virtual projections of
the model into the image) and minimizing the

distance to these is the same as minimizing

the marginalized, over matches log likelihood.

¢ The virtual measurement are simply the

weighted sum of the features.




Pseudo Code

" n n . . —— r
. Generate an initial structure and motion estimate (:}':.

). Given ©' and the data U, run the Metropolis sam-

pler in each image to obtain approximate values for
the weights f" ik» Using equation (15).

. Calculate the virtual measurements vff with (11).

. Find the new estimate ©‘*! for structure and motion
using the virtual measurements v . as data. This can
be done using any SFM method ‘Dmp'ltlhle with the
projection model assumed.

. If not converged, return to step 2.







E-Step: Soft Correspondences




M-Step: Optimization

™m AL - 2
>- > [N h(m;, <P |
1=1 le l |




Structure from Motion without
Correspondence via EM:

1. Generate an initial structure and motion estimate @09,

78 In each image, calculate the n? “soft correspondences” ﬁ'k

3. Calculate the virtual measurements v;..

4. Find the new estimate ®'11 for structure and motion using the virtual

measurements vfj .

5. If not converged, return to step 2.






Appearance Models

B

¢ Templates
¢ Color Histograms
¢ Color Invariants

& Symbolic



“Toy” Example




Appearance Measurements

Image 2
Image 1



EM with Appearance

¢ M-step:
re-estimate appearance (templates)

¢ E-step:
use appearance to constrain matches




‘wiretoy” Image Sequence

'|‘~'l '
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Recovered 3D Structure




Critique

¢ The Dellaert et al algorithm seems to produce poorer
matches than standard techniques; why?

¢ One argument is that matching IS structure so do we

want to marginalize over matching?

¢ Anyway, better results seem to be achieved by
maximization so far...which justifies the next section

about algorithms for matching!! (just as well).



Section 1.4
Strong Priors on Shape:

Combing OR and SAM.
(ORSAM)




A quick thought:
Stronger Prior shape models

¢ If strong prior models are used object
recognition and structure from motion meet.

¢ If we recognize that the images arise from a
certain class of objects might we want not use
that information to refine our estimates of
shape?




Aim Structure From 2-6 views

* SFM often under constrained I.e.
homogeneous regions, occlusions

— Generic Smoothness prior often used (Szeliski
2002)-traditional dense stereo reached limit of

performance.

¢ Combine recognition and SFM to go

much further in resolving ambiguity.

— Recognition allows for more functional models e.qg.
opening doors, transparent windows.



Example:
Parameterizing buildings

The form of a prior for a building is far from obvious
— Generative/explicit distribution hard to formulate.

Previous work (Dick et al) constructed parameterized models of
building parts e.g. doors etc

¢ o

— Problem how to combine these sub parts?

Define an unnormalized prior via a cost function

We can explore/test validity of this prior by Reversible Jump
Metropolis Hastings, MCMC.




Example of Primitives

¢ Reconstruction and recognition of
architecture

g
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Shape representation

¢ Model is a collection of “wall” planes

¢ Each wall plane may contain primitives
defined by 4 — 8 parameters

E.g.: c 1 Example shape
Window 4 (window)
Door
Pediment
Pedestal b \ / f
Entablature v o—> d
Column < ~ rooa
Buttress a

Front view Overhead view

Drainpipe



Model estimation

¢ Initial shape estimate obtained via existing
structure and motion algorithms
— Extract and match corners and lines
-~ = Seli-calibrate cameras
— Plane fitting RANSAC to estimate walls

¢ Search for likely primitives on each wall
[ICCVO01]
—— —This produces seed points for the MCMC process

— Likelihood measure is based on sum squared
error of reprojected pixels
« Assumes Lambertian model




Reconstructed model




Ground truth

Height: 1.80m

Width: 1.20m

Depth: 0.20m

Wall-column distance: 2.62m

Column circumference: 3.20m
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Section 2
Algorithms For

Feature Matching




Overview

¢ RANSAC

¢ Problems with RANSAC
¢ MAPSAC







Section 2.1
Random Sampling Methods

¢ If the features are related by some sort of global
relation then we can use this to guide the matching.

¢ Basic Idea is to use some sort of correlation to get

putative matches. R

¢ Then randomly sample from these, estimate the
relation and see how many other features agree.




Object Recognition

¢ Paradigm for the past 40 years has been
[Roberts 65]:

— EXxtract features in image.

— Match features in model to image.




Structure and Motion Recovery

¢ Repeat:

— Match features between images,

— Infer image relation based on feature matches,

— Rematch under guidance from image relation.

¢ NEXT: we illustrate RANSAC with respect to feature

matching for SAM.






Structure and Motion Recovery

-+ —
-+ e NI .
+ 4 >
1. Finding Features 2. Matching F&atu} 3. Extracting Epipolar

/ Geometry
B - &

4. Extract edges 6. Estimate Depth Map 7. VRML Models
5. Match edges (dynamic programming)



Guide matches with Geometry




Concatenated Image space

¢ 2 Views- consider 4D space of image
coordinates (x,y,x’,y’)-

& Fundamental matrix is a 3D manifold in
this space.

¢ Homography is a 2D manifold in this

space.



Estimation of Motion model like fitting
a manifold to space of 4D image
points in two images:

*Problem compounded in higher dimensions



Stage 1 Corner Detection

=

Images of the same scene from

i e \‘-ﬁ

Feature Detectors need to consistently locate the
position within the image of a landmark on the
3D object.



Typical Features Detected




Stage 2 Feature Matching

'.Images of the same scene from dlfferent wewpomts

Initial Feature correspondence via Cross Correlation.



Stage 2 Feature Matching

Initial Feature correspondence via Cross Correlation
Many outliers.



Stage 3 Estimation of Epipolar
Geometry

Images of the same scene from dlfferent wewpomts '

Corresponding features must lie on corresponding
epipolar lines.
All epipolar lines intersect at a common point.



Robust estimation

¢ What if set of matches contains gross outliers?




RANSAC

Objective
Robust fit of model to data set S which contains outliers
Algorithm

Randomly select a sample of s data points from S and
instantiate the model from this subset.

)\ Determine  of daf ints-S, whid thi
distance threshold ¢t of the model. The set S, is the
consensus set of samples and defines the inliers of S.

If the subset of S, is greater than some threshold T, re-
estimate the model using all the points in S, and terminate

If the size of S, is less than T, select a new subset and

repeat the above.

After N trials the largest consensus set S, is selected, and
the model is re-estimated using all the points in the
subset S,




RANSAC

¢Repeat M times:

— Sample minimal number of matches to estimate
two view relation.

— Calculate number of inliers or posterior likelihood
for relation.

— Choose relation to maximize number of inliers.




RANSAC line fitting example

Task:

Estimate best line



RANSAC line fitting example

Sample two points



RANSAC line fitting example

Fit Line




RANSAC line fitting example

Total number of points
within a threshold of
line.



RANSAC line fitting example

Repeat, until get a
good result



RANSAC line fitting example

Repeat, until get a

o
//,//%X good result



RANSAC line fitting example

Repeat, until get a
good result



How many samples?

Choose N so that, with probability p, at least one random
sample is free from outliers. e.g. p=0.99

==y =1-

N =log(1- p)/logli-(1-e))

proportion of outliers e
5% 10% 20% 25% 30% 40% 50%
2 3 ) 6 7 (N 17
7 ) 11 19 35
9 13 1734 72

12 17 26 57 146
16 24 37 97 293
20 38 o4 163 588
26 44 /8 272 1177

o ~NoO oA wWNl®
g~ DD WW
© oo ~N OO OGN




Adaptively determining the
number of samples

e is often unknown a priori, so pick worst case, e.g. 50%, and
adapt if more inliers are found, e.g. 80% would yield e=0.2

— N=o00, sample count =0

— While N >sample_count repeat
= Choose a sample and count the number of inliers
= Set e=1-(number of inliers)/(total number of points)
= Recompute N from e
= Increment the sample count by 1

— Terminate




Number of Samples ||

¢ Make take many
more samples than

one would think due @
to degenerate point ®
sets. ®
® ®
@
[ : ‘
@
@ @



Number of Samples ||

¢ [ hese two
points are ®
Inliers. o




Number of Samples ||

¢ And yet the
estimate
yielded is poor.




Automatic computation of H

Objective
Compute homography between two images
Algorithm
Interest points: Compute interest points in each image

Putative correspondences: Compute a set of interest
point matches based on some similarity measure

RANSAC robust estimation: Repeat for N samples

(a) Select 4 correspondences and compute H

(b) Calculate the distance d, for each putative match

(c) Compute the number of inliers consistent with H (d, <t)
Choose H with most inliers

Optimal estimation: re-estimate H from all inliers by

minimizing ML cost function with Levenberg-Marquardt

Guided matching: Determine more matches using
prediction by computed H

Optionally iterate last two steps until convergence




Determine putative correspondences

¢ Compare interest points
— Similarity measure:SAD, SSD, NCC on small neighborhood

¢ NOTE: we can use correlation score to bias the

selection of the samples selecting matches with a
better correlation score more often (Tordoff et al).

¢ NOTE multiple matches for each point can be

— RANSAC’ed on (although this increases the
proportion of outliers).



Example: robust computation

Interest points
(500/image)

pondences (268)

Qutliers (117)

Inliers (151)




Example; 2D Similarity

Transformation
@ O O
® ®
® @)
O @)




Example; 2D Similarity
Transformation

/p :O
o ° .
_ e
o © o
Set 1 Set 2

Set of matches from some correlation function.
Some are incorrect (shown in red)



Example; 2D Similarity
Transformation

® ®
®
O ' -
O
o © -
Set 1 Set 2

Two matches, used to infer transform,
Here: Top match correct, bottom incorrect



Example; 2D Similarity
Transformation

@)
o o) O
@)
o ° 0
[ o ®)
® o
® [
Set 1 Set 2

Features mapped under transform do not align
well.



Example; 2D Similarity
Transformation

®
O e 5
®
o © S
Set 1 Set 2

On the other hand, if we pick two correct matches
(modulo noise).



Example; 2D Similarity
Transformation

Set 2
Alignment is good!



Problems and Improvements to
RANSAC

¢ Problem 1, cost function.

¢ Problem 2, what model to fit?




Problem 1; cost function

¢ RANSAC can be vulnerable to the correct
choice of the threshold:

— Too large all hypotheses are ranked equally.

— Too small leads to an unstable fit.

¢ The interesting thing is that the same strategy
can be followed with any modification of the

cost function.



Problem with RANSAC;
threshold too high




Problem with RANSAC;
threshold too high

_~This solution...



Problem with RANSAC;
threshold too high

~. |s as good as this

solution



Problem with RANSAC,;
threshold too low-no support




Problem 1; cost function

¢ Examples of other cost functions
— Least Median Squares; i.e. take the sample that

minimized the median of the residuals.

— MAPSAC/MLESAC use the posterior or likelihood
of the data.

— MINPRAN (Stewart), makes assumptions about
randomness of data




LMS

¢Repeat M times:

— Sample minimal number of matches to estimate
two view relation.

— Calculate error of all data.

— Choose relation to minimize median of errors.




Pros and Cons LMS

¢ PRO

— Do not need any threshold for inliers.

& CON

— Cannot work for more than 50% outliers.

— Problems if a lot of data belongs to a submanifold
(e.g. dominate plane in the image)




Con: LMS, subspace problem

> Median error Is same
for two solutions.



Con: LMS, subspace problem

No good solution if the
‘ number of outliers >50%



Pros LMS

¢ One major advantage of LMS is that it can
yield a robust estimate of the variance of the
errors.

¢ But care should be taken to use the right
formula, as this depends on the distribution of
the errors, and degrees of freedom in the

errors (codimension).



Robust Maximum Likelihood
Estimation

Random Sampling can optimize any function:

Better, robust cost function, MLESAC

t* e’ >t? outlier

2 2 IURET
® =Y pld.;) with p( ):{e ¢* < ¢* inlier




Mixture (Maxture) of
Gaussian/Uniform?

¢ Red-mixture, green-uniform, blue-Gaussian.



MLESAC/MAPSAC




MLESAC/MAPSAC

" |s better than this

solution



MAPSAC

¢ Add In prior to get to MAP solution

¢ Interesting thing is that with MAPSAC one could

sample less than the minimal number of points to
make an estimate (using prior as extra information).

¢ Any posterior can be optimized; random sampling
good for matching AND FUNCTION OPTIMIZATION!

e.g. MAPSAC is a cheap way to optimize objective
functions regardless of outliers or not.



MAPSAC

¢ Once the benefits of MAPSAC are seen there
IS no reason to continue to use RANSAC;

— In many situations the improvement in the solution
can be marked

— Especially if want to use prior information (e.g. the
F matrix changing smoothly over time).

— Gives an optimized solution
AT NO EXTRA COST!




Problem 2, what model to fit?

¢ here are many cases when we do not know
the relation between the images, there may a
choice of many.

¢ In this case a Bayesian solution might be to
evaluate the likelihood of each.




There are many possible
two view relations, e.q.
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Robust Model Selection

*Outliers make a hard problem very hard!

*Curve Dim 2, degree 2

~ +Line Dim 1, degree 1
*Point Dim O, degree 1



Model Selection outside scope of this
work

¢ See papers by me, or Kanatani.




Chum and Matas
possible speed ups

¢ Rather than test all the data given a
hypothesis (which could be costly for large

- amounts of data)
— Test against a subset: Randomized RANSAC.




Altered Match Selection strategies:

¢ Zhang suggest picking points far apart to
avoid degeneracy of samples.

¢ Tordoff suggests selecting matches with a
good correspondence more often.

¢ Chum and Matas suggest Hi-Lo RANSAC:
each time a large consensus set is found

RANSAC again within the set of inliers...



Section 2.3
Robust Registration of 2D and 3D
Point Sets ICP




Section 2.3
Robust Registration of 2D and 3D
Point Sets ICP

Introduction to point-set registration
The ICP algorithm
The Levenberg-Marquardt version

Comparisons and contrasts between the two.



The problem

Input:

Two point sets
M = {Mz} and D = {D]}

Assumption:

D is obtained by subjecting
M to a transformation 7', anc
measuring with error

Task:

Determine T



Problem variants

— ¢ Infinite point sets
(curves & surfaces)
¢ Non-Euclidean
— transformations
¢ Incomplete data



The strategy

Find 7" which minimizes error between transformed
model and data

For each
datum

e(T) = —log P(T) =) _ (min d(T = M;,D,)
j ! Distanc

Where:

e d(x,y) is a distance between points x and y.
° T xx applies the transformation to x
e.g. T = (0,t,,t,) for 2D

x CosSO 4+ ysinod 4 t,
—xsinf + ycoso + ¢,




Known Correspondences

Given correspondences j < ¢(j)

Can minimize

J




But we don't know the
correspondence

N e [hat's OK, just choose

the closest point...

e Of courseit’s wrong, but

It will get us closer



Iterate these steps: ICP




Common problems with ICP

¢ ICP

— Slow convergence: let's see why
* to include:

— Robustness

= M-estimation
— Constraints
= translation limits

— A-priori information

= priors on projective transformations



Convergence: ICP as
optimization

EM-like version: task IS to minimize over 17" and ¢

J

IFix T, compute {qb(j)};?le:
¢(j) = argmin d(T * M;, D;)
(/

Fix {gb(j)}?zl, compute T

T =argmin ) d(T «*M /-, D
ar %:( s(i):Dj)




|CP as optimization

_e_

Error is a function g

- of S

©

-

correspondence ]
and pose 28

parameters S;




My proposal: LMICP

Insert our cost function (T) into
a standard nonlinear optimizer...

E.g. a Levenberg-Marquardt implementatio

such as Matlab’s 1sgnonlin

Don’'t use Numerical Recipes




Advantages

2
— Easier to code
— Easier to modify

2
— Runs faster
— Wider basin of convergence




ICP LM-ICP




But what about derivatives?

Need to compute derivatives for
nonlinear optimization

Option 1: [For home use only, will run slowly

Finite differences for function f(x)

df f(x + hey) — f(x)

= |Iim

dry|,  h—0 h

Option 2: [Later, let's speed it up first]




Speeding it up

AS described, each iteration costs several
closest-point computations.

These don’t need to be accurate, so pre-
compute the Distance Transform and quer
from that...




The Distance Transform

Discrete cache of distances
to data.

L(z,y) = mind(Dj, (z,y))
J

S0 cost function is

e(T) = Z L(T =« M;)




Derivatives: Option 2

With distance transform, cost function Is

e(T) = Y L(T + M)

Differentiating wrt one param 7T}, chain rule give

d
Lo(TxM;)—T x M, +
dx

d
Ly(T = M;)—T * M;
dy

And L is an image, so we all know how to comput
Ly and Ly




Performance: speed

¢ Box-box

registrat
ion, 400

point

7))
5
=
<
—
2
G
o
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2
g
Z

0 20 40 60 80 100
Error in initial guess (degrees)




Robustness: Using an M-
estimator

¢ Need robustness when data are
— riddled with outliers

— not a complete subset of model
-(e.g. sampled model)

¢ ICP: Requires iteration at inner loop
— Very expensive
¢ LM: Trivial to add to cost function

— Distance transform easily modified



Performance: Examples




Performance: radius of
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Conclusion

¢ LMICP is faster, more accurate, has a wider basin of
convergence, is easier to code, easier to extend.

& ICP is easier to understand.

¢ ICP is slow because it hasn’t had the benetfit of 40
years of numerical analysis




Thanks to
Arasanathan fhayananthan

Bjorn Stenger




Chamfer Distance

¢ Left: Camera image
¢ Right: Canny edge map

¢ Left: Distance p—
Transform of the canny > .
edge map

¢ Right: Search templates

(150-250 points)



Chamfer Distance

¢ Distance Image gives the distance to the nearest

~_edge feature at every pixel location in the image.
¢ Calculated only once for each frame.



Chamfer Matching

¢ The chamfer score is the average nearest distance
~ from templates points to image points.

¢ The nearest distances are readily obtained from the
distance image.

¢ Computationally inexpensive.



¢ Efficient Searching techniques can be used to find

the correct template.


















Multiple Edge Orientations
¢ Similar to , Edge \Jﬂ%ﬁ
pixels are divided into 8 ﬂﬂ uﬁ%ﬁ* Bl

groups based on orientation ¢ == == -

¢ Distance Transforms are 4 @%ﬁiaﬁa __
calculated separately for /1

each group
¢ Total matching score is | £ H_h s
!

" " " ] " e _ — _."'r| |Ir’ 1
obtained by adding individual , ;~F - <C
L-_.??:l-:_.l_'__ = £ . I"J
chamfer scores =~ Eins
__ ﬂ"‘ _::__: i .
/*a».l AT RS



Applications: Hand Detection

¢ Initializing a hand model for tracking
— Locate the hand in the image
— Adapt model parameters

— No skin color information used
— Hand is open and roughly fronto-parallel




Results: Hand Detection

Shape Context with
Continuity Constraint

Chamfer Matching




Applications: CAPTCHA

T
A [Blum ef al., 02]
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EZ-Gimpy results

Chamfer cost for each letter template

Word matching cost: average chamfer cost
+ variance of distances

rlght 25.34 ﬁght 27 88 | mght 28 42

correct matches using 2 templates per letter
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