

Learning Visual Similarity Measures for Comparing *Never Seen* Objects

Eric Nowak - Frédéric Jurie LEAR Group http://lear.inrialpes.fr/people/{nowak,jurie}

CVPR 2007 – Minneapolis

Motivation

This is a car you have never seen before...

... can you find it

in these images?

Motivation

- Humans: specific knowledge (cars, faces, etc.)
- \Rightarrow Recognize a car seen only once
- Algorithm:

also has to integrate specific knowledge

Our Goal

- Computing the visual similarity of two never seen objects
- Based on training pairs labeled "Same" or "Different" (equivalence constraints)
- Despite occlusions, changes in pose, light, background

Equivalence Constraints ? Same Different Car Car Car A Α Α Car Car Β Β Car Car Α В Car Car Car Β В Car Car Β Д Car Β Class B Class A

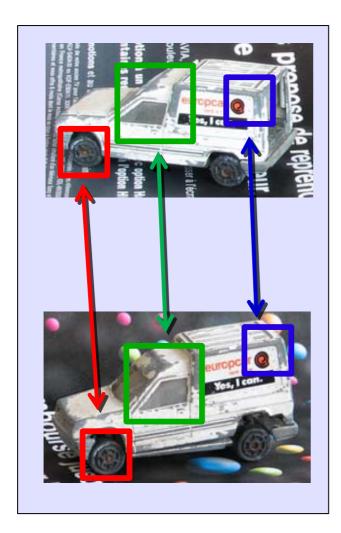
Equivalence Constraints

- ⊗ Less informative than Class Labels
 - "car model X and car model Y"
 - "same/different car model"
- © Cheaper to obtain
 - e.g. space of class labels too large
- © Deal with **new objects**.
 - Which model? CANNOT answer
 - Same or Different? CAN answer

How to compare images ? $D = X^{\dagger}X$ Euclidean Distance Image Representation Space (Histograms, pixels, etc.) Occlusions, view point changes, ...

Global descriptors not adapted

How to be robust to occlusions, view point changes ?



Consider **local** representations

Get corresponding patch pairs

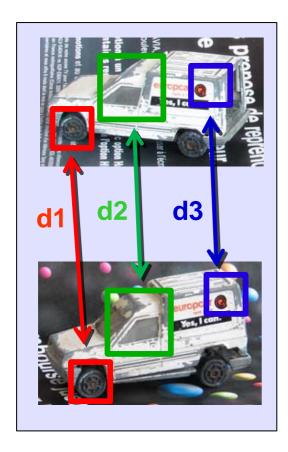
Vocabulary for Local Representations

- Text → vocabulary of words "car", "wheel", "glass", "motor", ...
- Image → vocabulary of *visual words*

• Image pair \rightarrow vocabulary of *visual differences*

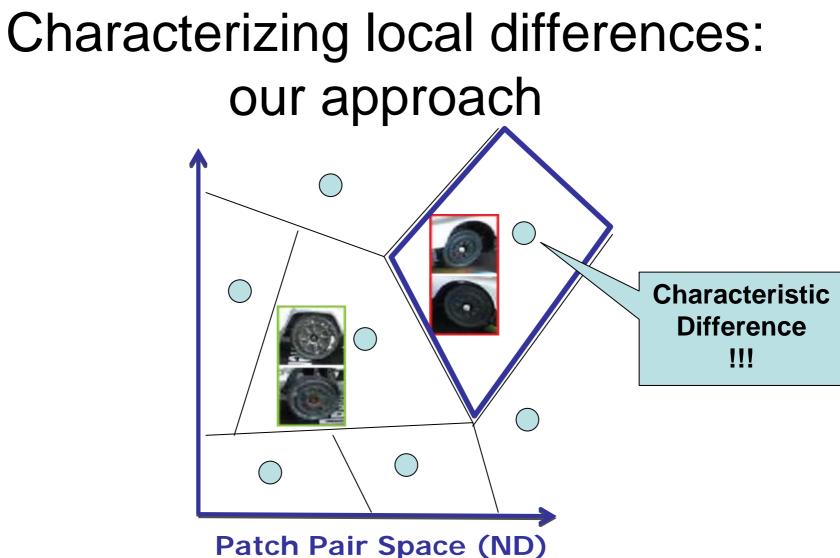
HOW do the patches differ? => Characterize local differences

Characterizing local differences (Ferencz et al, ICCV 05)



D(I1,I2) = f(d1,d2,d3)

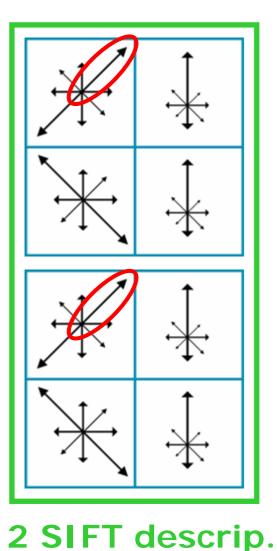
⊗ d1, d2, d3: weak characterization of the differences

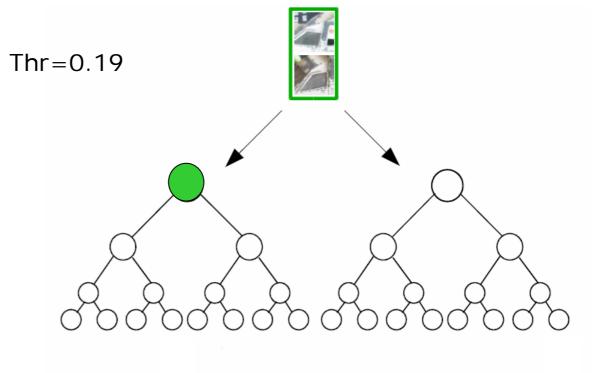


Fatch Fall Space (ND)

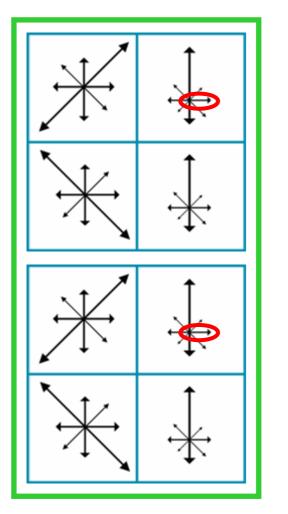
© Much more information than a simple distance

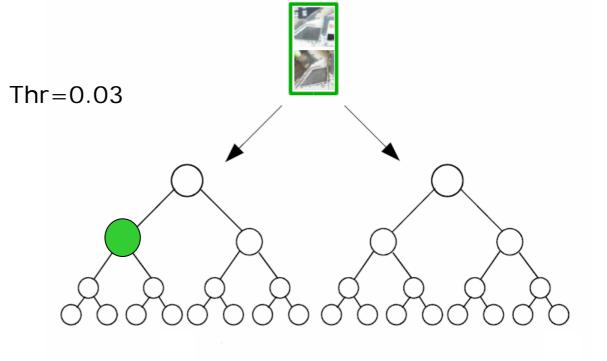
HOW TO COMPUTE THIS QUANTIZATION?



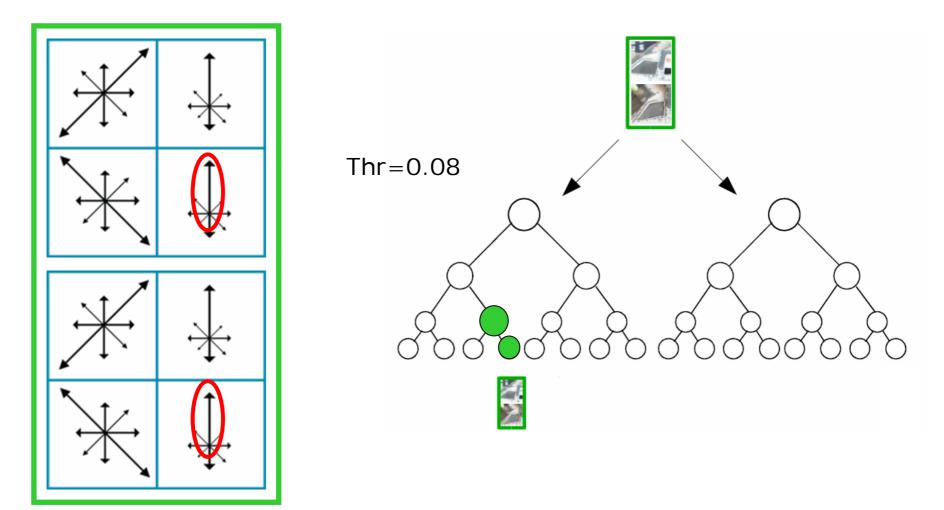


Both larger than 0.19? False \rightarrow left child True \rightarrow right child

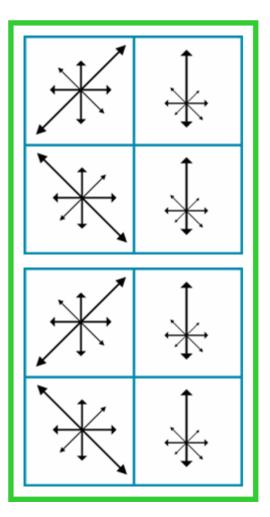


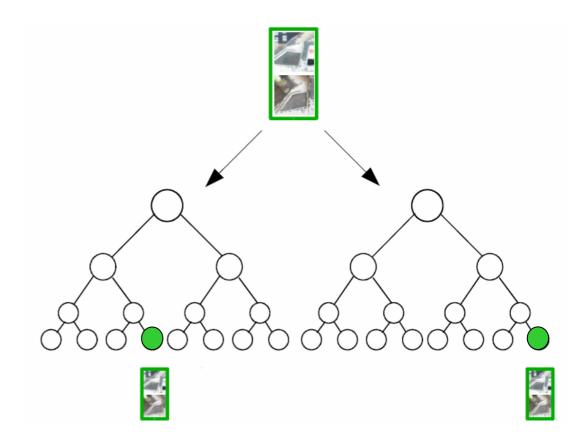


2 SIFT descrip.

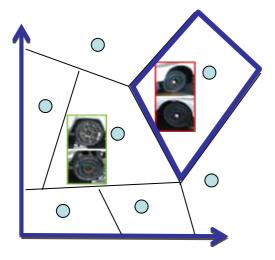


2 SIFT descrip.

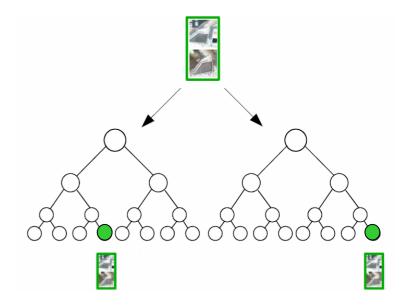




2 SIFT descrip.



Patch Pair Space (ND)



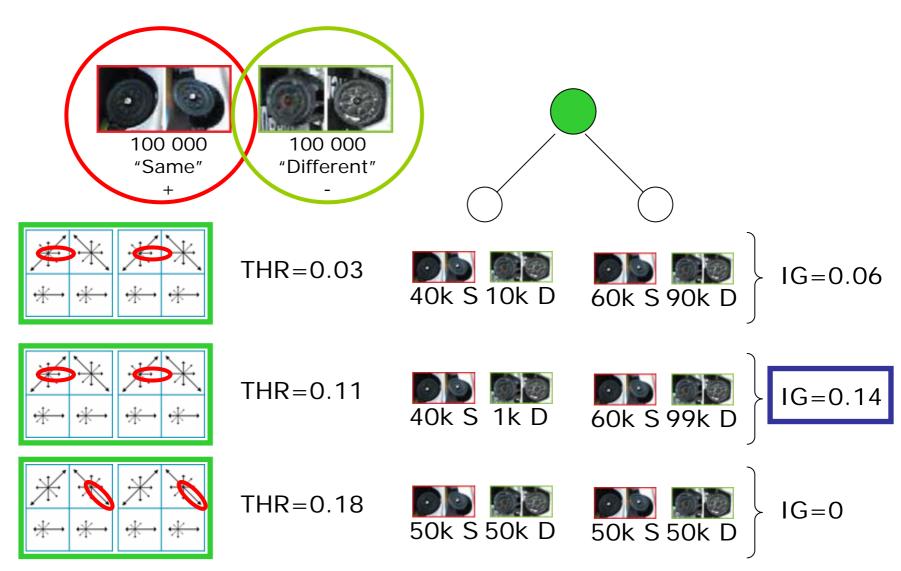
- Quantizer / Clusterer
 Defined by the trees
- Cluster centers (characteristic differences)
 - defined by the leaves

How to learn the trees?

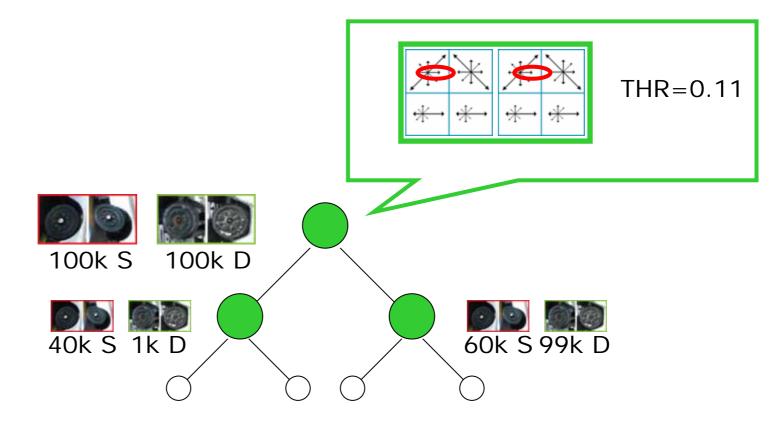
- Classical decision trees
 - For each node select the best feature [which SIFT dimension] and the best threshold
- Extremely Randomized Decision Trees (Geurts 06)
 - Ensemble of decision trees + combination rule
 - Each node is suboptimal
 - [☉] Variance is small
 - ☺ Fast to learn

☺Good for clustering (Moosman, Triggs and Jurie 06)

How to learn a tree?

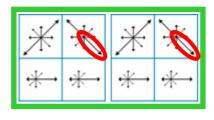


How to learn a tree?



Until leaves contain only positive or negative elements => discriminative clustering

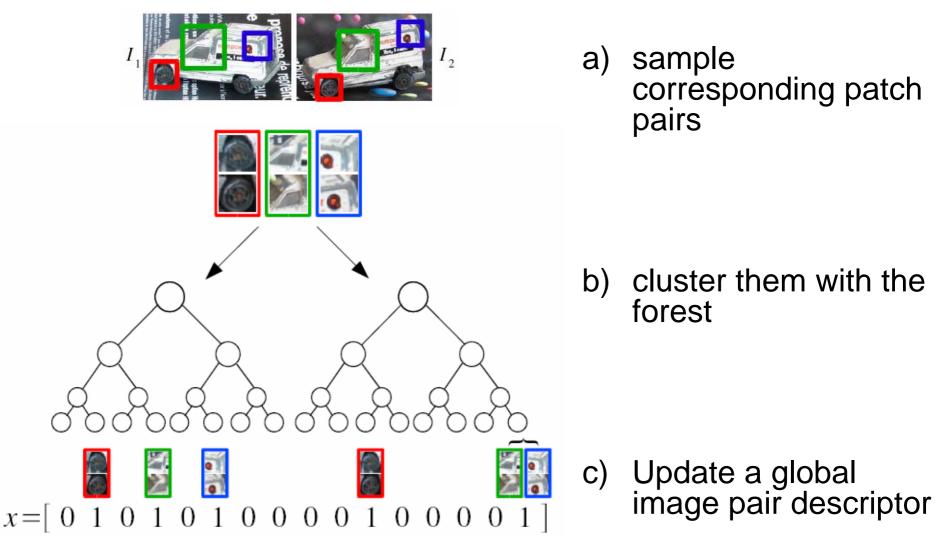
How to learn a tree?



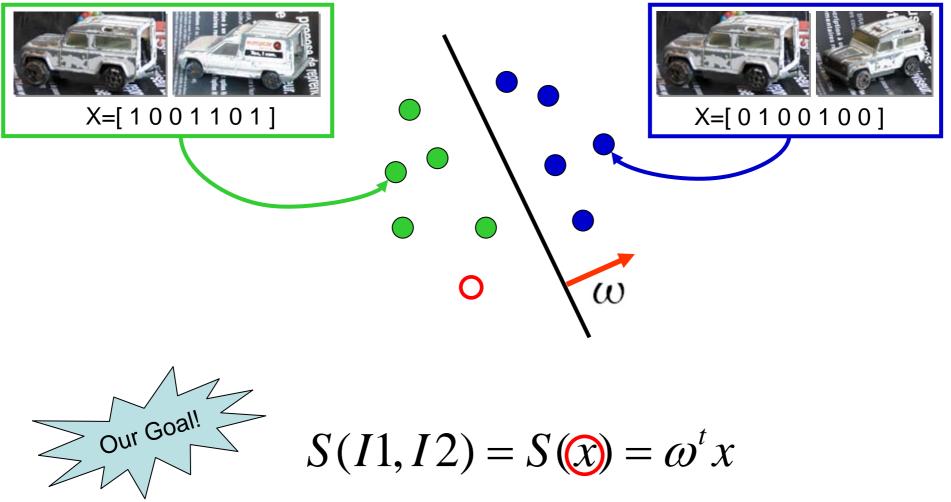
THR=0.18

- Two kinds of Split Condition
- Type 1: SIFT based
 - Consider a SIFT dimension and a threshold
 - Feature value above (or below) threshold for the two patches?
- Type 2: Geometry based
 - Patch P0 from the first image sampled from a given region (position & scale) ?

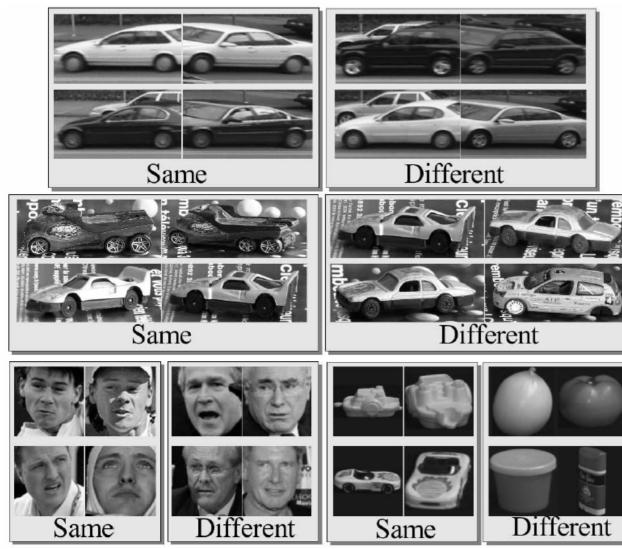
An image pair descriptor



Similarity Measure Computation



Datasets



Ferencz et al: cars distortions, tiny details, crop

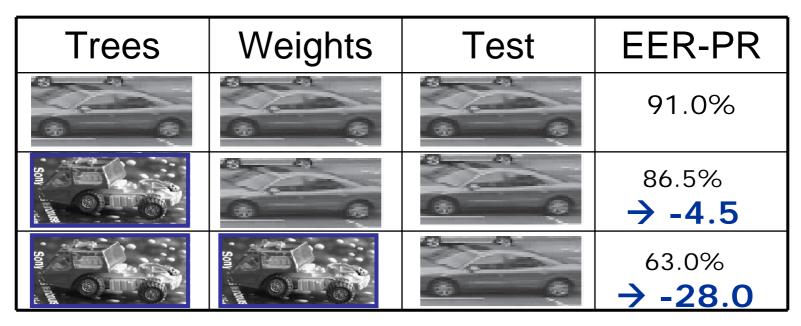
Our dataset: toycars view point, light, background

Jain et al: "faces in the news" light, expression, pose, quality, annotation errors

Fleuret et al: COIL 100 full rotation, heterogeneous

Generic vs. Specific Knowledge

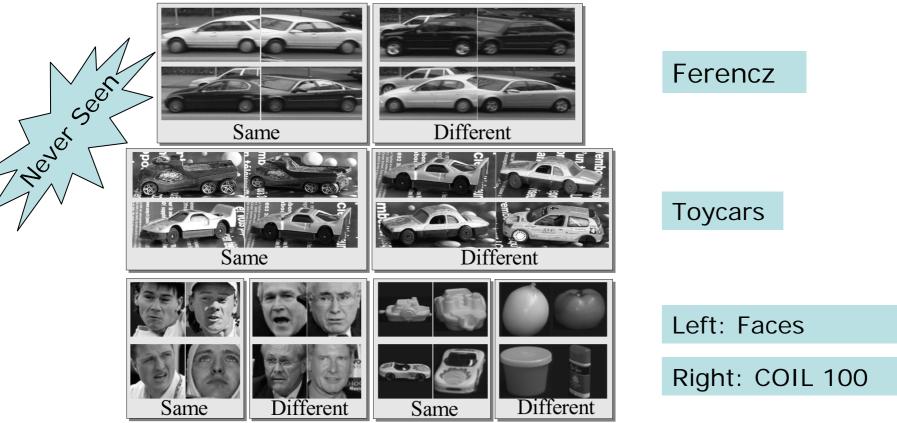
- The algorithm learns trees and weights: Two kinds of **KNOWLEDGE**
- Knowledge:
 - generic information for similarity computation?
 - or information specific to a dataset?



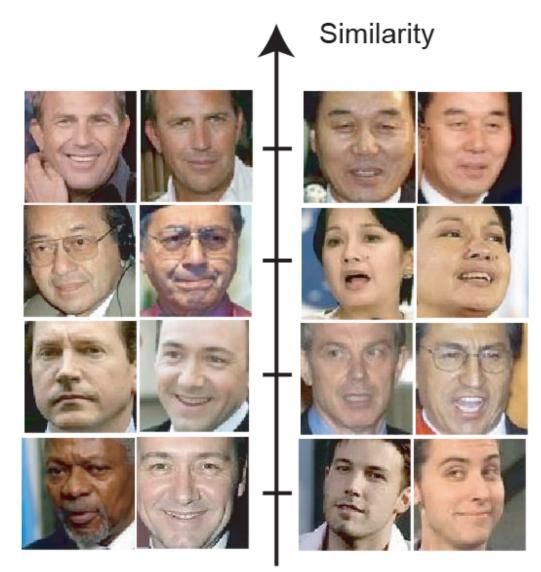
CCL: we ARE embedding specific knowledge

Comparison with State of the Art: Equal Error Rate of Precision

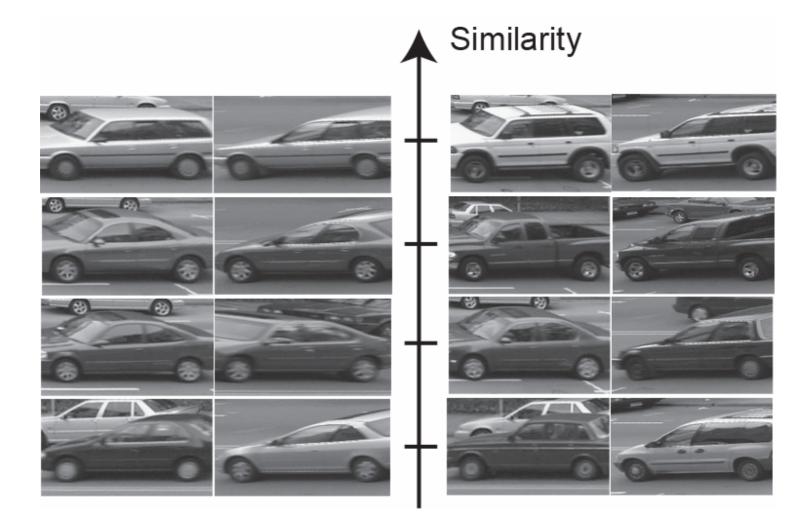
Method	Toy cars	Ferencz	Faces	Coil 100
Others	-	84.9 [4]	70.0 [12]	88.6±4 [7]
Ours	85.9 ± 0.4	$91.0_{\pm 0.6}$	$84.2_{\pm 3.1}$	93.0±1.9
Gain	-	6.1	14.2	4.4



Visualizations

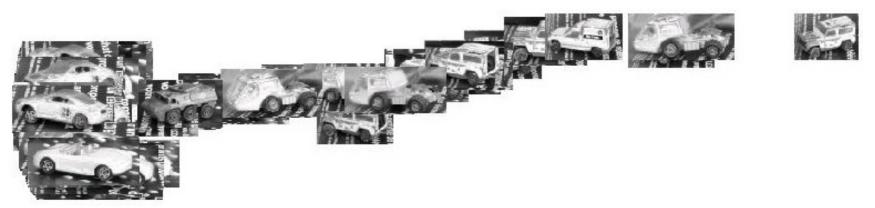


Visualizations



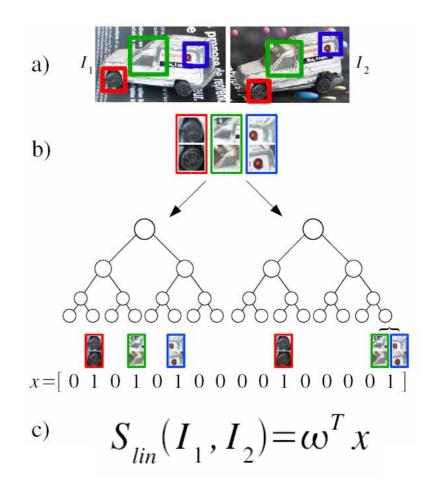
Visualizations

- Multi dimensional scaling (2D): L2 distance in 2D as close as possible to the pairwise similarity matrix
- Below: simple bag of words representation
- Next page: our similarity measure



Method Summary

- Consider corresp. local regions
- Quantize patch pair differences
 Extremely Randomized
 Clustering Forest
- Get global image pair descriptor
- Similarity measure is a weighted sum



Future Works

- Deal with object categories instead of object instances
- Use and combine more features
 e.g. color
- Applications
 - Photo collection browsing
 - Face identification

— ...

Binaries, Dataset, ... http://lear.inrialpes.fr/people/nowak

Thank you for your attention!