
Advanced Learning Models
Chapter III - Deep Generative Models

Julien Mairal & Xavier Alameda-Pineda

with the help of Jakob Verbeek and Thomas Lucas

MSIAM/MoSIG – 2019-2020

1 / 83

Course Organisation

Homework & Data challenge

You can do the homework and the data challenge in groups of two people.

If you do so, the two groups must be with different people.

2 / 83

Table of Contents

1 Introduction

2 Generative Adversarial Networks

3 Variational Auto-Encoders

4 Deep invertible transformations

5 Autoregressive Density Estimation

3 / 83

Introduction

4 / 83

Motivations for unsupervised (deep) learning

1 Improve supervised learning from few samples
I Unlabeled data often abundantly available
I Learn representations/features from unlabeled data

2 Generative models for image and other complex data

I Unconditional: sandbox research problem (?)
I Conditional structured prediction: in-painting, colorization, text-to-image,

video forecasting, etc.

Image colorization [Royer et al., 2017]

5 / 83

(Un)supervised learning and (un)conditional models

Supervised learning: model conditional distribution pθ(y |x)
I For example: x an image, y a class label

max
θ

∑
(x,y)∼D

ln pθ(y |x) (1)

I D: data generating distribution
I θ: model parameters

Unsupervised learning: model unconditional distribution p(x)
I For example: x an image

max
θ

∑
x∼D

ln pθ(x) (2)

6 / 83

Self-supervised learning

Learning conditional models p(y |x) from unlabeled data

Prediction of structural data properties
I Skip-gram language models (word2vec) [Mikolov et al., 2013]
I Relative position of image patches [Doersch et al., 2015]
I Relative ordering of video frames [Fernando et al., 2017]
I Image inpainting [Pathak et al., 2016]
I . . .

7 / 83

Self-supervised learning to prime supervised learning

Supervised pre-training of network on proxy-task

Fine-tune on final task with limited training data

Unsupervised representation learning

Does not allow to sample data from model

8 / 83

Generative models

Unconditional density model pθ(x)

Parameters estimated from unlabeled data

Possible to draw samples from model

Samples from ImageNet dataset (left) and GAN model (right), figure from OpenAI
9 / 83

My first generative model

Gaussian mixture model

p(z = k) = πk (3)

p(x|z = k) = N (x ;µk , σID) (4)

p(x) =
∑
z

p(z)p(x|z) (5)

Estimation: Expectation-Maximization (EM) algorithm

Sampling: pick component from prior distribution p(z),
then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006]
10 / 83

My second generative model

Probabilistic Principal Component Analysis
[Roweis, 1997, Tipping and Bishop, 1999]

p(z) = N (z ; 0, Id) (6)

p(x|z) = N (x;µ+ Wz , σID) (7)

p(x) =

∫
z

p(z)p(x|z) (8)

Estimation: SVD or EM algorithm

Sampling: pick point in subspace from prior p(z),
then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006] 11 / 83

Linear latent variable models

Linear transformation of latent variable
I PCA: z from unit Gaussian
I GMM: z random 1-hot vector

x̂ = Wz + µ (9)

Gaussian noise makes support non-degenerate in
data space

p(x|x̂) = N (x; x̂, σID) (10)

Negative log-likelihood gives `2 “reconstruction” loss
of PCA and k-means

− ln p(x|x̂) = ||x− x̂||22 (11)

12 / 83

Non-linear latent variable models

Simple distribution p(z) on latent variable z,
e.g. standard Gaussian

Non-linear function x = fθ(z) maps latent variable to data space, for example
deep neural net

Induces complex marginal distribution pθ(x)

Figure from Aaron Courville

13 / 83

Learning deep latent variable models

Marginal distribution on x obtained by integrating out z

p(z) = N (z; 0, I), (12)

pθ(x) =

∫
z

p(z)p(x|fθ(z)). (13)

Evaluation of pθ(x) intractable due to integral involving non-linear deep net
fθ(·)

Several approaches to learn deep latent variable models
1 Avoid integral: Generative adversarial networks (GAN)
2 Approximate integral: Variational autoencoders (VAE)
3 Constrain fθ so that we can compute pθ(x) (e.g. Real-NVP)
4 Do not use latent variables (e.g. PixelCNN)

14 / 83

Generative Adversarial Networks

15 / 83

Generative adversarial networks [Goodfellow et al., 2014]

Sample p(z), map it using deep net to x = Gθ(z)

Instead of evaluating p∗(x), use classifier Dφ
I Dφ(x) ∈ [0, 1] probability x is real vs. synth. image

Figure from Kevin McGuinness

16 / 83

Discriminator architecture for images

Figure from Kevin McGuinness

Recognition CNN model, with sigmoid output layer

Binary classification output: real / synthetic

17 / 83

Generator architecture for images

Unit Gaussian prior on z, typically 102 to 103 dimensions

Up-convolutional deep network (reverse recognition CNN)
I Replace pooling layers that reduce resolution with

upsampling layers (nearest neighbor, bi-linear, or learned)
I Low-resolution layers induce long-range correlations
I High-resolution layers induce short-range correlations

Figure from OpenAI

18 / 83

Training GANs

Discriminator: maximize classification for a given generator

Generator: degrade classification of a given discriminator

Samples z pass through two differentiable modules

Discriminator acts as trainable loss function
19 / 83

GAN learning process

20 / 83

GAN Optimization problem

Objective function V (φ, θ): performance of discriminator

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEx∼p(z)[ln (1− Dφ(Gθ(z)))]

min
θ

max
φ

V (φ, θ)

Assuming infinite data and model capacity,
and reaching optimal discriminator at each iteration

1 Unique global optimum for G at data distribution
2 Convergence to optimum guaranteed

21 / 83

Optimal discriminator

For fixed generator G , the optimal discriminator D is the Bayes classifier

D∗G (x) =
pdata(x)

pdata(x) + pG (x)
(14)

Proof: Given generator f , the optimal discriminator maximizes

V (D,G) = IEx∼pdata(x)[lnD(x)] + IEz∼p(z)[ln(1− D(G(z)))]

=

∫
x

pdata(x) lnD(x) + pG (x) ln(1− D(x)) dx

For any (a, b) ∈ IR2 \ {0, 0} the function a ln(y) + b ln(1− y) achieves its maximum
in [0, 1] at y = a/(a + b).

Discriminator only needs to be defined in support of training data and pG (x).

22 / 83

Link with Jensen-Shannon divergence

Plugging in the optimal discriminator we obtain

max
D

V (D,G) = − ln 4 + 2DJS(pdata||pG)

with Jensen-Shannon divergence

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)

Unique global minimum obtained for pdata = pG

If D is set to optimum at each iteration, then convexity shows that gradient
descent on pG recovers the global optimum

23 / 83

Training GANs in practice

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

Replace expectations with sample average in mini-batch

Parallel stochastic gradient descent on φ and θ
24 / 83

Samples model learned on face images [Radford et al., 2016]

25 / 83

Modern network on ImageNet, class conditional

Examples taken from Brock et al. 2019

26 / 83

GAN generalizes beyond training data

Sample along linear trajectory in latent space z1 → z2

Smooth transitions suggest generalization,
sharp transitions would suggest literal memorization

Examples taken from [Radford et al., 2016], trained on LSUN bedroom dataset

27 / 83

GAN generalizes beyond training data

Examples taken from Brock et al. 2019

28 / 83

Issues training GANs in practice

GANs known to be difficult to train in practice
I Formulated as mini-max objective between two networks
I Optimization can oscillate between solutions
I Picking “compatible” generator and discriminator architectures
I Training fails if the discriminator is ’too good’

Mode collapse: failure to capture part of training data

Quantitative evaluation not aligned with objective function

29 / 83

Why is GAN training is difficult in practice?

Recall divergence measures between distributions

Kullback-Leibler divergence: maximum likelihood training
I Infinite if q (model) has a zero in the support of p (data)

DKL(p||q) =

∫
x

p(x)
[

ln q(x)− ln p(x)
]

(15)

Jensen-Shannon divergence: idealized GAN training
I Symmetric KL to mixture of p and q

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(16)

30 / 83

Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1 Strong discriminator leads to vanishing gradients of IEpz [ln(1− D(G (z)))]
w.r.t. generator

I Happens early in training with poor generator
I Tuning of capacity and training regime of discriminator
I Generator no longer minimize JS divergence

2 Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient
I Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)
I Wrong sign in the JS divergence
I Direction of KL term leads to mode dropping

31 / 83

Wasserstein or “earth-mover” distance

Consider joint distribution γ(x , y)
with marginals p(x) = γ(x) and q(y) = γ(y)

Conditional γ(y |x) “moves mass” to transform p(·) into q(·)

Cost associated with a given transformation

T (γ) =

∫
x,y

γ(x , y) ||x − y || =

∫
x

p(x)

∫
y

γ(y |x) ||x − y ||

Wasserstein distance is the cost of optimal transformation

DWS(p||q) = inf
γ∈Γ(p,q)

T (γ) (17)

32 / 83

Distributions with low dimensional support

Simple example: support on lines in IR2

I p0 uniform on x2 ∈ [0, 1] for x1 = 0
I pθ uniform on x2 ∈ [0, 1] for x1 = θ

All measures zero for θ = 0, but for θ 6= 0
I DKL(p0||pθ) =∞
I DJS(p0||pθ) = ln 2
I DWS(p0||pθ) = |θ|

Wasserstein based on proximity of support

JS and KL based on overlap of support
I In general measure zero overlap with low dim. supports
I GAN has support with dimension of latent variable z

33 / 83

Wasserstein GAN

Dual formulation of Wasserstein distance

DWS(pdata||pG) =
1

k
max
||D||L≤k

IEpdata
[D(x)]− IEpz [D(G (z))]

1 Restrict D to some deep net architecture
2 Enforce Lipschitz constraint by clipping discriminator weights or penalty on

gradient magnitude [Gulrajani et al., 2017]

Removes log-sigmoid transformation w.r.t. normal GAN

34 / 83

Experimental comparison GAN and WGAN

GAN loss unstable, and actually increases over iterations!

WGAN loss deceases in stable manner

WGAN gives better correlation loss and sample quality

GAN
WGAN

35 / 83

Latent variable inference in GANs [Donahue et al., 2017]

Vanilla GAN lacks a mechanism to infer z from x

Generator: maps latent variable z to data point x

Encoder: infers latent representation z from data point x

36 / 83

Induced joint distributions over (x, z)

Generator: pG (x, z) = pz(z) δ (x− G (z))

Encoder: pE (x, z) = pdata(x) δ (z− E (x))

Discriminator: pair (x, z) completed by generator or encoder?

37 / 83

Bidirectional GANs [Donahue et al., 2017]

V (D,E ,G) = IEpdata [lnD(x,E(x))] + IEp(z)[ln(1− D(G(z), z))]

min
G ,E

max
D

V (D,E ,G)

For optimal discriminator objective equals JS divergence

max
D

V (D,E ,G) = 2DJS (pE (x, z)||pG (x, z))− ln 4

At optimum G and E are each others inverse

38 / 83

BiGAN samples, ImageNet 64× 64

39 / 83

Unpaired image-to-image translation [Zhu et al., 2017]

Learn 2-way mapping between different image domains
Without using supervised aligned training samples

1 Discriminator ensures realistic samples in each domain
2 Cycle-consistency loss ensures alignment

40 / 83

Some successful examples

Without using any supervised/aligned examples!

41 / 83

And a failure case

42 / 83

Conditional image generation

We may want to condition the generation by a certain input vector.

Example: Action Unit conditioned face generation.

Image from [Pumarola et al., 2018].

43 / 83

Multi-domain conditional generation

We may want to translate between multiple domains.

With previous methods, we need to learn a pair encoder-generation for every
two domains → highly undesirable.

StarGAN: use a central latent representation space.

Learn a domain2central encoder and a central2domain generator for each
domain.

44 / 83

Samples

45 / 83

Variational Auto-Encoders

46 / 83

Autoencoders

Learn latent representation z via reconstruction of data x

Neural network where output ∼ input
I Encoder: maps data x to latent code z
I Decoder: maps latent code z to reconstruction x̃

Loss minimizes discrepancy between x and x̃

47 / 83

Relation autoencoders and PCA [Baldi and Hornik, 1989]

Autoencoder recovers PCA if
1 Encoder and decoder are both linear
2 Optimizing `2 reconstruction loss

min
V ,W

1

2N

N∑
n=1

||xn − VWxn||2 (18)

48 / 83

Deep non-linear autoencoders

Stack many non-linear layers in encoder and decoder

Non-linear representation learning

Does not provide a generative model that can be sampled

49 / 83

Autoencoding variational Bayes [Kingma and Welling, 2014]

Decoder f implements generative latent variable model
I Maps latent code z to observation x

pθ(x|z) = N (x; f µθ (z), f σθ (z)) (19)

Encoder g compute approximate posterior distribution
I Maps data x to latent code z

qφ(z|x) = N (z; gµφ (x), gσφ (x)) (20)

Figure from kvfrans@github

50 / 83

Objective function: Evidence lower bound (ELBO)

Quantity of interest: marginal likelihood or “evidence”

pθ(x) =

∫
z

p(z)pθ(x|z) (21)

Idea 0: Monte-Carlo estimation. Problem: high dimensional

Idea 1: Weighted sampling

pθ(x) =

∫
z

qφ(z |x)pθ(x|z)
p(z)

qφ(z |x)
dz (22)

51 / 83

Objective function: Evidence lower bound (ELBO)

Idea 2: Efficient estimation with the ELBO

ln(pθ(x)) = ln

(∫
z

qφ(z |x)pθ(x|z)
p(z)

qφ(z |x)
dz

)
(23)

≥
∫
z

qφ(z |x) ln

(
pθ(x |z)

p(z)

qφ(z |x)

)
dz (24)

= Eqφ(z|x)[ln(pθ(x |z))]− DKL(qφ(z |x)||p(z)) (25)

ELBO becomes function of inference net and generative net

F (θ, φ) = IEqφ [ln pθ(x|z)]− DKL

(
qφ(z|x)||p(z)

)
(26)

52 / 83

Objective function: Evidence lower bound (ELBO)

Comments on the ELBO:

F (θ, φ) = IEqφ(z|x)[ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(27)

Has an auto-encoder interpretation.

Efficient computations, at the cost of approximation.

KL divergence: non-negative, and zero if and only if q = p. Balance between
both terms

53 / 83

Objective function: Evidence lower bound (ELBO)

Re-writing the ELBO:

F (θ, φ) = IEqφ [ln pθ(x|z)]− DKL

(
qφ(z|x)||p(z)

)
(28)

Using Bayes rule yields p(z) = p(x)p(z|x)
p(x|z) and:

F (θ, φ) = IEqφ [ln pθ(x|z)]−
∫
z

qφ(z|x) log

(
qφ(z|x)pθ(x|z)

p(z|x)pθ(x)

)
(29)

= IEqφ

[
ln pθ(x|z)pθ(x)

ln pθ(x|z)

]
− DKL

(
qφ(z|x)||p(z|x)

)
(30)

= ln pθ(x)− DKL

(
qφ(z|x)||p(z|x)

)
(31)

54 / 83

Objective function: Evidence lower bound (ELBO)

F (θ, φ) = IEqφ [ln pθ(x|z)]− DKL

(
qφ(z|x)||p(z)

)
(32)

= ln pθ(x)− DKL

(
qφ(z|x)||pθ(z|x)

)
(33)

Comments:

Second form intractable

Second form clearly a lower bound

Second bound is tight if and only if qφ(z|x) = pθ(z|x)

55 / 83

Computation ELBO for variational autoencoder

F (θ, φ) = IEqφ [ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(34)

Regularization term keeps q from collapsing to single point z (Information
bottleneck)

Closed form if both terms are Gaussian, for p(z) = N (z; 0, I)

DKL (qφ(z|x)||p(z)) =
1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(35)

Differentiable function of inference net parameters

56 / 83

Computation ELBO for variational autoencoder

F (θ, φ) = IEqφ [ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(36)

Reconstruction term: to what extent can x be reconstructed from z
following approximate posterior q(z|x)

Use sample approximation of intractable expectation
zs ∼ qφ(z|x)

IEqφ [ln pθ(x|z)] ≈ 1

S

S∑
s=1

ln pθ(x|zs) (37)

Estimator is non-differentiable due to sampling operator

57 / 83

Re-parametrization trick

Side-step non-differentiable sampling operator by re-parametrizing samples

zs ∼ qφ(z|x) = N
(
z; gµφ (x), gσφ (x)

)
Use inference net to modulate samples from a unit Gaussian

zs = gµφ (x) + gσφ (x)� εs , εs ∼ N (εs ; 0, I) (38)

Samples zs differentiable function of inference net param. φ,
given unit Gaussian samples εs

Unbiased differentiable approximation of ELBO

F (θ, φ) ≈ 1

S

S∑
s=1

ln pθ
(
x|gµφ (x) + gσφ (x)� εs

)
(39)

−1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(40)

58 / 83

Re-parametrization trick in a cartoon

Figure from [Doersch, 2016]

59 / 83

Autoencoding variational Bayes training algorithm

For each data point x in a mini-batch
1 Sample one or multiple values {εs}
2 Use back-propagation to compute

gθ = ∇θF (θ, φ, {εs})
gφ = ∇φF (θ, φ, {εs})

3 Gradient-based parameter update

Figure from Aaron Courville

60 / 83

Random samples from VAE and GAN

Trained from 200k images in CelebA dataset

VAE samples appear overly smooth / blurred

GAN samples show more (imperfect) detail

Figure from [Hou et al., 2016]

61 / 83

VAE vs. GAN

VAE provide a nice probabilistic generation framework but smooth results.
GANs are less intuitive but have sharper results.

62 / 83

Deep invertible transformations

63 / 83

Non-volume preserving (NVP) transformation [Dinh et al., 2017]

Learn invertible function from latent to data space

Latent and data space have same dimensionality

Unit Gaussian prior on latent variables

Tractable sampling and exact inference

64 / 83

Change of variable formula for invertible function

Using the change of variable formula:

pX (x) = pY (f (x))×
∣∣∣∣det

(
∂f (x)

∂x>

)∣∣∣∣
Need to ensure efficient computation of (i) y = f (x) and (ii) determinant

1 Partition variables in two groups

2 Keep one group unchanged

3 Let one group transform the other via translation
and scaling

y1 = x1

y2 = t (x1) + x2 � exp (s(x1))

65 / 83

Properties: Efficient inversion

Inverse transformation

x1 = y1 (41)

x2 = (y2 − t (x1))� exp (−s(x1)) (42)

No need to invert s(·) and t(·)
Can use complex non-invertible functions, e.g. deep CNN

66 / 83

Properties: Efficient determinant computation

Triangular structure of Jacobian

∂f (x)

∂x>
=

[
Id 0
∂y2

∂x>1
diag(exp(s(x1)))

]

Determinant given by product of Jacobian’s diagonal
terms

ln det

(
∂f (x)

∂x>

)
= 1>s(x1)

Log-likelihood easily computed, optimize using
stochastic gradient decent

ln pX (x) = ln pY (f (x)) + 1>s(x1)

67 / 83

Images & Samples NVP: CIFAR10 Dataset 32× 32

68 / 83

Autoregressive Density Estimation

69 / 83

Autoregressive modeling

Consider generic factorization of joint probability

p(x1:D) = p(x1)
D∏
i=2

p(xi |x<i) (43)

with x<i = x1, . . . , xi−1

Use (deep) neural net to model dependencies in p(xi |x<i)

Tractable exact likelihood computations
I No complex integral over latent variables in likelihood

Slow sequential sampling process
I Cannot rely on latent variables to couple pixels

70 / 83

Pixel Recurrent/Convolutional Neural Networks
[Oord et al., 2016b]

Predict pixels one-by-one in row-major
ordering

Translation invariant definition of
conditionals p(xi |x<i)

Decouple number of pixels from number of
parameters

71 / 83

Pixel RNN: Bi-directional LSTM

Two sets of LSTM units, working
down-right and down-left

I Input up and left/right state
I Input up and left/right pixels

Receptive field
I In each stream: all pixels above and to the

right/left
I Combined: all previous pixels

Slow sequential training process
I Due to sequential state updates

72 / 83

Pixel Convolutional Neural Networks

Use limited context via CNN layers
I Only local dependencies per layer

Masked convolutions to ensure autoregressive
property

I Layers increase receptive field
I Two stacks to fill blind spot: horizontal stack

reads from vertical stack, not vice-versa

Efficient parallel training, but sampling remains
sequential and slow

Extensions: WaveNet (audio)
[Oord et al., 2016a], Video Pixel Networks
[Kalchbrenner et al., 2017]

73 / 83

Class-conditional pixelCNN [Oord et al., 2016c]

Samples single model trained across 1,000 ImageNet classes

74 / 83

Images generated by PixelCNNs trained on CIFAR10

[Oord et al., 2016b] (top) and [Salimans et al., 2017] (bottom)

Models capture texture and details relatively well

Lacking in global structure / long range dependencies
75 / 83

Parallel multiscale autoregressive density estimation
[Reed et al., 2017]

Address the inherently limited sampling efficiency of
autoregressive models

p(x1:N) =
N∏
i=1

p(xi |x<i)

Sample image along a scale pyramid
I Pixel-CNN for base resolution, e.g. 4×4
I Autoregressive upsampling networks

Impose group structure among pixels
I Independent sampling within each group
I Autoregressive sampling across groups

76 / 83

Sampling pixels in groups

Group pixels along position in 2× 2 blocks
I Group 1 given from previous resolution
I Sample remaining pixels in three steps

Example network to predict group 2 from group 1
I Use CNN without pooling to predict/sample new columns
I Interleave pixel columns from group 1 and 2

77 / 83

Example results of upsampling real low-resolution images

About 100× speed-up w.r.t. pixel-CNN sampling

78 / 83

Conclusion & Reminder

Several approaches to learn deep latent variable models

1 Avoid integral: Generative adversarial networks (GAN)

2 Approximate integral: Variational autoencoders (VAE)

3 Constrain the function so that we can compute the marginal (e.g. Real-NVP)

4 Do not use latent variables (e.g. PixelCNN)

Homework & Data challenge

You can do the homework and the data challenge in groups of two people.

If you do so, the two groups must be with different people.

79 / 83

References I

Arjovsky, M., Chintala, S., and Bottou, L. (2017).

Wasserstein generative adversarial networks.
In ICML.

Baldi, P. and Hornik, K. (1989).

Neural networks and principal component analysis: Learning from examples without local minima.
Neural Networks.

Bishop, C. (2006).

Pattern recognition and machine learning.
Spinger-Verlag.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017).

Density estimation using real NVP.
In ICLR.

Doersch, C. (2016).

Tutorial on variational autoencoders.
arXiv:1606.05908.

Doersch, C., Gupta, A., and Efros, A. (2015).

Unsupervised visual representation learning by context prediction.
In ICCV.

Donahue, J., Krähenbühl, P., and Darrell, T. (2017).

Adversarial feature learning.
In ICLR.

Fernando, B., Bilen, H., Gavves, E., and Gould, S. (2017).

Self-supervised video representation learning with odd-one-out networks.
In CVPR.

80 / 83

References II

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).

Generative adversarial nets.
In NeurIPS.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017).

Improved training of Wasserstein GANs.
In NeurIPS.

Hou, X., Shen, L., Sun, K., and Qiu, G. (2016).

Deep feature consistent variational autoencoder.
CoRR, abs/1610.00291.

Kalchbrenner, N., van den Oord, A., Simonyan, K., Danihelka, I., Vinyals, O., Graves, A., and Kavukcuoglu, K. (2017).

Video pixel networks.
In ICML.

Kingma, D. and Welling, M. (2014).

Auto-encoding variational Bayes.
In ICLR.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).

Efficient estimation of word representations in vector space.
In ICLR.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016a).

Wavenet: a generative model for raw audio.
In ISCA Speech Syntesis Workshop.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. (2016b).

Pixel recurrent neural networks.
In ICML.

81 / 83

References III

Oord, A. v. d., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and Kavukcuoglu, K. (2016c).

Conditional image generation with PixelCNN decoders.
In NeurIPS.

Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., and Efros, A. (2016).

Context encoders: Feature learning by inpainting.
In CVPR.

Pumarola, A., Agudo, A., Martinez, A. M., Sanfeliu, A., and Moreno-Noguer, F. (2018).

Ganimation: Anatomically-aware facial animation from a single image.
In ECCV.

Radford, A., Metz, L., and Chintala, S. (2016).

Unsupervised representation learning with deep convolutional generative adversarial networks.
In ICLR.

Reed, S., van den Oord, A., Kalchbrenner, N., Colmenarejo, S. G., Wang, Z., Belov, D., and de Freitas, N. (2017).

Parallel multiscale autoregressive density estimation.
In ICML.

Roweis, S. (1997).

EM Algorithms for PCA and SPCA.
In NeurIPS.

Royer, A., Kolesnikov, A., and Lampert, C. (2017).

Probabilistic image colorization.
In BMVC.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. (2017).

PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications.
In ICLR.

82 / 83

References IV

Tipping, M. E. and Bishop, C. M. (1999).

Mixtures of probabilistic principal component analysers.
Neural Computation, 11(2):443–482.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. (2017).

Unpaired image-to-image translation using cycle-consistent adversarial networks.
In ICCV.

83 / 83

	Introduction
	Generative Adversarial Networks
	Variational Auto-Encoders
	Deep invertible transformations
	Autoregressive Density Estimation

