
Advanced Learning Models
Chapter II - Advanced CNN and RNN models

Julien Mairal & Xavier Alameda-Pineda

with the help of Jakob Verbeek and Laurent Besacier

MSIAM/MoSIG – 2019-2020

1 / 69



Table of Contents

1 Advanced CNN architectures
Object Detection
Deep Metric Learning
Training with noisy labels
Object tracking

2 CNN and Deep learning – Meta
Early stopping
Architecture search
Distilling knowledge

3 Recurrent Neural Networks
Principle of RNN
Formalising RNN
Long-short term memory networks
Advanced RNN

2 / 69



Course Organisation (remastered)

Ressources

You can visit (often) the web page of the course
http://lear.inrialpes.fr/people/mairal/teaching/2019-2020/MSIAM/

Grading revisited

Homework (twice, 50%), Data Challenge (50%) and final exam (40%).
→ Homework 1: Given before Xmas.
→ Homework 2: Given on January 16th.
→ Data Challenge: given at the beginning of January. Results with at
least one neural network and one kernel method.
NO machine learning libraries allowed!

3 / 69

http://lear.inrialpes.fr/people/mairal/teaching/2019-2020/MSIAM/


Advanced CNN architectures

4 / 69



Advanced CNN architectures

– Object Detection –

5 / 69



Object detection task

Goal: To localise and classify each object in an image.
1 Find potential object locations/bounding boxes.
2 Characterise those candidates.
3 Classify them into object/non-object and object class.
4 Produce a final localisation bouding box (and segment them).

6 / 69



R-CNN (2014) [Girshick et al., 2014]

Apply the Selective Search method to propose bounding boxes
→ 2k per image!!!

Resize each of the b-boxes and feed-forward through AlexNet.

Train an SVM to classify bounding boxes
and a linear regressor to refine them.

7 / 69



Fast R-CNN (2015) [Girshick, 2015]

Apply Selective Search to propose bounding boxes.

In parallel: feed-forward the original image (once).

Apply Region-of-Interest (ROI) pooling.

Use a classification and linear regression layers.

8 / 69



Fast R-CNN (2015) [Girshick, 2015]

Apply Selective Search to propose bounding boxes.

In parallel: feed-forward the original image (once).

Apply Region-of-Interest (ROI) pooling.

Use a classification and linear regression layers.

8 / 69



Fast R-CNN (2015) [Girshick, 2015]

Apply Selective Search to propose bounding boxes.

In parallel: feed-forward the original image (once).

Apply Region-of-Interest (ROI) pooling.

Use a classification and linear regression layers.

8 / 69



Faster R-CNN (2015) [Ren et al., 2015]

Include the b-box proposal in the network.
→ Region Proposal Network.
Sliding window providing b-box and objectness of each anchor.
Classification and regression layers as well.

9 / 69



Mask R-CNN (2017) [He et al., 2017]

On top of the Faster R-CNN object detection mechanism.

For each b-box, add a pixel-wise binary mask.

Segment each instance of each class.

10 / 69



Advanced CNN architectures

– Deep Metric Learning –

11 / 69



Metric Learning

Goal: Learn a metric (distance) in which samples are better spread for the
task at hand.

Similar to kernel methods (data projection).

The projections are not designed, but learned.

Image from http://ml.cecs.ucf.edu/.

12 / 69

http://ml.cecs.ucf.edu/


Formalising Metric Learning

Learning from link information.

Must-link / cannot-link constraints:

S = {(xi , xj) : i , j should be similar.}

D = {(xi , xj) : i , j should be dissimilar.}

Relative constraints:

R = {(xi , xj , xk) : i should be more similar to j than to k .}

Image from http://researchers.lille.inria.fr/abellet/talks/metric_learning_tutorial_CIL.pdf.

13 / 69

http://researchers.lille.inria.fr/abellet/talks/metric_learning_tutorial_CIL.pdf


Formalising Metric Learning

Learning from link information.

Must-link / cannot-link constraints:

S = {(xi , xj) : i , j should be similar.}

D = {(xi , xj) : i , j should be dissimilar.}

Relative constraints:

R = {(xi , xj , xk) : i should be more similar to j than to k .}

Metric learning optimisation problem

Find the optimal metric parameters M∗:

M∗ = arg min
M
L(M;S,D,R) + λΩ(M)

L penalises violated constraints.

13 / 69



Deep Metric Learning

Parametrize the new metric through a deep neural network:
M = {convolutions, fully connected, etc.}.

Image from [Baraldi et al., 2015].

The same CNN for both input.

Shared weights.

Loss pulling S samples together and
pulling D samples apart.

How to define this loss?

14 / 69



Contrastive (or pair-wise ranking) loss

Lc(θ,S,D) =

{
d(φ(xi ; θ), φ(xj ; θ)) (xi , xj) ∈ S
max(0, τ − d(φ(xi ; θ), φ(xj ; θ))) (xi , xj) ∈ D

CNN φ parametrised by θ.

d is a standard distance
(e.g. Euclidean).

τ is a task-dependent
parameter.

Image from https://gombru.github.io/2019/04/03/ranking_loss/.

15 / 69

https://gombru.github.io/2019/04/03/ranking_loss/


What about relative constraints?

Recall the relative constraints:

R = {(xi , xj , xk) : i should be more similar to j than to k .}

L3(θ,R) = max(0, d(φ(xi ; θ), φ(xj ; θ)− d(φ(xi ; θ), φ(xk ; θ)) + τ)

Image from https://omoindrot.github.io/triplet-loss.

16 / 69

https://omoindrot.github.io/triplet-loss


Advanced CNN architectures

– Training with noisy labels –

17 / 69



Training with noisy labels: classification [Xiao et al., 2015]

Motivation: annotating large-scale datasets is tedious.
→ Train with noisy data (and perhaps a few clean data).

Two network paths estimating: the clean label y and the noise type z .
A probabilistic model mixes this information to “predict” a noisy label.
An EM is proposed to back-propagate the error.

18 / 69



Training with noisy labels: regression [Lathuilière et al., 2018]

Same motivation, but for a regression task (continuous label).

21 52 62 29 0

19 / 69



Limitations of standard deep regression

Standard way: deep model + linear regression layer + L2 loss:

CNN
Backbone Li

n
e
a
r

L2 loss

0
0

10

5
Regression Residual

Lo
ss

 d
e
ri

v
a
ti

v
e

L2

The larger the gradient, the more attention the network pays to it.

Gradient of the L2 loss is 2δ, twice the residual.

Outliers have huge residual ⇒ The network pays a lot of attention.

20 / 69



Existing solutions

Let’s take a look to existing solutions:

0
0

10

5
Regression Residual

Lo
ss

 d
e
ri

v
a
ti

v
e

L2

Huber

L2/Huber large gradient for large δ.

21 / 69



Existing solutions

Let’s take a look to existing solutions:

0
0

10

5
Regression Residual

Lo
ss

 d
e
ri

v
a
ti

v
e

L2

Huber

Tukey

GUM

L2/Huber large gradient for large δ.

Gaussian-Uniform Mixtures (GUM)
offer a family of interpretable losses.

21 / 69



Gaussian Uniform Mixtures

21 62 2952

Hypothesis: inliers ↔ Gaussian outliers ↔ Uniform.

p(yi |xi ; ν, θ) = ρ︸︷︷︸
Inlier prior

N (yi ;φ(xi ; θ),Σ) + (1− ρ)︸ ︷︷ ︸
Outlier prior

U(yi ; γ),

φ(·; θ): forward with weights θ

ν = {ρ,Σ, γ}: parameters of GUM

Challenge: How to learn θ and ν?
0

22 / 69



Gaussian Uniform Mixtures

21 62 2952

Hypothesis: inliers ↔ Gaussian outliers ↔ Uniform.

p(yi |xi ; ν, θ) = ρ︸︷︷︸
Inlier prior

N (yi ;φ(xi ; θ),Σ) + (1− ρ)︸ ︷︷ ︸
Outlier prior

U(yi ; γ),

φ(·; θ): forward with weights θ

ν = {ρ,Σ, γ}: parameters of GUM

Challenge: How to learn θ and ν?
0

22 / 69



How to train?

Main idea: Expectation-maximisation (EM).

E-step: ri (ν
(r)) = p(xi , yi |ν(r)).

M-ν step: update ν with (almost) standard formulae.

M-θ step: update θ by minimising

LGUM =
I∑

i=1

ri (ν
(r))‖yi − φ(xi ; θ)‖2.

0

23 / 69



Outliers detected (age estimation)

(a) 14 (b) 14 (c) 14 (d) 16 (e) 20 (f) 23

(g) 49 (h) 51 (i) 60 (j) 60 (k) 60 (l) 62

24 / 69



Advanced CNN architectures

– Object tracking –

25 / 69



Object tracking problem

Goal: provide the localisation of an object over time.

The object is generic: unknown appearance.

The appearance of the object changes over time (illumination,
distance, etc).

The object moves within a reasonable range.

26 / 69



Reformulate as image search [Henriques et al., 2014]

The problem is reformulated as the task of finding a target image
(template, previous frame) within a search region (current frame).

Convolutional features are extracted, and then trained with the fully
connected layers to predict the bbox.

27 / 69



Siamese RPN [Li et al., 2018]

Similar logic, but features are extracted with a siamese network.

A region proposal network is then used to propose bboxes through the
anchoring mechanism.

28 / 69



CNN and Deep learning – Meta

29 / 69



CNN and Deep learning – Meta

– Early stopping –

30 / 69



Early stopping

Neural networks have millions of parameters.

They are prone to overfit, i.e. have limited generalisation.

In practice, performance in training >> than in test.

Underfit: high bias but low
error variance.
Overfit: low bias but high
error variance.

Early stopping: point in which the validation error stops decreasing
(= the generalisation capacity stops increasing).

31 / 69



CNN and Deep learning – Meta

– Architecture search –

32 / 69



Architecture search

Motivation: how to find the right architecture choice: # layers,
resolution, etc.

Several approaches: one possibility is to train the all at once!

Grid of network layers across multiple scales.

U-net and standard conv are special cases.

33 / 69



Convolutional neural fabrics [Saxena and Verbeek, 2016]

Each feature map receives input from three others
I Scale finer: strided convolution
I Scale coarser: stride coarse activations on finer resolution, then

covolution
I Same scale: standard convolution

Generalizes very large class of networks with “standard” layers
With enough layers and feature channels, 3x3 convolutions suffice for

I Average pooling, max-pooling, and strided convolition
I Nearest-neighbor, bi-linear, and general deconvolution up-sampling
I Filters of any size by distribution over layers

34 / 69



Multi-scale Dense Convolutional Networks [Huang et al., 2017]

Grid of network layers across multiple scales

Feed-forward and dense connections across the horizontal “layer axis”

Down-sampling across all layers for classification

Intermediate classifiers for any-time prediction

Efficient any-time prediction model

35 / 69



CNN and Deep learning – Meta

– Distilling knowledge –

36 / 69



Distillation [Hinton et al., 2015]

A teacher (large) and a student (small) network.

Teacher is pre-trained.

The student is trained to imitate the output of the teacher network
(before soft-max).

Training the student directly does not work!

37 / 69



Recurrent Neural Networks

38 / 69



Recurrent Neural Networks

– Principle of RNN –

39 / 69



RNN: Uses

Sequential information – variable length – for input/output (or both).

40 / 69



RNN: Uses

Classification/regression: one image ↔ one label.

40 / 69



RNN: Uses

Image captioning: one image ↔ a word sequence.

40 / 69



RNN: Uses

Rating assessing: one evaluation comment ↔ a satisfaction score.

40 / 69



RNN: Uses

Machine translation: text in language A ↔ text in language B.

40 / 69



RNN: Uses

Paired sequential data: predict phoneme labels over time.

40 / 69



RNN: Rationale

Recurrent computation of hidden units from t to t + 1:
I Hidden state accumulates information on entire sequence, since the

field of view spans entire sequence processed so far
I Time-invariant function makes it applicable to arbitrarily long sequences

Similar ideas used in:
I Hidden Markov models for arbitrarily long sequences
I Parameter sharing across space in convolutional neural networks
I But has limited field of view: parallel instead of sequential processing

41 / 69



RNN unfolding

Left: folded representation → loops.
Right: unfolded representation ⇒ we call them “deep”.

Unfolded representation shows an acyclic directed graph.
Size of the graph (horizontally) is variable, given by sequence length.
Weights shared across horizontal replications.
Gradient computation known as “back-propagation through time.”

42 / 69



RNN training

Deterministic feed-forward network from inputs to outputs.
Softmax can be used to map the output ht into a discrete distribution.
Independent prediction of elements in output given input sequence.
We can still maximise the log-probability of the class:

L(W) = −
T∑
t=1

log p(softmax(ht)|x1:t ; W)

43 / 69



Recurrent Neural Networks

– Formalising RNN –

44 / 69



RNN basics [Rumelhart et al., 1988]

Basic RNN building block:

ht−1 cat tanh

xt ∈ RX

h`t

h`t

` = 1, . . . ,H

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH

Left: scalar output. Right: vector output.

Input are concatenated before a linear transformation.

Non-linear activation (tanh) or its element-wise form (tanh).

45 / 69



RNN forward pass

Concatenation, linear transform, element-wise activation.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH

ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

with W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 ∈ R(H+X+1)×H .

46 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)?

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

47 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)? (1)
∂ht

∂ht−1
and (2)

∂ht

∂W
.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

47 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)? (1)
∂ht

∂ht−1
and (2)

∂ht

∂W
.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

(0) Let’s start with:
∂h`t
∂zkt

= tanh′ = 1 − tanh2

47 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)? (1)
∂ht

∂ht−1
and (2)

∂ht

∂W
.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

(0) Let’s start with:
∂h`t
∂zkt

= δkl(1− tanh2(z`t )). tanh′ = 1 − tanh2

And therefore:
∂ht

∂zt
=

47 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)? (1)
∂ht

∂ht−1
and (2)

∂ht

∂W
.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

(0) Let’s start with:
∂h`t
∂zkt

= δkl(1− tanh2(z`t )). tanh′ = 1 − tanh2

And therefore:
∂ht

∂zt
= diag(1− tanh2(zt)) ∈ RH×H

47 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)? (1)
∂ht

∂ht−1
and (2)

∂ht

∂W
.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

(1)
∂z`t
∂ht−1

=

47 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)? (1)
∂ht

∂ht−1
and (2)

∂ht

∂W
.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

(1)
∂z`t
∂ht−1

= W`
h.⇒

∂zt
∂ht−1

=

47 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)? (1)
∂ht

∂ht−1
and (2)

∂ht

∂W
.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

(1)
∂z`t
∂ht−1

= W`
h.⇒

∂zt
∂ht−1

= W>
h ⇒

∂ht

∂ht−1
=

47 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)? (1)
∂ht

∂ht−1
and (2)

∂ht

∂W
.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

(1)
∂z`t
∂ht−1

= W`
h.⇒

∂zt
∂ht−1

= W>
h ⇒

∂ht

∂ht−1
= W>

h diag(1− tanh2(zt))

47 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)? (1)
∂ht

∂ht−1
and (2)

∂ht

∂W
.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

(1)
∂z`t
∂ht−1

= W`
h.⇒

∂zt
∂ht−1

= W>
h ⇒

∂ht

∂ht−1
= W>

h diag(1− tanh2(zt))

∂ht

∂ht−T
=

t∏
τ=t−T+1

W>
h diag(1− tanh2(zτ ))

47 / 69



RNN backward pass

What gradients do we need (if we have
∂L
∂ht

)? (1)
∂ht

∂ht−1
and (2)

∂ht

∂W
.

ht−1 cat tanh

xt ∈ RX

ht

ht ∈ RH ht = tanh(zt),

zt = W>[ht−1; xt ; 1],

W =

 W1
h . . .WH

h

W1
x . . .WH

x

W1
1 . . .WH

1

 .

(2) Not more difficult than that, but tedious to write. One needs to first
consider the column-wise vectorisation of W, vec(W):

∂ht

vec(W)
= blkdiag`

(
(1− tanh2(z`t ))[ht−1; xt ; 1]>

)
47 / 69



Vanishing/Exploding gradient

Let us retake:

∂ht

∂ht−T
=

t∏
τ=t−T+1

W>
h diag(1− tanh2(zτ )).

diag(1− tanh2(zτ )) are diagonal matrices with elements in [0, 1].
→ the gradient is multiplied by small numbers, specially for saturated
neurons.

An alternative could be to use ReLu activation
→ the forward pass would easily overflow.

Long-short term memory (LSTM) recurrent networks were proposed
in 1997 to overcome this problem.
→ use gates to stop/let pass the information to the next time step.

48 / 69



Recurrent Neural Networks

– Long-short term memory networks –

49 / 69



Long-short term memory (LSTM) networks
[Hochreiter and Schmidhuber, 1997]

Intuition: use gates to stop/let pass the information.

Gates are paired with “information” (classical) neurons.

When a gate neuron fires, the information of the corresponding
neuron must be kept for the next time step.

Otherwise, this information must be forgotten.

This behaviour is achieved with a sigmoid activation
and element-wise product.

From a computational perspective there is NO difference between
gate and previous neurons: we are learning all weights at once.

50 / 69



LSTM: Diagram & forward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

51 / 69



LSTM: Diagram & forward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

The information flows directly from previous step through the cell state.

51 / 69



LSTM: Diagram & forward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

ft = σ(zft), zft = W>
f [ht−1; xt ; 1], Wf ∈ RH×(H+X+1)

51 / 69



LSTM: Diagram & forward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

it = σ(zit), zit = W>
i [ht−1; xt ; 1], Wi ∈ RH×(H+X+1)

51 / 69



LSTM: Diagram & forward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

c̃t = tanh(zct), zct = W>
c [ht−1; xt ; 1], Wc ∈ RH×(H+X+1)

51 / 69



LSTM: Diagram & forward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

ot = σ(zot), zot = W>
o [ht−1; xt ; 1], Wo ∈ RH×(H+X+1)

51 / 69



LSTM: Diagram & forward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

ct = ft � ct−1 + it � c̃t (� is the element-wise product)

51 / 69



LSTM: Diagram & forward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

ht = ot � tanh(ct)

51 / 69



LSTM: Diagram & forward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

Gates: ft forget it input ot output.

51 / 69



LSTM: Backward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

ft = σ(W>
f [ht−1; xt ; 1])

it = σ(W>
i [ht−1; xt ; 1])

c̃t = tanh(W>
c [ht−1; xt ; 1])

ot = σ(W>
o [ht−1; xt ; 1])

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

Which one is the most interesting?

∂ct
∂ct−1

= diag(ft).

52 / 69



LSTM: Backward pass

ht ∈ RH

ct−1 × + ct

tanh

× ×

σ σ tanh σ

ht−1 cat ht

xt ∈ RX

c̃t

it otft

ft = σ(W>
f [ht−1; xt ; 1])

it = σ(W>
i [ht−1; xt ; 1])

c̃t = tanh(W>
c [ht−1; xt ; 1])

ot = σ(W>
o [ht−1; xt ; 1])

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

Which one is the most interesting?

∂ct
∂ct−1

= diag(ft).

52 / 69



Recurrent Neural Networks

– Advanced RNN –

53 / 69



More topologies (I): deep RNN

Many layers with recurrent relationships.

54 / 69



More topologies (II): multi-dimensional RNN [Graves et al., 2007]

Instead of a single recurrence: one per dimension.

Each node recives input from predecessors, one per dimension.

55 / 69



More topologies (III): bi-directional RNN [Graves et al., 2013]

Use also right-to-left connections (anti-causal).

Two separate recurrences, and aggregation.

The decision computation of ot depends on all input x1, . . . , xT .

56 / 69



More topologies (IV): output feedback loops

In many applications (machine translation), the output
needs to be sampled (from output dist.).

So far the output elements are independently sampled
for each t given the state.

When sampling the output to take a decision,
the sample could be fed back into the next state.

Without output-feedback: deterministic non-linear dynamical system.

With output-feedback: stochastic non-linear dynamical system.

p(o1:T |x1:T ) =
T∏
t=1

p(ot |x1:t) vs. p(o1:T |x1:T ) =
T∏
t=1

p(ot |x1:t , o1:t−1)

57 / 69



How do we sample from an RNN?

RNN provide a distribution over the output sequence.

Sample sequentially one output at a time:
I Compute state from current input and previous state/output.
I Compute the distribution on current output symbol.
I Sample output symbol.

Other interesting items to compute
(not possible with output feedback loops):

I Maximum likelihood sequence.
I Marginal distribution of the n-th output symbol.
I Marginal probability of a given symbol anywhere in the sequence.

58 / 69



How to train an RNN with/without output feedback?

Without output feedback

Compute full state sequence given input.

Sample output independently.

Compute the loss and back-propagate (through time).

With output feedback

Compute full state sequence given input and ground-truth output.

Sample output, compute the loss and back-propagate (through time).

Notice train/test difference:

Train: predict next symbol from causal input and ground-truth output.

Test: predict next symbol from causal input and generated output.

59 / 69



How to train an RNN with/without output feedback?

Without output feedback

Compute full state sequence given input.

Sample output independently.

Compute the loss and back-propagate (through time).

With output feedback

Compute full state sequence given input and ground-truth output.

Sample output, compute the loss and back-propagate (through time).

Notice train/test difference:

Train: predict next symbol from causal input and ground-truth output.

Test: predict next symbol from causal input and generated output.

59 / 69



Scheduled sampling for RNN training [Bengio et al., 2015]

Compensate train/test discrepancy by training from generated as well.

Direct training from generated sequences does not work well:
cumulated sequential error is huge!

Choose randomly from generated or ground-truth output.

Initialise with low probability of choosing generated, increase it with
training progress.

60 / 69



Encoding/decoding recurrent architectures [Sutskever et al., 2014]

Example 1: Image captioning

Encoder: CNN inputs an image and maps it to a vector.

Decoder: RNN state initialised with the image vector.

61 / 69



Encoding/decoding recurrent architectures

Example 1: Image captioning - sample

62 / 69



Encoding/decoding recurrent architectures

Example 2: Machine translation

Read source sentence with encoder RNN
(Can use bidirectional RNN since input sequence is given)
Generate target sentence with decoder RNN

I Uses a different set of parameters
I Uses output feedback to ensure output coherency

Meaning of source sentence encoded in the RNN state vector passed
between encoder and decoder

63 / 69



Encoding/decoding recurrent architectures

Example 2: Machine translation

Meaning of source sentence encoded in the RNN state vector passed
between encoder and decoder

PCA projection of the source
sentence encoded in S.

The word order matters!!!

63 / 69



Encoding/decoding recurrent architectures

Example 2: Machine translation - training

A “parallel” or “paired” corpus is required.

Extension to multilanguage is easy thanks to encoder/decoder.

64 / 69



Encoding/decoding recurrent architectures

Example 2: Machine translation - training

A “parallel” or “paired” corpus is required.

Extension to multilanguage is easy thanks to encoder/decoder.

64 / 69



Attention Mechanisms in RNN

Motivation: Encoder-decoder based models compress the input sequence
into a single vector → difficult to encode large sequences.

Using LSTM, BiRNN may help but does not suffice. The RNN cannot pay
attention to EVERYTHING.

65 / 69



Attention Mechanisms in RNN (II)

Let decoder attend to part of the input for each state update
I Selectively: based on current state and input representation
I Should work for input sequences of variable size

Sub-network takes state and input, computes attention weights
Feed weighted sum of inputs to the state update

66 / 69



References I

Baraldi, L., Grana, C., and Cucchiara, R. (2015).

A deep siamese network for scene detection in broadcast videos.
arXiv preprint arXiv:1510.08893.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015).

Scheduled sampling for sequence prediction with recurrent neural networks.
In NeurIPS, pages 1171–1179.

Girshick, R. (2015).

Fast r-cnn.
In ICCV.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).

Rich feature hierarchies for accurate object detection and semantic segmentation.
In CVPR.

Graves, A., Fernández, S., and Schmidhuber, J. (2007).

Multi-dimensional recurrent neural networks.
In International conference on artificial neural networks, pages 549–558. Springer.

Graves, A., Jaitly, N., and Mohamed, A.-r. (2013).

Hybrid speech recognition with deep bidirectional lstm.
In IEEE workshop on automatic speech recognition and understanding, pages 273–278. IEEE.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017).

Mask r-cnn.
In ICCV.

67 / 69



References II

Henriques, J. F., Caseiro, R., Martins, P., and Batista, J. (2014).

High-speed tracking with kernelized correlation filters.
PAMI, 37(3):583–596.

Hinton, G., Vinyals, O., and Dean, J. (2015).

Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory.
Neural computation, 9(8):1735–1780.

Huang, G., Chen, D., Li, T., Wu, F., Van Der Maaten, L., and Weinberger, K. Q. (2017).

Multi-scale dense convolutional networks for efficient prediction.
arXiv preprint arXiv:1703.09844.

Lathuilière, S., Mesejo, P., Alameda-Pineda, X., and Horaud, R. (2018).

Deepgum: Learning deep robust regression with a gaussian-uniform mixture model.
In ECCV.

Li, B., Yan, J., Wu, W., Zhu, Z., and Hu, X. (2018).

High performance visual tracking with siamese region proposal network.
In CVPR.

Ren, S., He, K., Girshick, R., and Sun, J. (2015).

Faster r-cnn: Towards real-time object detection with region proposal networks.
In NeurIPS.

68 / 69



References III

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988).

Learning representations by back-propagating errors.
Cognitive modeling, 5(3):1.

Saxena, S. and Verbeek, J. (2016).

Convolutional neural fabrics.
In NeurIPS.

Sutskever, I., Vinyals, O., and Le, Q. (2014).

Sequence to sequence learning with neural networks.
In NeurIPS.

Xiao, T., Xia, T., Yang, Y., Huang, C., and Wang, X. (2015).

Learning from massive noisy labeled data for image classification.
In CVPR.

69 / 69


	Advanced CNN architectures
	Object Detection
	Deep Metric Learning
	Training with noisy labels
	Object tracking

	CNN and Deep learning – Meta
	Early stopping
	Architecture search
	Distilling knowledge

	Recurrent Neural Networks
	Principle of RNN
	Formalising RNN
	Long-short term memory networks
	Advanced RNN


