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Course Organisation

Homework & Data challenge

You can do the homework and the data challenge in groups of two people.

If you do so, the two groups must be with different people.
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Introduction
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Motivations for unsupervised (deep) learning

1 Improve supervised learning from few samples
I Unlabeled data often abundantly available
I Learn representations/features from unlabeled data

2 Generative models for image and other complex data

I Unconditional: sandbox research problem (?)
I Conditional structured prediction: in-painting, colorization, text-to-image,

video forecasting, etc.

Image colorization [Royer et al., 2017]
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(Un)supervised learning and (un)conditional models

Supervised learning: model conditional distribution pθ(y |x)
I For example: x an image, y a class label

max
θ

∑
(x,y)∼D

ln pθ(y |x) (1)

I D: data generating distribution
I θ: model parameters

Unsupervised learning: model unconditional distribution p(x)
I For example: x an image

max
θ

∑
x∼D

ln pθ(x) (2)
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Self-supervised learning

Learning conditional models p(y |x) from unlabeled data

Prediction of structural data properties
I Skip-gram language models (word2vec) [Mikolov et al., 2013]
I Relative position of image patches [Doersch et al., 2015]
I Relative ordering of video frames [Fernando et al., 2017]
I Image inpainting [Pathak et al., 2016]
I . . .
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Self-supervised learning to prime supervised learning

Supervised pre-training of network on proxy-task

Fine-tune on final task with limited training data

Unsupervised representation learning

Does not allow to sample data from model
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Generative models

Unconditional density model pθ(x)

Parameters estimated from unlabeled data

Possible to draw samples from model

Samples from ImageNet dataset (left) and GAN model (right), figure from OpenAI
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My first generative model

Gaussian mixture model

p(z = k) = πk (3)

p(x|z = k) = N (x ;µk , σID) (4)

p(x) =
∑
z

p(z)p(x|z) (5)

Estimation: Expectation-Maximization (EM) algorithm

Sampling: pick component from prior distribution p(z),
then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006]
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My second generative model

Probabilistic Principal Component Analysis
[Roweis, 1997, Tipping and Bishop, 1999]

p(z) = N (z ; 0, Id) (6)

p(x|z) = N (x;µ+ Wz , σID) (7)

p(x) =

∫
z

p(z)p(x|z) (8)

Estimation: SVD or EM algorithm

Sampling: pick point in subspace from prior p(z),
then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006] 11 / 83



Linear latent variable models

Linear transformation of latent variable
I PCA: z from unit Gaussian
I GMM: z random 1-hot vector

x̂ = Wz + µ (9)

Gaussian noise makes support non-degenerate in
data space

p(x|x̂) = N (x; x̂, σID) (10)

Negative log-likelihood gives `2 “reconstruction” loss
of PCA and k-means

− ln p(x|x̂) = ||x− x̂||22 (11)
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Non-linear latent variable models

Simple distribution p(z) on latent variable z,
e.g. standard Gaussian

Non-linear function x = fθ(z) maps latent variable to data space, for example
deep neural net

Induces complex marginal distribution pθ(x)

Figure from Aaron Courville
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Learning deep latent variable models

Marginal distribution on x obtained by integrating out z

p(z) = N (z; 0, I ), (12)

pθ(x) =

∫
z

p(z)p(x|fθ(z)). (13)

Evaluation of pθ(x) intractable due to integral involving non-linear deep net
fθ(·)

Several approaches to learn deep latent variable models
1 Avoid integral: Generative adversarial networks (GAN)
2 Approximate integral: Variational autoencoders (VAE)
3 Constrain fθ so that we can compute pθ(x) (e.g. Real-NVP)
4 Do not use latent variables (e.g. PixelCNN)
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Generative Adversarial Networks
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Generative adversarial networks [Goodfellow et al., 2014]

Sample p(z), map it using deep net to x = Gθ(z)

Instead of evaluating p∗(x), use classifier Dφ
I Dφ(x) ∈ [0, 1] probability x is real vs. synth. image

Figure from Kevin McGuinness
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Discriminator architecture for images

Figure from Kevin McGuinness

Recognition CNN model, with sigmoid output layer

Binary classification output: real / synthetic
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Generator architecture for images

Unit Gaussian prior on z, typically 102 to 103 dimensions

Up-convolutional deep network (reverse recognition CNN)
I Replace pooling layers that reduce resolution with

upsampling layers (nearest neighbor, bi-linear, or learned)
I Low-resolution layers induce long-range correlations
I High-resolution layers induce short-range correlations

Figure from OpenAI
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Training GANs

Discriminator: maximize classification for a given generator

Generator: degrade classification of a given discriminator

Samples z pass through two differentiable modules

Discriminator acts as trainable loss function
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GAN learning process
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GAN Optimization problem

Objective function V (φ, θ): performance of discriminator

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEx∼p(z)[ln (1− Dφ(Gθ(z)))]

min
θ

max
φ

V (φ, θ)

Assuming infinite data and model capacity,
and reaching optimal discriminator at each iteration

1 Unique global optimum for G at data distribution
2 Convergence to optimum guaranteed
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Optimal discriminator

For fixed generator G , the optimal discriminator D is the Bayes classifier

D∗G (x) =
pdata(x)

pdata(x) + pG (x)
(14)

Proof: Given generator f , the optimal discriminator maximizes

V (D,G) = IEx∼pdata(x)[lnD(x)] + IEz∼p(z)[ln(1− D(G(z)))]

=

∫
x

pdata(x) lnD(x) + pG (x) ln(1− D(x)) dx

For any (a, b) ∈ IR2 \ {0, 0} the function a ln(y) + b ln(1− y) achieves its maximum
in [0, 1] at y = a/(a + b).

Discriminator only needs to be defined in support of training data and pG (x).
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Link with Jensen-Shannon divergence

Plugging in the optimal discriminator we obtain

max
D

V (D,G ) = − ln 4 + 2DJS(pdata||pG )

with Jensen-Shannon divergence

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)

Unique global minimum obtained for pdata = pG

If D is set to optimum at each iteration, then convexity shows that gradient
descent on pG recovers the global optimum
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Training GANs in practice

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

Replace expectations with sample average in mini-batch

Parallel stochastic gradient descent on φ and θ
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Samples model learned on face images [Radford et al., 2016]
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Modern network on ImageNet, class conditional

Examples taken from Brock et al. 2019
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GAN generalizes beyond training data

Sample along linear trajectory in latent space z1 → z2

Smooth transitions suggest generalization,
sharp transitions would suggest literal memorization

Examples taken from [Radford et al., 2016], trained on LSUN bedroom dataset
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GAN generalizes beyond training data

Examples taken from Brock et al. 2019
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Issues training GANs in practice

GANs known to be difficult to train in practice
I Formulated as mini-max objective between two networks
I Optimization can oscillate between solutions
I Picking “compatible” generator and discriminator architectures
I Training fails if the discriminator is ’too good’

Mode collapse: failure to capture part of training data

Quantitative evaluation not aligned with objective function
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Why is GAN training is difficult in practice?

Recall divergence measures between distributions

Kullback-Leibler divergence: maximum likelihood training
I Infinite if q (model) has a zero in the support of p (data)

DKL(p||q) =

∫
x

p(x)
[

ln q(x)− ln p(x)
]

(15)

Jensen-Shannon divergence: idealized GAN training
I Symmetric KL to mixture of p and q

DJS(p||q) =
1

2
DKL

(
p
∣∣∣∣∣∣p + q

2

)
+

1

2
DKL

(
q
∣∣∣∣∣∣p + q

2

)
(16)
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Why is GAN training is difficult in practice? [Arjovsky et al., 2017]

1 Strong discriminator leads to vanishing gradients of IEpz [ln(1− D(G (z)))]
w.r.t. generator

I Happens early in training with poor generator
I Tuning of capacity and training regime of discriminator
I Generator no longer minimize JS divergence

2 Minimizing −IEpz [ln(D(G (z)))] instead to boost gradient
I Optimizes KL(pG ||pdata)− 2JS(pG ||pdata)
I Wrong sign in the JS divergence
I Direction of KL term leads to mode dropping
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Wasserstein or “earth-mover” distance

Consider joint distribution γ(x , y)
with marginals p(x) = γ(x) and q(y) = γ(y)

Conditional γ(y |x) “moves mass” to transform p(·) into q(·)

Cost associated with a given transformation

T (γ) =

∫
x,y

γ(x , y) ||x − y || =

∫
x

p(x)

∫
y

γ(y |x) ||x − y ||

Wasserstein distance is the cost of optimal transformation

DWS(p||q) = inf
γ∈Γ(p,q)

T (γ) (17)
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Distributions with low dimensional support

Simple example: support on lines in IR2

I p0 uniform on x2 ∈ [0, 1] for x1 = 0
I pθ uniform on x2 ∈ [0, 1] for x1 = θ

All measures zero for θ = 0, but for θ 6= 0
I DKL(p0||pθ) =∞
I DJS(p0||pθ) = ln 2
I DWS(p0||pθ) = |θ|

Wasserstein based on proximity of support

JS and KL based on overlap of support
I In general measure zero overlap with low dim. supports
I GAN has support with dimension of latent variable z
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Wasserstein GAN

Dual formulation of Wasserstein distance

DWS(pdata||pG ) =
1

k
max
||D||L≤k

IEpdata
[D(x)]− IEpz [D(G (z))]

1 Restrict D to some deep net architecture
2 Enforce Lipschitz constraint by clipping discriminator weights or penalty on

gradient magnitude [Gulrajani et al., 2017]

Removes log-sigmoid transformation w.r.t. normal GAN
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Experimental comparison GAN and WGAN

GAN loss unstable, and actually increases over iterations!

WGAN loss deceases in stable manner

WGAN gives better correlation loss and sample quality

GAN
WGAN
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Latent variable inference in GANs [Donahue et al., 2017]

Vanilla GAN lacks a mechanism to infer z from x

Generator: maps latent variable z to data point x

Encoder: infers latent representation z from data point x

36 / 83



Induced joint distributions over (x, z)

Generator: pG (x, z) = pz(z) δ (x− G (z))

Encoder: pE (x, z) = pdata(x) δ (z− E (x))

Discriminator: pair (x, z) completed by generator or encoder?
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Bidirectional GANs [Donahue et al., 2017]

V (D,E ,G) = IEpdata [lnD(x,E(x))] + IEp(z)[ln(1− D(G(z), z))]

min
G ,E

max
D

V (D,E ,G)

For optimal discriminator objective equals JS divergence

max
D

V (D,E ,G) = 2DJS (pE (x, z)||pG (x, z))− ln 4

At optimum G and E are each others inverse
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BiGAN samples, ImageNet 64× 64
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Unpaired image-to-image translation [Zhu et al., 2017]

Learn 2-way mapping between different image domains
Without using supervised aligned training samples

1 Discriminator ensures realistic samples in each domain
2 Cycle-consistency loss ensures alignment
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Some successful examples

Without using any supervised/aligned examples!
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And a failure case

42 / 83



Conditional image generation

We may want to condition the generation by a certain input vector.

Example: Action Unit conditioned face generation.

Image from [Pumarola et al., 2018].
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Multi-domain conditional generation

We may want to translate between multiple domains.

With previous methods, we need to learn a pair encoder-generation for every
two domains → highly undesirable.

StarGAN: use a central latent representation space.

Learn a domain2central encoder and a central2domain generator for each
domain.
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Samples
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Variational Auto-Encoders
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Autoencoders

Learn latent representation z via reconstruction of data x

Neural network where output ∼ input
I Encoder: maps data x to latent code z
I Decoder: maps latent code z to reconstruction x̃

Loss minimizes discrepancy between x and x̃
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Relation autoencoders and PCA [Baldi and Hornik, 1989]

Autoencoder recovers PCA if
1 Encoder and decoder are both linear
2 Optimizing `2 reconstruction loss

min
V ,W

1

2N

N∑
n=1

||xn − VWxn||2 (18)
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Deep non-linear autoencoders

Stack many non-linear layers in encoder and decoder

Non-linear representation learning

Does not provide a generative model that can be sampled
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Autoencoding variational Bayes [Kingma and Welling, 2014]

Decoder f implements generative latent variable model
I Maps latent code z to observation x

pθ(x|z) = N (x; f µθ (z), f σθ (z)) (19)

Encoder g compute approximate posterior distribution
I Maps data x to latent code z

qφ(z|x) = N (z; gµφ (x), gσφ (x)) (20)

Figure from kvfrans@github
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Objective function: Evidence lower bound (ELBO)

Quantity of interest: marginal likelihood or “evidence”

pθ(x) =

∫
z

p(z)pθ(x|z) (21)

Idea 0: Monte-Carlo estimation. Problem: high dimensional

Idea 1: Weighted sampling

pθ(x) =

∫
z

qφ(z |x)pθ(x|z)
p(z)

qφ(z |x)
dz (22)
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Objective function: Evidence lower bound (ELBO)

Idea 2: Efficient estimation with the ELBO

ln(pθ(x)) = ln

(∫
z

qφ(z |x)pθ(x|z)
p(z)

qφ(z |x)
dz

)
(23)

≥
∫
z

qφ(z |x) ln

(
pθ(x |z)

p(z)

qφ(z |x)

)
dz (24)

= Eqφ(z|x)[ln(pθ(x |z))]− DKL(qφ(z |x)||p(z)) (25)

ELBO becomes function of inference net and generative net

F (θ, φ) = IEqφ [ln pθ(x|z)]− DKL

(
qφ(z|x)||p(z)

)
(26)

52 / 83



Objective function: Evidence lower bound (ELBO)

Comments on the ELBO:

F (θ, φ) = IEqφ(z|x)[ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(27)

Has an auto-encoder interpretation.

Efficient computations, at the cost of approximation.

KL divergence: non-negative, and zero if and only if q = p. Balance between
both terms
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Objective function: Evidence lower bound (ELBO)

Re-writing the ELBO:

F (θ, φ) = IEqφ [ln pθ(x|z)]− DKL

(
qφ(z|x)||p(z)

)
(28)

Using Bayes rule yields p(z) = p(x)p(z|x)
p(x|z) and:

F (θ, φ) = IEqφ [ln pθ(x|z)]−
∫
z

qφ(z|x) log

(
qφ(z|x)pθ(x|z)

p(z|x)pθ(x)

)
(29)

= IEqφ

[
ln pθ(x|z)pθ(x)

ln pθ(x|z)

]
− DKL

(
qφ(z|x)||p(z|x)

)
(30)

= ln pθ(x)− DKL

(
qφ(z|x)||p(z|x)

)
(31)
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Objective function: Evidence lower bound (ELBO)

F (θ, φ) = IEqφ [ln pθ(x|z)]− DKL

(
qφ(z|x)||p(z)

)
(32)

= ln pθ(x)− DKL

(
qφ(z|x)||pθ(z|x)

)
(33)

Comments:

Second form intractable

Second form clearly a lower bound

Second bound is tight if and only if qφ(z|x) = pθ(z|x)
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Computation ELBO for variational autoencoder

F (θ, φ) = IEqφ [ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(34)

Regularization term keeps q from collapsing to single point z (Information
bottleneck)

Closed form if both terms are Gaussian, for p(z) = N (z; 0, I )

DKL (qφ(z|x)||p(z)) =
1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(35)

Differentiable function of inference net parameters
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Computation ELBO for variational autoencoder

F (θ, φ) = IEqφ [ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(36)

Reconstruction term: to what extent can x be reconstructed from z
following approximate posterior q(z|x)

Use sample approximation of intractable expectation
zs ∼ qφ(z|x)

IEqφ [ln pθ(x|z)] ≈ 1

S

S∑
s=1

ln pθ(x|zs) (37)

Estimator is non-differentiable due to sampling operator
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Re-parametrization trick

Side-step non-differentiable sampling operator by re-parametrizing samples

zs ∼ qφ(z|x) = N
(
z; gµφ (x), gσφ (x)

)
Use inference net to modulate samples from a unit Gaussian

zs = gµφ (x) + gσφ (x)� εs , εs ∼ N (εs ; 0, I ) (38)

Samples zs differentiable function of inference net param. φ,
given unit Gaussian samples εs

Unbiased differentiable approximation of ELBO

F (θ, φ) ≈ 1

S

S∑
s=1

ln pθ
(
x|gµφ (x) + gσφ (x)� εs

)
(39)

−1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(40)
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Re-parametrization trick in a cartoon

Figure from [Doersch, 2016]
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Autoencoding variational Bayes training algorithm

For each data point x in a mini-batch
1 Sample one or multiple values {εs}
2 Use back-propagation to compute

gθ = ∇θF (θ, φ, {εs})
gφ = ∇φF (θ, φ, {εs})

3 Gradient-based parameter update

Figure from Aaron Courville
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Random samples from VAE and GAN

Trained from 200k images in CelebA dataset

VAE samples appear overly smooth / blurred

GAN samples show more (imperfect) detail

Figure from [Hou et al., 2016]
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VAE vs. GAN

VAE provide a nice probabilistic generation framework but smooth results.
GANs are less intuitive but have sharper results.

62 / 83



Deep invertible transformations
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Non-volume preserving (NVP) transformation [Dinh et al., 2017]

Learn invertible function from latent to data space

Latent and data space have same dimensionality

Unit Gaussian prior on latent variables

Tractable sampling and exact inference
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Change of variable formula for invertible function

Using the change of variable formula:

pX (x) = pY (f (x))×
∣∣∣∣det

(
∂f (x)

∂x>

)∣∣∣∣
Need to ensure efficient computation of (i) y = f (x) and (ii) determinant

1 Partition variables in two groups

2 Keep one group unchanged

3 Let one group transform the other via translation
and scaling

y1 = x1

y2 = t (x1) + x2 � exp (s(x1))
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Properties: Efficient inversion

Inverse transformation

x1 = y1 (41)

x2 = (y2 − t (x1))� exp (−s(x1)) (42)

No need to invert s(·) and t(·)
Can use complex non-invertible functions, e.g. deep CNN

66 / 83



Properties: Efficient determinant computation

Triangular structure of Jacobian

∂f (x)

∂x>
=

[
Id 0
∂y2

∂x>1
diag(exp(s(x1)))

]

Determinant given by product of Jacobian’s diagonal
terms

ln det

(
∂f (x)

∂x>

)
= 1>s(x1)

Log-likelihood easily computed, optimize using
stochastic gradient decent

ln pX (x) = ln pY (f (x)) + 1>s(x1)
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Images & Samples NVP: CIFAR10 Dataset 32× 32
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Autoregressive Density Estimation
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Autoregressive modeling

Consider generic factorization of joint probability

p(x1:D) = p(x1)
D∏
i=2

p(xi |x<i ) (43)

with x<i = x1, . . . , xi−1

Use (deep) neural net to model dependencies in p(xi |x<i )

Tractable exact likelihood computations
I No complex integral over latent variables in likelihood

Slow sequential sampling process
I Cannot rely on latent variables to couple pixels
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Pixel Recurrent/Convolutional Neural Networks
[Oord et al., 2016b]

Predict pixels one-by-one in row-major
ordering

Translation invariant definition of
conditionals p(xi |x<i )

Decouple number of pixels from number of
parameters
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Pixel RNN: Bi-directional LSTM

Two sets of LSTM units, working
down-right and down-left

I Input up and left/right state
I Input up and left/right pixels

Receptive field
I In each stream: all pixels above and to the

right/left
I Combined: all previous pixels

Slow sequential training process
I Due to sequential state updates
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Pixel Convolutional Neural Networks

Use limited context via CNN layers
I Only local dependencies per layer

Masked convolutions to ensure autoregressive
property

I Layers increase receptive field
I Two stacks to fill blind spot: horizontal stack

reads from vertical stack, not vice-versa

Efficient parallel training, but sampling remains
sequential and slow

Extensions: WaveNet (audio)
[Oord et al., 2016a], Video Pixel Networks
[Kalchbrenner et al., 2017]
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Class-conditional pixelCNN [Oord et al., 2016c]

Samples single model trained across 1,000 ImageNet classes
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Images generated by PixelCNNs trained on CIFAR10

[Oord et al., 2016b] (top) and [Salimans et al., 2017] (bottom)

Models capture texture and details relatively well

Lacking in global structure / long range dependencies
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Parallel multiscale autoregressive density estimation
[Reed et al., 2017]

Address the inherently limited sampling efficiency of
autoregressive models

p(x1:N) =
N∏
i=1

p(xi |x<i )

Sample image along a scale pyramid
I Pixel-CNN for base resolution, e.g. 4×4
I Autoregressive upsampling networks

Impose group structure among pixels
I Independent sampling within each group
I Autoregressive sampling across groups
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Sampling pixels in groups

Group pixels along position in 2× 2 blocks
I Group 1 given from previous resolution
I Sample remaining pixels in three steps

Example network to predict group 2 from group 1
I Use CNN without pooling to predict/sample new columns
I Interleave pixel columns from group 1 and 2
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Example results of upsampling real low-resolution images

About 100× speed-up w.r.t. pixel-CNN sampling
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Conclusion & Reminder

Several approaches to learn deep latent variable models

1 Avoid integral: Generative adversarial networks (GAN)

2 Approximate integral: Variational autoencoders (VAE)

3 Constrain the function so that we can compute the marginal (e.g. Real-NVP)

4 Do not use latent variables (e.g. PixelCNN)

Homework & Data challenge

You can do the homework and the data challenge in groups of two people.

If you do so, the two groups must be with different people.
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