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Abstract

Automatic interpretation and understanding of videos still remains at the frontier of

computer vision. The core challenge is to lift the expressive power of the current visual

features (as well as features from other modalities, such as audio or text) to be able

to automatically recognize typical video sections, with low temporal saliency yet high

semantic expression. Examples of such long events include video sections where someone

is fishing (TRECVID Multimedia Event Detection), or where the hero argues with a

villain in a Hollywood action movie (Action Movie Franchises). In this manuscript, we

present several contributions towards this goal, focusing on three video analysis tasks:

summarization, classification, localization.

First, we propose an automatic video summarization method, yielding a short and highly

informative video summary of potentially long videos, tailored for specified categories of

videos. We also introduce a new dataset for evaluation of video summarization methods,

called MED-Summaries, which contains complete importance-scoring annotations of the

videos, along with a complete set of evaluation tools.

Second, we introduce a new dataset, called Action Movie Franchises, consisting of long

movies, and annotated with non-exclusive semantic categories (called beat-categories),

whose definition is broad enough to cover most of the movie footage. Categories such as

“pursuit” or “romance” in action movies are examples of beat-categories. We propose

an approach for localizing beat-events based on classifying shots into beat-categories

and learning the temporal constraints between shots.

Third, we overview the Inria event classification system developed within the TRECVID

Multimedia Event Detection competition and highlight the contributions made during

the work on this thesis from 2011 to 2014.

Keywords: video analysis, video classification, video summarization, computer vision,

machine learning



Resumé

L’Interprétation automatique de vidéos est un horizon qui demeure difficile à attein-

dre en utilisant les approches actuelles de vision par ordinateur. Une des principales

difficultés est d’aller au-delà des descripteurs visuels actuels (de même que pour les

autres modalités, audio, textuelle, etc) pour pouvoir mettre en oeuvre des algorithmes

qui permettraient de reconnaitre automatiquement des sections de vidéos, potentielle-

ment longues, dont le contenu appartient à une certaine catégorie définie de manière

sémantique. Un exemple d’une telle section de vidéo serait une séquence où une per-

sonne serait en train de pêcher; un autre exemple serait une dispute entre le héros et

le méchant dans un film d’action hollywoodien. Dans ce manuscrit, nous présentons

plusieurs contributions qui vont dans le sens de cet objectif ambitieux, en nous concen-

trant sur trois tâches d’analyse de vidéos: le résumé automatique, la classification, la

localisation temporelle.

Tout d’abord, nous introduisons une approche pour le résumé automatique de vidéos,

qui fournit un résumé de courte durée et informatif de vidéos pouvant être très longues,

résumé qui est de plus adapté à la catégorie de vidéos considérée. Nous introduisons

également une nouvelle base de vidéos pour l’évaluation de méthodes de résumé automa-

tique, appelé MED-Summaries, où chaque plan est annoté avec un score d’importance,

ainsi qu’un ensemble de programmes informatiques pour le calcul des métriques d’évaluation.

Deuxièmement, nous introduisons une nouvelle base de films de cinéma annotés, appelée

Action Movie Franchises, constitué de films d’action hollywoodiens, dont les plans sont

annotés suivant des catégories sémantiques non-exclusives, dont la définition est suff-

isamment large pour couvrir l’ensemble du film. Un exemple de catégorie est “course-

poursuite”; un autre exemple est “scène sentimentale”. Nous proposons une approche

pour localiser les sections de vidéos appartenant à chaque catégorie et apprendre les

dépendances temporelles entre les occurrences de chaque catégorie.

Troisièmement, nous décrivons les différentes versions du système développé pour la

compétition de détection d’événement vidéo TRECVID Multimédia Event Detection,

entre 2011 et 2014, en soulignant les composantes du système dont l’auteur du manuscrit

était responsable.

Mots-clés: analyse de vidéos, classification de vidéos, résumé automatique de vidéos,

vision par ordinateur, apprentissage statistique
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Chapter 1

Introduction

Automatic interpretation and understanding of video data is a major field of active

research within computer vision. A simplistic way to highlight the progress in this

area over the last decades is to look at state-of-the-art computer vision systems that

win TRECVID competitions. Focusing on the visual modality, state-of-the-art sys-

tems proceed by first computing low-level visual feature representations (static visual

features, such as SIFT [Lowe, 2004, Zhang et al., 2007] or Deep Convolutional Net fea-

tures [Bengio, 2009]; dynamic visual features, such as optical flow [Szeliski, 2010, Forsyth

and Ponce, 2003]). This first step actually corresponds to mature computer vision ap-

proaches, which stood the test of time and can be deployed reliably at a large-scale with

little fine-tuning. Then, mid-level feature representations, such as bag-of-visual-words

(BoW) [Csurka et al., 2004] or Fisher vector (FV) [Perronnin et al., 2010], aggregate

the information from the lower-level features such as SIFT or MBH [Wang et al., 2011,

2013]. Such feature representations already convey enough information to classify ob-

jects or actions into different categories. Finally, higher-level feature representations,

such as attributes (higher-level properties of an object, shared across multiple classes),

are used and complement the final feature representation that incomes a classifier such

as Support Vector Machines (SVM) [Hastie et al., 2009].

Thus, as one moves forward along the pipeline, before the final classification stage, the

visual feature representation that is computed by the system gets progressively higher-

level, capturing more subtle properties of the video stream and grazing more “semantic”

information. There are currently computer vision systems that are able to classify short

chunks of real-world videos into pre-defined action or activity categories, with rather

high classification accuracy [Laptev et al., 2008, Gaidon et al., 2013]. However, several

tasks consisting of more automatic interpretation and understanding of video data still

lie at the research frontier, where performance is still unsatisfactory. Automatically

1
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generating short and informative video summaries currently can only be applied to very

distinctive video streams, and may fall short when applied to real-world user-generated

videos. Similarly, classification of long video chunks into more “semantic” categories,

such as “romance” or “battle preparation” when skimming through a Hollywood action

movie, remains a challenging problem.

In this PhD thesis, we propose effective approaches for these two latter problems, and

present winning systems at the TRECVID Multimedia Event Detection challenges.

First, we start by reviewing state-of-the-art approaches for these problems, and de-

tail the current open problems. Second, we outline our contributions to the supervised

video summarization task. Third, we outline our contributions to the classification of

long semantic events, called “beat-event”, in stylized Hollywood action movies. Finally,

we present our contributions to the winning systems of the TRECVID Multimedia Event

Detection challenges, describing the impact of each component in winning the competi-

tion.

1.1 Context

Image understanding has been an active research area during the past decade. The

interest was supported by numerous practical applications, such as face detection and

recognition, human detection and pose estimation, image retrieval and categorization.

For example, a prominent success of computer vision, face detection, is based on several

simultaneous ground-breaking works that leverage large collection of digital image data

to train machine learning algorithms to detect faces in images [Viola and Jones, 2004,

Rowley et al., 1998]. Face detection is now used in almost every commodity digital

camera. The progress in image understanding could be explained as follows. First, the

exponential growth of computing power allows to capture, store and process large collec-

tions of digital photographs with higher quality than previous film-based photographic

technology. Second, machine learning algorithms [Hastie et al., 2009, Duda et al., 2012]

and models have become mature enough to leverage visual information from large col-

lections of digital photographs, allowing them to be applied to real-world problems.

Digital photos mostly convey the static information about the world, such as salient

visual patterns (faces, objects, etc.). Some applications, like gesture recognition, video

surveillance, sport analytics (Figure 1.1) require the visual dynamics to be analysed.

Then, temporal sequences of images, videos, are used. A video is a sequence of images,

captured at regular temporal rate (frame-rate). Early research on automatic video anal-

ysis focused on surveillance applications, which assist humans in preventing hazardous

situations [Szeliski, 2010, Forsyth and Ponce, 2003]. For example, airport surveillance
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Figure 1.1: Examples of sports actions from UCF 50 dataset [Reddy and Shah,
2013]. Analysis of the dynamics through temporal information gives additional cues to
accurately recognize which technical element happens.

system must be able to detect suspicious activities such as “person leaves a bag” and

“person puts a bag in a trash bin”. Surveillance systems are also used in nursing homes

for the elderly, at medical care institutions, in traffic control systems, and for many

other security tasks [Aggarwal and Ryoo, 2011].

The human body can achieve an incredibly large number of poses, both static and in

motion. Automatic analysis of dynamic human movements, action recognition, focuses

on detecting human actions in video data, by means of the computer. Historically,

first works focused on gesture recognition, one of the directions towards more intuitive

human-computer interaction. In that scenario, gestures can be designed to be easily

distinguished from each other. Besides understanding hand/arm gestures and postures,

ongoing research focuses on recognition of facial emotions and reactions, and other subtle

body movements known in whole as “body language”. See [Weinland et al., 2011] for a

survey on resp. action and gesture recognition.

Later works focused on recognizing more natural human actions, such as everyday actions

(“open door”, “sit down”, etc.) or longer sports activities (“running”, “weight lifting”,

“skateboarding”, etc.). A recent trend is to focus on even higher level concepts (events)

like “landing a fish”, “birthday party”, “sewing”, “wedding”, etc. These categories are

quite diverse, especially in terms of activities performed and tools that are used. For

instance, “sewing” can be done using a machine, or by hand, and “wedding” ceremonies

differ in different countries. Common applications of action recognition include video

indexing and categorization, surveillance, and sports annotation.

Video data is often lengthy and, therefore, takes significant amount of time to anal-

yse. It is tempting to identify the parts that are most relevant to the desired goal.

Video summarization searches for ways to represent a video in a more compact form,

keeping only the important data. Known applications of video summarization [Truong

and Venkatesh, 2007] include semi-automated database search [Truong and Venkatesh,

2007], video surveillance, detecting highlights in sports, influential moments in egocen-

tric videos [Lu and Grauman, 2013], and culmination points [Truong and Venkatesh,

2007] in movies.
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Figure 1.2: Example of a video summary output by Kernel Video Summarisa-
tion [Potapov et al., 2014].

Movies provide a large quantity of realistic video data, being a useful “experimentation

lab” for computer vision researchers [Sivic and Zisserman, 2003, Laptev and Pérez,

2007]. An interesting property of the movie data is the involvement of hundreds or

even thousands of people during the movie creation. Therefore, literally every second

of movie contains implicit sense: movie lovers need to watch a movie many times to

achieve a complete understanding. Movie data is therefore quite challenging. Also, in

dynamic scenes, the camera angle can change after a fraction of second, which is nearly

impossible to perceive from the first time. Therefore, we see the movie data as a way to

develop more sensitive tools for video analysis.

1.2 Goals

The long-term goal of our work is automatic understanding of real-world videos. This

goal implies answering such questions as:

• what happens in a video?

• what happened before and what will happen next?

• when does the most important event happen?

• what is the link between the events in the video?

• what suggests that the video represents a certain event?

More precisely, we formulate the following goals, that are specific to this dissertation.
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Recognize events in videos accurately and efficiently. The amount of video

data has been growing fast during the last decade. For example, 100 hours of video

are uploaded to YouTube every minute 1. On one hand, this is a problem, because

it requires using scalable algorithms, which can absorb more data with a reasonable

increase in computational resources. On the other hand, for a given learning model,

more training examples allow to learn more accurate predictors, as we proceed along the

learning curve [Hastie et al., 2009]. The trade-off between the prediction quality and

the required computational resources is present in many real-world recognition tasks.

Identify the most important moments in videos. Analysing long videos is a

time-consuming and resource-demanding process, both when done automatically or by

a human. A convenient tool with a graphical user-interface, that localizes in time all the

crucial points in a given video, can make such a task much easier. Such tools already

exist for specialized tasks, for example, it is possible to identify “goal” moments in

football matches. Our goal, however, is a general-purpose approach, which can learn the

importance criterion from a set of weakly annotated videos of a given domain.

Adapt the classifiers to a specific dataset. The performance of machine learning

algorithms depends on the distributions of training and test data [Hastie et al., 2009].

On one hand, when the training data comes from the same source as the test data, better

results are often expected. On the other hand, training data from the same source is

often scarce and it is necessary to use data coming from a different distribution. The goal

is to understand how to adapt classifiers trained on a source domain to another, —target

domain.

Quantitative evaluation of video analysis algorithms. Although many video

understanding tasks are interrelated, it is often easier to focus on a single problem

formulation, with a formally-defined evaluation criterion. Additionally, learning tasks

require a dataset, with formally defined resp. training and evaluation procedures, along

with proper performance metrics. Constructing a new dataset implies collecting the

videos, setting up an annotation protocol and ensuring the annotation consistency.

1.3 Contributions

We outline here our main contributions.

1 https://www.youtube.com/yt/press/statistics.html
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Figure 1.3: A 5-minute extract from our Action Movie Franchises dataset, ground
truth annotation and output of different methods. Each colors stands for a different
event category: green —pursuit, blue —battle, yellow —victory-good, green —despair-
good, pink —romance, gray —victory-bad, cadet blue —good-argue-good. Hashes mark
difficult examples. The color code for the classifier evaluation is: white = true positive,
gray = ignored, black = false positive.

Category-specific video summarization. (Chapter 3, Fig. 1.2)

• We propose a novel approach, for supervised video summarization of realistic

videos, that uses state-of-the-art image and video features. It consists of two parts:

temporal video segmentation and supervised importance scoring. The proposed

Kernel Temporal Segmentation approach is efficient with high-dimensional frame

descriptors and allows automatic calibration of the number of change-points.

• We introduce a new dataset, MED-Summaries, along with a clear annotation pro-

tocol, to evaluate video summarization. It consists of more than 10, 000 temporal

segments annotated with importance ratings.

• We obtain experimental results on the MED-Summaries dataset, showing that the

proposed approach delivers video summaries with higher overall importance, as

measured by two performance metrics.

Event Detection in Action Movie Franchises. (Chapter 4, Fig. 1.3)

• We introduce the Action Movie Franchises dataset, which features dense an-

notations of 11 beat-categories in 20 action movies at both shot and event levels.

Our categories have a higher semantic level than in most of the existing datasets.

To the best of our knowledge, a comparable dense annotation of videos does not

exist.

• We define several evaluation protocols, to investigate the impact of franchise-

information, that is testing with or without previously seen movies from the same

franchise. We study the impact for both classification and localization tasks.
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Figure 1.4: Overview of the whole INRIA-LIM-VocR and AXES system for
TRECVID MED 2014 [Douze et al., 2014]. Circles denote areas of our contributions
through years 2011-2014.

• We propose an approach for classification of video shots into beat-categories based

on a state-of-the-art pipeline for multimodal feature extraction, classification and

fusion. The approach for localizing beat-events uses a temporal structure inferred

by a conditional random field (CRF) model learned from training data.

Contributions to TRECVID Multimedia Event Detection submissions. (Ap-

pendix A, Fig. 1.4)

TRECVID Multimedia Event Detection (MED) [Over et al., 2014] is a competition on

event retrieval and categorization in real-world videos, held annually by NIST (National

Institute of Standards and Technology) starting with a pilot study in 2010. The most

challenging part is the large evaluation set of 8000 hours of video. In Appendix A

we summarize the contributions made during the participations in the challenge from

2011 to 2014. Note, that these contributions are more technical than the contributions

presented in Chapters 3 and 4.

• We present static (image) visual descriptors for video classification, which achieve

state-of-the-art results. The description technique is efficient for videos captured

in unconstrained filming conditions and with various durations.

• We report experimental results with two types of audio descriptors, Mel Frequency

Cepstral Coefficients (MFCC) and Scattering Transform Coefficients (ScatNet),

which achieve state-of-the-art results.

• We describe different versions of the dataset and show the evolution of performance

over the years.





Chapter 2

Related work

In this chapter, we give a general overview of related works. We give more specific

references in the “Related Work” sections of the following chapters.

2.1 Video summarization

In this section, we mention only the most prominent approaches for video summarization.

A broader overview can be found in [Truong and Venkatesh, 2007]. Note that there exist

two types of video summarization forms [Truong and Venkatesh, 2007]: keyframes and

video skims. Figure 2.1 highlights the main difference between these two types of video

summaries.

Keyframes

Video skim

Original video

Figure 2.1: Illustration of the two forms of video summarization. Keyframes are
better viewed in static, while the video skims preserve the dynamics.

9
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A video skim is a representative subset of temporal segments in a given video. Since the

two forms share many similarities, we review the works for both of them.

The idea of summarization was initially proposed for text data. The goal of automatic

document summarization [Manning et al., 2008], is the automatic construction of text

summaries, similar to what humans can do. A summary should identify and convey

the main points of the text, be concise and grammatically correct. Consequently, the

summary should avoid non-important and repetitive content, which only deteriorates

the quality of the summary. Video summarization aims for similar goals.

Video summaries are constructed in relation to different use cases. In one scenario, a

summary simplifies browsing a single video. In that case coverage is more important

than conciseness. In a different scenario, a summary is a way to speed up retrieval in a

large dataset. In that case a summary can be either an unsupervised or a query-specific

shortened version of the video in the database.

We focus here on 4 main aspects of a video summary:

• saliency,

• diversity,

• temporal consistency,

• and duration.

Figure 2.2 illustrates the diversity-duration trade-off in video summarization.

The notion of saliency, also known as importance or “interestingness”, comes from

uneven distribution of the content over the video. Important details are often concen-

trated in small chunks, while the rest of the video can be omitted. Ngo et al. [2005]

model the user attention, as a cue to saliency in movie data. In most cases, (tempo-

ral) saliency can be learned in a supervised way. In the context of video skimming,

we shall use the term “saliency” to refer to temporal saliency, in contrats to spatial

saliency which is more common for image recognition tasks. Rui et al. [2000], Xie et al.

[2004] learn to detect interesting moments of baseball and soccer videos, such as goal

attempts and corner kicks. For egocentric videos it is useful to learn the saliency of

objects from spatial segmentation masks of important objects [Lee et al., 2012]. When

the full annotation is not available, weak supervision can be utilized, e.g. using the

multiple instance learning (MIL) framework [Wang et al., 2012, Duda et al., 2012]. For

keyframe summaries, images retrieved by a search engine can add more supervision for

summarization of car advertisements [Khosla et al., 2013] and many other classes of user
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Figure 2.2: Diversity-duration trade-off in video summarization.

generated videos [Kim et al., 2014]. Sun et al. [2014] leverage edited videos to rank video

chunks for the presence of a highlight. While early methods focused on a single domain,

a recent trend is to automatically learn the importance for each video category [Li et al.,

2012, Kim et al., 2014, Gygli et al., 2014, Sun et al., 2014].

Diverse summaries do not contain repetitive temporal segments. Given a fixed du-

ration limit, the more diverse the summary is, the more information it preserves. The

traditional approach for eliminating redundancies is to cluster frames or chunks of a

video in an unsupervised way, and then select the most representative ones [Truong

and Venkatesh, 2007, Lee et al., 2012, Ngo et al., 2005, Vermaak et al., 2002]. Mul-

tiple works proposed better ways to accomplish the temporal clustering. Vermaak

et al. [2002] propose an efficient keyframe extraction algorithm, for browsing of generic

video sequences, which maximizes the difference between consecutive keyframes. This

group of approaches is known as “Minimum correlation among keyframes” [Truong and

Venkatesh, 2007]. Online sparse reconstruction approach [Zhao and Xing, 2014] can sum-

marize potentially infinite videos. A dictionary of local features is constructed on-the-fly.

A new chunk is included in the summary, once it cannot be accurately approximated

by the current dictionary. Khosla et al. [2013] apply discriminative clustering, such that

both diversity and saliency are optimized at the same time. Redundancies can be pe-

nalized by including a diversity prior in the optimization objective [Lu and Grauman,

2013]. Note, that maximizing the diversity alone suffers greatly from outliers [Truong

and Venkatesh, 2007].

Temporal consistency of a summary is often dictated by the application. In movie

data it can be the rhythm [Sundaram et al., 2002] or the culmination points [Truong and

Venkatesh, 2007]. Kim et al. [2014] model the typical storylines in user videos of each

event category. The story progress is also preserved in [Lu and Grauman, 2013] to create

story-driven summaries of egocentric videos. Additional temporal restrictions, such as
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cinematic rules can apply in some domains [Gygli et al., 2014, Li et al., 2012, Truong

and Venkatesh, 2007]. Other works model the distribution of important moments in

time [Xie et al., 2004, Kim et al., 2014], leveraging the temporal context and the domain

specifics.

Duration of a summary is either limited in advance or should be determined auto-

matically, optionally for a given level of detail. In contrast to keyframe summaries, the

duration of a video skim is not proportional to the number of temporal segments. More

details can be found in [Truong and Venkatesh, 2007].

A recent work [Wang et al., 2014] directly gathered the desired aspects of a summary

within a user study. For user generated videos, these aspects are: 1) strong connection

to the dominant semantics of the original video, 2) comprehensibility of the original

story and little redundancy, 3) high quality of the segments.

To achieve the summarization goal, most methods rely on an optimization-based ap-

proach [Truong and Venkatesh, 2007]: define an objective function and then optimize it.

While saliency can be learned before seeing the video to summarize, diversity is inferred

for the video at hand.

Features. Automatic video summarization methods use different low-level features.

Early methods relied on hand-crafted features [Lee et al., 2012, Sundaram et al., 2002],

color and motion [Lee et al., 2012, Wang et al., 2012, Xie et al., 2004, Rui et al., 2000,

Vermaak et al., 2002], and audio [Rui et al., 2000] features. Later methods utilized global

features [Kim et al., 2014, Lu and Grauman, 2013], bag-of-features approach [Wang

et al., 2012, Kim et al., 2014], and its extended counterparts [Sun et al., 2014, Khosla

et al., 2013] such as Fisher Vectors [Perronnin et al., 2010] and Locality-constrained

Linear Coding [Wang et al., 2010, Chatfield et al., 2011]. These works suggest that

insufficiently discriminative features prevent the generalisation to new domains [Khosla

et al., 2013]. Another alternative is to directly reconstruct the local features using

learned codewords [Zhao and Xing, 2014], without the aggregation over the chunk. A

recent approach [Gygli et al., 2014] automatically predicts multiple high-level features,

such as attention, aesthetics, location notability, etc. For efficiency some methods work

directly in the compressed domain [Ngo et al., 2005, Truong and Venkatesh, 2007].

2.1.1 Datasets

For some time, there have been no common datasets for video summarization publicly

available to the research community. An important body of works reports experiments
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on the Open Video Archive [Ope], which lacks dynamics and semantics in the video,

because most of the information is communicated through audio.

From 2006 to 2008, TRECVID has been running the BBC Rushes summarization com-

petition. Unedited video data from the BBC Archive was provided to participants. It

contained the scenes for BBC drama programs, with multiple takes and the footage be-

tween the actual play. The expectation of the competition was that summarizing such

rushes might significantly simplify the overall rushes management process. However, the

methods were mostly specific to the domain, i.e. they focused on detecting redundant

shots of a scene and clapperboards.

In 2012 TRECVID started the Multimedia Event Recounting (MER) competition [Over

et al., 2012, 2013, 2014]. The goal of the competition is to present an important evidence

for the videos classified to a particular event, to allow the users accurately and rapidly

find the videos of interest via the recountings. Participants were asked to provide video

clips together with the textual descriptions. The best overall participant in 2013 achieved

63% accuracy with summaries of 44% of the total video duration. In 2014, for all

the teams the evidence recounted by the systems was more convincing for the videos

containing an instance of the event, than for the videos that did not [Over et al., 2014].

We review recent publicly available datasets in Chapter 3.

2.1.2 Evaluation metrics

Existing evaluation approaches can be classified into 4 categories:

• concept coverage (mostly objective),

• user studies of summaries (subjective),

• comparison to multiple summaries (mostly subjective),

• problem-specific evaluation (mostly objective).

We now discuss each of the categories in detail.

Concept coverage The main idea is to measure the percentage of captured concepts

(or events). It requires manual annotation of the concepts in the test videos.

For example, Lee et al. [2012] use, as a ground truth, spatial annotations of important

objects, collected with Amazon Mechanical Turk. Important region prediction is the
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major part of their summarization pipeline, and it is first evaluated separately. A region

r is considered to be a true positive, if and only if

∃ ground truth region g s.t.
Area(r ∩ g)

Area(r ∪ g)
> 0.5 (2.1)

i.e. its overlap score with any ground truth region is greater than 0.5. Aggregation over

the whole dataset is done using the precision-recall curves and the average precision

(area under the precision-recall curve). Finally, for the whole summarization pipeline,

Lee et al. [2012] report the importance-based summarization accuracy, which is the recall

rate, as a function of the summary length N :

fN (S) =
# objects ∈ S
# objects total

s.t. length(S) = N. (2.2)

Multiple instances of the same object are counted as one object.

Wang et al. [2012] first validate the correctness of concept classification using the stan-

dard accuracy metric. The whole summarization approach is evaluated using NDCG@10

ranking metric, that expects graded ground truth scores. For a given video, key-shots are

selected by a human. Instead of ranking the shots by the annotators, near-duplicate de-

tection is applied to the key-shots and the group sizes are used as a reference. NDCG@k

ranking metric is defined as [Manning et al., 2008]:

NDCG(Q, k) =
1

|Q|

|Q|∑
j=1

Zkj

k∑
m=1

2R(j,m) − 1

log2 (1 +m)
, (2.3)

where R(j,m) is the ground truth score of the m-th element in the ranked list of query

j; Zkj is the normalization factor that makes a perfect ranking’s NDCG at k for query

j equal to 1; k is the size of the retrieval shortlist.

Additionally, Wang et al. [2012] validate the tag localization part of their approach using

the standard accuracy metric for classification.

The authors of Sun et al. [2014] collected highlight annotations in a user generated

videos from 5 people, with one temporal window per video. Only the videos where

the annotators reached consensus are used for evaluation. Each video is partitioned

into regular 100 frames chunks with 50 frames overlap. Chunks of a video have binary

labels, with +1 for highlights and −1 for the rest of the video. Since the summarization

algorithm of [Sun et al., 2014] outputs a ranking of the chunks, average precision metric

is computed for each video, like a small retrieval problem. Finally, the mean average

precision (mAP) is reported for all videos.
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The advantage of the concept coverage method is that the manual annotation is required

only once. Further evaluation of summaries on the annotated dataset is fully automatic.

On the other hand, annotation of videos is often more difficult than comparing sum-

maries as it is done in user studies.

User studies of summaries Summaries are mostly created for humans. Therefore a

user study is the direct way to evaluate an automatic summarization method.

In [Lu and Grauman, 2013] the user is showed a sped-up original video and two differ-

ent summaries. The user selects the preferred summary, among the baseline and the

proposed method. The summaries are shown in random order, such that the user is not

aware which method created the summary. While making his/her choice, the user is

asked to focus on the progress of the story, redundancy and representativeness of each

sub-event. For every video and every baseline, 5 user votes are collected. The overall

figure is the percentage of user loyalty with the proposed method versus the baseline. A

similar method is employed in [Lee et al., 2012].

In the setup of [Khosla et al., 2013], the user is asked to rate on a scale from 1 to 10 each

of 4 summaries. One of the summaries is constructed by a user from Amazon Mechanical

Turk, the others are automatically generated. Finally, user grades of summaries serve

as an input to the average precision.

In the user study of Ngo et al. [2005], the user is asked to rate the summaries in terms

of enjoyability and informativeness. The summaries with different level of detail are

shown, from shortest to longest, followed by the original video.

User studies of summaries take into account multiple aspects of the summary: im-

portance, diversity, temporal consistency, duration and also the application specifics.

Therefore this is the most common evaluation approach. User studies are, however,

time-consuming and hard to reproduce.

Comparison to multiple summaries In the document summarization literature, it

was noted [Lin, 2004] that counting the number of common n-grams in automatically

generated summary and a set of ground truth summaries highly correlates with human

evaluation [Lin, 2004].

Similarly, to automate the comparison of keyframe summaries, previous works relied on

such frame descriptors, as: color and edge histograms [de Avila et al., 2011, Wang et al.,

2012], Bag of Visual Words [Wang et al., 2012] and SIFT flow [Khosla et al., 2013].
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More specifically, Khosla et al. [2013] define a distance measure between 2 frames, based

on the SIFT flow warping algorithm. For a pair of frames F1 and F2, the algorithm

outputs a warped image Fw1 . Function d is defined as the average of squared pixel

differences:

d(F1, F2) =
|Fw1 − F2|2

P
, (2.4)

where P is the number of pixels, such that d(F1, F2) ∈ [0, 1]. Based on this mea-

sure, the optimal bipartite matching is computed between an automatic summary S =

{s1, . . . , sk} and a user summary H = {h1, . . . , hn}. Let σ1, . . . , σk be the best matches

for S and ξ1, . . . , ξn be the best matches for H. Based on this matches, the analogues

of precision and recall metrics are defined as,

precision =
1

k

k∑
i=1

(1− dσi,i), recall =
1

n

n∑
i=1

(1− di,ξi), (2.5)

where the matrix [dj,`] ∈ Rn×k is the distance matrix between all pairs of frames of the

summaries. Finally, the average precision, that is the area under the precision-recall

curve, is computed using the summaries of different length.

To the best of our knowledge, comparison to multiple summaries was never applied to

video skims.

Problem-specific evaluation When the goal is to simplify video search or naviga-

tion, the gain in efficiency (time required to accomplish the target task) can be directly

used as a quality metric. TRECVID MER competition [Over et al., 2012, 2013, 2014] is

aimed to simplify the search of relevant videos. For each retrieved video, the algorithm

is required to output a set of video segments, containing the evidence of the queried cat-

egory. Then, during a stage called triaging, a user verifies whether a video corresponds

to the query or not (only by watching the summary). The MER task defines two video

summarization metrics:

1. average time required to triage a video,

2. accuracy of triaging decisions.

Similar to user studies, this process requires multiple human judges.

To increase the evaluation precision, most of existing works on video summarization use

at least two different evaluation approaches, usually one objective and one subjective.
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2.2 Video classification

Originally, the research on video classification mostly focused on action recognition.

Many relevant works are summarized in a survey [Poppe, 2010]. In this section, we

briefly summarize main structural elements of the action and the event recognition

pipelines.

The difference between the action [Schuldt et al., 2004, Rodriguez et al., 2008] and the

event [Over et al., 2014, Potapov et al., 2015] is the following. The action is short and

is usually performed by a single human. The event is a complex activity often involving

multiple humans, possibly related to a specific location or time, and comprising a set of

characteristic actions [MED]. Regardless the difference between the action and the event,

some of recent pipelines achieve state-of-the-art performance for both of them [Wang

et al., 2013].

2.2.1 Datasets

Table 2.1 shows the quantitative statistics of some of the recent video datasets.

#clips average length background length #categories data source

KTH [Schuldt et al., 2004] 2391 4.8 s - 6 Lab recording
UCF Sports [Rodriguez et al., 2008] 300 6.1 s - 10 TV
Hollywood2 [Marszalek et al., 2009] 1707 11.6 s - 12 Movies

HMDB51 [Kuehne et al., 2011] 6766 3.15 s - 51 Movies/Internet
UCF101 [Soomro et al., 2012] 13320 7.2 s - 101 Internet

Sports1M [Karpathy et al., 2014] 1058888 4 m 8 s - 487 Internet

Coffee&Cigarettes [Laptev and Pérez, 2007] 264 ∼ 2 s ∼ 0.5 h 2 Movies
DLSBP [Duchenne et al., 2009] 266 ∼ 2.5 s ∼ 4 h 2 Movies

TRECVID MED [Over et al., 2014] 207000 2 m 30 s ∼ 7000 h 20 Internet

Table 2.1: Selection of a few representative event and action recognition datasets.

2.2.2 Evaluation metrics

Let us define the supervised classification problem [Duda et al., 2012, Hastie et al., 2009].

Suppose we have a training set

xtr1 , . . .x
tr
ntr
, xtri ∈ X , i = 1, . . . , ntr; (2.6)

ytr1 , . . . y
tr
ntr
, ytri ∈ Y, i = 1, . . . , ntr, (2.7)
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where xtri is the descriptor for ith training example, and ytri is its category label. In

practice, X is often a Euclidean space Rd and Y is a finite set {1, . . . ,m}. Solving the

supervised classification problem implies constructing a classifier function (classifier)

f : X → Y that distinguishes examples of different categories.

The quality of the classifier is evaluated on a separate test set:

xte1 , . . . ,x
te
nte
, xtei ∈ X , i = 1, . . . , nte; (2.8)

yte1 , . . . , y
te
nte
, ytei ∈ Y, i = 1, . . . , nte. (2.9)

Ideally, f(xtei ) should be equal to ytei in as many cases as possible.

The simplest metric, accuracy, directly measures the frequency of correct predictions on

the test set:

Accuracy =

∣∣{i s.t. f(xtei ) = ytei }
∣∣

nte
, (2.10)

where the numerator is the number of correctly predicted test labels.

Let us now consider the case of binary classification: Y = {+1,−1}. The examples

with label +1 are called positive examples, and the examples with label −1 are called

negative examples. When a classifier predicts a label ŷ = f(x) and the ground truth

label is y, there can be four cases:

• True Positive (TP): ŷ = +1, y = +1,

• True Negative (TN): ŷ = −1, y = −1,

• False Positive (FP): ŷ = +1, y = −1,

• False Negative (FN): ŷ = −1, y = +1.

First two cases correspond to correct predictions, while last two cases are mistakes.

In practice false alarm (false positive) and missed detection (false negative) often have

different significance. For example, in the retrieval problem, where the negative examples

prevail in the quantity, a classifier that always predicts −1 will have the accuracy close

to 1.0, while it does nothing useful. Therefore a better metric is required.

Let #TP,#TN,#FP,#FN be the total counts for each of four cases.

Precision is defined as

Precision =
#TP

#TP + #FP
, (2.11)

that is the fraction of true positive examples among all the examples predicted as posi-

tive.
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Recall is defined as

Recall =
#TP

#TP + #FN
, (2.12)

that is the fraction of correctly classified examples among all positive examples.

There is often a trade-off between precision and recall. Let us define a thresholded

classifier as

ft(x) =

+1, s(x) ≥ t,

−1, s(x) < t.
(2.13)

where s : X → R is the classification score, and t ∈ R is a threshold. Changing the

threshold changes the predicted labels. Therefore, we can define a precision-recall curve

in a parametric form:

{(Recall(t),Precision(t)) t ∈ R}. (2.14)

The area under the curve on the 2D plane, limited by X and Y axes, is called average

precision (AP). Average precision shows the performance of a classifier for multiple

threshold settings.

Values of the accuracy, the precision, the recall and the AP lie in [0, 1] interval. For the

classifier with no mistakes, all these metrics equal to 1.

A multiclass classification problem with m categories can be partitioned into m binary

problems: category i is treated as positive class, while the others count as negative.

Correct solution of each binary problem implies correct solution of the full problem.

Mean average precision (mAP), defined as the average AP over the m binary problems,

is a common way to aggregate performance in the multiclass setting.

For problems with a larger number of categories, the classification accuracy metric is

also common [Soomro et al., 2012, Karpathy et al., 2014].

Compared to other metrics, the average precision does not require to specify the clas-

sification threshold and only relies on the ranking of the test examples. Meanwhile,

the accuracy, the precision and the recall, and many other metrics, all depend on the

threshold. Normalized Detection Cost [Over et al., 2011], which is defined as a weighted

linear combination the False Alarm rate and the Missed Detection rate, with a much

higher cost for False Alarms, requires to estimate the threshold given the target ratio of

false alarms versus missed detections.

2.2.3 Classification pipeline

Support Vector Machines The Bag of Visual Words model was inherited from

the document classification literature, and is now widespread in the computer vision
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community for a larger number of recognition tasks on images and videos [Csurka et al.,

2004, Tuytelaars and Mikolajczyk, 2007].

Training a linear SVM classifier [Hastie et al., 2009] consists in solving the following

convex optimization problem:

Minimize
w,b

‖w‖2 + C
n∑
i=1

max
(
0, 1− ytri (wTxtri + b)

)
, (2.15)

where w is the weight vector, b is the bias term, xtri is the i’th vector in the training

sample and ytri is the corresponding label (+1 or -1). At test time, the predicted label

for a new example xtei is f(xtei ) = sign(wTxtei + b).

Kernel SVM [Hastie et al., 2009, Shawe-Taylor and Cristianini, 2004] is a modification

of model (2.15), which better aligns with the input space structure. It was successfully

applied to the tasks of image and video classification [Zhang et al., 2007, Laptev et al.,

2008].

Other classification pipelines Since the seminal work of Csurka et al. [2004], the

SVM classification pipeline has been the de-facto state-of-the-art in image and video

classification for almost a decade [Zhang et al., 2007, Laptev et al., 2008, Wang et al.,

2013]. In the SVM-based pipeline, the video description and classification stages are

completely separated. Therefore numerous works have explored how to add supervision

to the description stage: by supervised learning of the local feature quantizer [Krapac

et al., 2011a], through mid-level features [Maji et al., 2011], by discriminative modeling

of spatial saliency [Sharma et al., 2012], etc.

Recent advances in Deep Convolutional Networks (DCN) [Krizhevsky et al., 2012, Ben-

gio, 2009] made it possible to learn descriptors and classifiers within a single framework.

The model consists of a hierarchy of layers with raw image pixels as input and the cat-

egory label as output. Main structural elements of the DCN model are: convolution,

non-linearity and pooling.

A few representative approaches that explicitly model the temporal structure of the

video are reviewed in Chapter 4.

2.2.4 Video descriptors

In this section we describe the top-performing local image and video descriptors, their

aggregation techniques, and briefly mention other state-of-the-art visual and audio de-

scriptors.
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Local patterns in the video are very important for discriminating its content [Zhang

et al., 2007]. Static descriptors, such as SIFT [Lowe, 2004], are good for describing the

shape and the appearance of objects, but lack the motion information. Motion descrip-

tors are specifically constructed to capture the shape and the appearance changes over

time. The Dense Trajectories approach [Wang et al., 2013, Wang and Schmid, 2013] (see

Figure 2.3) relies on the optical flow to track each local keypoint and then describes its

neighbourhood with 4 descriptors: Histogram of Gradients (HoG), Histogram of Flow

(HoF), Motion Boundary Histogram (MBH) and the normalized trajectory. HoG, HoF

and MBH descriptors compute histograms of directions on a spatial grid, but take differ-

ent inputs: the spatial gradients for HoG, the optical flow for HoF, the spatial gradients

of the optical flow for MBH. The normalized trajectory is a vector of displacements of

the local keypoint across a few frames (usually 15). For motion descriptors it is im-

portant to stabilize the video by compensating the camera motion [Wang and Schmid,

2013, Gaidon et al., 2014, Jain et al., 2013b].

Local descriptors can be extracted at salient points or on a dense grid. The latter is

better in general [Wang et al., 2013, Fei-Fei and Perona, 2005], while careful feature

pruning can give additional gains [Wang and Schmid, 2013].

Local descriptors are often redundant and their number may change. Therefore it is a

common practice to aggregate the local descriptors into a fixed-size global descriptor. In

the Bag of Visual Words (BoW) model [Csurka et al., 2004], locals descriptors are quan-

tized using a codebook and a video is described by a histogram of codewords. A more

advanced Fisher Vectors (FV) model relies on Gaussian Mixture Model (GMM) [Hastie

et al., 2009, Bishop, 2009] soft assignment and encodes an image (or a video) with a

vector of derivatives of the log-likelihood function [Perronnin et al., 2010]:.

Gw,k =
1

Twk

T∑
t=1

γt(k),

Gµ,k =
1

T
√
wk

T∑
t=1

γt(k)

(
ξt − µk
σk

)
,

Gσ,k =
1

T
√

2wk

T∑
t=1

γt(k)

(
(ξt − µk)2

σ2k
− 1

)
,

where ξt denotes t’th local descriptor of the image (or the video), and γt(k) is the

posterior probability of t’th local descriptor to belong to k’th Gaussian.

It was shown that normalizing the Fisher Vectors with a signed power-transform, fol-

lowed by L2-normalization increases its robustness [Perronnin et al., 2010].
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Both BoW and FV models discard the spatial and the temporal positions of the de-

scriptors. A number of spatio-temporal extensions have been proposed for these mod-

els [Lazebnik et al., 2006, Laptev et al., 2008, Krapac et al., 2011b].

Other descriptor pipelines Other methods for video description include mid-level

representations, semantic attributes and deep networks.

Maji et al. [2011] introduce a mid-level model for human actions. They encode each

detection with a vector of poselet activations. Poselets are part detectors, learned in a

semi-supervised way from joint annotations. Jain et al. [2013a] and Raptis and Sigal

[2013] extend the idea to videos.

Object Bank [Li et al., 2010] and Classemes [Torresani et al., 2010] are the models for

high-level image description. The image is described by a vector of classification scores

of pre-trained classifiers. The models accept adding new categories at little cost and are

designed to suit well for high-level computer vision tasks.

Deep Convolutional Network (DCN) are currently quite popular for joint supervised

image description and classification [Krizhevsky et al., 2012, Bengio, 2009]. It bridges

the gap between image pixels and class labels, filtering the information through multiple

interconnected layers. The idea is currently being extended to videos [Karpathy et al.,

2014]. As described in Section 2.3, the DCN approach is also used within the attribute

classification pipeline.

2.2.5 Audio descriptors

The audio channel often complements the information from the visual channel. Although

the audio signal is one-dimensional, there are still many challenges in automatic audio

recognition. A major difficulty comes from the multi-scale nature of the signal: pitch

and timbre, rhythm, and music progression, — all belong to different scales [Andén and

Mallat, 2013a].

Mel Frequency Cepstrum Coefficients (MFCC) capture rather short-term frequency-

based features of audio signals [Rabiner and Schafer, 2007]. MFCC is defined as the

inverse Fourier Transform of the log magnitude spectrum of a signal. MFCC descrip-

tors proved to be efficient for multiple audio recognition tasks such as genre classifica-

tion [Tzanetakis and Cook, 2002] and multimedia event detection [Douze et al., 2014].
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Scattering Transform Coefficients (ScatNet) capture longer-term temporal dependen-

cies in the audio signal, for windows typically longer than 1 second. ScatNet descrip-

tors are based on a cascade of wavelet-like convolutional operators and modulus trans-

forms [Andén and Mallat, 2011].

Both MFCC and the ScatNet descriptors are computed within local windows slided over

the audio signal. Aggregation along the temporal axis can be done using the Bag of

Words and the Fisher Vectors models [Bao et al., 2011, Oneata et al., 2012], similar to

the video classification pipeline described above.

Trajectory description

HOG MBHHOF

Tracking in each spatial scale separately
Dense sampling 

in each spatial scale

Figure 2.3: Illustration of the Dense Trajectories approach, which takes into account
the local motion in the video. Courtesy of [Wang et al., 2013]

Figure 2.3 illustrates the video description approach of Wang et al. [2013].

2.3 TRECVID Multimedia Event Detection

In this section we review the systems that performed best in TRECVID Multimedia

Event Detection (MED) competition from 2011 to 2014. The INRIA-AXES submissions

are described in Appendix A.

TRECVID MED 2011 All top-ranked systems included local descriptors for image,

motion and audio channels. Another standard practice was to use semantic concepts.

They provide high-level information, which helps to close the semantic gap. Semantic

models usually rely on local descriptors and their training requires the annotation of

concepts, possibly on a separate dataset. Third type of information, textual, was often

considered of low utility, because it is present only in a small fraction of videos.

Participants came up with novel ways for fusion of different modalities and pooling of

the local features along the video. All the systems relied on variants of the Support

Vector Machines (SVM) [Duda et al., 2012, Hastie et al., 2009] classifier.
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Early fusion means concatenation of multiple descriptors of the same video into a single

vector. Assuming a video is described by a set of n descriptors

x1 ∈ Rd1 , x2 ∈ Rd2 , . . . , xi = (xi1, . . . , x
i
di

) ∈ Rdi , . . . , xn ∈ Rdn (2.16)

the early fusion descriptor for this video will be

xearly = (w1x
1
1, . . . , w1x

1
d1 , w2x

2
1, . . . , w2x

2
d2 , . . . , wnx

n
1 , . . . , wnx

n
dn). (2.17)

In the context of kernel methods, it relates to (weighted) summation of kernel matrices,

computed for different descriptors [Shawe-Taylor and Cristianini, 2004].

Late fusion implies combining the scores of classifiers, trained separately for each channel.

Let s1(x) ∈ R, s2(x) ∈ R, . . . , sn(x) ∈ R be the classification scores for a video x. Then,

the late fusion score is computed as

slate(x) =

n∑
i=1

wisi(x). (2.18)

Note that for linear classifiers, the early and late fusions can be applied interchangeably.

However, the function minimized during training is different, so the classifier will be dif-

ferent. The late fusion is computationally more efficient, although the relative weighting

of descriptor components remains the same for different combinations of descriptors.

Natarajan et al. [2011] (see also [Natarajan et al., 2012b]) use multiple methods for the

early and late fusions of different channels. For the early fusion, they rely on Multiple

Kernel Learning (MKL). MKL is a technique to select the early fusion weights in a

discriminative manner such that the classification performance is maximized. For the

late fusion, Natarajan et al. [2011] utilize two different approaches: a Bayesian decision

theoretic approach and a weighted average fusion.

Cao et al. [2011] (see also [Cao et al., 2012]) also experimented with multiple fusion

techniques. Firstly, they show that using AdaBoost to select the most informative chan-

nels, during the early fusion, improves over the uniform average. Secondly, they train

SVMs [Duda et al., 2012, Hastie et al., 2009] from scores generated by 780 visual, 113

action and 56 audio high-level concepts. The concepts themselves are learned using

SVM improved with Robust Subspace Bagging. Further analysis suggests that the per-

formance saturates after 200 best performing visual concepts. Thirdly, multiple late

fusion models are investigated, including weighted average, Ada Boost, linear regression

and linear SVM [Duda et al., 2012, Hastie et al., 2009].
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Cao et al. [2011] propose to pool descriptors along each scene using a Scene Aligned

Model, such that the classification models are adaptive to different scenes. In this

model, scenes are detected using the K-means clustering [Bishop, 2009], applied to GIST

descriptors of all training data. At test time, the GIST descriptor of a frame contributes

to each pool proportionally to its soft-assignment to scene clusters.

Bao et al. [2011] (see also [Lan et al., 2012]) experimented with three fusion schemes.

For the early fusion, they prefer the uniform averaging of the kernel matrices over the

MKL. The former is significantly faster, while the performance is almost the same in their

experiments. For the late fusion, Bao et al. [2011] use both uniform weights and a logistic

regression classifier. However, due to overfitting, only the uniform weights were used

in the primary run. Additionally, Bao et al. [2011] propose double fusion — a method

that chains early fusion with late fusion. First, combinations of channels are fused at

the early fusion stage. Late fusion then combines the scores of these combinations with

the scores of individual channels. Double fusion improves the classification performance

over the results of the early and late fusions.

For pooling Bao et al. [2011] rely on Spatial Pyramid Matching [Lazebnik et al., 2006],

that preserves the information about locations of local descriptors. In addition to

non-linear SVM, Kernel Regression and Sequential Boosting showed competitive per-

formance.

TRECVID MED 2012 Common conclusions of 2012 year participants were the fol-

lowing. Firstly, low-level descriptors excellently suit for multimedia event detection.

Secondly, semantic concepts provide complementary information, especially in the set-

ting with few training examples. Thirdly, text information, although being rarely present

in videos, allows to achieve high precision. Therefore, positive evidences for Automatic

Speech Recognition (ASR) and Optical Character Recognition (OCR) channels improve

the overall retrieval performance.

Most works focused on improving the spatial pooling of descriptors. Besides, the focus of

the competition itself included training with few positive examples (10 videos), Ad-Hoc

evaluation, and a concurrent Multimedia Event Recounting task. In the Ad-Hoc task,

the features are computed before the 5 additional categories are revealed.

Natarajan et al. [2012a] report high quality results based on 18 robust low-level features

and complementary high-level concept classifiers. In addition to standard local features

for appearance, color and motion, they rely on kernel descriptors that generalize hand-

designed features. Three types of event concepts are used: video-level and segment-level,

and Classemes [Torresani et al., 2010] models. Video-level concepts are automatically
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extracted from textual video descriptions using NLP techniques. Concept classifiers are

then learned using visual and audio descriptors. Segment-level concepts are trained in

a similar way, but relied on manual frame annotations. In the end, Natarajan et al.

[2012a] use the vector of concept classifier scores for training event detectors. The same

fusion techniques are used as for TRECVID 2011 competition [Natarajan et al., 2011].

Yu et al. [2012] use 6 standard local descriptors together with novel Motion SIFT and

Acoustic Unit Detectors. They investigate two different kinds of local feature aggre-

gation and two types of pooling. In the basic scheme, local features are encoded with

the BoW model, combined with two pooling variants: standard Spatial Pyramids, and

feature and event-specific pooling. The latter improves the performance, especially for

particular events. Yu et al. [2012] also experiment with Gaussian Mixture Model Super

Vector [Chatfield et al., 2011] feature aggregation. Fusion and classifier techniques are

almost identical to the previous year’s system [Bao et al., 2011]. The system generalizes

well to new categories, showing similar performance on Pre-Specified and Ad-Hoc tasks.

Cheng et al. [2012] propose Fixed-Pattern spatial feature pooling, which is a fast alter-

native of the Spatial Pyramid model. A separate classifier is trained on each spatial

cell, and the video score is built on the scores of individual classifiers. Apart from local

features, Cheng et al. [2012] rely on 1800 concepts and investigate different techniques

for concept pooling. They consider use both data-relevant (extracted from the event

category definitions) and data-irrelevant concepts (taken from existing datasets). ASR

and OCR information is integrated using the video-level fusion, such that only high

scores contribute to the final score.

TRECVID MED 2013 The 2013 year competition had the setting similar to the

previous year: 20 Pre-Specified events, 10 Ad-Hoc events, training with few examples,

complementary MER task. The evaluation metric was changed to a simpler Average

Precision, which does not require threshold selection. Additionally to Full evaluation,

participants reported results separately for each of four modalities: Visual, Audio, ASR,

OCR. We omit the discussion of methods used for 0-examples scenario, since they mostly

rely on NLP and retrieval techniques.

Compared to previous year, the top performing systems 1) use Fisher Vectors to ag-

gregate local descriptors, 2) report improved performance of semantic concepts, com-

parable to that of the low-level descriptors, 3) empirically combine multiple late fusion

techniques.
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The evaluation of different modalities suggests that the visual content provided the

majority of the evidence, while the audio, ASR and OCR provided complementary

evidence.

Natarajan et al. [2013] improve their previous year system [Natarajan et al., 2012a] by

adding the dense trajectory-based local feature. They focus on learning semantic con-

cepts in a weakly-supervised way. Semantic concepts are detected in category definitions

using NLP techniques and the videos are labeled based on textual video descriptions.

Irrelevant concepts are pruned two times: first, based on the number of positive ex-

amples, and second, based on the classification performance. Additional concepts are

detected by crawling web resources like Flickr and Youtube, ranking the images with

event classifiers. Tags from relevant images are included into concept pool. For each

event category, relevant concepts are selected using an SVM.

Another sources of high-level information include Classemes detectors, video-adapted

ASR and OCR. Fusion of multiple features is similar to double fusion [Yu et al., 2012],

but also includes weighted average fusion.

In addition to SVM models, Natarajan et al. [2013] also experimented with query-based

detections. Each concept is described by its mean in the feature space. During search,

the distance to the mean of relevant concepts is then used to rank the search data

collection.

Lan et al. [2013] use a new type of semantic concepts based on deep networks, which

outperforms the best low-level features. The Deep Convolutional Neural Network [Ben-

gio, 2009] model is trained for 1000 image categories on the ImageNet 2012 database.

The video-level scores are computed as a sum of scores for keyframes.

Lan et al. [2013] perform a rigorous comparison of multiple late fusion techniques. They

improve the previous year’s double fusion [Yu et al., 2012] by learning the weights as

compared to the uniform average. The best performing method uses leave-one-out per-

formance to rank the features. Finally, the average of 10 different fusion methods gives

additional improvement.

An ablation study suggests that MFCC is highly complementary to other channels. On

the contrary, new types of audio features are of less utility.

For feature aggregation, Spatial Bag of Features (BoF), Super Vectors (SV) and Fisher

Vectors (FV) are used. FVs improve the performance for dense trajectory descriptors,

but they are not complementary to BoF and SV when used with multiple features.

Average Z-score fusion integrates the scores of multiple representations and classification

methods.
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In total, the whole feature extraction is about 2 times faster than realtime on 300

cores [Lan et al., 2013].
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Category-specific video

summarization

Abstract

In large video collections with clusters of typical categories, such as “birthday party”

or “flash-mob”, category-specific video summarization can produce higher quality video

summaries than unsupervised approaches that are blind to the video category.

Given a video from a known category, our approach first efficiently performs a tem-

poral segmentation into semantically-consistent segments, delimited not only by shot

boundaries but also general change points. Then, equipped with an SVM classifier, our

approach assigns importance scores to each segment. The resulting video assembles the

sequence of segments with the highest scores. The obtained video summary is therefore

both short and highly informative. Experimental results on videos from the multimedia

event detection (MED) dataset of TRECVID’11 show that our approach produces video

summaries with higher relevance than the state of the art.

Publication

Danila Potapov, Matthijs Douze, Zaid Harchaoui, Cordelia Schmid. Category-specific

video summarization. European Conference on Computer Vision (ECCV), Zürich, 2014

Dataset:

http://lear.inrialpes.fr/people/potapov/med_summaries
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3.1 Introduction

Most videos from YouTube or DailyMotion consist of long-running, poorly-filmed and

unedited content. Users would like to browse, i.e., to skim through the video to quickly

get a hint on the semantic content. Video summarization addresses this problem by

providing a short video summary of a full-length video. An ideal video summary would

include all the important video segments and remain short in length. The problem is

extremely challenging in general and has been the subject of recent research [Liu et al.,

2010, de Avila et al., 2011, Lee et al., 2012, Wang et al., 2012, Khosla et al., 2013, Lu

and Grauman, 2013].

Figure 3.1: Original video, and its video summary for the category “birthday party”.

Large collections of videos contain clusters of videos belonging to specific categories with

typical visual content and repeating patterns in the temporal structure. Consider a video

of a “birthday party” (see Figure 3.1). It is unclear how an unsupervised approach for

video summarization would single out the short segments corresponding to “blow the

candles”, “applause”, etc. Such a summary serves as a proof to the user that the video

comes from the “birthday party” category, without the need of watching the whole video.

In this chapter, we describe a category-specific summarization approach. A first dis-

tinctive feature of our approach is the temporal segmentation algorithm. While most

previous works relate segment boundaries to shot boundaries, our temporal segmenta-

tion algorithm detects general change points. This includes shot boundaries, but also

sub-shot boundaries where the transitions between sub-shots are gradual. A second

feature is the category-specific supervised importance-scoring algorithm, which scores

the relative importance of segments within each category, in contrast to video-specific

importance [Liu et al., 2010, de Avila et al., 2011, Truong and Venkatesh, 2007].
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Our approach works as follows (see Figure 3.2). First, we perform an automatic kernel-

based temporal segmentation based on state-of-the-art video features that automatically

selects the number of segments. Then, equipped with an SVM classifier for importance

scoring that was trained on videos for the category at hand, we score each segment in

terms of importance. Finally, the approach outputs a video summary composed of the

segments with the highest predicted importance scores. Thus, our contributions are

threefold:

• we propose a novel approach, Kernel Video Summarisation (KVS), for supervised

video summarization of realistic videos, that uses state-of-the-art image and video

features

• we introduce a new dataset, MED-Summaries1, along with a clear annotation

protocol to evaluate video summarization

• we obtain excellent experimental results on MED-Summaries, showing that KVS

delivers video summaries with higher overall importance, as measured by two per-

formance metrics.

Per-segment classification scores

KTS segments

Input video (category: Working on a sewing project)

Output 

summary

Maxima

Figure 3.2: Overall scheme of Kernel Video Summarization (KVS).

3.2 Related work

Video summarization. Truong & Venkatesh [Truong and Venkatesh, 2007] present a

comprehensive overview and classification of video summarization methods. The task is

difficult to define and many methods are domain-specific (sports, news, rushes, documen-

tary, etc.). However, to our knowledge, there are no publicly available implementations

or datasets, for eg. sports videos summarization, that could be used for comparison

1The annotations and the evaluation codes are available at http://lear.inrialpes.fr/people/

potapov/med_summaries.

http://lear.inrialpes.fr/people/potapov/med_summaries
http://lear.inrialpes.fr/people/potapov/med_summaries
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with more recent approaches. Summaries may focus on dominant concepts [Over et al.,

2008], relate to the video’s story [Lu and Grauman, 2013], the user’s preferences, the

query context [Wang et al., 2012], or user attention [Ma et al., 2005]. A video is either

summed up as a sequence of keyframes [Lee et al., 2012, Khosla et al., 2013, de Avila

et al., 2011] or by video excerpts [Lu and Grauman, 2013].

Video summarization received much attention when NIST was running the TRECVID

Rushes summarization task (2006-2008). The evaluation was conducted on a dataset of

significant size, with an expensive manual annotation of the ground-truth [Over et al.,

2008]. However, the methods were mostly specific to the domain, i.e. they focused on

detecting redundant shots of a scene, and clapperboards.

For professional and low-dynamic TV broadcast videos (e.g. from [Over et al., 2008,

Wang et al., 2012] or Open Video Archive), shot boundaries naturally split a video into

“visual sentences”. Early summarization methods [Truong and Venkatesh, 2007] extract

one or more keyframes to represent a shot, often independently from the other shots.

Recent works, including this one, focus on user-generated data [Lee et al., 2012, Khosla

et al., 2013, Lu and Grauman, 2013, Li et al., 2012], which typically do not contain shot

boundaries.

Without supervision, summarization methods must rely on low-level indices to determine

the relevance of parts of a video [Ma et al., 2005, Ngo et al., 2005, Divakaran et al.,

2003]. When the video domain is known, summarization can be strongly supervised. For

example, soccer games [Xie et al., 2004, Rui et al., 2000] or feature films [Sundaram et al.,

2002] have standard phases that can be manually identified. A few previous works [Lee

et al., 2012, Lu and Grauman, 2013, Khosla et al., 2013] produced summaries using

features crafted for specific visual categories. In contrast to these works, our approach

builds short yet highly informative category specific video summaries, using generic

state-of-the-art visual features.

In [Zhao and Xing, 2014, Cong et al., 2012], the main task is to remove redundant video

footage, which is detected as easy to reconstruct based on sparse coding from the rest

of the video. A recent work [Li et al., 2012] also segments a video at a finer level than

shots and relies on supervised mutual information to identify the important segments.

The main difference of our work is the use of state-of-the-art video features and the

quantitative evaluation of the approach. Leveraging crawled internet photos is another

recent trend for video summarization [Kim et al., 2014, Khosla et al., 2013].

There are several ways of evaluating video summarization methods [Truong and Venkatesh,

2007]. Most works [Lee et al., 2012, Lu and Grauman, 2013, Khosla et al., 2013, Ngo

et al., 2005] conduct user studies to compare different summaries of the same video.
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year #videos #users/video duration annotation #classes data type

UT Egocentric (1) 2012 4 2 17 h important region masks - Egocentric

SumMe (2) 2014 25 15-18 1.1 h multiple summaries - User videos

Youtube Highlight (3) 2014 ≈600 5 24 h best highlight, selected content 6 User videos

MED Summaries (4) 2014 140 2-4 6 h temp. segments and importance 10 User videos

Table 3.1: Publicly available video summarization datasets. (1) [Lee et al., 2012], (2) [Gygli et al.,
2014], (3) [Sun et al., 2014], (4) [Potapov et al., 2014].

The concept coverage metric evaluates the number of important objects or actions

included in the summary [Lee et al., 2012, Over et al., 2008]. Although it requires

time-consuming manual annotation of videos, the annotations can be reused to evaluate

multiple approaches. When the goal is to simplify video navigation, the time it takes a

user to perform some data exploration task can be used as a quality metric [Over et al.,

2008]. Automatic comparison to reference summaries comes from text summarization

literature [Lin, 2004]. It relies on a user-generated summary of a video and a metric

to compare it to the algorithm’s summary [Khosla et al., 2013, de Avila et al., 2011,

Kim et al., 2014]. The protocol used in this work combines concept coverage with a

comparison to multiple reference summaries.

Video summarization datasets.

Lee et al. [2012] proposed a dataset of egocentric videos. Such videos are filmed with

a camera mounted on a person’s head, to imitate the video stream seen by humans.

There are 4 test videos publicly available, 17 hours in total. The videos were captured

by 4 different people while performing daily activities. Additionally, the dataset provides

approximately 1660 spatial important object segmentations and a set of negative frames,

which are non-important for the summary.

Recently Sun et al. [2014] introduced a new summarization dataset with around 600

videos (1430 minutes in total), from 6 domains: “skating”, “gymnastics”, “dog”, “park-

our”, “surfing”, and “skiing”. For nearly 60% of videos the dataset provides highlight

annotations, with a consensus reached by at least 3 out of 5 annotators. Sun et al.

[2014] also proposed to rely on edited videos, which are supposed to contain only the

interesting parts of the raw videos. Interestingly, such videos can be queried among the

videos created with the “Youtube video editor” using the Youtube API.

Gygli et al. [2014] proposed another dataset for summarization of user generated videos.

There are 25 videos, from 1 to 6 minutes, with 15-18 ground truth annotations from

different people. Human consistency was validated using the Cronbach psychometric

test [Gygli et al., 2014], and is reported as good on average over the dataset.

Table 3.1 compares recent publicly available summarization datasets.
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In a related task of unsupervised discovery of action segments / parts, existing ap-

proaches rely on discriminatively trained part based models [Niebles et al., 2010, Raptis

and Sigal, 2013]. Similar temporal modeling could be useful for the problem of category-

specific video summarization, though a lack of obvious temporal structure was reported

for Trecvid videos [Wang et al., 2015].

Temporal video segmentation. Computer vision methods often utilize spatial or

temporal segmentation to raise the abstraction level of the problem and reduce its di-

mensionality. Segmentation can help to solve image classification, scene reconstruc-

tion [Hoiem et al., 2005] and can serve as a basis for semantic segmentation [Tighe

and Lazebnik, 2010]. Similarly, video segmentation usually implies dividing a video into

spatio-temporal volumes [Lezama et al., 2011, Grundmann et al., 2010]. Temporal video

segmentation often means detecting shot or scene boundaries, that are either introduced

by the “director” through editing or simply correspond to filming stops.

The proliferation of user-generated videos created a new challenge for semantic temporal

segmentation of videos. Lee et al. [Lee et al., 2012] used clustering of frame color

histograms to segment temporal events. In [Lu and Grauman, 2013] a video is split in

sub-shots depending on the activity of the wearer of a head-mounted camera: “static”,

“moving the head” or “in transit”. Similar to these works we focus on the content of

the segment rather than its boundaries.

Most shot boundary detection methods focus on differences between consecutive frames [Mas-

soudi et al., 2006], relying on image descriptors (pixel color histograms, local or global

motion [Truong and Venkatesh, 2007], or bag-of-features descriptors [Chasanis et al.,

2009]). Our temporal segmentation approach takes into account the differences between

all pairs of frames. Therefore, the approach allows to single out not only shot boundaries

but also change points in general that correspond to non-abrupt boundaries between two

consecutive segments with different semantic content.

3.3 Kernel video summarization

We start by giving definitions of the main concepts and building blocks of our approach.

3.3.1 Video summary

A video is partitioned into segments. A segment is a part of the video enclosed between

two timestamps. A video summary is a video composed of a subset of the temporal

segments of the original video.
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Figure 3.3: Illustration of the importance notion on the “Changing a vehicle tire”
category. These frames come from a 1-minute video where a support car follows a
cyclist during a cycle race. The main event — changing a bicycle tire — takes less than
one third of the video. The figure shows central frames of user-annotated segments
together with their importance score.

A summary is a condensed synopsis of the whole video. It conveys the most important

details of the original video. A segment can be non-informative due to signal-level

reasons like abrupt camera shake and dark underexposed segments commonly present

in egocentric videos [Lee et al., 2012, Lu and Grauman, 2013].

A segment can be considered important due to multiple reasons, depending on the

video category and application goals: highlights of sport matches, culmination points of

movies [Truong and Venkatesh, 2007], influential moments of egocentric videos [Lu and

Grauman, 2013].

We make the assumption that the notion of importance can be learned from a set of

videos belonging to the video category. This point of view stems from the Multimedia

Event Recounting task at TRECVID: selecting segments containing evidence that the

video belongs to a certain event category. Similarly, we define importance as a measure

of relevance to the type of event. Figure 3.3 shows an example video together with the

importance of its segments.

Our definition of importance spans an ordinal scale, ranging from 0 “no evidence” to 3

“the segment alone could classify the video into the category”. More details are given

in Sec. 3.4.1.

The proposed method, Kernel Video Summarisation (KVS), decomposes into three

steps: i) kernel temporal segmentation; ii) importance-scoring of segments; iii) summary

building. Figure 3.2 summarizes our approach.

3.3.2 Overview of Kernel Temporal Segmentation

Kernel Temporal Segmentation (KTS) allows split the video into a set of non-intersecting

temporal segments. The method is fast and accurate when combined with high-dimensional
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descriptors.

Our temporal segmentation approach is a kernel-based change point detection algo-

rithm. In contrast to shot boundary detection, change point detection is a more general

statistical framework [Kay, 1998]. Change point detection usually focuses on piecewise

constant one-dimensional signals corrupted by noise, and the goal is to detect the jumps

in the signal. It is able to statistically discriminate between jumps due to noise and

jumps due to the underlying signal. Change-point detection has been subject of intense

theoretical and methodological study in statistics and signal processing; see [Kay, 1998,

Harchaoui et al., 2008] and references therein. Such methods enjoy strong theoretical

guarantees, in contrast to shot boundary techniques that are mostly heuristic and tuned

to the types of video transitions at hand (cut, fade in/out, etc.). We propose here a ret-

rospective multiple change-point detection approach, based on [Harchaoui and Cappé,

2007], that considers the whole signal at once. A similar Sequence Reconstruction Error

approach is well known for constructing keyframe summaries [Truong and Venkatesh,

2007]. In contrast to this group of methods, while we also search for the best piece-

wise approximation in the feature space, the proposed approach only targets the best

temporal segmentation, regardless of the keyframe positions within the segments.

Given the matrix of frame-to-frame similarities defined through a positive-definite kernel,

the algorithm outputs a set of optimal ”change points” that correspond to the boundaries

of temporal segments. More precisely, let the video be a sequence of descriptors xi ∈
X, i = 0, . . . , n− 1.

Let K : X × X → R be a kernel function between descriptors. Let H be the feature

space of the kernel K(·, ·). Denote φ : X→ H the associated feature map, and ‖·‖H the

norm in the feature space H. We minimize the following objective

Minimize
m; t0,...,tm−1

Jm,n := Lm,n + Cg(m,n) (3.1)

where m is the number of change points and g(m,n) a penalty term (see below). Lm,n

is defined from the within-segment kernel variances vti,ti+1 :

Lm,n =

m∑
i=0

vti−1,ti , vti,ti+1 =

ti+1−1∑
t=ti

‖φ(xt)− µi‖2H, µi =

∑ti+1−1
t=ti

φ(xt)

ti+1 − ti
(3.2)

Automatic calibration. The number of segments could be set proportional to the

video duration, but this would be too loose. Therefore, the objective of Equation (3.1)

decomposes into two terms: Lm,n which measures the overall within-segment variance,

and g(m,n) that penalizes segmentations with too many segments. We consider a BIC-

type penalty [Hastie et al., 2009] with the parameterized form g(m,n) = m(log(n/m) +
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1) [Arlot et al., 2012]. Increasing the number of segments decreases Lm,n (3.2), but

increases the model complexity. This objective yields a trade-off between under- and

over-segmentation. We propose to cross-validate the C parameter using a validation set

of annotated videos. Hence we get kernel-based temporal segmentation algorithm where

the number of segments is set automatically from data.

Algorithm 1 Kernel temporal segmentation

Input: temporal sequence of descriptors x0,x1, . . . ,xn−1 Cost

1. Compute the Gram matrix A : ai,j = K(xi,xj) dn2/2
2. Compute cumulative sums of A n2

3. Compute unnormalized variances 2n2

vt,t+d =
∑t+d−1

i=t ai,i − 1
d

∑t+d−1
i,j=t ai,j

t = 0, . . . , n− 1, d = 1, . . . , n− t
4. Do the forward pass of dynamic programming 2mmaxn

2

Li,j = mint=i,...,j−1
(
Li−1,t + vt,j

)
, L0,j = v0,j

i = 1, . . . ,mmax, j = 1, . . . , n
5. Select the optimal number of change points 2mmax

m? = arg minm=0,...,mmax Lm,n + Cg(m,n)

6. Find change-point positions by backtracking 2m?

tm? = n, ti−1 = arg mint
(
Li−1,t + vt,ti

)
i = m?, . . . , 1

Output: Change-point positions t0, . . . , tm?−1

Algorithm. The proposed algorithm is described in Algo. 1. First, the kernel is com-

puted for each pair of descriptors in the sequence. Then, the segment variances are

computed for each possible starting point t and segment duration d. It can be done

efficiently by precomputing the cumulative sums of the matrix [Crow, 1984, Viola and

Jones, 2004]. After that, dynamic programming is used to minimize the objective (3.2).

It iteratively computes the best objective value for the first j descriptors and i change

points. Finally, the optimal segmentation is reconstructed by backtracking. The total

runtime cost of the algorithm is in O(mmaxn
2). The penalization introduces a minimal

computational overhead because dynamic programming already computes Li,n for all

possible segment counts.

Step 3 in Algo. 1 is efficiently computed as follows. First we compute the cumulative

sums.

s′i =
i−1∑
i′=0

ai′,i′ , i = 1, . . . , n, s′0 = 0 (3.3)

s′′i,j =

i−1∑
i′=0

j−1∑
j′=0

ai′,j′ , i, j = 1, . . . , n, s′′·,0 = 0, s′′0,· = 0. (3.4)
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An efficient way to compute the cumulative sums is described in [Crow, 1984, Viola and

Jones, 2004]. Then, step 2 in Algo. 1 requires only 6 array element accesses:

vt,t+d = s′t+d − s′t −
1

d
(s′′t+d,t+d − s′′t,t+d − s′′t+d,t + s′′t,t) (3.5)

3.3.3 Properties of Kernel Temporal Segmentation

We refer to Algorithm 1 for Kernel Temporal Segmentation as A1 for brevity. A1 has

the following properties:

1. (Optimality) Let θ∗ = {m∗; t0, . . . , tm∗−1} be a solution returned by A1. Opti-

mization objective (3.1) attains in θ∗ the exact global optimum.

2. (Termination) Algorithm A1 stops after O(n2) operations.

Proof (Optimality):

To disambiguate the notation, we will refer to Lm,n as defined in Step 4 of A1, not in

formula (3.2). Let us define for j = 1, . . . , n (we assume t−1 = 0):

fj(t0, . . . , tm−1) :=
m−1∑
i=0

vti−1,ti + vtm−1,j (3.6)

f∗j (m) := min
t0,...,tm−1

0<t0<...<tm−1<j

fj(t0, . . . , tm−1) (3.7)

Then the objective (3.1) writes as:

min
m; t0,...,tm−1

0<t0<...<tm−1<n

fn(t0, . . . , tm−1) + Cg(m,n) (3.8)

To prove the optimality property we will show that Step 3 of A1 computes the function

f∗j (i).

From Definitions (3.6)-(3.7): ∀j = 1, . . . , n ∀m = 1, . . . ,mmax s.t. m < j:

f∗j (m) = min
m−1<tm−1<j

min
t0,...,tm−2

0<t0<...<tm−1

fj(t0, . . . , tm−1) (3.9)

= min
m−1<tm−1<j

min
t0,...,tm−2

0<t0<...<tm−1

m−2∑
i=0

vti−1,ti + vtm−2,tm−1 + vtm−1,j (3.10)

= min
m−1<t<j

min
t0,...,tm−2
0<t0<...<t

m−2∑
i=0

vti−1,ti + vtm−2,t + vt,j (3.11)
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and we finally get

f∗j (m) = min
m−1<t<j

f∗t (m− 1) + vt,j . (3.12)

We also note that by definition f∗j (0) = v0,j . Therefore we state that Step 3 of A1

computes Li,j = f∗j (i), because reccurrent functions Li,j and f∗j (i) are identical, which

proves the optimality property for the fixed m.

At Step 4, A1 selects the optimal m∗, because the penalty term Cg(m,n) in (3.8) does

not depend on change-point positions. Finally, the optimal change-points are identified

for the fixed value m∗ at Step 5.

Proof (Termination):

On the right of Algorithm 1 we show the computational complexity of each step. We

assume the constant mmax to be fixed. Then the algorithm stops after O(n2) operations.

3.3.4 Learning to predict importance scores

For each category, we train a linear SVM classifier from a set of videos with video-level

labels, assuming that a classifier originally trained to classify the full videos can be used

to score importance of small segments. This assumption is reasonable for videos where

a significant proportion of segments have high scores. The opposite case, when a very

small number of segments allow to classify the video (“needle in a haystack”), is outside

the scope of this work.

At training time, we aggregate frame descriptors of a video as if the whole video was a

single segment. In this way a video descriptor has the same dimensionality as a segment

descriptor. For each category we use videos of the category as positive examples and

the videos from the other categories as negatives. We train one binary SVM classifier

per category.

At test time, we segment the video using the KTS algorithm and aggregate Fisher

descriptors for each segment. The relevant classifier is then applied to the segment

descriptors, yielding a 1D signal which is the importance map of the video.

In order to evaluate the summarization separately from the classification, we assume

that the category of the video is known in advance. While recent methods specifically

targeted at video classification [Oneata et al., 2013, Cao et al., 2012] are rather mature,

relying on them for our evaluation would introduce additional noise.
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3.3.5 Summary building with Kernel Video Summarisation

Finally, a summary is constructed by concatenating the most important segments of

the video. We assume that the duration of the summary is set a priori. Segments are

included in the summary by the order of their importance until the duration limit is

achieved (we crop the last segment to satisfy the constraint).

3.4 MED-summaries dataset

Most existing works evaluate summaries based on user studies, which are time-consuming,

costly and hard to reproduce.

We introduce a new dataset, called MED-summaries. The proposed benchmark sim-

plifies the evaluation by introducing a clear and automatic evaluation procedure, that is

tailored to category-specific summarization. Every part of the video is annotated with

a category-specific importance value. For example, for the category “birthday party”,

a segment that contains a scene where someone is blowing candles is assigned a high

importance, whereas a segment just showing children around a table is assigned a lower

importance.

We use the training set of the TRECVID 2011 Multimedia Event Detection dataset

(12, 249 videos) to train the classifier for importance scoring. Furthermore, we select 60

videos from this training set as a validation set and annotate them. To test our approach

we annotate 100 videos from the official test set (10 per class), where most test videos

have a duration from 1 to 5 minutes. Annotators mark the temporal segments and

their importance; the annotation protocol is described in section 3.4.1. To take into

account the variability due to different annotators, annotations were made by several

people. In the experimental section we evaluate our results with respect to the different

annotations and average the results. The different metrics for evaluation are described

in section 3.4.3. See the dataset’s website for details.

3.4.1 Annotation protocol

3.4.1.1 Segment annotation.

The annotation interface shows one test video at a time, which can be advanced by steps

of 5 frames. First, we ask a user to annotate temporal segments. Temporal segments

should be semantically consistent, i.e. long enough for a user to grasp what is going

on, but it must be possible to describe it in a short sentence. For example it can be “a
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group of people marching in the street” for a video of the class “Parade”, or “putting

one slice of bread onto another” for the class “Making a sandwich”.

Some actions are repetitive or homogeneous, e.g. running, sewing, etc. In that case we

ask to specify the “period” — minimum duration of a sub-segment that fully represents

the whole segment. For example, watching 2-3 seconds of a running person is sufficient

to describe the segment as “a person is running”.

We require all shot boundaries to be annotated as change points, but change points do

not necessarily correspond to shot boundaries. Often a shot contains a single action,

but the main part is shorter than the whole segment. In this case we ask to localize

precisely the main part.

3.4.1.2 Importance annotation.

For each semantic segment we ask a user “Does the segment contain evidence of the

given event category?”. The possible answers are:

0: No evidence

1: Some hints suggest that the whole video could belong to the category

2: The segment contains significant evidence of the category

3: The segment alone classifies the video to the category

TRECVID 2011 Multimedia Event Detection [Over et al., 2011] dataset provides textual

descriptions for each event category. The descriptions were shown to users as a reference

for importance annotation. As an example the “Birthday party” category is defined as

follows:
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Definition: An individual celebrates a birthday with other people

Explication: A birthday in this context is the anniversary of a person’s birth. Less commonly,

the term “birthday” can be used to refer to the anniversary of an organization’s establishment,

but a celebration for an organization does not satisfy the event definition.

A birthday celebration is a gathering of people who have been invited by the host or hosts to

come to a set location (often a private home, sometimes a restaurant, bar, nightclub, park, or

other public venue) to socialize in honor of the person(s) whose birthday it is (the birthday

celebrant(s)).

Birthday parties, as with other parties/celebrations, will typically feature an assortment of food

and beverages. Birthday parties are often accompanied by colorful decorations, such as balloons

and streamers, and some people may wear cone-shaped “birthday hats”. [. . . ]

Evidential description:

scene: indoors (a home, a restaurant) or outdoors (backyard, park); day or night

objects/people: decorations (balloons, streamers, conical hats, etc), birthday cake (often with

candles), birthday celebrant, guests, gifts

activities: singing, blowing out candles on cake, playing games, eating, opening gifts

audio: singing “Happy Birthday to You”; saying happy birthday; laughing; sounds of games

being played

While audio can be used during annotation, we specify that if something is only men-

tioned in onscreen text or speech, then it should not be labeled as important.

In preliminary experiments we found that annotators tend to give too high importance

to very short segments, that often have ambiguous segmentation and importance score.

Therefore, we preprocess the ground-truth before the evaluation — we decrease the

annotated importance for segments smaller than 4 seconds proportionally to the segment

duration.

3.4.2 Annotation interface

In order to get the ground-truth annotation of temporal segments and importance, we

developed a web-based interface. Figure 3.4 shows a screenshot right after the annotation

is finished. The interface allows quick and precise navigation within the video, which is

essential both for the segment annotation and the importance annotation. We defined

multiple keyboard shortcuts to speed up the annotation. However, navigating the video

during the segment annotation is much easier using a computer mouse.

3.4.3 Evaluation metrics

We represent the manually annotated ground-truth segments S = {S1, . . . , Sn} of a

video by:
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Figure 3.4: Interface for the annotation of temporal segments and importance. Video
from “Changing a vehicle tire” category.

importance

segments

periods

An automatic temporal segmentation is represented by the sequence of segments S′ =

{S′1, . . . , S′m}.

To evaluate segmentation we define a symmetric f-score metric as:

f(S,S′) =
2 · p(S,S′) · p(S′,S)

p(S,S′) + p(S′,S)
, (3.13)
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where the similarity of two segmentations A and B is

p(A,B) =
1

|A|
|{A ∈ A st. ∃B ∈ B matching A}| (3.14)

where |A| is the number of segments in A. We consider segments A and B are matching

if the temporal overlap over the union ratio is larger than 0.75, and when a segment has

an annotated period, it is reduced to a sub-segment no shorter than the period, that

maximizes the overlap over the union.

To evaluate summarization we define two metrics: the importance ratio and the mean-

ingful summary duration.

A computed summary is a subset of the segments S̃ = {S̃1, · · · , S̃m̃} ⊂ S′. We say a

ground truth segment Si is covered by a detected segment S̃j if

duration
(
Si ∩ S̃j

)
> αPi (3.15)

When the period equals the segment duration this means that a fraction α of the ground

truth segment is covered by the detected segment. We use α = 80% to enforce visually

coherent summaries, which was validated using the ground-truth. Note that this defini-

tion allows covering several ground truth segments by a single detected segment, as in

the following example:

ground truth
summary

t
period

covers the ground-truth

covered by the summary

no match

period

Let C(S̃) ⊂ S be the subset of ground truth segments covered by the summary S̃.

Given the duration of the summary T (S̃) =
∑m̃

j=1 duration(S̃j) and its total importance

I(S̃) =
∑

i∈C(S̃)
Ii, we define the importance ratio as

I∗(S̃) =
I(S̃)

Imax(T (S̃))
, with Imax(T ) = max

A⊂S s.t.
T (A)≤T

I(A) (3.16)

We use the maximum possible summary importance Imax(T ) as a normalization factor.

This normalization takes into account the duration and the redundancy of the video and

ensures that I∗(S̃) ∈ [0, 1].

It turns out that maximizing the summary importance given the ground-truth segmen-

tation and importance is NP-hard, as it is a form of knapsack problem. Therefore we

use a greedy approximate summarization: we reduce each segment to its period, sort the

segments by decreasing importance (resolving ties by favoring shorter segments), and
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constructing the optimal summary from the top-ranked segments that fit in the duration

constraint.

A second measure is the meaningful summary duration: MSD. A meaningful summary

is obtained as follows. We build it by adding segments by order of classification scores

until it covers a segment of importance 3, as defined by the ground-truth annotation.

This guarantees that the gist of the input video is represented at this length and measures

how relevant the importance scoring is. Summaries assembling a large number of low-

importance segments first are mediocre summaries and get a low MSD score. Summaries

assembling high-importance segments first get a high MSD score. In our experiments

we report the median MSD score over all test videos as a performance measure.

3.5 Results

3.5.1 Baselines

As the videos are annotated by several users, we can evaluate their annotations with

respect to each other in a leave-one-out manner (Users). This quantifies the task’s

ambiguity and gives an upper bound on the expected performance.

For segmentation we use a shot detector (SD) of Massoudi et al. [Massoudi et al., 2006]

as a baseline. For classification we use two baselines: one with the shot detector, where

shots are classified with an SVM (SD+SVM) and one where the segments are selected

by clustering instead of SVM scores (KTS+Cluster).

The SD+SVM baseline is close to an event detection setup, where a temporal win-

dow slides over the video, and an SVM score is computed for every position of the

window [Oneata et al., 2013, Gaidon et al., 2013]. However, we pre-select promising

windows with the SD segmentation.

Clustering descriptors produces a representative set of images or segments of the video,

where long static shots are given the same importance as short shots [Khosla et al.,

2013]. We use a simple k-means clustering, as the Fisher Vectors representing segments

(see next section) can be compared with the L2 distance [Perronnin et al., 2010]. The

summary is built by adding one segment from each cluster in turn. First we add segments

nearest to each centroid, ordered by increasing duration, then second nearest, etc.

Our KVS method combines the KTS segmentation with a SVM classifier.
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Table 3.2: Evaluation of segmentation and summarization methods on the test set of
100 videos. The performance measures are average f-measure for segmentation (higher is
better) and median Meaningful Summary Duration for summarization (lower is better).

Method Segmentation Summarization
Avg. f-score MSD (s)

Users 49.1 10.6

SD + SVM 30.9 16.7
KTS + Cluster 41.0 13.8
KVS 41.0 12.5

3.5.2 Details of implementation

3.5.2.1 Video descriptors & classifier.

We process every 5-th frame of the video. We extract SIFT descriptors on a dense grid

at multiple scales. The local descriptors are reduced to 64 dimensions with PCA. Then

a video frame is encoded with a Fisher Vector [Perronnin et al., 2010] based on a GMM

of 128 Gaussians, producing a d=16512 dimension vector.

For segmentation we normalize frame descriptors as follows. Each dimension is stan-

dardized within a video to have zero mean and unit variance. Then we apply signed

square-rooting and L2 normalization. We use dot products to compare Fisher vectors

and produce the kernel matrix. Even though primal formulation is applicable in this

case, precomputation of the kernel matrix reduces the memory usage when the features

are high-dimensional.

For classification, the frame descriptors from a segment are whitened under the diago-

nal covariance assumption as in [Perronnin et al., 2010]. Then we apply signed square-

rooting and L2-normalization. The segment descriptor is the average of the frame de-

scriptors. This was shown to be the best pooling method for frame descriptors [Oneata

et al., 2013, Cao et al., 2012].

The linear SVM classifier for each class is built from about 150 positive and 12000

negative training videos from the MED 2011 training dataset. The C parameter of the

classifier is optimized using cross-validation.

We use grid-search on the 60-video validation set to optimize the parameters of the

different methods. The shot detector (SD) has a single threshold T . Our KVS method

relies on a single parameter C that controls the number of segments (equation 3.1). For

the clustering method, the optimal ratio of the number of clusters over the number of

segments was found to be 1/5th.
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Figure 3.5: Summarization of the 100-video test dataset. (a) Importance ratio of
Equation (3.16) for different durations of the summary. (b) Correlation of SVM scores
and scores assigned by users.

On average, the annotated segments are 3.5 s long, and so are SD segments. The KTS

method produces segments of 4.5 s on average.

3.5.3 Segmentation

Table 3.2 shows the segmentation quality of users and algorithms. For algorithms we

average the f-scores of Equation (3.13) over segmentations from different users. For

users we report the average f-score of the leave-one-out evaluation, i.e. we assume each

user in turn to be the ground truth. The proposed approach KTS outperforms the

competing method SD in terms of temporal segmentation performance. Surely, human

segmentations are better than the algorithms’, which means that the annotation protocol

is consistent. Yet, the average f-score of users is not close to 100%, which suggests that

the segment annotation task is somewhat subjective.

3.5.4 Summarization

The MSD metric in Table 3.2 shows that the temporal segmentation output by KTS has

a significant impact on the summary’s quality. Indeed, the SD+SVM method generally

produces longer summaries than KTS+Cluster.

Figure 3.5a shows the summarization quality for different summary durations. The

user curve gives an upper bound on what can be achieved, by evaluating the consensus

between annotators, following the leave-one-out procedure as before. The proposed

approach, KVS, is the closest to the user curve. Again, KVS clearly outperforms the

competing methods KTS+Cluster and SD+SVM. Figure 3.7 illustrates our approach.
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We also run an experiment where the SIFT low-level descriptor is replaced by the MBH

motion descriptor [Wang et al., 2013]. We use MBH descriptors in a similar setting as

SIFT — descriptors are reduced to 64 dimensions with PCA and assigned to a GMM with

128 Gaussians. We compute Fisher Vectors with derivatives w.r.t. weights, means and

variances. Fisher Vectors are whitened analytically and then normalized in a standard

way (signed square-rooting and L2-normalization). 2 Figure 3.5a shows that SIFT and

MBH features are quite close in the summarization task. We get 2% improvement for

10 second summaries and 1% drop for longer summaries compared to SIFT. A recent

work [Oneata et al., 2013] also reports little difference between SIFT and MBH on the

MED 2011 dataset.

Summarization experiment with complete supervision. Using full videos for

training a classifier is a simple approach for summarization that does not require addi-

tional annotation. Here we investigate how much gain in performance we can get given

the segmentation and importance annotated in the training videos. The annotation is

available only for test videos. Therefore we split videos into 10 folds (10 videos per class,

1 per fold) and do 10-fold cross-validation. We train a classifier using the segments with

importance 3 as positives (usually more than 1 per video) and full videos as negatives.

Then, the “importance ratio” is computed on the held-out video. The baseline classifier,

that uses full videos as training examples, is trained and evaluated in the same cross-

validation setup. We split the videos in folds in the same way, therefore the same videos

are used for training in both cases. When using important parts, each positive video

in the training set is replaced by its important segments. The C parameter is selected

each time using 3-fold cross-validation. We use SIFT features in both cases.

Table 3.3 shows the cross-validation results. When trained from the important parts,

we get around 3 points higher importance ratio.

E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 Average

full videos 33.9 29.0 37.7 29.2 40.3 29.4 37.5 37.0 30.7 46.2 35.1 +/- 4.8

important parts 35.9 38.8 40.2 33.5 41.7 33.9 37.6 36.1 35.4 44.8 37.8 +/- 4.9

Table 3.3: Summarization experiment on test set (100 videos). Standard deviation is
computed over the cross-validation folds, after averaging over the classes. See text for
details.

Further experiments showed that the gap of 3 points is not very stable and depends on

the number of cross-validation folds for selecting the C parameter and the randomization

seed. However, in all the experiments learning from important parts always gave better

2Videos are rescaled to have a width of 200 pixels and cropped to have a ratio 3:4. We use an old
version of dense trajectories without foreground-background separation.
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Figure 3.6: Importance ratio for various values of C, shared by all classes. The same
test set of 100 videos is used. See text for details.

result. Figure 3.6 shows the cross-validation performance on the same test set when the

SVM C parameter is fixed and shared by all classes.

There is an unusual drop when learning from important parts that can be explained by

the negatives coming from a different distribution (i.e. segment descriptors versus video

descriptors). To verify this hypothesis we do an additional experiment where we use all

the segments from the other classes as negative examples (cf. Figure 3.6, “imp. parts

vs. segments”). Although the drop in the plot is still present, it is now smaller.

Segment level evaluation. Although the importance ratio metric directly addresses

the summarization task, it is sensitive to segmentation mismatches. Since the segmenta-

tion is not perfect (Table 3.2), it is interesting to test the importance scoring mechanism

alone. Do SVM scores correlate with the annotated importance scores?

We sort all the segments by descending SVM score. Ideally, the segments with im-

portance 3 should be in the top of the list, and non-relevant segments in the bottom.

This is a ranking problem where segments (analogue of images in image retrieval) have

graded importance scores (relevance) — from 0 to 3. We use the normalized discounted

cumulative gain (nDCG) ranking metric [Manning et al., 2008]

nDCG = Z−1p

p∑
i=1

I(i)(log2 i)
−1,

where I(i) is the annotated importance score of the ith segment in the ranked list; p is

the total number of segments over all videos of the class; Zp is the normalization factor

such that a perfect ranking’s nDCG is 1.
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Figure 3.5b shows that, for 9 out of 10 classes, the SVM ranking is stronger than the

random ranking, and also better when considering all videos.

In this experiment we use the annotations of 1 user per video on the test set of 100

videos. We use 1000 trials to get the nDCG of random scoring. Evaluation is done on

all ground-truth segments — for a total 3705 segments.

3.6 Conclusion

We proposed a novel approach to video summarization, called Kernel Video Summari-

sation. The approach delivers short and highly-informative summaries, that assemble

the most important segments for a given video category.

Kernel Video Summarisation requires a set of training videos for a given category so

that the method can be trained in a supervised fashion, but does not rely on segment

annotations in the training set. We also introduced a new dataset for category-specific

video summarization, MED-Summaries, that is publicly available, along with the anno-

tations and the evaluation code that computes the performance metrics introduced in

this work.
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Figure 3.7: Illustrations of summaries obtained with Kernel Video Summarization.
We show the central frame in each segment with the SVM score below.





Chapter 4

Beat-Event Detection in Action

Movie Franchises

Abstract

While important advances were recently made towards temporally localizing and recog-

nizing specific human actions or activities in videos, efficient detection and classification

of long video chunks belonging to semantically-defined categories such as “pursuit” or

“romance” remains challenging.

We introduce a new dataset, called Action Movie Franchises, consisting of a collection

of Hollywood action movie franchises. We define 11 non-exclusive semantic categories —

called beat-categories — that are broad enough to cover most of the movie footage.

The corresponding beat-events are annotated as groups of video shots, possibly over-

lapping. We propose an approach for localizing beat-events based on classifying shots

into beat-categories and learning the temporal constraints between shots. We show that

temporal constraints significantly improve the classification performance. We set up

an evaluation protocol for beat-event localization as well as for shot classification, de-

pending on whether movies from the same franchise are present or not in the training

data.

Publication

Danila Potapov, Matthijs Douze, Jerome Revaud, Zaid Harchaoui, Cordelia Schmid.

Beat-Event Detection in Action Movie Franchises, arXiv, 2015

Dataset: http://lear.inrialpes.fr/people/potapov/action_movies
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pursuitpursuit battle preparationbattle preparation battlebattle

romanceromance despair gooddespair good joy badjoy bad

good argue goodgood argue good good argue badgood argue bad bad argue badbad argue bad

victory goodvictory good victory badvictory bad NULLNULL

Figure 4.1: Example frames for categories of the Action Movie Franchises dataset.

4.1 Introduction

Automatic understanding and interpretation of videos is a challenging and important

problem due to the massive increase of available video data, and the wealth of semantic

variety of video content. Realistic videos include a wide variety of actions, activities,

scene type, etc. During the last decade, significant progress has been made for action

retrieval and recognition of specific, stylized, human actions. In particular, powerful

visual features were proposed towards this goal [Oneata et al., 2013, 2014, Wang and

Schmid, 2013]. For more general types of events in videos, such as activities, efficient

approaches were proposed and benchmarked as part of the TRECVID Multimedia Event

Detection (MED) competitions [Over et al., 2014]. State-of-the-art approaches combine

features from all modalities (text, visual, audio), static and motion features (possibly

learned beforehand with deep learning), and appropriate fusion procedures.

In this work, we aim at detecting events of the same semantic level as TRECVID MED,

but on real action movies that follow a structured scenario. From a movie script writer’s

point of view [Snyder, 2005], a Hollywood movie is more or less constrained to a set

of standard story-lines. This standardization helps matching the audience expectations

and habits. However, movies need to be fresh and novel enough to fuel the interest of

the audience. So, some variability must be introduced in the story lines to maintain

the interest. Temporally, movies are subdivided in a hierarchy of acts, scenes, shots,

and finally, frames (see Figure 4.2). Punctual changes in the storyline give it a rhythm.
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Figure 4.2: Temporal structure of a movie, according to the taxonomy of “Save the
Cat” [Snyder, 2005], and our level of annotation, the beat-event.

They are called “beats” and are common to many films. A typical example of beat is

the moment when an unexpected solution saves the hero.

From a computer vision point of view, frames are readily available and reliable algorithms

for shot detection exist. Grouping shots into scenes is harder. Scenes are characterized

by a uniform location, set of characters or storyline. The semantic level of beats and

acts is out of reach. We propose here to attack the problem on an intermediate level

by detecting “beat-events”. Temporally, they consist in sequences of consecutive shots

and typically last a few minutes. Shots offer a suitable granularity, because movies are

edited so that they follow the rhythm of the action. Semantically, they are of a higher

level than the actions in most current benchmarks, but lower than the beats, which are

hard to identify even for a human.

For the purpose of research, we built an annotated dataset of Hollywood action movies,

called Action Movie Franchises. It comprises 20 action movies from 5 franchises:

Rambo, Rocky, Die Hard, Lethal Weapon, Indiana Jones. A movie franchise refers to

a series of movies on the same “topic”, sharing similar story lines and the same charac-

ters. In each movie, we annotate shots into several non-exclusive beat-categories. We

then create a higher level of annotation, called beat-events, which consists of consistent

sequences of shots labeled with the same beat-category.

Figure 4.1 illustrates the beat-categories that we use in the Action Movie Franchises

dataset. They are targeted at action movies and, thus, rely on semantic categories

that often reply on the role of the characters, such as hero (good) or villain (bad). We

now briefly describe all categories. First, we define three different action-related beat-

categories: pursuit, battle preparation and battle, shown in the first row of Figure 4.1.

We also define categories centered on the emotional state of the main characters: ro-

mance, despair good (e.g . when the hero thinks that all is lost) and joy bad (e.g . when
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the villain thinks he won the game), see second row of Figure 4.1. We also include

different categories of dialog between all combinations of good and bad characters: good

argue good, good argue bad and bad argue bad (third row of Figure 4.1). Finally,

we add two more categories notifying a temporary victory of a good or bad character

(victory good and victory bad, last row of Figure 4.1). We also consider a NULL cat-

egory, corresponding to shots that can not be classified into any of the aforementioned

beat-categories. Table 4.1 shows a mapping of the beats to beat-events.

In summary, we introduce the Inria Action Movie dataset, which features dense

annotations of 11 beat-categories in 20 action movies at both shot and event levels. To

the best of our knowledge, a comparable dense annotation of videos does not exist.

The semantic level of our beat-categories will drive progress in action recognition towards

new approaches based on human identity, pose, interaction and semantic audio features.

State-of-the-art methods are without doubt not sufficient for such categories. Action

movies and related professionally produced content account for a major fraction of what

people watch on a daily basis. There exists a large potential for applications, such

as access to video archives and movie databases, interactive television and automatic

annotation for the shortsighted.

Furthermore, we define several evaluation protocols, to investigate the impact of franchise-

information (testing with or without previously seen movies from the same franchise)

and the performance for both classification and localization tasks. We also propose an

approach for classification of video shots into beat-categories based on a state-of-the-art

pipeline for multimodal feature extraction, classification and fusion. Our approach for

localizing beat-events uses a temporal structured inferred by a conditional random field

(CRF) model learned from training data.

We make the Action Movie Franchises dataset publicly available to the community to

further advance research on automatic video understanding. 1

4.2 Related work

Related datasets. Table 4.2 summarizes recent state-of-the-art datasets for action or

activity recognition. Our Action Movie Franchises dataset mainly differs from existing

ones with respect to the event complexity and the density of annotations. Similarly to

Coffee & Cigarettes and MediaEval Violent Scene Detection (VSD), our Action Movie

Franchises dataset is built on professional movie footage. However, while the former

datasets only target short and sparsely occurring events, we provide dense annotations

1The dataset is online: http://lear.inrialpes.fr/people/potapov/action_movies

http://lear.inrialpes.fr/people/potapov/action_movies
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Corresponding Beat-Events

-

-

-

-

romance

despair-good (Ra4,Ro4,Ro3)

Blake Snyder's Beats
Opening image (p. 1): Sets the tone for the 
story and suggests the protagonist’s primary 
problem.
Theme is stated (p. 5): A question or state-
ment, usually made to the protagonist, indicat-
ing the story’s main thematic idea.

Set-up (p. 1-10): An introduction to the main 
characters and setting—the background.

Catalyst (p. 12): A major event that changes 
the protagonist’s world and sets the story in 
motion.
Debate (p. 12-25): A question is raised about 
the choice now before the protagonist. Often 
this section lays out the stakes for the journey 
ahead.  

good-argue-bad
good-argue-good
bad-argue-bad

Break into Act II (p. 25-30): The hero defini-
tively leaves his old world or situation and en-
ters a strange new one.

pursuit (DH4,LW3,Ra1)
good-argue-good (Ro1)

B-story (p. 30): A secondary plotline that of-
ten fleshes out side characters—frequently a 
mentor or a love interest—who assist the hero 
on his journey.

Fun and games (p. 30-55): Snyder says this 
section offers “the promise of the premise.” It’s 
an exploration of the story’s core concept that 
gives the story its “trailer-friendly moments.” 
It’s usually lighter in tone, and it typically builds 
to a big victory at the midpoint.

romance
good-argue-good (Ro1,Ro2)
battle (Ro3)

Midpoint (p. 55): The A and B stories cross. 
The story builds to either a false victory or (less 
often) false defeat. New information is revealed 
that raises the stakes.

victory-good
victory-bad

Bad guys close in (p. 55-75): After the vic-
tory at the midpoint, things grow steadily worse 
as the villains regroup and push forward.

battle (DH4,IJ3,Ra2,Ro3)
joy-bad (DH1,DH4,Ro1)
despair-good (DH1,Ra2)
pursuit (DH1)

All is lost (p. 75): Mirroring the midpoint, it’s 
usually a false defeat. The hero’s life is in 
shambles. Often there’s a major death or at 
least the sense of death—a reference to dying 
or mortality somehow.

victory-bad
despair-good

Dark night of the soul (p. 75-85): A mo-
ment of contemplation in which the hero con-
siders how far he’s come and all he’s learned. 
It’s the moment in which the hero asks, “Why is 
all this happening?”
Break into Act III (p. 85) A “Eureka!” mo-
ment that gives the hero the strength to keep 
going—and provides the key to success in Act 
III.

romance (Ro1,Ro4)
despair-good (LW1,LW2,LW3)
good-argue-good (Ro3)

Finale (p. 85-110) Relying on all he has 
learned throughout the story, the hero solves 
his problems, defeats the villains, and changes 
the world for the better.

battle
victory-good
pursuit (Ra4,Ra2,DH4)

Final image (p. 110). A mirror of the opening 
image that underlines the lessons learned and 
illustrates how the world has changed.

victory-good
romance (IJ2, Ro1, LW3, DH4)
good-argue-good (IJ3, LW3)
despair-good (DH1,DH2,LW3)
victory-bad (Ro1, Ra1)

ActionMovies Beat-Events

pursuit: villains are following heroes, or 
the opposite (it usually takes some time) 

battle: confrontation between 
good/bad characters (usually in-
cludes fighting or shooting) 
romance: between the hero and 
love interest 
victory good: good characters win 
a battle
victory bad: bad characters win a 
battle 
preparation: preparing to the bat-
tle - setting up the armor, training, 
jogging, etc. 
despair good: desperate mood of 
good heroes, normally not during 
fight, but connected to the global 
battle 
joy bad: villains express emotions 
(usually laugh) 
good argue bad: heroes and vil-
lains have an oral debate 
good argue good: good characters 
argue among each other 
bad argue bad: bad characters ar-
gue among each other 

Table 4.1: Mapping of the beats to beat-events. One of the conclusions of this work is
that the global temporal structure is not constrained by a well defined beat-event order.
Therefore the mapping here relies more on the definition of beats and beat-events, than
on the temporal ordering. The bold beat-event matches are common and represent
prominent beats; the other are more special cases. The beginning of the movie is less
standardized and contains little action, therefore is hard to describe in terms of well-
defined events. Note that preparation does not match precisely any beat, but always
happens right before the final battle in the Rocky franchise. In parentheses we show
the abbreviated movie names where each match happens.

of beat-events spanning larger time intervals. Our beat-categories are also of significantly

higher semantic level than those in action recognition datasets like Coffee & Cigarettes,

UCF [Soomro et al., 2012] and HMDB [Kuehne et al., 2011]. A consequence is that

our dataset remains very challenging for state-of-the-art algorithms, as shown later in

the experiments. Events of a similar complexity can be found in TRECVID MED
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Name # classes example annotation # positive durations
class unit train units avg unit annot NULL coverage

Classification

UCF 101 [Soomro et al., 2012] 101 high jump clip 13320 7.21s 26h39 0h -
HMDB 51 [Kuehne et al., 2011] 51 brush hair clip 6763 3.7s 6h59 0h -
TRECVID MED 11 15 birthday party clip 2650 2m54 128h 315h 29%
Action Movie Franchises 11 good argue bad shot 16864 5.4s 25h29 15h42 57.1%

Localization

Coffee & Cigarettes 2 drinking time interval 191 2.2s 7m12s 3h26 3.3%
THUMOS detection 2014 20 floor gymnastics t.i. on clip 3213 26.2s 3h22 167h54 2.0%
MediaEval VSD [Demarty et al., 2014] 10 fighting shot/segment 3206 3.0s 2h38 55h20 4.5%
Action Movie Franchises 11 good argue bad beat-event 2906 35.7s 28h49 14h08 61.4%

Table 4.2: Comparison of classification and localization datasets.
Legend : positive train units —number of positive training units (excluding NULL);
annot. — total duration of all annotated parts; NULL — duration of the non-annotated
(NULL or background) footage; coverage = proportion of annotated video footage.

2011–2014 [Over et al., 2014], but our dataset includes precise temporally localized

annotations.

Action detection in movies. Action detection (or action localization), that is finding

if and when a particular type of action was performed in long and unsegmented video

streams, received a lot of attention in the last decade. The problem was considered in

a variety of settings: from still images [Raptis and Sigal, 2013], from videos [Gaidon

et al., 2013, Wang and Schmid, 2013], with or without weak supervision, etc. Most

works focused on highly stylized human actions such as “open door”, “sit down”, which

are typically temporally salient in the video stream.

Action or activity recognition can often be boosted using temporal reasoning on the

sequence of atomic events that characterize the action, as well as the surrounding events

that are likely to precede or follow the action/activity of interest. We shall only review

here the “temporal context” information from surrounding events; the decomposition of

action or activities into sequence of atomic events [Gaidon et al., 2013] is beyond the

scope of this work. Early works along this line [Rui et al., 1998] proposed to group shots

and organize groups into “semantic” scenes, each group belonging exclusively to only

one scene. Results were evaluated subjectively and no user study was conducted.

Several works relied on movie (or TV series) scripts to leverage the temporal struc-

ture [Everingham et al., 2006, Marszalek et al., 2009]. In [Marszalek et al., 2009], movie

scripts are used to obtain scene and action annotations. Aligning of the movie scripts

with the movie is often not accurate, because the final version of the script is available

not for all movies. Thus, we did not use movie scripts to build our dataset and do not

consider this information for training and testing. However, we do use another modal-

ity, the audio track, in a systematic way, and perform fusion following state-of-the-art
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approaches in multimedia [Li et al., 2004], and TRECVID competitions [Over et al.,

2014].

In [Cour et al., 2008], the authors structure a movie into a sequence of scenes, where

each scene is organized into interlaced threads. An efficient dynamic programming

algorithm for structure parsing is proposed. Experimental results on a dataset composed

of TV series and a feature-length movie are provided. More recently, in [Bojanowski

et al., 2013], actors and their actions are detected simultaneously under weak supervision

of movies scripts using discriminative clustering. Experimental results on 2 movies

(Casablanca and American beauty) are presented, for 3 actions (walking, open door

and sit down). The approach improves person naming compared to previous methods.

In this work, we do not use supervision from movie scripts to learn and uncover the

temporal structure, but rather learn it directly using a conditional random field that

takes SVM scores as input features. The proposed approach is more akin to [Hoai et al.,

2011], where joint segmentation and classification of human actions in video is performed

on toy datasets [Hoai and De la Torre, 2012].

4.3 The Action Movie Franchises Dataset

We first describe the Action Movie Franchises dataset and the annotation protocol.

Then, we highlight some striking features in the structure of the movies observed during

and after the annotation process. Finally, we propose an evaluation protocol for shot

classification into beat-categories and for beat-event localization.

4.3.1 Action Movie Franchises

The Action Movie Franchises dataset consists of 20 Hollywood action movies belong-

ing to 5 famous franchises: Rambo, Rocky, Die Hard, Lethal Weapon, Indiana Jones.

Each franchise comprises 4 movies, see Table 4.2 for summary statistics of the dataset.

Each movie is decomposed into a list of shots, extracted with a shot boundary detec-

tor [Massoudi et al., 2006, Potapov et al., 2014]. Each shot is tagged with zero, one or

several labels corresponding to the 11 beat-categories (the label NULL is assigned to

shots with zero labels). Note that the total footage for the dataset is 36.5 h, shorter

than the total length in Table 4.2. This is due to multiple labels. All categories are

shown in Figure 4.1.

Series of shots with the same category label are grouped together in beat-events if

they all depict the same scene (ie. same characters, same location, same action, etc.).
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Figure 4.3: Top: Beat-events annotated for the Action Movie Franchises dataset,
one movie per line, plotted along the temporal axis. All the movies were scaled to the
same length. Bottom: zoom on a movie extract showing the shot segmentation, the
annotations and the beat-events. Best viewed onscreen.

Temporally, we also allow a beat-event to bridge gaps of a few unrelated shots. Beat-

events belong to a single, non-NULL, beat-category.

The set of categories was inspired by the taxonomy of [Snyder, 2005], and motivated

by the presence of common narrative structures and beats in action movies. Indeed,

category definitions strongly rely on a split of the characters into “good” and “bad”

tags, which is typical in such movies. Each category thus involves a fixed combination

of heroes and villains: both “good” and “bad” characters are present during battle and

pursuit, but only “good” heroes are present in the case of good argue good.

Large intra-class variation is due to a number of factors: duration, intensity of action,

objects and actors, and different scene locations, camera viewpoint, filming style. For

ambiguous cases we used the “difficult” tag.

4.3.2 Annotation protocol

We consider the following 11 classes (beat-categories):

• pursuit: villains are following heroes, or the opposite (it usually takes some time)

• battle: confrontation between heroes and villains (usually includes fighting/shoot-

ing)
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• romance: between the hero and the love interest

• victory good: good characters win a battle

• victory bad: bad characters win a battle

• preparation: preparing to the battle — setting up the armor, training, jogging,

etc.

• despair good: desperate mood of heroes, normally not during fight, but connected

to the global battle

• joy bad: villains express emotions (usually laugh)

• good argue bad: good and bad characters have an oral debate

• good argue good: good characters argue among each other

• bad argue bad: bad characters argue among each other

We allow beat-events of different classes to temporally overlap. If possible, beat-event

boundaries are selected such that the event is recognizable from the segment alone.

Beat-event definitions are as much uniform over all the movies as possible. E.g. there

are few debates annotated in Rambo, since most of the debates are less prominent than

in Rocky. The division of characters into “good” and “bad” is fixed per movie. Note

that it can however change within a particular franchise.

Each movie is first temporally segmented into a sequence of shots using a shot boundary

detector [Massoudi et al., 2006, Potapov et al., 2014]. Shot boundaries correspond to

transitions between different cameras and/or scene locations. The minimal temporal

unit in the annotation process is a shot, so temporal boundaries of beat-events always

coincide with shot boundaries. Shots can be annotated with zero, one, or several category

labels. Shots without an annotation are assigned a NULL label. All occurrences are

annotated, so NULL shots are negative instances for each of the 11 beat-event categories.

The annotation process was carried out in two passes by three researchers. Ambiguous

cases were discussed and resulted in a clear annotation protocol. In the first pass we

manually annotated each shot with zero, one or several of the 11 beat-category labels.

In the second one we annotated the beat-events by specifying their category, beginning

and ending shots. We tolerated gaps of 1-2 unrelated shots for sufficiently consistent

beat-events. Indeed, movies are often edited into sequences of interleaved shots from

two events, e.g . between the main storyline and the “B” story. We fill the gaps in the

groups of shots that semantically belong to a single beat-event. Note that, in this way,

temporal boundaries of beat-events always coincide with shot boundaries.

Some annotations are labeled as “difficult”, if they are semantically hard to detect, or

ambiguous. For instance, in Indiana Jones 3, Indiana Jones engages in a romance with
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Dr. Elsa Schneider, who actually betrays him to the “bad guy”. Romance between

Indiana Jones and Dr. Elsa Schneider is therefore ambiguous. We exclude these shots

at training and evaluation time, as in the Pascal evaluation protocol [Everingham et al.,

2010]. More details on the annotation protocol are given in Appendix B.

Our beat-event annotations cover about 60 % of the movie footage, which is much

higher than comparable datasets, see Table 4.2. This shows that the vocabulary we

chose is representative: the dataset is annotated densely , in constrast to the Coffee and

Cigarettes [Laptev and Pérez, 2007] and MediaEval VSD [Demarty et al., 2014] datasets

where less than 5% of the footage is annotated.

4.3.3 Structure of action movies

Figure 4.3 shows the sequence of category-label annotations for several movies. Some

global trends are striking: victory good occurs at the end of movies; battle is most preva-

lent in the last quarter of movies; there is a pause in fast actions (battle, pursuit) around

the middle of the movies. In movie script terms, this is the “midpoint” beat [Snyder,

2005], where the hero is at a temporary high or low in the story. In terms of beat-event

duration, joy bad and victory bad are short, while pursuit and romance are long.

After careful analysis of the annotation, we find that battle, despair good and pursuit

are the most prevalent beat-categories, with 4145, 3042 and 2416 instances respectively.

Since it is a semantically high level class, despair good is most often annotated as

difficult. The co-occurrences of classes as annotations of the same shot follow predictable

trends: battle co-occurs with pursuit, battle preparation, victory good and victory bad.

Interestingly romance is often found in combination with despair good. This is typical

for movies of the “Dude with a problem” type [Snyder, 2005], where the hero must prove

himself.

Within each movie franchise, a shared structure may appear. For instance, in Rocky,

the battle preparation occurs in the last quarter of the movie, and there is no pursuit.

4.3.4 Evaluation protocol

In the following, we propose two types of train/test splits and two performance measures

for our Action Movie Franchises dataset.

Data splits. We consider two different types of splits over the 20 movies, see Fig-

ure 4.4. They both come in 5 folds of 16 training movies and 4 test movies. All movies
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Leave 1 franchise out

train test
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Leave 4 movies out

train test
4 2 1 4 3 1 4 1 2 1 4 2 4 2 2 3 1 3 3 3
1 3 3 3 3 1 4 1 2 1 4 2 4 2 2 3 4 2 1 4
1 3 3 3 4 2 1 4 2 1 4 2 4 2 2 3 3 1 4 1
1 3 3 3 4 2 1 4 3 1 4 1 4 2 2 3 2 1 4 2
1 3 3 3 4 2 1 4 3 1 4 1 2 1 4 2 4 2 2 3

Rambo Die Hard Indiana Jones
Rocky Lethal Weapon

Figure 4.4: The two types of split for evaluation. Movie franchises are color-coded.
In addition to the train/test splits, the training videos are also split in 4 sub-folds, that
are used for cross-validation and CRF training purposes.

appear once as a test movie. In the “leave one franchise out” setting, all movies from

a single franchise are used as a test set. In “leave 4 movies out”, a single movie from

each franchise is used as test. This allows to evaluate if our classifiers are specific to a

franchise or generalize well across franchises.

Classification setting. In the classification setting, we evaluate the accuracy of beat-

category prediction at the shot level. Since a shot can have several labels, we adopt

the following evaluation procedure. For a given shot with n > 0 ground-truth labels

(in general n = 1, but the number of labels can be up to 4), we retain the best n

predicted beat-categories (out of 11, according to their confidence scores). Accuracy is

then measured independently for each beat-category as the proportion of ground-truth

shots which are correctly labeled. We finally average accuracies over all categories, and

report the mean and the standard deviation over the 5 cross-validation splits.

Localization setting. In the localization setting, we evaluate the temporal agree-

ment between ground-truth and predicted beat-events for each beat-category. A de-

tection, consisting of a temporal segment, a category label and a confidence score, is

tagged positive if there exists a ground-truth beat-event with an intersection-over-union

score [Everingham et al., 2010] over 0.2. If the ground-truth beat-event is tagged as

“difficult” it does not count as positive nor negative. The performance is measured for

each beat-category in terms of average precision (AP) over all beat-events in the test

fold, and the different APs are averaged to a mAP measure.
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4.4 Shot and beat-event classification

The proposed approach consists of 4 stages. First, we compute high-dimensional shot

descriptors for different visual and audio modalities, called channels. Then, we learn

linear SVM classifiers for each channel. At the late fusion stage, we take the linear

combination of the channel scores. Finally, predictions are refined by leveraging the

temporal structure of the data and beat-events are localized.

4.4.1 Descriptors extraction

For each shot from a movie, we extract different descriptors corresponding to different

modalities. For this purpose, we use a state-of-the art set of low-level descriptors [Aly

et al., 2013, Oneata et al., 2013]. It includes still image, face, motion and audio descrip-

tors:

Dense SIFT [Lowe, 2004] descriptors are extracted every 30’th frame. The SIFTs of

a frame are aggregated into a Fisher vector of 256 mixture components, that is power-

and L2-normalized [Perronnin et al., 2010]. The shot descriptor is the power- and L2

normalized average of the Fisher descriptors from its frames. The output descriptor has

34559 dimensions.

Convolutional neural nets (CNN) descriptors are extracted from every 30’th frame.

We run the image through a CNN [Krizhevsky et al., 2012] trained on Imagenet 2012,

using the activations from the first fully-connected layer as a description vector (FC6 in

4096 dimensions). The implementation is based on DeCAF [Donahue et al., 2013] and

its off-the-shelf pre trained network.

Motion descriptors are extracted for each shot. We extract improved dense trajec-

tory descriptors [Wang and Schmid, 2013]. The 4 components of the descriptor (MBHx,

MBHy, HoG, HoF) are aggregated into 4 Fisher vectors that are concatenated. This

output is a 108544 D vector.

Audio descriptors are based on MFCC [Rabiner and Schafer, 2007] extracted for 25

ms audio chunks with a step of 10 ms. They are enhanced by adding first and second

order temporal derivatives. The MFCCs are aggregated into a shot descriptor using a

Fisher aggregation, producing a 20223 D vector.

Face descriptors are obtained by first detecting faces in each frame using the Viola-

Jones detector from OpenCV [Bradski, 2000]. Following the approach of Everingham

et al. [2006], we join the detections into face tracks using the KLT tracker, allowing us

to recover some missed detections. Each facial region is then described with a Fisher

vector of dense SIFTs [Simonyan et al., 2013] (16384 dimensions) which is power- and

L2-normalized. Finally, we average-pool all face descriptors within a shot and normalize
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sub-fold1 sub-fold2 sub-fold3 foldtest

Training set Test set

SVM1 SVM2 SVM3 SVMtest

scores1 scores2 scores3 scorestest

CRF CRF-scores

sub-fold4

SVM4

scores4

Figure 4.5: Proposed training approach for one fold. In a first stage, SVMs
SVM1...SVM4 are trained in leaving one sub-fold out of the training set, and are eval-
uated on the left-out sub-fold. In a second stage, a CRF model is trained, taking the
sub-fold SVMs scores as inputs. We then use all the training videos to train the final
SVM model (SVMtest). The final model outputs scores on the test fold, which are then
refined by the CRF model. Note that each SVM training includes calibration using
cross validation.

again the result to obtain the final shot descriptor.

Overall, each 2-hour movie is processed in 6 hours on a 16-core machine.

4.4.2 Shot classification with SVMs

We now detail the time-blind detection method, that scores each shot independently

without leveraging temporal structure.

Per-channel training of SVMs. The 5 descriptor channels are input separately

to the SVM training. For each channel and for each beat-category, we use all shots

annotated as non-difficult as positive examples and all other shots (excluding difficult

ones) as negatives to train a shot classifier. We use a linear SVM and cross-validate the

C parameter, independently for each channel. We compute one classifier SVMtest per

fold, and 4 additional classifiers SVM1...SVM4 corresponding to sub-folds, see Figure 4.5.

Classifier outputs are transformed with a sigmoid to produce probabilities for fusion at

a later stage.
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Late fusion of per-channel scores The per-channel probabilities are combined lin-

early into a shot score. For one fold, the linear combination coefficients are estimated

using the sub-fold scores. We use a random search over the 5D space of coefficients, one

dimension per channel, to find the one that maximizes the average precision over the

sub-folds. This optimization is performed jointly over all classes (shared weights), which

was found to be better to reduce the variability of the weights.

4.4.3 Leveraging temporal structure

We leverage the temporal structure to improve the performance of the time-blind detec-

tion/localization method, using a conditional random field (CRF) [Lafferty et al., 2001].

We consider a CRF that takes the SVM scores as inputs. The CRF relies on a linear

chain model. Unary potentials correspond to votes for the shot labels, while binary

potentials model the probability of the sequences.

We model a video with a linear chain CRF. It consists of latent nodes yi ∈ Y, i = 1, . . . , n

that correspond to shot labels. Similar to HMM, each node yi has a corresponding input

data point xi ∈ Rd. Variables xi are always observed, whereas yi are known only for

training data. An input data point xi ∈ Rd corresponds to the shot descriptor, In

our case, the descriptor is the 11-D vector of L2-normalized SVM scores for each beat-

category. The goal is to infer probabilities of shot labels for the test video.

The CRF model for one video is defined as:

log p(Y |X;λ,µ) =
n∑
i=1

λTf(yi, X) +
n−1∑
i=1

µTg(yi, yi+1, X),

where the inputs are X = {x1, . . . , xn} and the outputs Y = {y1, . . . , yn}. We use the

following feature (in the CRF literature sense) functions f and g:

fk(yi, X) = p(yi = k|xi)δ(yi, k)

gk′,k′′(yi, yi+1, X) = δ(yi, k
′)δ(yi+1, k

′′)

where δ(x, y) is 1 when x = y and 0 otherwise. Therefore, the log-likelihood becomes

log p(Y |X;λ,µ) =
∑
k∈Y

λk

n∑
i=1

p(yi = k | xi)δ(yi, k)+

∑
k′,k′′∈Y

(k′,k′′) 6=(c,c)

µk′,k′′
n−1∑
i=1

δ(yi, k
′)δ(yi+1, k

′′)
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We estimate p(yi = k | xi) from the SVM classifier trained using cross validation on the

training data. The CRF is learned by minimizing the negative log-likelihood in order

to estimate λ and µ. In practice we rely on the LBFGS method, implemented in the

UGM toolbox [Schmidt].

At test time, the CRF inference outputs marginal conditional probabilities p(yi|X), i =

1, . . . , n. The inference relies on the forward-backward algorithm [Schmidt].

4.4.4 Beat-event localization

The final step consists in localizing instances of a beat-event in a movie, given confidence

scores output by the CRF. To that aim, shots must be grouped into segments, and a

score must be assigned to the segments. We create segments by joining consecutive shots

for which CRF confidence is above 30% of its maximum over the movie. The segment’s

score is the average of these shot confidences.

Note that the CRF produces smoother scores over time for events that occur at a

slower rhythm, see Figure 4.9. For example “good argue good” lasts usually longer than

“joy bad”, because the villain is delighted for a short time only. The CRF smoothing

modulates the length of estimated segments: smoother curves produce longer segments,

as expected.
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mean
accuracy

Leave 4 movies out

SIFT 53.8 76.4 23.9 11.7 4.4 22.1 15.0 9.5 15.1 25.5 4.0 23.76 ± 5.26

CNN 66.4 60.0 16.6 6.0 2.4 9.4 21.7 6.6 17.7 30.2 4.7 21.96 ± 5.91

dense trajectories 58.5 85.2 38.0 12.7 6.2 28.0 19.5 11.6 18.8 40.4 1.8 29.15 ± 6.12

MFCC 28.1 56.3 4.5 17.7 36.2 3.8 35.4 15.6 17.3 26.5 0.0 21.95 ± 13.97

Face descriptors 47.9 58.1 8.6 12.7 11.4 17.3 9.3 3.2 6.2 22.3 4.7 18.35 ± 10.50

linear score combination 63.9 89.2 32.3 14.0 11.4 18.6 26.0 12.1 18.0 44.3 1.8 30.15 ± 6.72

+ CRF 76.0 91.2 57.6 19.9 1.0 41.4 43.1 9.6 25.1 44.8 0.0 37.25 ± 9.94

Leave 1 franchise out

linear score combination 57.8 83.6 13.0 14.9 9.6 3.8 28.0 5.2 18.2 44.3 0.0 25.32 ± 7.40

+ CRF 75.4 87.4 31.3 15.8 0.0 12.7 33.4 5.7 23.2 43.7 0.0 29.89 ± 12.11

Table 4.3: Performance comparison (accuracy) for shot classification. Standard deviations are computed over
folds.
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linear score combination Leave 4 movies out

CRF + thresholding 34.6 38.9 22.6 14.6 4.4 26.7 6.4 4.6 12.2 16.9 0.6 16.59 ± 6.82

Leave 1 franchise out

CRF + thresholding 36.8 36.5 28.9 14.3 4.5 1.7 4.2 5.2 6.5 13.5 3.7 14.16 ± 6.84

Table 4.4: Performance comparison (average precision) for beat-event localization.
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Figure 4.6: Confusion matrix for shot classification with SVM and linear score com-
bination for the “leave 4 movies out” setting.

4.5 Experiments

After validating the processing chain on a standard dataset, we report classification and

localization performance.

4.5.1 Validation of the classification method

To make sure that our descriptors and classification chain is reliable, we run it on the

small Coffee & Cigarettes [Laptev and Pérez, 2007] dataset, and compare the results to

the state-of-the-art method of Oneata et al. [Oneata et al., 2013]. For this experiment,

we score fixed-size segments and use their non-maximum suppression method NMS-RS-

0. We obtain 65.5 % mAP for the “drinking” action and 45.4 % mAP for “smoking”,

which is close to their performance (63.9 % and 50.5 % respectively).

4.5.2 Shot classification

Table 4.3 shows the classification performance at the shot-level on the two types of splits.

The low-level descriptors that are most useful in this context are the dense trajectories
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Figure 4.7: Sample faces corresponding to shots for which the face classifier (i.e.
SVM trained on faces) scored much higher than the SIFT classifier (i.e. trained on full
images). Similar facial expressions can be observed within each beat-category, which
suggests that our face classifier learns to recognize human expressions to some extent.

descriptors. Compared to setups like TRECVID MED or Thumos [Over et al., 2014,

Oneata et al., 2014], the relative performance of audio descriptors (MFCC) is high,

overall the same as for e.g . CNN. This is because Hollywood action movies have well

controlled soundtracks that almost continuously plays music: the rhythm and tone of the

music indicates the theme of the action occurring on screen. Therefore, the MFCC audio

descriptors convey high-level information that is relatively easy to detect automatically.

The face descriptor can be seen as a variant of SIFT, restricted to facial regions. The

face channel classifier outperforms SIFT in three categories. Upon inspection, we noticed

however that only a fraction of shots actually contain exploitable faces (e.g . frontal, non-

blurred, unoccluded and large enough), which may explain the lower performance for

other categories. The performance of the face channel classifier may be attributed to

a rudimentary facial expression recognition property: the faces of heroes arguing with

other good characters can be distinguished from the grin of the villain in joy bad; see

Figure 4.7.

The 4 least ambiguous beat-categories (pursuit, battle, battle preparation and romance)

are detected most reliably. They account for more than half of the annotated shots. The

other categories are typically interactions between people, which are defined by identity

and speech rather than motion or music. The confusion matrix in Figure 4.6 shows that

verbal interactions like “good argue good” and “good argue bad” are often confused.
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The “leave-4-movies out” setting obtains significantly better results than “Leave-1-

franchise out”, meaning that having seen movies from a franchise makes it easier to

recognize what is happening in a new movie of the franchise: Rambo does not fight in

the same way as Rocky. Finally, the CRF allows to leverage temporal structure using

the temporally dense annotations, improving the classification performance by 7 points.

Qualitative results Figure 4.8 shows a few classification examples. The first line is

from Indiana Jones 1. It is a pursuit between Indiana and the villain, and at some point

the hero jumps on the bad guy’s car, so it becomes a battle. Since there are still moving

vehicles, the classifier cannot really distinguish the two stages.

In the second example, from Lethal Weapon 2, the hero meets his “love interest” in a

supermarket. The discussion is energetic and there are many close-ups on the character’s

faces, which explains why the classifier recognizes despair good. Afterwards, the two

meet on a beach and the romance starts over (detected properly this time).

In the third line is an extract of Rocky 3. This franchise is arguably the one with the most

franchise-consistent, and therefore predictable structure. The hero and his love interest

are quarreling about him boxing again. After that begins the battle preparation, which

the classifier and CRF is able to distinguish from the actual battle.

The fourth example is from the end of Rambo 1, where the hero surrenders after a tense

discussion with his mentor, breaking into tears. This is a very unusual ending for an

action movie (indeed, it is the only final victory bad in our collection). The classifier

gives a reasonable result, except that it confuses good argue good and despair good.

4.5.3 Beat-event localization

Table 4.4 gives results for beat-event localization. We observe that the performance is

low for the least frequent actions. Indeed, for 8 out of 11 categories, the performance

is below 15% AP. Figure 4.9 displays localization results for different beat-categories.

Categories, such as battle and pursuit, are localized reliably. Semantic categories, such

as romance, victory good and good argue good are harder to detect.

More advanced low-level features could improve the results on those events. Indeed,

recognition of characters, their pose and speech appear necessary.
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Indiana Jones 1, 82min - 87min
82 83 84 85 86 87

ground 
truth

SVM
output

CRF
output

Lethal Weapon 2, 67min - 72min
67 68 69 70 71

Rocky 3, 70min - 75min
70 71 72 73 74

Rambo 1, 81min - 87min
81 82 83 84 85 86

Figure 4.8: Classification examples on a few movie extracts, showing each stage of
classification and their respective performances, and some example frames. The color
codes are the same as in figure 4.3, with hashes = difficult. For each shot, we draw only
the shortlist of classes that are taken into account in the scoring (i.e. the number of non-
difficult ground-truth labels for the shot). The color code for the classifier evaluation
is: white = true positive, gray = ignored, black = false positive.
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Figure 4.9: Example of localization results, for several beat-categories and movies.
For each plot, detected beat-events are indicated with bold rectangles (green/gray/red
indicate correct/ignored/wrong detections). Ground-truth (GT) annotations are in-
dicated below (beat-events marked as difficult appear hatched), and likewise missed
detections are highlighted in red. Most often, occurrences of the beat-events are rather
straightforward to localize given the CRF scores.

4.5.4 Domain adaptation

We consider the leave-4-movies-out splitting policy and the classification setting. For a

test movie, the three other movies from the same franchise appear in the training set.

The training shots from these movies are more relevant to build a classifier for the test

movie. For example, a victory scene at the end of a boxing match in Rocky 4 is likely to

be more similar to other boxing matches in Rocky 1 to Rocky 3 than victory scenes in

Indiana Jones. However, we are in a training regime where the training data is scarce,

so we cannot afford to just drop the training examples from other sources.

Here, we explore the setting when the franchise (= domain) of the test movie is known.

We call this setting domain adaptation. The purpose of these experiments is to investi-

gate the impact of using the semantic consistency within-franchise at training and test

time.
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Problem formulation. Consider a particular movie franchise. At training time, as-

sume that we have a partitioned set of training examples

(x1, y1), . . . , (x`, y`), (x`+1, y`+1), . . . , (x`+m, y`+m), (4.1)

partitioned into two sets as follows:

within-franchise examples (x1, y1), . . . , (x`, y`)

other-franchise examples (x`+1, y`+1), . . . , (x`+m, y`+m)

Sample weights. We would like to train domain-specific classifiers for each movie

by putting a larger weight on training examples from the movie franchise, and smaller

weight to examples from other movie franchises.

Let ∆ be the number of domains in the test set. We treat each category independently,

so we can assume there is a binary classification problem. For each domain δ ∈ 1 . . .∆,

we train a separate SVM classifier fρδ , using the weight ρ for the samples of domain δ.

We define the domain-adapted scoring function as:

f̃ρ(xj) = fρδj (xj), (4.2)

where (xj , δj) is a data example and its domain.

We consider the following domain-adapted SVM:

min
w
‖w‖22 + C

ρ
`

∑̀
i=1

L(wTui, yi) +
1

m

`+m∑
j=`+1

L(wTuj , yj)


where L(·, ·) is the usual linear hinge loss.

The hyper-parameters, C the regularization parameter, and ρ the domain-adaptation

parameter, are tuned using cross-validation. First, the C parameter is tuned w.r.t the

weighted AP metric.

The domain weight ρ is selected using the Average Precision on the training set; the

cross-validation scores are aggregated using f̃ρ. Again, we select a separate weight for

each category.
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Averaging scores of domain-specific classifiers. As noted in Tommasi et al.

[2013], merging examples from biased datasets is usually not the best way for unsuper-

vised domain adaptation. It is much better to average the scores of classifiers, learned

on each dataset separately.

In our setting, we use a weighted sum of scores, with more weight for the target domain.

Table 4.5 shows results in the final setting.
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mAP accuracy

SIFT+SVM 30.3 48.6 15.1 6.4 0.9 20.6 5.5 2.2 6.6 7.7 0.7 13.1 ± 2.5 23.8 ± 5.3

Late-DA 29.0 48.4 13.4 7.9 1.0 31.8 6.2 3.6 8.8 7.1 1.2 14.4 ± 4.0 26.5 ± 11.6

CNN+SVM 28.9 37.8 12.5 3.9 1.9 7.0 6.4 3.2 6.1 10.9 4.3 11.2 ± 3.6 22.0 ± 5.9

Late-DA 28.2 41.5 8.7 3.5 0.8 16.4 6.0 2.8 9.4 9.1 3.3 11.8 ± 3.8 24.4 ± 10.4

DT+SVM 39.1 63.7 22.8 5.5 2.2 32.8 5.9 4.5 7.5 14.5 1.2 18.2 ± 4.3 29.2 ± 6.1

Late-DA 41.3 65.4 18.3 7.3 4.3 47.0 6.5 2.9 13.5 17.9 1.3 20.5 ± 5.4 31.9 ± 8.6

MFCC+SVM 27.7 54.5 10.1 4.6 1.5 10.6 8.8 2.0 7.5 22.9 4.4 14.1 ± 3.4 21.9 ± 14.0

Late-DA 31.4 53.5 11.4 5.4 1.7 18.1 8.0 1.9 8.9 23.8 6.1 15.5 ± 4.8 28.1 ± 15.6

(1) SVM + LF 43.9 66.4 26.0 8.3 2.2 37.2 7.9 5.0 10.1 21.3 10.0 21.6 ± 5.8 30.0 ± 6.9

(2) f̃ρ
∗

+ LF 44.9 66.8 25.8 6.6 4.9 40.7 7.1 7.0 9.3 19.2 8.6 21.9 ± 5.8 32.0 ± 8.2

(3) Late-DA + LF 47.4 68.8 22.2 9.8 3.9 50.6 9.1 5.7 15.0 22.0 5.5 23.7 ± 7.0 35.3 ± 11.8

(1) + CRF 62.1 72.1 35.5 23.0 3.7 50.0 7.6 7.2 12.9 18.2 0.6 26.6 ± 7.4 36.3 ± 10.5

(2) + CRF 62.3 72.4 34.7 16.2 4.1 50.2 7.7 7.1 10.6 21.0 1.3 26.2 ± 7.1 38.3 ± 13.3

(3) + CRF 59.3 71.5 26.2 24.5 12.1 53.5 9.6 8.6 14.4 18.6 9.0 27.9 ± 11.2 39.7 ± 17.3

*

Table 4.5: Domain adaptation. Target weight is selected by cross-validation on the training set.
Leave 4 movies out. Per-class values correspond to AP.
Legend : *+SVM — standard SVM training setup with examples from all domains, Late-DA —
weighted average of domain-specific scores, LF — late fusion.

4.6 Conclusion

Despite the explosion of user-generated video content, people are still watching pro-

fessionally produced videos most of the time. Therefore, the analysis of this kind of

footage will remain an important task. In this context, Action Movie Franchises ap-

pears as a challenging benchmark. The annotated classes range from reasonably easy

to recognize (battle) to very difficult and semantic (good argue bad). We also provide

baseline results from a method that builds on state-of-the-art descriptors and classifiers.
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Therefore, we expect it to be a valuable test case in the coming years. We make the

complete annotations and the evaluation scrips publicly available.





Chapter 5

Conclusion

In this manuscript, we have explored several video analysis tasks — summarization,

classification, localization, — reviewed existing approaches for these tasks and presented

our contributions for these tasks. In this section, we summarize our contributions and

discuss possible future directions in the above mentioned areas.

5.1 Summary of contributions

Category-specific video summarization. We proposed a category-specific video

summarization approach that relies on a weakly supervised set of videos to learn the

importance scoring function. At test time it performs a temporal segmentation of the

video and then builds a summary with the most important segments. We introduced a

new dataset, called MED-Summaries, containing the annotation of temporal segments

in videos and the grades of relevance to one of 10 categories. Experimental evaluation on

MED-Summaries showed that the proposed approach constructs video summaries with

higher overall importance.

Event Detection in Action Movie Franchises. We introduced a novel Action

Movie Franchises dataset for evaluation of beat-event classification and localization in

action movie franchises. The dataset contains 20 action movies of 5 franchises with

a dense annotation of 11 non-exclusive beat-categories on both shot and event levels.

We defined evaluation protocols for classification and localization tasks and two dif-

ferent experimental settings to investigate the impact of intra-franchise information.

We proposed an approach for classification of video shots into beat-categories based on

a state-of-the-art pipeline for multimodal feature extraction, classification and fusion.

The proposed approach for localizing beat-events uses a temporal structure inferred by
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a conditional random field (CRF) model learned in a cross-validation way from training

data.

Contributions to the TRECVID Multimedia Event Detection submissions.

We presented an overview of the Inria TRECVID Multimedia Event Detection system,

which solves the task of large scale multimedia event detection in real-world videos. We

summarized the contributions to this system made within the work on this thesis. In

particular, we presented state-of-the-art image descriptors, based on SIFT, and audio

descriptors, based two low-level features: MFCC and ScatNet.

5.2 Future directions

Leveraging context for video summarization. An important aspect of video sum-

marization is modeling the content of the video in relation to context: the subject of the

video, the summarization goal, the knowledge of the target audience. Structuring these

aspects can improve the quality of the summaries. The structure of the context could

be learned through direct supervision, or by exploiting side information gathered from

the web, like it is done in recent approaches [Khosla et al., 2013, Kim et al., 2014, Song

et al., 2015].

Using more modalities for event recognition Using data from multiple modali-

ties can help better understanding the video. It would be interesting to leverage parallel

channels of descriptors, such as visual information, audio information and text subti-

tles, to construct highly-informative summaries. Furthermore, the events we considered

are often human-centric, as in the MED-Summaries and the Action Movie Franchises

datasets. Using human-centered dynamic features, for instance using part-based detec-

tors and tracking algorithms [Hua et al., 2014, Gkioxari and Malik, 2015], is likely to

lead to improvement for recognition purpose, and would also yield spatial localisation

information.

Speed and scalability Current video analysis systems are torn between i) fast ap-

proaches that use global bag-of-features type representations, on top of descriptors that

can be computed almost real-time; ii) slower approaches that use finer-level represen-

tations (temporal, spatial), as in spatial localization for instance, which require a lot

of time to be computed. An important problem is to develop faster approaches that

capture finer-level information and cleverly combine them with more global and almost
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real-time approaches to build high-performance video analysis systems. The TRECVID

competitions serie offer an ideal “experimentation field” to design such systems.





Appendix A

TRECVID contributions

Abstract

The Inria TRECVID MED system was developed from 2011 to 2014 for the TRECVID

Multimedia Event Detection competitions. Being a member of the corresponding teams,

the author of this manuscript deems it necessary to first outline the whole system, and

then describe his contributions in more detail in Section A.2.

Publications

M. Douze et al. The INRIA-LIM-VocR and AXES submissions to Trecvid 2014 Multimedia

Event Detection. TRECVID workshop, Gaithersburg, 2014

R. Aly et al. The AXES submissions at TrecVid 2013, TRECVID workshop, Gaithersburg, 2013.

D. Oneata et al. AXES at TRECVid 2012: KIS, INS, and MED, TRECVID workshop, Gaithers-

burg, 2012.

M. Ayari et al. INRIA@TRECVID’2011: Copy Detection & Multimedia Event Detection,

TRECVID workshop, Gaithersburg, 2011.

A.1 Inria TRECVID MED system

In this section, we describe the 2014 version of the system. The system has been pro-

gressively improved since 2011.

A.1.1 Features

The system is based on 3 types of features:
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Figure A.1: Overview of the whole INRIA-LIM-VocR and AXES system for
TRECVID MED 2014 [Douze et al., 2014]. Circles denote the contributions through
years 2011-2014, made within the work on this dissertation.

Descriptor Dimension Real-time factor

Dense trajectories 434,176 7.1

SIFT 276,479 3.1

Color 72,703 2.6

MFCC 80,895 0.04

Scatter transform 65,663 0.18

CNN 4,096 0.33

Attributes 2,102 (7.43)

OCR 110,000 (sparse) 1.5

ASR 110,000 (sparse) 1.1–2

Table A.1: Descriptor dimension and processing time as a factor w.r.t. video duration
on one CPU core. The real-time factor in parentheses (for the descriptor Attributes) is
derived from other features at a negligible additional cost. Source: [Douze et al., 2014].

1. Local visual and audio descriptors, which are aggregated to global descriptors, one

for each type of low-level descriptor, using Fisher Vectors.

2. Mid-level attribute features based on object and action detectors trained on ex-

ternal datasets.

3. Additional high-level features extracted using ASR and OCR features.

Table A.1 lists the features, their dimensions and the computational cost.

For each type of low-level feature, we aggregate the local descriptors into a global signa-

ture by means of a Fisher vector (FV) [Sanchez et al., 2013]. The number of Gaussians

chosen for the FVs are a trade-off between the accuracy of the representation and com-

putational constraints. Visual frame-based FVs are averaged together to produce a

signature for the complete video. The complete descriptions of low-level features can be

found in [Douze et al., 2014].

In order to cope with the restricted positive training data, we implemented mid-level

representations. These representations rely on detectors trained for a set of object and
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action classes that are not directly related to the MED events. The classes are chosen

such that they are basic, and a sufficient amount of training data is available to train

classifiers for them. For example, the action “stand up” is more basic than the event

“townhall meeting”. This is inspired by similar representations used for attribute-based

and zero-shot image classification [Akata et al., 2013]. The mid-level feature vector of a

video clip is built from the confidence scores of the clip for each of the chosen classes.

In the case of the CNN features described below, we do not directly use the detection

confidences, but rather an internal representation that is used by the convolutional

network to detect object classes. The three mid-level representations are detailed in

[Douze et al., 2014].

The high-level features temporally localize words in the video. They come from on-screen

text transcribed by optical character recognition (OCR) and from speech recognition

(ASR). The transcripts are aggregated to sparse feature vectors using a bag-of-words

representation based on a 110k-word dictionary consisting mainly of English words.

More details in [Douze et al., 2014].

A.1.2 Classification setup

Each of the feature vectors (low-, mid-, or high-level) is used to train a linear SVM

classifier with the LIBSVM software package [Chang and Lin, 2011]. To determine the

hyper-parameters of the SVM we used different strategies, depending on the number of

training examples. In 2014 we used the same classification approach as in 2013 [Aly

et al., 2013]: 10-fold cross-validation to estimate the SVM’s regularization parameter C

and the weighting factor for the positive samples.

A.1.3 TRECVID MED datasets

The evaluation dataset is updated every year in order to prevent overfitting of the

submitted systems. The test set labels are not disclosed to the participants before the

evaluation is done on the organisers’ side.

The TRECVID 2011 MED dataset consists of videos of 10 event categories and an

additional NULL category that contains videos of none of the 10 categories. For each

category there are between 100 and 300 videos in the training set, while there are 9600

video for the NULL category. In the test set, there are 32, 000 videos, which have a total

duration of 1, 000 hours.

Although the test set of the MED dataset has been growing through years, there is an

interest in learning models from little training data. In 2013 and 2014 this corresponds
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combined channels EF LF with rest

LF only 53.07

Color+SIFT 34.07 53.09
SIFT+trajectory 46.22 52.68
MFCC+ScatNet 18.66 53.05
ASR+OCR 18.57 53.22
CNN+Attributes 39.15 54.17

MFCC+ScatNet, CNN+Attributes 54.27
MFCC+ScatNet, CNN+Attributes, Color+SIFT 54.02
MFCC+ScatNet, ASR+OCR 53.22
all possible EFs 53.95

AXES’13 submitted combination 52.58

Table A.2: Early and late fusion (EF and LF respectively). Results for the official
MED 2011 test set. The “EF” columns report results combining just the 2 features
with early fusion (e.g., Color+SIFT: 34.07). The columns “LF with rest” are obtained
with a LF on all the channels, where some of them are combined with EF (e.g., EF of
Color+SIFT and LF of the other channels: 53.09). See Section A.1.4 for more details.

to a setting 10Ex, where only 10 training examples are available, which was the main

setting in 2014. For more details on 10Ex see [Douze et al., 2014].

In 2011 and 2012 the official performance measure was the Normalized Detection Cost

(NDC) [Over et al., 2011], which is defined as a weighted linear combination the False

Alarm rate and the Missed Detection rate, with a much higher cost for False Alarms.

In 2013 and 2014 the official performance measure was the Average Precision (AP) per

category and the Mean Average Precision (mAP) for all categories.

A.1.4 Early fusion and late fusion

We employ two kinds of techniques to combine individual features: early and late fusion.

In early fusion, the combined feature vector is a concatenation of the (scaled) individual

vectors. The SVM classifier is then trained on this concatenated feature vector. In the

case of late fusion, we linearly combine the scores of the SVM classifiers trained on the

individual features (with appropriate weights).

Table A.2 presents results obtained with fusion of various channels. The first row of the

table gives the results when using late fusion on all channels without doing any early

fusion. The next five rows show results of performing early fusion with two channels.

Here, we first report the performance of using only this combination of two channels,

and then the result when this early fusion combination is late fused with all the re-

maining channels. Although early fusion generally improves over the individual channel

outputs, the early fusion generally does not improve performance significantly when

combining it with late fusion of the other channels. One exception to this trend is the
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CNN+Attributes combination in the 100Ex case. The following four rows in the table

show similar results when using early fusion to combine different pairs of features. All

the results in this part of the table improve over the late fusion baseline.

The late fusion weights are estimated with 30-fold cross-validation. The best setting is

marked in bold in the table and corresponds to the submitted version.

A.1.5 Final results

Table A.3 shows the evolution of our results through years 2011–2013.
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Best TV MED 2011 result* 44.4 43.9 26.3 38.0 62.2 56.2 44.6 30.8 33.1 57.5 43.7

Inria system 2011 71.7 73.2 43.3 56.5 80.4 85.7 55.1 44.9 50.9 80.3 64.2

Inria system 2012 45.9 45.1 25.8 38.4 53.9 55.1 39.1 22.7 34.5 50.7 41.1

Inria system 2013 43.0 39.2 25.6 34.5 48.4 52.6 33.1 21.6 32.1 49.1 37.9
* [Natarajan et al., 2012b]

Table A.3: Evolution of the Inria event classification system through 2011–2013. Performance is
reported in the NDC error (lower is better).
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Inria system 2012 43.7 34.3 64.7 40.2 25.7 37.6 53.8 62.3 50.3 31.9 44.5

Inria system 2013 48.9 54.7 69.0 48.5 38.8 35.8 60.3 71.9 57.2 40.6 52.6

- trajectories + SIFT 33.5 52.5 64.4 48.4 36.8 25.0 51.2 72.6 43.0 36.6 46.4

- colour 20.0 29.9 48.8 26.0 15.6 17.3 31.0 34.4 38.4 15.8 27.7

- audio 33.3 5.9 21.3 12.9 4.7 11.2 23.2 7.2 43.3 18.4 18.2

- ASR 3.55 16.7 0.4 3.5 0.5 6.7 0.8 0.3 39.2 10.4 8.2

- OCR 10.1 10.0 10.7 1.2 6.3 19.4 9.9 0.9 32.1 7.8 10.8

Inria system 2014 50.9 59.0 65.7 52.0 35.7 45.0 57.3 69.9 61.7 45.7 54.3

Table A.4: Evolution of the Inria event classification system through 2011–2013. Perfor-
mance is reported in terms of the Average Precision (higher is better).
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A.2 Contributions of the author to the submissions

A.2.1 2011. SVM classification setup. SIFT Fisher Vectors per frame.

In 2011, I implemented the classification pipeline for the SIFT channel. In this pipeline

frame descriptors are used as training examples. The frame labels are inherited from

video labels [Ayari et al., 2011].

We extract image features from every 10th frame. For each image SIFT descrip-

tors [Lowe, 2004, Tuytelaars and Mikolajczyk, 2007] are extracted on a dense grid at 5

scales with horizontal and vertical steps of 4 pixels. The dimension of the descriptors is

reduced using PCA from 128 to 64 dimensions. The descriptors of an image are, then,

aggregated into a Fisher Vector [Perronnin and Dance, 2007]. Here, we use a Fisher

Vector based on a Gaussian mixture model [Bishop, 2009, Hastie et al., 2009] with 64

Gaussians, which was a trade-off between computational efficiency and classification

performance.

A linear one versus all SVM classifier [Duda et al., 2012] is, then, trained on the Fisher

Vectors. We use a subset of 1000 positive and 5000 negative frames for training each

event classifier. The positive frames are obtained from approx. 100 videos and the

negatives from 5000 videos. The C parameter is selected using 5-fold cross-validation

(separately for each event category). We ensure that frames from a video are in the

same fold.

To assign a label to a video clip, we score every 10th frame for a given event and, then,

use the maximum frame scores as a confidence value for a video clip and event class.

A.2.2 2012 and 2014. MFCC channel.

In 2012, I took part in the implementation of the MFCC channel. In 2014, I was again

responsible for the MFCC pipeline. In this pipeline, descriptors for whole videos are

used as training examples.

We down-sample the original audio track to 16 kHz with 16 bit resolution and then

compute Mel-frequency cepstral coefficients (MFCC) [Rabiner and Schafer, 2007] with

a window size of 25 ms and a step-size of 10 ms, keeping the first 12 coefficients of the

final cosine transformation and the energy of the signal. We enhance the MFCCs with

their first and second order derivatives. The MFCC features are then aggregated into a

FV with a vocabulary size of 256.
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A.2.3 2013. SIFT channel.

In 2013, I was responsible for running experiments for the SIFT channel pipeline. In

this pipeline, descriptors for whole videos are used as training examples.

The frame descriptors are essentially the same as in 2011, except:

• We aggregate frame Fisher Vectors into a single descriptor per video (like in 2012).

• We extract image features for every 60th frame.

• We use K=256 Gaussians.

• We use Spatial Fisher Vectors [Krapac et al., 2011b] to encode the spatial infor-

mation.

The Fisher Vectors are normalized per frame, then average pooled along the video, and

finally normalized again.

A.2.4 2014. ScatNet.

In 2014, in addition to MFCC channel, I implemented the ScatNet channel pipeline.

In this pipeline, we resample the audio track to 44.1 kHz and then compute scattering

coefficients [Andén and Mallat, 2011] with a window size of 500 ms and a step size

of 185 ms. The ScatNet transform is based on several layers of a modified wavelet

decomposition. It is designed to capture longer-range audio structures as compared

to the standard MFCC descriptor. We used the ScatNet toolbox [Andén and Mallat,

2013b]. We used first and second order coefficients, with quality factors Q1 = 8 and

Q2 = 1, which results in 526 dimensions. The ScatNet features are then aggregated into

a FV with a vocabulary size of 128.

Table A.5 shows an intermediate experiment with different window sizes and different

number of principal components. We found that using shorter time windows is beneficial.

PCA dim.

T, sec. Orig. dim. 32 64 128 256

0.2 435 11.14 11.84 12.85 13.07

0.5 526 11.66 11.55 11.29 12.92

1.5 718 10.06 10.27 10.47 10.31

Table A.5: Performance of the ScatNet descrip-
tor for different sizes of temporal window and
number of PCA components
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Action Movie Franchises: event

definitions.

B.1 Pursuit

Short definition: villains are following heroes, or the opposite (it usually takes some

time)

Synonyms: chasing, following; difficult: running, approaching, escaping, crawling

Full definition: During pursuit, one of the parties (“good” or “bad”) is following the

other, either on foot, or in a vehicle (car, helicopter, etc.). Both the persecutor and the

persecuted are aware of the pursuit: the former is trying to catch up and the latter to

escape. There is a nonzero distance between parties, so that they mostly interact by

shooting. There can be more than 1 character in each of the parties.

Except rare cases, pursuit is fast and dynamic. Another distinct attribute of the pursuit

is the tense state of both parties.

Special cases:

• During a car pursuit scene, it often happens, that characters fight in a moving car.

We count it as a battle, but not as a pursuit.

• Running from danger should not be annotated as pursuit.

89
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Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from pursuit events

B.2 Battle

Short definition: active confrontation between heroes and villains

Synonyms: fighting, shooting; difficult: explosion, single shots, torturing

Full definition: During a battle, good and bad characters try to hurt each other. It

can be a hand-to-hand fight or an armed conflict. One or both parties can be inside a

vehicle such as car, plane, helicopter.

A battle consists of several attacks by each party. Usually when one party attacks, the

other one tries to defend: hide, block or escape from being hurt. Sometimes they attack

simultaneously.

Special cases:

• In Rocky, there is one main battle per movie + several minor battles; each round

is a separate event.

• In Rocky, a boxing battle during training is annotated as both battle and difficult

preparation.

• On the contrary, shooting practice is considered as preparation and difficult battle.

• Threatening with arms should not be considered as battle.

Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from battle events

B.3 Romance (good)

Short definition: expression of mutual feelings of two good characters
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Synonyms: love, difficult: mutual attraction

Full definition: A romance happens between two characters of the same party, mostly

between the main hero and his love interest. It is an expression of their mutual feelings

to each other and usually implies hugging, kissing, smiling and also flirting. In most

cases, the characters stand close to each other and there is an eye contact.

Romance episodes happen when heroes are being separated without their will, or when

they rejoin each other after a long separation.

Special cases:

• In Rocky, dialogues between the hero and his love interest are often annotated as

difficult romance

Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from romance events

B.4 Victory (good / bad)

Short definition: good / bad characters win a battle or pursuit

Synonyms: winning, happy end, knockout; difficult: knock-down

Full definition: (for victory good, victory bad is the opposite) Victories happen in

the end or right after a battle or a pursuit. However, not every battle nor pursuit will

have a winner. If there is a temporary advantage during the battle, it is not considered

as a full victory. The victory good event also happens when bad characters lose.

A victory usually implies positive emotions of the characters, although the winners are

often exhausted.

Winning a battle means either destroying the major part of the enemy forces or capturing

the enemy. Winning a pursuit means either catching the pursued or escaping from the

persecutor.

Special cases:
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• In Rocky, there is one victory in the end of the battle. Knock-downs are counted

as difficult victories.

Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from victory good events

Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from victory bad events

B.5 Preparation

Short definition: preparing to the battle - training, jogging, setting up the armor, etc.

Synonyms: training, drill, jogging; difficult: setting up weapons/equipment, recharging

gun, handwork (e.g. bomb installation)

Full definition: Preparation is aimed to increase the chances of winning in the expected

battle. For that, characters either improve their physical forces (e.g. jogging, muscle-

strengthening), practice required skills (e.g. shooting practice) or imitate the battle with

partners.

Except for running, preparation usually takes place in a gym or a similar building. In

many cases, characters of the same party prepare together. Often there is a coach that

guides the preparation process.

Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from preparation events
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B.6 Despair good

Short definition: desperate behaviour of the heroes, normally not during fight, but

connected to the global battle

Synonyms: wail, cry, severe fatigue, exhaustion, “all is lost”, depression, shock, fright;

difficult: heavy breathing, sad mood

Full definition: Despair or desperation is a state in which all hope is lost or absent [c.f.

Wordnet]. Our definition is broader. A despair event contains visual and aural signs of

despair: crying, wailing, moaning, etc. In general, people in despair cannot normally

communicate with other people. They are not listening others or not saying anything.

A strong fright of a hero can be viewed as a short despair good event.

In most cases there are 1–3 heroes in despair. A special case - panic in public place -

many people are scared and screaming.

Heroes can be suffering because of physical wounds or psychological stress. In both

cases heroes express negative emotions. In rare cases, when a hero is seriously wounded,

he/she may talk to other person to reduce hurt.

There is a special case when the global battle finishes and the heroes (esp. women)

cannot believe in the happy end and start crying. This should not be considered as

despair good event.

Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from despair good events

B.7 Joy bad

Short definition: villains show dominance or express joyful emotions

Synonyms: laugh, sarcasm, arrogance, exult, gloat over (misfortunes of others); diffi-

cult: transient grin, quick smile

Full definition: When villains succeed in their cruel plans, they start to celebrate it.

It often happens before the global battle finishes. It usually appears as a close-up on

villain’s face. The particular expression of the villain varies in different movies. It can

be a sarcastic laugh, or angry face, or arrogant look at the heroes, or even happy face.
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Sometimes it happens that several villains laugh together. However, if bad characters

laugh while joking with good characters, this should not be considered as a positive.

Special cases:

• Fighters in Rocky do not smile as much as villains in other movies. Therefore

many of joy bad examples are annotated as difficult.

Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from joy bad events

B.8 Good/bad argue good/bad

Short definition: intense discussion with a strong disagreement

Synonyms: argument, debate, quarrel; difficult: objection ( protest), argumented dis-

obeidance

Full definition: Argument is an intense discussion with a strong disagreement. Not

only each party expresses his/her opinion, but, more importantly, tries to object strongly

to the opponent. In a typical tense argument parties raise their voices, may provoke a

fight.

In a complete argument we hear both parties arguing. If one of the opponents is mild,

tries to find a compromise and to calm down the other, this should not be considered a

true argument. This often happens in the end or after the argument.

In some arguments one character is in a dominant position (by means of the weapons,

number of people, threatening etc. or due to the hierarchy). In that cases the oppressed

party tries to loosen the dominance, while the other tries to keep pressure.

In a civilized debate, the characters do not shout at each other, but rather speak in turn.

Insisting tone of voice and disagreement with the opponent distinguish the civilized

debate from a simple discussion. It mostly happens for good argue bad case.

Special cases:

• Argument good-bad does not include “giving orders” and other 1-side arguments.
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• In Rocky, main hero’s coach (Mickey) usually criticizes his trainee and therefore

their dialogues often resemble debates. If there is no serious debate, it is assigned

a difficult good argue good label.

• Argument events do not include the introductory speech, but only the intense part.

• In Indiana Jones, discussion of the main hero with friends often looks like a difficult

argument.

Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from good argue bad events

Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from good argue good events

Rambo Rocky Die Hard Lethal Weapon Indiana Jones

Sample snapshots from bad argue bad events
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