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What this part is about

Learning dictionaries for discriminative tasks. . .

. . . and adapted to image classification tasks.

Structured Sparse Models.
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Learning dictionaries with a discriminative cost function

Idea:

Let us consider 2 sets S−,S+ of signals representing 2 different classes.
Each set should admit a dictionary best adapted to its reconstruction.

Classification procedure for a signal x ∈ Rn:

min(R?(x,D−),R?(x,D+))

where
R?(x,D) = min

α∈Rp
||x−Dα||22 s.t. ||α||0 ≤ L.

“Reconstructive” training{
minD−

∑
i∈S−

R?(xi ,D−)

minD+

∑
i∈S+

R?(xi ,D+)

[Grosse et al., 2007], [Huang and Aviyente, 2006],
[Sprechmann et al., 2010b] for unsupervised clustering (CVPR ’10)
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Learning dictionaries with a discriminative cost function

“Discriminative” training

[Mairal, Bach, Ponce, Sapiro, and Zisserman, 2008a]

min
D−,D+

∑
i

C
(
λzi

(
R?(xi ,D−)− R?(xi ,D+)

))
,

where zi ∈ {−1,+1} is the label of xi .

Logistic regression function

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro Part IV: Recent Advances in Computer Vision 4/45



Learning dictionaries with a discriminative cost function

Mixed approach

min
D−,D+

∑
i

C
(
λzi

(
R?(xi ,D−)− R?(xi ,D+)

))
+ µR?(xi ,Dzi ),

where zi ∈ {−1,+1} is the label of xi .

Keys of the optimization framework

Alternation of sparse coding and dictionary updates.

Continuation path with decreasing values of µ.

OMP to address the NP-hard sparse coding problem. . .

. . . or LARS when using `1.

Use softmax instead of logistic regression for N > 2 classes.
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Learning dictionaries with a discriminative cost function
Examples of dictionaries

Top: reconstructive, Bottom: discriminative, Left: Bicycle, Right:
Background.
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Learning dictionaries with a discriminative cost function
Texture segmentation
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Learning dictionaries with a discriminative cost function
Texture segmentation
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Learning dictionaries with a discriminative cost function
Pixelwise classification
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Learning dictionaries with a discriminative cost function
Multiscale scheme
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Learning dictionaries with a discriminative cost function
weakly-supervised pixel classification
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Application to edge detection and classification
[Mairal, Leordeanu, Bach, Hebert, and Ponce, 2008b]

Good edges Bad edges
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Application to edge detection and classification
Berkeley segmentation benchmark

Raw edge detection on the right
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Application to edge detection and classification
Berkeley segmentation benchmark
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Application to edge detection and classification
Contour-based classifier: [Leordeanu, Hebert, and Sukthankar, 2007]

Is there a bike, a motorbike, a car or a person on this
image?
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Application to edge detection and classification
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Application to edge detection and classification
Performance gain due to the prefiltering

Ours + [Leordeanu ’07] [Leordeanu ’07] [Winn ’05]

96.8% 89.4% 76.9%

Recognition rates for the same experiment as [Winn et al., 2005] on
VOC 2005.

Category Ours+[Leordeanu ’07] [Leordeanu ’07]
Aeroplane 71.9% 61.9%

Boat 67.1% 56.4%
Cat 82.6% 53.4%
Cow 68.7% 59.2%

Horse 76.0% 67%
Motorbike 80.6% 73.6%

Sheep 72.9% 58.4%
Tvmonitor 87.7% 83.8%

Average 75.9% 64.2 %

Recognition performance at equal error rate for 8 classes on a subset of
images from Pascal 07.
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Digital Art Authentification
Data Courtesy of Hugues, Graham, and Rockmore [2009]

Authentic Fake
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Digital Art Authentification
Data Courtesy of Hugues, Graham, and Rockmore [2009]

Authentic Fake

Fake
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Digital Art Authentification
Data Courtesy of Hugues, Graham, and Rockmore [2009]

Authentic Fake

Authentic
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Image Half-Toning
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Image Half-Toning
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Learning Codebooks for Image Classification

Idea

Replacing Vector Quantization by Learned Dictionaries!

unsupervised: [Yang et al., 2009]

supervised: [Boureau et al., 2010, Yang et al., 2010] (CVPR ’10)
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Learning Codebooks for Image Classification

Let an image be represented by a set of low-level descriptors xi at N
locations identified with their indices i = 1, . . . ,N.

hard-quantization:

xi ≈ Dαi , αi ∈ {0, 1}p and

p∑
j=1

αi [j ] = 1

soft-quantization:

αi [j ] =
e−β‖xi−dj‖2

2∑p
k=1 e−β‖xi−dk‖2

2

sparse coding:

xi ≈ Dαi , αi = arg min
α

1

2
‖xi −Dα‖2

2 + λ‖α‖1
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Learning Codebooks for Image Classification
Table from Boureau et al. [2010]

Yang et al. [2009] have won the PASCAL VOC’09 challenge using this
kind of techniques.
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Summary so far

Learned dictionaries are well adapted to model images.

They can be used to learn dictionaries of SIFT features.

They are also adapted to discriminative tasks.

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro Part IV: Recent Advances in Computer Vision 29/45



Sparse Structured Linear Model

We focus again on linear models

x ≈ Dα.

x ∈ Rm, vector of m observations.

D ∈ Rm×p, dictionary or data matrix.

α ∈ Rp, loading vector.

Assumptions:

α is sparse, i.e., it has a small support

|Γ| � p, Γ = {j ∈ {1, . . . , p}; αj 6= 0}.

The support, or nonzero pattern, Γ is structured:

Γ reflects spatial/geometrical/temporal. . . information.
e.g., 2-D grid for features associated to the pixels of an image.
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Sparsity-Inducing Norms (1/2)

min
α∈Rp

data fitting term︷︸︸︷
f (α) + λ ψ(α)︸ ︷︷ ︸

sparsity-inducing norm

Standard approach to enforce sparsity in learning procedures:

Regularizing by a sparsity-inducing norm ψ.

The effect of ψ is to set some αj ’s to zero, depending on the
regularization parameter λ ≥ 0.

The most popular choice for ψ:

The `1 norm, ‖α‖1 =
∑p

j=1 |αj |.
For the square loss, Lasso [Tibshirani, 1996].

However, the `1 norm encodes poor information, just cardinality!
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Sparsity-Inducing Norms (2/2)

Another popular choice for ψ:

The `1-`2 norm,∑
G∈G
‖αG‖2 =

∑
G∈G

(∑
j∈G

α2
j

)1/2
, with G a partition of {1, . . . , p}.

The `1-`2 norm sets to zero groups of non-overlapping variables
(as opposed to single variables for the `1 norm).

For the square loss, group Lasso [Yuan and Lin, 2006].

However, the `1-`2 norm encodes fixed/static prior information,
requires to know in advance how to group the variables !

Questions:

What happen if the set of groups G is not a partition anymore?

What is the relationship between G and the sparsifying effect of ψ?

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro Part IV: Recent Advances in Computer Vision 32/45



Structured Sparsity
[Jenatton et al., 2009]

Case of general overlapping groups.

When penalizing by the `1-`2 norm,∑
G∈G
‖αG‖2 =

∑
G∈G

(∑
j∈G

α2
j

)1/2

The `1 norm induces sparsity at the group level:

Some αG ’s are set to zero.

Inside the groups, the `2 norm does not promote sparsity.

Intuitively, variables belonging to the same groups are encouraged
to be set to zero together.

Optimization via reweighted least-squares, proximal methods, etc. . .
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Examples of set of groups G (1/3)

Selection of contiguous patterns on a sequence, p = 6.

G is the set of blue groups.

Any union of blue groups set to zero leads to the selection of a
contiguous pattern.
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Examples of set of groups G (2/3)

Selection of rectangles on a 2-D grids, p = 25.

G is the set of blue/green groups (with their not displayed
complements).

Any union of blue/green groups set to zero leads to the selection of
a rectangle.
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Examples of set of groups G (3/3)

Selection of diamond-shaped patterns on a 2-D grids, p = 25.

It is possible to extent such settings to 3-D space, or more complex
topologies.
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Overview of other work on structured sparsity

Specific hierarchical structure [Zhao et al., 2009, Bach, 2008].

Union-closed (as opposed to intersection-closed) family of nonzero
patterns [Baraniuk et al., 2010, Jacob et al., 2009].

Nonconvex penalties based on information-theoretic criteria with
greedy optimization [Huang et al., 2009].

Structure expressed through a Bayesian prior, e.g., [He and Carin,
2009].
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Hierarchical Dictionaries
[Jenatton, Mairal, Obozinski, and Bach, 2010]

A node can be active only if its ancestors are active.
The selected patterns are rooted subtrees.

Optimization via efficient proximal methods (same cost as `1)
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Hierarchical Dictionaries
[Jenatton, Mairal, Obozinski, and Bach, 2010]
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Group Lasso + `1 = Collaborative Hierarchical Lasso
[Sprechmann, Ramirez, Sapiro, and Eldar, 2010a]

Optimization also via proximal methods
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Topographic Dictionaries

“Topographic” dictionaries [Hyvarinen and Hoyer, 2001, Kavukcuoglu
et al., 2009] are a specific case of dictionaries learned with a structured
sparsity regularization for α.

Figure: Image obtained from [Kavukcuoglu et al., 2009]
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