Homework exercises Advanced Learning Models 2017-2018

Jakob Verbeek & Julien Mairal INRIA Grenoble – Université Grenoble-Alpes

December 6, 2017

Exercise 1: Fisher kernel for univariate Gaussian density

Suppose a univariate Gaussian density model $p(x) = \mathcal{N}(x; \mu, \sigma^2)$.

(a) Compute the partial derivatives $\frac{\partial \ln p(x)}{\partial \mu}$ and $\frac{\partial \ln p(x)}{\partial \sigma}$.

Let g(x) be the two dimensional gradient vector that concatenates the two partial derivatives.

- (b) Compute the Fisher information matrix $F = \int_x p(x)g(x)g(x)^\top$.
- (c) Show that $\int_x p(x)g(x) = 0$.
- (d) Compute the Fisher vector $h = F^{-\frac{1}{2}}g$.

Exercise 2: Fisher kernel for univariate Gaussian mixture density

Suppose a univariate Gaussian mixture density model $p(x) = \sum_{i=1}^{K} w_i \mathcal{N}(x; \mu_i, \sigma_i^2)$. Where the mixing weights are parameterized as $w_i = \exp(\alpha_i) / \sum_{j=1}^{K} \exp(\alpha_j)$.

(a) Compute the partial derivatives $\frac{\partial \ln p(x)}{\partial \mu_i}$, and similar for σ_i and α_i .

Let g(x) be the 3K dimensional gradient vector that concatenates these partial derivatives. Denote the Fisher information matrix $F = \int_x p(x)g(x)g(x)^{\top}$. Assume that the posteriors $p(i|x) = w_i \mathcal{N}(x; \mu_i, \sigma_i^2)/p(x)$ are sharply peaked, i.e. close to one for a single *i* and close to zero for all others. Decompose *F* into 3×3 blocks, corresponding to the w_i, μ_i and σ_i .

(b) Show that F is block diagonal.

(c) Show that the μ and σ blocks are diagonal, and give the diagonal entries.

Fix $\alpha_K = 0$ to remove a redundant degree of freedom from the α_i , and let $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_{K-1})$. Let $\tilde{g}(x) = \nabla_{\tilde{\alpha}} \ln p(x)$ be the gradient with respect to $\tilde{\alpha}$, and similarly let \tilde{F} be the Fisher information matrix with respect to $\tilde{\alpha}$.

(d) Show that the Fisher kernel with respect to $\tilde{\alpha}$ can be written as $\tilde{g}(x)^{\top}\tilde{F}^{-1}\tilde{g}(y) = \phi(x)^{\top}\phi(y)$ where $\phi(x)$ is a K dimensional vector.

Exercise 3: Positive definite kernels

(a) Which of the following kernels are positive definite? You need to provide a proof each time.

- K(x,y) = 1/(1-xy) with $\mathcal{X} = (-1,+1)$ (interval excluding -1 and 1).
- $K(x, y) = \max(x, y)$ with $\mathcal{X} = [0, 1]$
- $K(x,y) = \cos(x+y)$ with $\mathcal{X} = \mathbb{R}$
- $K(x,y) = \cos(x-y)$ with $\mathcal{X} = \mathbb{R}$
- K(x, y) = GCD(x, y) (greatast common divisor) with $\mathcal{X} = \mathbb{N}$.

(b) Show that if K_1 and K_2 are positive definite, then the product $K(x, y) = K_1(x, y)K_2(x, y)$ is also positive definite.