
Advanced Learning Models
Part on Kernel Methods

Julien Mairal

julien.mairal@inria.fr

Inria, Grenoble

Julien Mairal (Inria) 1/431

History of the course

These slides are due in large part to Jean-Philippe Vert,
who gave the course on kernel methods from 2004 to
2015 at the master MVA at ENS Cachan.

Along the years, the course has become more and more exhaustive
and the slides are probably one of the best reference available on
kernels.

This is a course with a fairly large amount of math, but still
accessible to computer scientists who have heard what is a Hilbert
space (at least once in their life).

Julien Mairal (Inria) 2/431

History of the course

These slides are due in large part to Jean-Philippe Vert,
who gave the course on kernel methods from 2004 to
2015 at the master MVA at ENS Cachan.

Along the years, the course has become more and more exhaustive
and the slides are probably one of the best reference available on
kernels.

This is a course with a fairly large amount of math, but still
accessible to computer scientists who have heard what is a Hilbert
space (at least once in their life).

Julien Mairal (Inria) 2/431

Starting point: what we know is how to solve

Julien Mairal (Inria) 3/431

Or

Julien Mairal (Inria) 4/431

But real data is often more complicated...

Julien Mairal (Inria) 5/431

Main goal of this course

Extend well-understood, linear statistical learning techniques to
real-world, complicated, structured, high-dimensional data (images,
texts, time series, graphs, distributions, permutations...)

Julien Mairal (Inria) 6/431

A concrete supervised learning problem

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Julien Mairal (Inria) 7/431

A concrete supervised learning problem

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

A simple parametrization when X = Rp and Y = {−1,+1}.
F = {fw : w ∈ Rp} where the fw’s are linear: fw : x 7→ x>w.

The regularization is the simple Euclidean norm Ω(fw) = ‖w‖2
2.

Julien Mairal (Inria) 7/431

A concrete supervised learning problem

This simple setting corresponds to many well-studied formulations.

Ridge regression: min
w∈Rp

1

n

n∑
i=1

1

2
(yi −w>xi)

2 + λ‖w‖2
2.

Linear SVM: min
w∈Rp

1

n

n∑
i=1

max(0, 1− yi w
>xi) + λ‖w‖2

2.

Logistic regression: min
w∈Rp

1

n

n∑
i=1

log
(

1 + e−yi w
>xi

)
+ λ‖w‖2

2.

Julien Mairal (Inria) 8/431

A concrete supervised learning problem

Unfortunately, linear models often perform poorly unless the problem
features are well-engineered or the problem is very simple.

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

First approach to work with a non-linear functional space F
The “deep learning” space F is parametrized:

f (x) = σk (Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Finding the optimal A1,A2, . . . ,Ak yields an (intractable)
non-convex optimization problem in huge dimension.

Julien Mairal (Inria) 9/431

A concrete supervised learning problem

Figure: Exemple of convolutional neural network from LeCun et al. [1998]

.What are the main limitations of neural networks?

Poor theoretical understanding.

They require cumbersome hyper-parameter tuning.

They are hard to regularize.

Despite these shortcomings, they have had an enormous success, thanks
to large amounts of labeled data, computational power and engineering.

Julien Mairal (Inria) 10/431

A concrete supervised learning problem

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Second approach based on kernels

Works with possibly infinite-dimensional functional spaces F ;

Works with non-vectorial structured data sets X such as graphs;

Regularization is natural and easy.

Current limitations (and open research topics)

Lack of scalability with n (traditionally O(n2));

Lack of adaptivity to data and task.

Julien Mairal (Inria) 11/431

Organization of the course

Content
1 Present the basic theory of kernel methods.

2 Develop a working knowledge of kernel engineering for specific data
and applications (graphs, biological sequences, images).

Practical

Course homepage with slides, schedules, homework’s etc...:
http://lear.inrialpes.fr/people/mairal/teaching/2015-2016/MSIAM/.

Evaluation: 50% homework + 50% data challenge.

Julien Mairal (Inria) 12/431

Outline

1 Kernels and RKHS
Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernels Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Support vector machines

Julien Mairal (Inria) 13/431

Outline

1 Kernels and RKHS
Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernels Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Support vector machines

Julien Mairal (Inria) 13/431

Outline

3 Kernels Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 14/431

Outline

3 Kernels Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 14/431

Part 1

Kernels and RKHS

Julien Mairal (Inria) 15/431

Overview

Motivations

Develop versatile algorithms to process and analyze data...

...without making any hypothesis regarding the type of data
(vectors, strings, graphs, images, ...)

The approach

Develop methods based on pairwise comparisons.

By imposing constraints on the pairwise comparison function
(positive definite kernels), we obtain a general framework for
learning from data (optimization in RKHS).

Julien Mairal (Inria) 16/431

Outline

1 Kernels and RKHS
Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle

Julien Mairal (Inria) 17/431

Representation by pairwise comparisons

1 0.5 0.3
0.5 1 0.6
0.3 0.6 1

K=

X

S

(S)=(aatcgagtcac,atggacgtct,tgcactact)φ

Idea

Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points S = {x1, x2, . . . , xn} by the n × n
matrix:

[K]ij := K (xi , xj)

Julien Mairal (Inria) 18/431

Representation by pairwise comparisons

Remarks

Always a n × n matrix, whatever the nature of data: the same
algorithm will work for any type of data (vectors, strings, ...).

Total modularity between the choice of K and the choice of the
algorithm.

Poor scalability w.r.t to the dataset size (n2)

We will restrict ourselves to a particular class of pairwise
comparison functions.

Julien Mairal (Inria) 19/431

Positive Definite (p.d.) Kernels

Definition

A positive definite (p.d.) kernel on the set X is a function
K : X × X → R symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN and
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

ai aj K (xi , xj) ≥ 0.

Julien Mairal (Inria) 20/431

Similarity matrices of p.d. kernels

Remarks

Equivalently, a kernel K is p.d. if and only if, for any N ∈ N and
any set of points (x1, x2, . . . , xN) ∈ XN , the similarity matrix
[K]ij := K (xi , xj) is positive semidefinite.

Kernel methods are algorithms that take such matrices as input.

Julien Mairal (Inria) 21/431

The simplest p.d. kernel

Lemma

Let X = Rd . The function K : X 2 7→ R defined by:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
x, x′

〉
Rd

is p.d. (it is often called the linear kernel).

Proof

〈x, x′〉Rd = 〈x′, x〉Rd ,∑N
i=1

∑N
j=1 ai aj 〈xi , xj〉Rd = ‖

∑N
i=1 ai xi ‖2

Rd ≥ 0

Julien Mairal (Inria) 22/431

The simplest p.d. kernel

Lemma

Let X = Rd . The function K : X 2 7→ R defined by:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
x, x′

〉
Rd

is p.d. (it is often called the linear kernel).

Proof

〈x, x′〉Rd = 〈x′, x〉Rd ,∑N
i=1

∑N
j=1 ai aj 〈xi , xj〉Rd = ‖

∑N
i=1 ai xi ‖2

Rd ≥ 0

Julien Mairal (Inria) 22/431

A more ambitious p.d. kernel

φ
X F

Lemma

Let X be any set, and Φ : X 7→ Rd . Then, the function K : X 2 7→ R
defined as follows is p.d.:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

Rd .

Proof

〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)Rd 〉 ,∑N
i=1

∑N
j=1 ai aj 〈Φ (xi) ,Φ (xj)〉Rd = ‖

∑N
i=1 ai Φ (xi) ‖2

Rd ≥ 0 .

Julien Mairal (Inria) 23/431

A more ambitious p.d. kernel

φ
X F

Lemma

Let X be any set, and Φ : X 7→ Rd . Then, the function K : X 2 7→ R
defined as follows is p.d.:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

Rd .

Proof

〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)Rd 〉 ,∑N
i=1

∑N
j=1 ai aj 〈Φ (xi) ,Φ (xj)〉Rd = ‖

∑N
i=1 ai Φ (xi) ‖2

Rd ≥ 0 .

Julien Mairal (Inria) 23/431

Example: polynomial kernel

2R

x1

x2

x1

x2

2

For ~x = (x1, x2)> ∈ R2, let ~Φ(~x) = (x2
1 ,
√

2x1x2, x
2
2) ∈ R3:

K (~x ,~x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(
~x .~x ′

)2
.

Exercice: show that (~x .~x ′)d is p.d. for any integer d.
Julien Mairal (Inria) 24/431

Conversely: Kernels as Inner Products

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X F

Julien Mairal (Inria) 25/431

In case of ...

Definitions

An inner product on an R-vector space H is a mapping
(f , g) 7→ 〈f , g〉H from H2 to R that is bilinear, symmetric and such
that 〈f , f 〉 > 0 for all f ∈ H\{0}.
A vector space endowed with an inner product is called pre-Hilbert.

It is endowed with a norm defined as ‖ f ‖H = 〈f , f 〉
1
2
H.

A Hilbert space is a pre-Hilbert space complete for the norm ‖.‖H.
That is, any Cauchy sequence in H converges in H.

A Cauchy sequence (fn)n≥0 is a sequence whose elements become
progressively arbitrarily close to each other:

lim
N→+∞

sup
n,m≥N

‖fn − fm‖H = 0.

Completeness is necessary to keep “good” convergence properties of
Euclidean spaces in an infinite-dimensional context.

Julien Mairal (Inria) 26/431

Proof: finite case

Proof

Assume X = {x1, x2, . . . , xN} is finite of size N.

Any p.d. kernel K : X × X → R is entirely defined by the N × N
symmetric positive semidefinite matrix [K]ij := K (xi , xj).

It can therefore be diagonalized on an orthonormal basis of
eigenvectors (u1,u2, . . . ,uN), with non-negative eigenvalues
0 ≤ λ1 ≤ . . . ≤ λN , i.e.,

K (xi , xj) =

[
N∑

l=1

λl ul u
>
l

]
ij

=
N∑

l=1

λl ul (i)ul (j) = 〈Φ (xi) ,Φ (xj)〉RN ,

with

Φ (xi) =


√
λ1u1(i)

...√
λNuN(i)

 . �

Julien Mairal (Inria) 27/431

Proof: general case

Mercer (1909) for X = [a, b] ⊂ R (more generally X compact) and
K continuous.

Kolmogorov (1941) for X countable.

Aronszajn (1944, 1950) for the general case.

We will go through the proof of the general case by introducing the
concept of Reproducing Kernel Hilbert Spaces (RKHS).

Julien Mairal (Inria) 28/431

Outline

1 Kernels and RKHS
Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle

Julien Mairal (Inria) 29/431

RKHS Definition

Definition

Let X be a set and H ⊂ RX be a class of functions forming a (real)
Hilbert space with inner product 〈., .〉H. The function K : X 2 7→ R is
called a reproducing kernel (r.k.) of H if

1 H contains all functions of the form

∀x ∈ X , Kx : t 7→ K (x, t) .

2 For every x ∈ X and f ∈ H the reproducing property holds:

f (x) = 〈f ,Kx〉H .

If a r.k. exists, then H is called a reproducing kernel Hilbert space
(RKHS).

Julien Mairal (Inria) 30/431

An equivalent definition of RKHS

Theorem

The Hilbert space H ⊂ RX is a RKHS if and only if for any x ∈ X , the
mapping:

F : H → R
f 7→ f (x)

is continuous.

Corollary

Convergence in a RKHS implies pointwise convergence, i.e., if (fn)n∈N
converges to f in H, then (fn (x))n∈N converges to f (x) for any x ∈ X .

Julien Mairal (Inria) 31/431

An equivalent definition of RKHS

Theorem

The Hilbert space H ⊂ RX is a RKHS if and only if for any x ∈ X , the
mapping:

F : H → R
f 7→ f (x)

is continuous.

Corollary

Convergence in a RKHS implies pointwise convergence, i.e., if (fn)n∈N
converges to f in H, then (fn (x))n∈N converges to f (x) for any x ∈ X .

Julien Mairal (Inria) 31/431

Proof

If H is a RKHS then f 7→ f (x) is continuous

If a r.k. K exists, then for any (x, f) ∈ X ×H:

| f (x) | = | 〈f ,Kx〉H |
≤ ‖ f ‖H.‖Kx ‖H (Cauchy-Schwarz)

≤ ‖ f ‖H.K (x, x)
1
2 ,

because ‖Kx ‖2
H = 〈Kx,Kx〉H = K (x, x). Therefore f ∈ H 7→ f (x) ∈ R

is a continuous linear mapping. �

Since f is linear, it is indeed sufficient to show that f → 0⇒ f (x)→ 0.

Julien Mairal (Inria) 32/431

Proof (Converse)

If f 7→ f (x) is continuous then H is a RKHS

Conversely, let us assume that for any x ∈ X the linear form
f ∈ H 7→ f (x) is continuous.
Then by Riesz representation theorem there (general property of Hilbert
spaces) there exists a unique gx ∈ H such that:

f (x) = 〈f , gx〉H

The function K (x, y) = gx (y) is then a r.k. for H. �

Julien Mairal (Inria) 33/431

Unicity of r.k. and RKHS

Theorem

If H is a RKHS, then it has a unique r.k.

Conversely, a function K can be the r.k. of at most one RKHS.

Consequence

This shows that we can talk of ”the” kernel of a RKHS, or ”the” RKHS
of a kernel.

Julien Mairal (Inria) 34/431

Unicity of r.k. and RKHS

Theorem

If H is a RKHS, then it has a unique r.k.

Conversely, a function K can be the r.k. of at most one RKHS.

Consequence

This shows that we can talk of ”the” kernel of a RKHS, or ”the” RKHS
of a kernel.

Julien Mairal (Inria) 34/431

Proof

If a r.k. exists then it is unique

Let K and K ′ be two r.k. of a RKHS H. Then for any x ∈ X :

‖Kx − K ′x ‖2
H =

〈
Kx − K ′x,Kx − K ′x

〉
H

=
〈
Kx − K ′x,Kx

〉
H −

〈
Kx − K ′x,K

′
x

〉
H

= Kx (x)− K ′x (x)− Kx (x) + K ′x (x)

= 0 .

This shows that Kx = K ′x as functions, i.e., Kx(y) = K ′x(y) for any
y ∈ X . In other words, K=K’. �

The RKHS of a r.k. K is unique

Left as exercice.

Julien Mairal (Inria) 35/431

Proof

If a r.k. exists then it is unique

Let K and K ′ be two r.k. of a RKHS H. Then for any x ∈ X :

‖Kx − K ′x ‖2
H =

〈
Kx − K ′x,Kx − K ′x

〉
H

=
〈
Kx − K ′x,Kx

〉
H −

〈
Kx − K ′x,K

′
x

〉
H

= Kx (x)− K ′x (x)− Kx (x) + K ′x (x)

= 0 .

This shows that Kx = K ′x as functions, i.e., Kx(y) = K ′x(y) for any
y ∈ X . In other words, K=K’. �

The RKHS of a r.k. K is unique

Left as exercice.

Julien Mairal (Inria) 35/431

An important result

Theorem

A function K : X × X → R is p.d. if and only if it is a r.k.

Julien Mairal (Inria) 36/431

Proof

A r.k. is p.d.

1 A r.k. is symmetric because, for any (x, y) ∈ X 2:

K (x, y) = 〈Kx,Ky〉H = 〈Ky,Kx〉H = K (y, x) .

2 It is p.d. because for any N ∈ N,(x1, x2, . . . , xN) ∈ XN , and
(a1, a2, . . . , aN) ∈ RN :

N∑
i ,j=1

ai aj K (xi , xj) =
N∑

i ,j=1

ai aj

〈
Kxi ,Kxj

〉
H

= ‖
N∑

i=1

ai Kxi ‖
2
H

≥ 0. �

Julien Mairal (Inria) 37/431

Proof

A p.d. kernel is a r.k. (1/4)

Let H0 be the vector subspace of RX spanned by the functions
{Kx}x∈X .

For any f , g ∈ H0, given by:

f =
m∑

i=1

ai Kxi , g =
n∑

j=1

bj Kyj ,

let:
〈f , g〉H0

:=
∑
i ,j

ai bj K (xi , yj) .

Julien Mairal (Inria) 38/431

Proof

A p.d. kernel is a r.k. (2/4)

〈f , g〉H0
does not depend on the expansion of f and g because:

〈f , g〉H0
=

m∑
i=1

ai g (xi) =
n∑

j=1

bj f (yj) .

This also shows that 〈., .〉H0
is a symmetric bilinear form.

This also shows that for any x ∈ X and f ∈ H0:

〈f ,Kx〉H0
= f (x) .

Julien Mairal (Inria) 39/431

Proof

A p.d. kernel is a r.k. (3/4)

K is assumed to be p.d., therefore:

‖ f ‖2
H0

=
m∑

i ,j=1

ai aj K (xi , xj) ≥ 0 .

In particular Cauchy-Schwarz is valid with 〈., .〉H0
.

By Cauchy-Schwarz we deduce that ∀x ∈ X :

| f (x) | =
∣∣ 〈f ,Kx〉H0

∣∣ ≤ ‖ f ‖H0 .K (x, x)
1
2 ,

therefore ‖ f ‖H0 = 0 =⇒ f = 0.

H0 is therefore a pre-Hilbert space endowed with the inner product
〈., .〉H0

.

Julien Mairal (Inria) 40/431

Proof

A p.d. kernel is a r.k. (4/4)

For any Cauchy sequence (fn)n≥0 in
(
H0, 〈., .〉H0

)
, we note that:

∀ (x,m, n) ∈ X × N2, | fm (x)− fn (x) | ≤ ‖ fm − fn ‖H0 .K (x, x)
1
2 .

Therefore for any x the sequence (fn(x))n≥0 is Cauchy in R and has
therefore a limit.

If we add to H0 the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is
therefore a Hilbert space, with K as r.k. (up to a few technicalities,
left as exercice). �

Julien Mairal (Inria) 41/431

Application: back to Aronzsajn’s theorem

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X F

Julien Mairal (Inria) 42/431

Proof of Aronzsajn’s theorem

Proof

If K is p.d. over a set X then it is the r.k. of a Hilbert space
H ⊂ RX .

Let the mapping Φ : X → H defined by:

∀x ∈ X , Φ(x) = Kx .

By the reproducing property we have:

∀ (x, y) ∈ X 2, 〈Φ(x),Φ(y)〉H = 〈Kx,Ky〉H = K (x, y) . �

φ
X F

Julien Mairal (Inria) 43/431

Outline

1 Kernels and RKHS
Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle

Julien Mairal (Inria) 44/431

The linear kernel

Take X = Rd and the linear kernel:

K (x, y) = 〈x, y〉Rd

Theorem

The RKHS of the linear kernel is the set of linear functions of the form

fw (x) = 〈w, x〉Rd for w ∈ Rd ,

endowed with the norm

‖ fw ‖H = ‖w ‖2 .

Julien Mairal (Inria) 45/431

Proof

The RKHS of the linear kernel consists of functions:

x ∈ Rd 7→ f (x) =
∑

i

ai 〈xi , x〉Rd = 〈w, x〉Rd ,

with w =
∑

i ai xi .

The RKHS is therefore the set of linear forms endowed with the
following inner product:

〈f , g〉HK
= 〈w, v〉Rd ,

when f (x) = w.x and g (x) = v.x.

Julien Mairal (Inria) 46/431

RKHS of the linear kernel (cont.)


Klin (x, x′) = x>x′ .

f (x) = w>x ,

‖ f ‖H = ‖w ‖2 .

||f||=1||f||=2 ||f||=0.5

Julien Mairal (Inria) 47/431

The polynomial kernel

We have already mentioned a generalization of the linear kernel: the
polynomial kernel of degree p:

Kpoly (x, y) = (〈x, y〉Rd + c)p

Let us find its RKHS for p = 2 and c = 0.

First step: Look for an inner-product.

K (x, y) = trace
(

x>y x>y
)

= trace
(

y>x x>y
)

= trace
(

xx>yy>
)

=
〈

xx>, yy>
〉

F
,

where F is the Froebenius norm for matrices in Rd×d .

Julien Mairal (Inria) 48/431

The polynomial kernel

We have already mentioned a generalization of the linear kernel: the
polynomial kernel of degree p:

Kpoly (x, y) = (〈x, y〉Rd + c)p

Let us find its RKHS for p = 2 and c = 0.

First step: Look for an inner-product.

K (x, y) = trace
(

x>y x>y
)

= trace
(

y>x x>y
)

= trace
(

xx>yy>
)

=
〈

xx>, yy>
〉

F
,

where F is the Froebenius norm for matrices in Rd×d .

Julien Mairal (Inria) 48/431

The polynomial kernel

Second step: propose a candidate RKHS.
We know that H contains all the functions

f (x) =
∑

i

ai K (xi , x) =
∑

i

ai

〈
xi x
>
i , xx>

〉
F

=

〈∑
i

ai xi x
>
i , xx>

〉
.

Any symmetric matrix in Rd×d may be decomposed as
∑

i ai xi x
>
i . Our

candidate RKHS H will be the set of quadratic functions

fS(x) =
〈

S, xx>
〉

F
= x>Sx for S ∈ Sd×d ,

where Sd×d is the set of symmetric matrices in Rd×d , endowed with
the inner-product 〈fS1 , fS1〉H = 〈S1,S2〉F.

Julien Mairal (Inria) 49/431

The polynomial kernel

Third step: check that the candidate is a Hilbert space.
This step is trivial in the present case since it is easy to see that H a
Euclidean space. Sometimes, things are not so simple and we need to
prove the completeness explicitly.

Fourth step: check that H is the RKHS.
H contains all the functions Kx : t 7→ K (x, t) =

〈
xx>, tt>

〉
F
.

Moreover, we have for all fS in H and x in X ,

fS(x) =
〈

S, xx>
〉

F
= 〈fS, fxx>〉H = 〈fS,Kx〉H �.

Remark

All points x in X are mapped to a rank-one matrix xx>. Most of points
in H do not admit a pre-image.

Exercice: what is the RKHS of the general polynomial kernel?

Julien Mairal (Inria) 50/431

Combining kernels

Theorem

If K1 and K2 are p.d. kernels, then:

K1 + K2,

K1K2, and

cK1, for c ≥ 0,

are also p.d. kernels

If (Ki)i≥1 is a sequence of p.d. kernels that converges pointwisely
to a function K :

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= lim

n→∞
Ki

(
x, x′

)
,

then K is also a p.d. kernel.

Proof: left as exercice

Julien Mairal (Inria) 51/431

Examples

Theorem

If K is a kernel, then eK is a kernel too.

Proof:

eK(x,x′) = lim
n→+∞

n∑
i=0

K (x, x′)i

i !

Julien Mairal (Inria) 52/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)

X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/431

Outline

1 Kernels and RKHS
Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle

Julien Mairal (Inria) 54/431

Remember the RKHS of the linear kernel


Klin (x, x′) = x>x′ .

f (x) = w>x ,

‖ f ‖H = ‖w ‖2 .

||f||=1||f||=2 ||f||=0.5

Julien Mairal (Inria) 55/431

Smoothness functional

A simple inequality

By Cauchy-Schwarz we have, for any function f ∈ H and any two
points x, x′ ∈ X :∣∣ f (x)− f

(
x′
) ∣∣ = | 〈f ,Kx − Kx′〉H |
≤ ‖ f ‖H × ‖Kx − Kx′ ‖H
= ‖ f ‖H × dK

(
x, x′

)
.

The norm of a function in the RKHS controls how fast the function
varies over X with respect to the geometry defined by the kernel
(Lipschitz with constant ‖ f ‖H).

Important message

Small norm =⇒ slow variations.

Julien Mairal (Inria) 56/431

Kernels and RKHS : Summary

P.d. kernels can be thought of as inner product after embedding
the data space X in some Hilbert space. As such a p.d. kernel
defines a metric on X .

A realization of this embedding is the RKHS, valid without
restriction on the space X nor on the kernel.

The RKHS is a space of functions over X . The norm of a function
in the RKHS is related to its degree of smoothness w.r.t. the metric
defined by the kernel on X .

We will now see some applications of kernels and RKHS in
statistics, before coming back to the problem of choosing (and
eventually designing) the kernel.

Julien Mairal (Inria) 57/431

Outline

1 Kernels and RKHS
Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle

Julien Mairal (Inria) 58/431

The kernel trick

Choosing a p.d. kernel K on a set X amounts to embedding the
data in a Hilbert space: there exists a Hilbert space H and a
mapping Φ : X 7→ H such that, for all x, x′ ∈ X ,

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

However this mapping might not be explicitly given, nor convenient
to work with in practice (e.g., large or even infinite dimensions).

A solution is to work implicitly in the feature space!

Kernel trick

Any algorithm to process finite-dimensional vectors that can be
expressed only in terms of pairwise inner products can be applied to
potentially infinite-dimensional vectors in the feature space of a p.d.
kernel by replacing each inner product evaluation by a kernel evaluation.

Julien Mairal (Inria) 59/431

Kernel trick Summary

Summary

The kernel trick is a trivial statement with important applications.

It can be used to obtain nonlinear versions of well-known linear
algorithms, e.g., by replacing the classical inner product by a
Gaussian kernel.

It can be used to apply classical algorithms to non vectorial data
(e.g., strings, graphs) by again replacing the classical inner product
by a valid kernel for the data.

It allows in some cases to embed the initial space to a larger feature
space and involve points in the feature space with no pre-image
(e.g., barycenter).

Julien Mairal (Inria) 60/431

Examples from last week

Before moving to more complicated learning tasks, the kernel trick can
be applied to simple elementary data manipulations in the feature space.

1 computing distances in the feature space;
2 computing distances between a point and a set;
3 computing the barycenter of points in the feature space;
4 centering points.

(see slides from previous lecture).

φ
X F

x1

x2

x1

x2φ()

φ()d(x1,x2)

Julien Mairal (Inria) 61/431

Part 2

Kernels Methods
Supervised Learning

Julien Mairal (Inria) 62/431

Back to classifying cats and dogs

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Julien Mairal (Inria) 63/431

Back to classifying cats and dogs

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

A simple parametrization when X = Rp and Y = {−1,+1}.
F = {fw : w ∈ Rp} where the fw’s are linear: fw : x 7→ x>w.

The regularization is the simple Euclidean norm Ω(fw) = ‖w‖2
2.

Julien Mairal (Inria) 63/431

Back to classifying cats and dogs

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

A simple parametrization when X = Rp and Y = {−1,+1}.
This is equivalent to using a linear kernel K (x, x′) = x>x′.
In that case, F is the Hilbert space H of linear functions fw : x 7→ x>w
and Ω(fw) = ‖fw‖2

H = ‖w‖2
2.

Julien Mairal (Inria) 63/431

Back to classifying cats and dogs

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

What are the new perspectives with kernel methods?

being able to deal with non-linear functional spaces endowed with a
natural regularization function ‖.‖2

H.

being able to deal with non-vectorial data (graphs, trees).

Julien Mairal (Inria) 63/431

Motivations

Two theoretical results underpin a family of powerful algorithms for data
analysis using positive definite kernels, collectively known as kernel
methods:

The kernel trick, based on the representation of p.d. kernels as
inner products,

the representer theorem, based on some properties of the
regularization functional defined by the RKHS norm.

An important property

When needed, the RKHS norm acts as a natural regularization function
that penalizes variations of functions.

Julien Mairal (Inria) 64/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Support vector machines

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle

Julien Mairal (Inria) 65/431

Back to classifying cats and dogs

Regularized empirical risk formulation with kernels

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈H

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖f ‖2
H︸ ︷︷ ︸

regularization

. (1)

Question: how to solve the above minimization problem?

A simple theorem, called “representer theorem” can turn (1) into a
concrete optimization problem in Rn.

Julien Mairal (Inria) 66/431

The Theorem

Representer Theorem

Let X be a set endowed with a p.d. kernel K , HK the corresponding
RKHS, and S = {x1, · · · , xn} ⊂ X a finite set of points in X .

Let Ψ : Rn+1 → R be a function of n + 1 variables, strictly
increasing with respect to the last variable.

Then, any solution to the optimization problem:

min
f ∈HK

Ψ (f (x1) , · · · , f (xn) , ‖ f ‖HK
) , (2)

admits a representation of the form:

∀x ∈ X , f (x) =
n∑

i=1

αi K (xi , x) . (3)

Julien Mairal (Inria) 67/431

Proof (1/2)

Let ξ (f ,S) be the functional that is minimized in the statement of
the representer theorem, and HSK the linear span in HK of the
vectors Kxi , i.e.,

HSK =

{
f ∈ HK : f (x) =

n∑
i=1

αi K (xi , x) , (α1, · · · , αn) ∈ Rn

}
.

HSK finite-dimensional subspace, therefore any function f ∈ HK can
be uniquely decomposed as:

f = fS + f⊥ ,

with fS ∈ HSK and f⊥ ⊥ HSK (by orthogonal projection).

Julien Mairal (Inria) 68/431

Proof (2/2)

HK being a RKHS it holds that:

∀i = 1, · · · , n, f⊥ (xi) = 〈f⊥,K (xi , .)〉HK
= 0 ,

because K (xi , .) ∈ HK , therefore:

∀i = 1, · · · , n, f (xi) = fS (xi) .

Pythagoras’ theorem in HK then shows that:

‖ f ‖2
HK

= ‖ fS ‖2
HK

+ ‖ f⊥ ‖2
HK

.

As a consequence, ξ (f ,S) ≥ ξ (fS ,S) , with equality if and only if
‖ f⊥ ‖HK

= 0. The minimum of Ψ is therefore necessarily in HSK .
�

Julien Mairal (Inria) 69/431

Remarks

Practical and theoretical consequences

Often the function Ψ has the form:

Ψ (f (x1) , · · · , f (xn) , ‖ f ‖HK
) = c (f (x1) , · · · , f (xn)) + λΩ (‖ f ‖HK

)

where c(.) measures the “fit” of f to a given problem (regression,
classification, dimension reduction, ...) and Ω is strictly increasing. This
formulation has two important consequences:

Theoretically, the minimization will enforce the norm ‖ f ‖HK
to be

“small”, which can be beneficial by ensuring a sufficient level of
smoothness for the solution (regularization effect).

Practically, we know by the representer theorem that the solution
lives in a subspace of dimension n, which can lead to efficient
algorithms although the RKHS itself can be of infinite dimension.

Julien Mairal (Inria) 70/431

Remarks

Dual interpretations of kernel methods

Most kernel methods have two complementary interpretations:

A geometric interpretation in the feature space, thanks to the kernel
trick. Even when the feature space is “large”, most kernel methods
work in the linear span of the embeddings of the points available.

A functional interpretation, often as an optimization problem over
(subsets of) the RKHS associated to the kernel.

The representer theorem has important consequences, but it is in fact
rather trivial. We are looking for a function f in H such that for all x
in X , f (x) = 〈Kx, f 〉H. The part f ⊥ that is orthogonal to the Kxi ’s is
thus “useless” to explain the training data.

Julien Mairal (Inria) 71/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Support vector machines

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle

Julien Mairal (Inria) 72/431

Regression

Setup

Let S = {x1, . . . , xn} ∈ X n be a set of points

Let y = {y1, . . . , yn} ∈ Rn be real numbers attached to the points

Regression = find a function f : X → R to predict y by f (x)

-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3 4 5 6 7

line 1
line 2

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	

�
�

Julien Mairal (Inria) 73/431

Least-square regression

Let us quantify the error if f predicts f (x) instead of y by:

V (f (x) , y) = (y − f (x))2 .

Fix a set of functions H.

Least-square regression amounts to solving:

f̂ ∈ arg min
f ∈H

1

n

n∑
i=1

(yi − f (xi))2 .

Issues: unstable (especially in large dimensions), overfitting if H is
too “large”.

Julien Mairal (Inria) 74/431

Regularized least-square

Let us consider a RKHS H, RKHS associated to a p.d. kernel K
on X .

Let us regularize the functional to be minimized by:

f̂ = arg min
f ∈H

1

n

n∑
i=1

(yi − f (xi))2 + λ‖ f ‖2
H.

1st effect = prevent overfitting by penalizing non-smooth functions.

Julien Mairal (Inria) 75/431

Representation of the solution

By the representer theorem, any solution of:

f̂ = arg min
f ∈HK

1

n

n∑
i=1

(yi − f (xi))2 + λ‖ f ‖2
HK
.

can be expanded as:

f̂ (x) =
n∑

i=1

αi K (xi , x) .

2nd effect = simplifying the solution.

Julien Mairal (Inria) 76/431

Dual formulation

Let α = (α1, . . . , αn)> ∈ Rn,

Let K be the n × n Gram matrix: Ki ,j = K (xi , xj) .

We can then write:(
f̂ (x1) , . . . , f̂ (xn)

)>
= Kα,

The following holds as usual:

‖ f̂ ‖2
HK

= α>Kα.

Julien Mairal (Inria) 77/431

Dual formulation

The problem is therefore equivalent to:

arg min
α∈Rn

1

n
(Kα− y)> (Kα− y) + λα>Kα.

This is a convex and differentiable function of α. Its minimum can
therefore be found by setting the gradient in α to zero:

0 =
2

n
K (Kα− y) + 2λKα

= K [(K + λnI)α− y] .

Julien Mairal (Inria) 78/431

Dual formulation

K being a symmetric matrix, it can be diagonalized in an
orthonormal basis and Ker(K) ⊥ Im(K).

In this basis we see that (K + λnI)−1 leaves Im(K) and Ker(K)
invariant.

The problem is therefore equivalent to:

(K + λnI)α− y ∈ Ker(K)

⇔α− (K + λnI)−1 y ∈ Ker(K)

⇔α = (K + λnI)−1 y + ε, with Kε = 0.

Julien Mairal (Inria) 79/431

Kernel ridge regression

However, if α′ = α+ ε with Kε = 0, then:

‖ f − f ′ ‖2
H =

(
α−α′

)>
K
(
α−α′

)
= 0,

therefore f = f ′.

One solution to the initial problem is therefore:

f̂ =
n∑

i=1

αi K (xi , x) ,

with
α = (K + λnI)−1 y.

Julien Mairal (Inria) 80/431

Remarks

The matrix (K + nλI)−1 is invertible when λ > 0.

When λ→ 0, the method converges towards the solution of the
classical unregularized least-square solution. When λ→∞, the
solution converges to f = 0.

In practice the symmetric matrix K + nλI is inverted with specific
algorithms (e.g., Cholevsky decomposition).

This method becomes difficult to use when the number of points
becomes large.

Julien Mairal (Inria) 81/431

Example

-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3 4 5 6 7

l=0
l=0.01

l=0.1
l=1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	

�
�

Julien Mairal (Inria) 82/431

Kernel methods: Summary

The kernel trick allows to extend many linear algorithms to
non-linear settings and to general data (even non-vectorial).

The representer theorem shows that that functional optimization
over (subsets of) the RKHS is feasible in practice.

We will see next a particularly successful applications of kernel
methods, pattern recognition.

Julien Mairal (Inria) 83/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Support vector machines

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle

Julien Mairal (Inria) 84/431

Pattern recognition

APPLE

APPLE

APPLE
APPLE

APPLE

PEAR

PEAR
PEAR

??? ???

???

Input variables x ∈ X .

Output y ∈ {−1, 1}.
Training set S = {(x1, y1) , . . . , (xn, yn)}.

Julien Mairal (Inria) 85/431

Or again the cats and dogs example...

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Julien Mairal (Inria) 86/431

...which we may reformulate with kernels

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈H

1

n

n∑
i=1

ϕ(yi f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖f ‖2
H︸ ︷︷ ︸

regularization

.

By the representer theorem, the solution of the unconstrained problem
can be expanded as:

f (x) =
n∑

i=1

αi K (xi , x) .

Julien Mairal (Inria) 87/431

Optimization in RKHS

Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in Rn:

min
α∈Rn

1

n

n∑
i=1

ϕ

yi

n∑
j=1

αj K (xi , xj)

+ λ

n∑
i ,j=1

αiαj K (xi , xj)

 .

which in matrix notation gives

min
α∈Rn

{
1

n

n∑
i=1

ϕ (yi [Kα]i) + λα>Kα

}
, .

This can be implemented using general packages for convex
optimization or specific algorithms (e.g., for SVM).

Julien Mairal (Inria) 88/431

Loss function examples

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

u

ph
i(u

)

1−SVM
2−SVM
Logistic
Boosting

Method ϕ(u)

Kernel logistic regression log (1 + e−u)
Support vector machine (1-SVM) max (1− u, 0)

Support vector machine (2-SVM) max (1− u, 0)2

Boosting e−u

Julien Mairal (Inria) 89/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Support vector machines

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle

Julien Mairal (Inria) 90/431

Formalization

Definition of the risk and notation

Let P be an (unknown) distribution on X × Y.

Observation: Sn = (Xi ,Yi)i=1,...,n i.i.d. random variables according
to P.

Loss function L (f (x) , y) ∈ R small when f (x) is a good predictor
for y .

Risk: R(f) = E[L (f (X) ,Y)].

Estimator f̂n : X → Y.

Goal: small risk R
(

f̂n

)
.

Julien Mairal (Inria) 91/431

Large-margin classifiers

Definition of the margin

For pattern recognition Y = {−1, 1}.
The goal is to estimate a prediction function f : X → R.

The margin of the function f for a pair (x, y) is:

yf (x) .

Large margin classifiers

Focusing on large margins ensures that f (x) has the same sign as y
and a large absolute value (confidence).

Suggests a loss function L (f (x) , y) = ϕ (yf (x)), where ϕ : R→ R
is non-increasing.

Goal: small ϕ-risk Rϕ(f) = E[ϕ (Yf (X))].

Julien Mairal (Inria) 92/431

Empirical risk minimization (ERM)

ERM estimator

Given n observations, the empirical ϕ-risk is:

Rn
ϕ(f) =

1

n

n∑
i=1

ϕ (Yi f (Xi)) .

The ERM estimator on the functional class F is the solution (when
it exists) of:

f̂n = arg min
f ∈F

Rn
ϕ(f) .

Question

When is Rn
ϕ(f) a good estimate of the true risk Rϕ(f)?

Julien Mairal (Inria) 93/431

Empirical risk minimization (ERM)

ERM estimator

Given n observations, the empirical ϕ-risk is:

Rn
ϕ(f) =

1

n

n∑
i=1

ϕ (Yi f (Xi)) .

The ERM estimator on the functional class F is the solution (when
it exists) of:

f̂n = arg min
f ∈F

Rn
ϕ(f) .

Question

When is Rn
ϕ(f) a good estimate of the true risk Rϕ(f)?

Julien Mairal (Inria) 93/431

Class capacity

Motivations

The ERM principle gives a good solution if Rn
ϕ

(
f̂n

)
is similar to the

minimum achievable risk inff ∈F Rϕ(f).

This can be ensured if F is not “too large”.

We need a measure of the “capacity” of F .

Definition: Rademacher complexity

The Rademacher complexity of a class of functions F is:

Radn (F) = EX ,σ

[
sup
f ∈F

∣∣∣∣∣ 2

n

n∑
i=1

σi f (Xi)

∣∣∣∣∣
]
,

where the expectation is over (Xi)i=1,...,n and the independent uniform
{±1}-valued (Rademacher) random variables (σi)i=1,...,n.

Julien Mairal (Inria) 94/431

Basic learning bounds

Suppose ϕ is Lipschitz with constant Lϕ:

∀u, u′ ∈ R,
∣∣ϕ(u)− ϕ(u′)

∣∣ ≤ Lϕ
∣∣ u − u′

∣∣ .
Then on average over the training set (and with high probability)
the ϕ-risk of the ERM estimator is closed to the empirical one:

ES
[
Rϕ
(

f̂n

)
− Rn

ϕ

(
f̂n

)]
≤ 2LϕRadn (F) .

The ϕ-risk of the ERM estimator is also close to the smallest
achievable on F (on average and with large probability):

ESRϕ
(

f̂n

)
≤ inf

f ∈F
Rϕ(f) + 4LϕRadn (F) .

Julien Mairal (Inria) 95/431

ERM in RKHS balls

Principle

Assume X is endowed with a p.d. kernel.

We consider the ball of radius B in the RKHS as function class for
the ERM:

FB = {f ∈ H : ‖ f ‖H ≤ B} .

Theorem (capacity control of RKHS balls)

Radn (FB) ≤
2B
√
EK (X ,X)√

n
.

Julien Mairal (Inria) 96/431

Proof (1/2)

Radn (FB) = EX ,σ

[
sup

f∈FB

∣∣∣∣∣ 2

n

n∑
i=1

σi f (Xi)

∣∣∣∣∣
]

= EX ,σ

[
sup

f∈FB

∣∣∣∣∣
〈

f ,
2

n

n∑
i=1

σi KXi

〉 ∣∣∣∣∣
]

(RKHS)

= EX ,σ

[
B‖ 2

n

n∑
i=1

σi KXi ‖H

]
(Cauchy-Schwarz)

=
2B

n
EX ,σ

√√√√‖ n∑
i=1

σi KXi ‖2
H


≤ 2B

n

√√√√√EX ,σ

 n∑
i,j=1

σiσj K (Xi ,Xj)

 (Jensen)

Julien Mairal (Inria) 97/431

Proof (2/2)

But Eσ [σiσj] is 1 if i = j , 0 otherwise. Therefore:

Radn (FB) ≤ 2B

n

√√√√√EX

 n∑
i ,j=1

Eσ [σiσj] K (Xi ,Xj)


≤ 2B

n

√√√√EX

n∑
i=1

K (Xi ,Xi)

=
2B
√

EX K (X ,X)√
n

. �

Julien Mairal (Inria) 98/431

Basic learning bounds in RKHS balls

Corollary

Suppose K (X ,X) ≤ κ2 a.s. (e.g., Gaussian kernel and κ = 1).

Let the minimum possible ϕ-risk:

R∗ϕ = inf
f measurable

Rϕ(f) .

Then we directly get for the ERM estimator in FB :

ERϕ
(

f̂n

)
− R∗ϕ ≤

8LϕκB√
n

+

[
inf

f ∈FB

Rϕ(f)− R∗ϕ

]
.

Julien Mairal (Inria) 99/431

Choice of B by structural risk minimization

Remark

The estimation error upper bound 8LϕκB/
√

n increases (linearly)
with B.

The approximation error
[
inff ∈FB

Rϕ(f)− R∗ϕ
]

decreases with B.

Ideally the choice of B should find a trade-off that minimizes the
upper bound.

This is achieved when

∂ inff ∈FB
Rϕ(f)

∂B
= −8Lϕκ√

n
.

Julien Mairal (Inria) 100/431

ERM in practice

Reformulation as penalized minimization

We must solve the constrained minimization problem:{
minf ∈H

1
n

∑n
i=1 ϕ (yi f (xi))

subject to ‖ f ‖H ≤ B .

This is a constrained optimization problem.

To make this practical we assume that ϕ is convex.

The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter λ the unconstrained problem:

min
f ∈H

{
1

n

n∑
i=1

ϕ (yi f (xi)) + λ‖ f ‖2
H

}
.

Julien Mairal (Inria) 101/431

ERM in practice

Reformulation as penalized minimization

We must solve the constrained minimization problem:{
minf ∈H

1
n

∑n
i=1 ϕ (yi f (xi))

subject to ‖ f ‖H ≤ B .

This is a constrained optimization problem.

To make this practical we assume that ϕ is convex.

The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter λ the unconstrained problem:

min
f ∈H

{
1

n

n∑
i=1

ϕ (yi f (xi)) + λ‖ f ‖2
H

}
.

Julien Mairal (Inria) 101/431

One slide on convex duality

Following the course of Anatoli Juditsky would be useful here...

Strong Duality

α⋆

α κ

κ⋆

f(α), primal

g(κ), dual

b

b

b

b

Strong duality means that maxκ g(κ) = minα f (α)

Strong duality holds in most “reasonable cases” for convex
optimization [see Boyd and Vandenberghe, 2004].

Julien Mairal (Inria) 102/431

One slide on convex duality

Following the course of Anatoli Juditsky would be useful here...

Strong Duality

α⋆

α κ

κ⋆

f(α), primal

g(κ), dual

b

b

b

b

The relation between κ? and α? is not always known a priori.

Very often, a constrained problem in the primal becomes a
penalized one in the dual and vice-versae.

Julien Mairal (Inria) 102/431

Two slides on convex duality

Parenthesis on duality gaps

α̃

α

κ̃

κ

f(α), primal

g(κ), dual

b

b

b

b
δ(α̃, κ̃)

The duality gap guarantees us that 0 ≤ f (α̃)− f (α?) ≤ δ(α̃, κ̃).

Dual problems are often obtained by Lagrangian or Fenchel duality.

Julien Mairal (Inria) 103/431

A few slides on Lagrangian duality

Setting

We consider an equality and inequality constrained optimization
problem over a variable x ∈ X :

minimize f (x)

subject to hi (x) = 0 , i = 1, . . . ,m ,

gj (x) ≤ 0 , j = 1, . . . , r ,

making no assumption of f , g and h.

Let us denote by f ∗ the optimal value of the decision function
under the constraints, i.e., f ∗ = f (x∗) if the minimum is reached at
a global minimum x∗.

Julien Mairal (Inria) 104/431

A few slides on Lagrangian duality

Lagrangian

The Lagrangian of this problem is the function L : X × Rm × Rr → R
defined by:

L (x , λ, µ) = f (x) +
m∑

i=1

λi hi (x) +
r∑

j=1

µj gj (x) .

Lagrangian dual function

The Lagrange dual function g : Rm × Rr → R is:

q(λ, µ) = inf
x∈X

L (x , λ, µ)

= inf
x∈X

f (x) +
m∑

i=1

λi hi (x) +
r∑

j=1

µj gj (x)

 .

Julien Mairal (Inria) 105/431

A few slides on convex Lagrangian duality

For the (primal) problem:

minimize f (x)

subject to h(x) = 0 , g(x) ≤ 0 ,

the Lagrange dual problem is:

maximize q(λ, µ)

subject to µ ≥ 0 ,

q is concave in (λ, µ), even if the original problem is not convex.

when f is convex and strong duality holds, we have for all feasible
primal and dual points x , λ, µ,

q(λ, µ) ≤ q(λ?, µ?) = L (x?, λ?, µ?) = f (x?) ≤ f (x).

Julien Mairal (Inria) 106/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Support vector machines

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle

Julien Mairal (Inria) 107/431

Motivations

Support vector machines (SVM)

Historically the first “kernel method” for pattern recognition, still
the most popular.

Often state-of-the-art in performance.

One particular choice of loss function (hinge loss).

Leads to a sparse solution, i.e., not all points are involved in the
decomposition (compression).

Particular algorithm for fast optimization (decomposition by
chunking methods).

Julien Mairal (Inria) 108/431

Definitions

yf(x)

l(f(x),y)

1

The loss function is the hinge loss:

ϕhinge(u) = max (1− u, 0) =

{
0 if u ≥ 1,

1− u otherwise.

SVM solve the problem:

min
f ∈H

{
1

n

n∑
i=1

ϕhinge (yi f (xi)) + λ‖ f ‖2
H

}
.

Julien Mairal (Inria) 109/431

Problem reformulation (1/3)

Slack variables

This is a convex optimization problem

However the objective function in not differentiable, so we
reformulate the problem with additional slack variables
ξ1, . . . , ξn ∈ R:

min
f ∈H,ξ∈Rn

{
1

n

n∑
i=1

ξi + λ‖ f ‖2
H

}
,

subject to:
ξi ≥ ϕhinge (yi f (xi)) .

Julien Mairal (Inria) 110/431

Problem reformulation (2/3)

The objective function is now differentiable in f and ξi , and we can
rewrite the constraints as a conjunction of linear constraints:

min
f ∈H,ξ∈Rn

1

n

n∑
i=1

ξi + λ‖ f ‖2
H ,

subject to: {
ξi ≥ 1− yi f (xi) , for i = 1, . . . , n ,

ξi ≥ 0, for i = 1, . . . , n .

Julien Mairal (Inria) 111/431

Problem reformulation (3/3)

Finite-dimensional expansion

Replacing f̂ by

f̂ (x) =
n∑

i=1

αi K (xi , x) ,

the problem can be rewritten as an optimization problem in α and ξ:

min
α∈Rn,ξ∈Rn

1

n

n∑
i=1

ξi + λα>Kα ,

subject to:{
yi
∑n

j=1 αj K (xi , xj) + ξi − 1 ≥ 0 , for i = 1, . . . , n ,

ξi ≥ 0 , for i = 1, . . . , n .

Julien Mairal (Inria) 112/431

Solving the problem

Remarks

This is a classical quadratic program (minimization of a convex
quadratic function with linear constraints) for which any
out-of-the-box optimization package can be used.

The dimension of the problem and the number of constraints,
however, are 2n where n is the number of points. General-purpose
QP solvers will have difficulties when n exceeds a few thousands.

Solving the dual of this problem (also a QP) will be more
convenient and lead to faster algorithms (due to the sparsity of the
final solution).

Julien Mairal (Inria) 113/431

Dual problem

With Lagrangian duality

It can be shown that the dual problem is equivalent to:

max
0≤µ≤1/n

n∑
i=1

µi −
1

4λ

n∑
i ,j=1

yi yjµiµj K (xi , xj) .

Proof: left as excercise

Julien Mairal (Inria) 114/431

Back to the primal

Once the dual problem is solved in µ we get a solution of the
primal problem by α = Yµ/2λ.

We can therefore directly plug this into the dual problem to obtain
the QP that α must solve:

max
α∈Rd

2
n∑

i=1

αi yi −
n∑

i ,j=1

αiαj K (xi , xj) = 2α>y −α>Kα ,

subject to:

0 ≤ yiαi ≤
1

2λn
, for i = 1, . . . , n .

Julien Mairal (Inria) 115/431

Karush-Kuhn-Tucker (KKT) conditions

The KKT optimality conditions are, for i = 1, . . . , n:{
µi [yi f (xi) + ξi − 1] = 0,

νiξi = 0,

In terms of α this can be rewritten as:{
αi [yi f (xi) + ξi − 1] = 0 ,(
αi − yi

2λn

)
ξi = 0 .

Julien Mairal (Inria) 116/431

Analysis of KKT conditions

{
αi [yi f (xi) + ξi − 1] = 0 ,(
αi − yi

2λn

)
ξi = 0 .

If αi = 0, then the second constraint is active: ξi = 0. This implies
yi f (xi) ≥ 1.

If 0 < yiαi <
1

2λn , then both constraints are active: ξi = 0 et
yi f (xi) + ξi − 1 = 0. This implies yi f (xi) = 1.

If αi = yi
2λn , then the second constraint is not active (ξi ≥ 0) while

the first one is active: yi f (xi) + ξi = 1. This implies yi f (xi) ≤ 1

Julien Mairal (Inria) 117/431

Geometric interpretation

Julien Mairal (Inria) 118/431

Geometric interpretation

f(x
)=

−1

f(x
)=

+1

f(x
)=

0

Julien Mairal (Inria) 118/431

Geometric interpretation

0<α

α=0

y<1/2n

αy=1/2nλ

λ

Julien Mairal (Inria) 118/431

Support vectors

Consequence of KKT conditions

The training points with αi 6= 0 are called support vectors.

Only support vectors are important for the classification of new
points:

∀x ∈ X , f (x) =
n∑

i=1

αi K (xi , x) =
∑

i∈SV

αi K (xi , x) ,

where SV is the set of support vectors.

Consequences

The solution is sparse in α, leading to fast algorithms for training
(use of decomposition methods).

The classification of a new point only involves kernel evaluations
with support vectors (fast).

Julien Mairal (Inria) 119/431

Remark: C-SVM

Often the SVM optimization problem is written in terms of a
regularization parameter C instead of λ as follows:

arg min
f ∈H

1

2
‖ f ‖2

H + C
n∑

i=1

Vhinge (f (xi) , yi) .

This is equivalent to our formulation with C = 1
2nλ .

The SVM optimization problem is then:

max
α∈Rd

2
n∑

i=1

αi yi −
n∑

i ,j=1

αiαj K (xi , xj) ,

subject to:
0 ≤ yiαi ≤ C , for i = 1, . . . , n .

This formulation is often called C-SVM.

Julien Mairal (Inria) 120/431

Remark: 2-SVM

A variant of the SVM, sometimes called 2-SVM, is obtained by
replacing the hinge loss by the square hinge loss:

min
f ∈H

{
1

n

n∑
i=1

ϕhinge (yi f (xi))2 + λ‖ f ‖2
H

}
.

After some computation (left as exercice) we find that the dual
problem of the 2-SVM is:

max
α∈Rd

2α>y −α> (K + nλI)α ,

subject to:
0 ≤ yiαi , for i = 1, . . . , n .

This is therefore equivalent to the previous SVM with the kernel
K + nλI and C = +∞

Julien Mairal (Inria) 121/431

Part 3

Kernels Methods
Unsupervised Learning

Julien Mairal (Inria) 122/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle

Julien Mairal (Inria) 123/431

The K-means algorithm

K-means is probably the most popular algorithm for clustering.

Optimization point of view

Given data points x1, . . . , xn in Rp, it consists of performing alternate
minimization steps for optimizing the following cost function

min
µj∈Rp for j=1,...,k

si∈{1,...,k}, for i=1,...,n

n∑
i=1

‖xi − µsi
‖2

2.

K-means alternates between two steps:

1 cluster assignment:
Given fixed µ1, . . . ,µk , assign each xi to its closest centroid

∀i , si ∈ argmin
s∈{1,...,k}

‖xi − µs‖2
2.

Julien Mairal (Inria) 124/431

The K-means algorithm

K-means is probably the most popular algorithm for clustering.

Optimization point of view

Given data points x1, . . . , xn in Rp, it consists of performing alternate
minimization steps for optimizing the following cost function

min
µj∈Rp for j=1,...,k

si∈{1,...,k}, for i=1,...,n

n∑
i=1

‖xi − µsi
‖2

2.

K-means alternates between two steps:

2 centroids update:
Given the previous assignments s1, . . . , sn, update the centroids

∀j , µj = argmin
µ∈Rp

∑
i :si =j

‖xi − µ‖2
2.

Julien Mairal (Inria) 124/431

The K-means algorithm

K-means is probably the most popular algorithm for clustering.

Optimization point of view

Given data points x1, . . . , xn in Rp, it consists of performing alternate
minimization steps for optimizing the following cost function

min
µj∈Rp for j=1,...,k

si∈{1,...,k}, for i=1,...,n

n∑
i=1

‖xi − µsi
‖2

2.

K-means alternates between two steps:

2 centroids update:
Given the previous assignments s1, . . . , sn, update the centroids

⇔ ∀j , µj =
1

nj

∑
i :si =j

xi .

Julien Mairal (Inria) 124/431

Kernel K-means and spectral clustering

We may now modify the objective to operate in a RKHS. Given data
points x1, . . . , xn in X and a p.d. kernel K : X × X → R with H its
RKHS, the new objective becomes

min
µj∈H for j=1,...,k

si∈{1,...,k} for i=1,...,n

n∑
i=1

‖ϕ(xi)− µsi
‖2
H.

To optimize the cost function, we will first use the following Proposition

Proposition

The center of mass ϕn = 1
n

∑n
i=1 ϕ(xi) solves the following optimization

problem

min
µ∈H

n∑
i=1

‖ϕ(xi)− µ‖2
H.

Julien Mairal (Inria) 125/431

Kernel K-means and spectral clustering

Proof

1

n

n∑
i=1

‖ϕ(xi)− µ‖2
H =

1

n

n∑
i=1

‖ϕ(xi)‖2
H −

〈
2

n

n∑
i=1

ϕ(xi),µ

〉
H

+ ‖µ‖2
H

=
1

n

n∑
i=1

‖ϕ(xi)‖2
H − 2 〈ϕn,µ〉H + ‖µ‖2

H

=
1

n

n∑
i=1

‖ϕ(xi)‖2
H − ‖ϕn‖2

H + ‖ϕn − µ‖2
H,

which is minimum for µ = ϕn.

Julien Mairal (Inria) 126/431

Kernel K-means and spectral clustering

Back with the objective,

min
µj∈H for j=1,...,k

si∈{1,...,k} for i=1,...,n

n∑
i=1

‖ϕ(xi)− µsi
‖2
H,

we know that given assignments si , the optimal µj are the centers of
mass of the respective clusters and we obtain the equivalent objective:

min
si∈{1,...,k}

for i=1,...,n

n∑
i=1

∥∥∥∥∥∥ϕ(xi)−
1

|Csi |
∑
j∈Csi

ϕ(xj)

∥∥∥∥∥∥
2

H

,

or, after short calculations,

min
si∈{1,...,k}

for i=1,...,n

n∑
i=1

K (xi , xi)−
2

|Csi |
∑
j∈Csi

K (xi , xj) +
1

|Csi |2
∑
j∈Csi

∑
l∈Csi

K (xj , xl).

Julien Mairal (Inria) 127/431

Kernel K-means and spectral clustering

and, after removing the constant terms, we obtain the objective

min
si∈{1,...,k}

for i=1,...,n

n∑
i=1

− 1

|Csi |
∑
j∈Csi

K (xi , xj), (?)

The objective can be expressed with pairwise kernel comparisons.
Unfortunately, the problem is hard and we need an appropriate strategy
to obtain an approximate solution.

Greedy approach: kernel K-means

At every iteration,

Update the sets Cl , l = 1, . . . , k given current assignments si ’s.

Update the assignments by minimizing (?) keeping the sets Cl fixed.

The algorithm is similar to the traditional K-means algorithm.

Julien Mairal (Inria) 128/431

Kernel K-means and spectral clustering

Another approach consists of relaxing the non-convex problem with a
feasible one, which yields a class of algorithms called spectral clustering.
First, we rewrite the objective function as

min
si∈{1,...,k}

for i=1,...,n

k∑
l=1

∑
i ,j∈Cl

− 1

|Cl |
K (xi , xj).

and we introduce

the binary matrix A in {0, 1}n×k such that [A]ij = 1 if si = j and 0
otherwise.

a diagonal matrix D in Rl×l with diagonal entries [D]jj equal to the
inverse of the number of elements in cluster j .

and the objective can be rewritten (proof is easy and left as an exercise)

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

Julien Mairal (Inria) 129/431

Kernel K-means and spectral clustering

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

The constraints on A,D are such that D1/2A>AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z>KZ) s.t. Z>Z = I.

A solution Z? to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Julien Mairal (Inria) 130/431

Kernel K-means and spectral clustering

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

The constraints on A,D are such that D1/2A>AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z>KZ) s.t. Z>Z = I.

A solution Z? to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Question

How do we obtain an approximate solution (A,D) of the original
problem from Z??

Julien Mairal (Inria) 130/431

Kernel K-means and spectral clustering

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

The constraints on A,D are such that D1/2A>AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z>KZ) s.t. Z>Z = I.

A solution Z? to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Answer 1

With the original constraints on A, every row of A has a single non-zero
entry ⇒ compute the maximum entry of every row of Z?.

Julien Mairal (Inria) 130/431

Kernel K-means and spectral clustering

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

The constraints on A,D are such that D1/2A>AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z>KZ) s.t. Z>Z = I.

A solution Z? to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Answer 2

Normalize the rows of Z? to have unit `2-norm, and apply the traditional
K-means algorithm on the rows. This is called spectral clustering.

Julien Mairal (Inria) 130/431

Kernel K-means and spectral clustering

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

The constraints on A,D are such that D1/2A>AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z>KZ) s.t. Z>Z = I.

A solution Z? to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Answer 3

Choose another variant of the previous procedures.

Julien Mairal (Inria) 130/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle

Julien Mairal (Inria) 131/431

Principal Component Analysis (PCA)

Classical setting

Let S = {x1, . . . , xn} be a set of vectors (xi ∈ Rd)

PCA is a classical algorithm in multivariate statistics to define a set
of orthogonal directions that capture the maximum variance

Applications: low-dimensional representation of high-dimensional
points, visualization

PC1PC2

Julien Mairal (Inria) 132/431

Principal Component Analysis (PCA)

Formalization

Assume that the data are centered (otherwise center them as
preprocessing), i.e.:

n∑
i=1

xi = 0.

The orthogonal projection onto a direction w ∈ Rd is the function
hw : X → R defined by:

hw (x) = x>
w

‖w ‖
.

Julien Mairal (Inria) 133/431

Principal Component Analysis (PCA)

Formalization

The empirical variance captured by hw is:

ˆvar (hw) :=
1

n

n∑
i=1

hw (xi)
2 =

1

n

n∑
i=1

(
x>i w

)2

‖w ‖2
.

The i-th principal direction wi (i = 1, . . . , d) is defined by:

wi = arg max
w⊥{w1,...,wi−1}

ˆvar (hw) .

Julien Mairal (Inria) 134/431

Principal Component Analysis (PCA)

Solution

Let X be the n × d data matrix whose rows are the vectors
x1, . . . , xn. We can then write:

ˆvar (hw) =
1

n

n∑
i=1

(
x>i w

)2

‖w ‖2
=

1

n

w>X>Xw

w>w
.

The solutions of:

wi = arg max
w⊥{w1,...,wi−1}

1

n

w>X>Xw

w>w

are the successive eigenvectors of K = X>X, ranked by decreasing
eigenvalues.

Julien Mairal (Inria) 135/431

Functional point of view

Let K (x, y) = x>y be the linear kernel.

The associated RKHS H is the set of linear functions:

fw (x) = w>x ,

endowed with the norm ‖ fw ‖H = ‖w ‖Rd .

Therefore we can write:

ˆvar (hw) =
1

n

n∑
i=1

(
x>i w

)2

‖w ‖2
=

1

n‖ fw ‖2

n∑
i=1

fw(xi)
2.

Moreover, w ⊥ w′ ⇔ fw ⊥ fw′ .

Julien Mairal (Inria) 136/431

Functional point of view

In other words, PCA solves, for i = 1, . . . , d :

fi = arg max
f⊥{f1,...,fi−1}

1

n‖ f ‖2

n∑
i=1

f (xi)
2.

We can apply the representer theorem (exercice: check that is is
also valid in a linear subspace): for i = 1, . . . , d , we have:

∀x ∈ X , fi (x) =
n∑

j=1

αi ,j K (xj , x) ,

with αi = (αi ,1, . . . , αi ,n)> ∈ Rn.

Julien Mairal (Inria) 137/431

Functional point of view

Therefore we have:

‖ fi ‖2
H =

d∑
k,l=1

αi ,kαi ,l K (xk , xl) = α>i Kαi ,

Similarly:
n∑

k=1

fi (xk)2 = α>i K2αi .

Julien Mairal (Inria) 138/431

Functional point of view

PCA maximizes in α the function:

αi = arg max
α

α>K2α

nα>Kα
,

under the constraints:

α>i Kαj = 0 for j = 1, . . . , i − 1 .

Julien Mairal (Inria) 139/431

Solution

Let (u1, . . . ,un) be an orthonormal basis of eigenvectors of K with
eigenvalues λ1 ≥ . . . ≥ λn ≥ 0.

Let αi =
∑n

j=1 βij uj , then

α>i K2αi

nα>i Kαi
=

∑n
j=1 β

2
ijλ

2
j

n
∑n

j=1 β
2
ijλj

,

which is maximized at α1 = β11u1, α2 = β22u2, etc...

Julien Mairal (Inria) 140/431

Normalization

For αi = βii ui , we want:

1 = ‖ fi ‖2
H = α>i Kαi = β2

iiλi .

Therefore:

αi =
1√
λi

ui .

Julien Mairal (Inria) 141/431

Kernel PCA: summary

1 Center the Gram matrix

2 Compute the first eigenvectors (ui , λi)

3 Normalize the eigenvectors αi = ui/
√
λi

4 The projections of the points onto the i-th eigenvector is given by
Kαi

Julien Mairal (Inria) 142/431

Kernel PCA: remarks

In this formulation, we must diagonalize the centered kernel Gram
matrix, instead of the covariance matrix in the classical setting

Exercice: check that X>X and XX> have the same spectrum (up
to 0 eigenvalues) and that the eigenvectors are related by a simple
relationship.

This formulation remains valid for any p.d. kernel: this is kernel
PCA

Applications: nonlinear PCA with nonlinear kernels for vectors, PCA
of non-vector objects (strings, graphs..) with specific kernels...

Julien Mairal (Inria) 143/431

Example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using
a kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC
(white circles), Asn-GTT
(black circles) and Cys-GCA
(plus symbols) (from Tsuda
et al., 2003).

Julien Mairal (Inria) 144/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle

Julien Mairal (Inria) 145/431

Canonical Correlation Analysis (CCA)

Given two views X = [x1, . . . , xn] in Rp×n and Y = [y1, . . . , yn] in Rd×n

of the same dataset, the goal of canonical correlation analysis (CCA) is
to find pairs of directions in the two views that are maximally correlated.

Formulation

Assuming that the datasets are centered, we want to maximize

max
wa∈Rp ,wb∈Rd

1
n

∑n
i=1 w>a xi y

>
i wb(

1
n

∑n
i=1 w>a xi x>i wa

)1/2 (1
n

∑n
i=1 w>b yi y>i wb

)1/2
.

Assuming that the pairs (xi , yi) are i.i.d. samples from an unknown
distribution, CCA seeks to maximize

max
wa∈Rp ,wb∈Rd

cov(w>a X ,w>b Y)√
var(w>a X)

√
var(w>b Y)

.

Julien Mairal (Inria) 146/431

Canonical Correlation Analysis (CCA)

Given two views X = [x1, . . . , xn] in Rp×n and Y = [y1, . . . , yn] in Rd×n

of the same dataset, the goal of canonical correlation analysis (CCA) is
to find pairs of directions in the two views that are maximally correlated.

Formulation

Assuming that the datasets are centered, we want to maximize

max
wa∈Rp ,wb∈Rd

1
n

∑n
i=1 w>a xi y

>
i wb(

1
n

∑n
i=1 w>a xi x>i wa

)1/2 (1
n

∑n
i=1 w>b yi y>i wb

)1/2
.

It is possible to show that this is an generalized eigenvalue problem
(exercise, or see Section 6.5 of Shawe-Taylor and Cristianini 2004).

The above problem provides the first pair of canonical directions. Next
directions can be obtained by solving the same problem under the
constraint that they are orthogonal to the previous canonical directions.

Julien Mairal (Inria) 146/431

Kernel Canonical Correlation Analysis

Similar to kernel PCA, it is possible to operate in a RKHS. Given two
p.d. kernels Ka,Kb : X × X → R, we can obtain two “views” of a
dataset x1, . . . , xn in X n:

(ϕa(x1), . . . , ϕa(xn)) and (ϕb(x1), . . . , ϕb(xn)),

where ϕa : X → Ha and ϕb : X → Hb are the embeddings in the
RKHSs Ha of Ka and Hb of Kb, respectively. Then, we may formulate
kernel CCA as the following optimization problem

max
fa∈Ha,fb∈Hb

1
n

∑n
i=1 〈fa, ϕa(xi)〉Ha

〈ϕb(xi), fb〉Hb(
1
n

∑n
i=1 〈fa, ϕa(xi)〉2Ha

)1/2 (
1
n

∑n
i=1 〈fb, ϕb(xi)〉2Hb

)1/2
.

Julien Mairal (Inria) 147/431

Kernel Canonical Correlation Analysis

Similar to kernel PCA, it is possible to operate in a RKHS. Given two
p.d. kernels Ka,Kb : X × X → R, we can obtain two “views” of a
dataset x1, . . . , xn in X n:

(ϕa(x1), . . . , ϕa(xn)) and (ϕb(x1), . . . , ϕb(xn)),

where ϕa : X → Ha and ϕb : X → Hb are the embeddings in the
RKHSs Ha of Ka and Hb of Kb, respectively. Then, we may formulate
kernel CCA as the following optimization problem

max
fa∈Ha,fb∈Hb

1
n

∑n
i=1 fa(xi)fb(xi)(

1
n

∑n
i=1 fa(xi)2

)1/2 (1
n

∑n
i=1 fb(xi)2

)1/2
.

Julien Mairal (Inria) 147/431

Kernel Canonical Correlation Analysis

Up to a few technical details (exercise), we can apply the representer
theorem and look for solutions fa(.) =

∑n
i=1 αi Ka(xi , .) and

fb(.) =
∑n

i=1 βi Kb(xi , .). We finally obtain the formulation

max
α∈Rn,β∈Rn

1
n

∑n
i=1[Kaα]i [Kbβ]i(

1
n

∑n
i=1[Kaα]2i

)1/2 (1
n

∑n
i=1[Kbβ]2i

)1/2
,

which is equivalent to

max
α∈Rn,β∈Rn

α>KaKbβ

(α>K2
aα)

1/2 (
β>K2

bβ
)1/2

,

or, after removing the scaling ambiguity for α and β,

max
α∈Rn,β∈Rn

α>KaKbβ s.t. α>K2
aα = 1 and β>K2

bβ = 1.

Julien Mairal (Inria) 148/431

Kernel Canonical Correlation Analysis

Remarks

kernel CCA also yields a generalized eigenvalue problem.

the subsequent canonical directions are obtained by solving the
same problem with additional orthogonality constraints.

Julien Mairal (Inria) 149/431

Part 4

The Kernel Jungle

Julien Mairal (Inria) 150/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 151/431

Motivations

The RKHS norm is related to the smoothness of functions.

Smoothness of a function is naturally quantified by Sobolev norms
(in particular L2 norms of derivatives), or by the decay of the
Fourier transform.

In this section, we introduce several kernels were this link is explicit,
and we make a general link between RKHS and Green functions
defined by differential operators.

Julien Mairal (Inria) 152/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels

Shift-invariant kernels
Generalization to semigroups
Mercer kernels
RKHS and Green functions

Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 153/431

Translation invariant kernels

Definition

A kernel K : Rd × Rd 7→ R is called translation invariant (t.i.) if it only
depends on the difference between its argument, i.e.:

∀ (x, y) ∈ R2d , K (x, y) = κ (x− y) .

Examples

Gaussian kernel (or RBF kernel)

K (x, y) = e−
1

2σ2 ‖x−y‖2
2 .

Laplace kernel
K (x, y) = e−α‖x−y‖1 .

Julien Mairal (Inria) 154/431

In case of...

Definition

Let f ∈ L1
(
Rd
)
. The Fourier transform of f , denoted f̂ or F [f], is the

function defined for all ω ∈ Rd by:

f̂ (ω) =

∫
Rd

e−ix.ωf (x) dx .

Julien Mairal (Inria) 155/431

In case of...

Properties

f̂ is complex-valued, continuous, tends to 0 at infinity and
‖ f̂ ‖L∞ ≤ ‖ f ‖L1 .

If f̂ ∈ L1
(
Rd
)
, then the inverse Fourier formula holds:

∀x ∈ Rd , f (x) =
1

(2π)d

∫
Rd

e ix.ω f̂ (ω) dω.

If f ∈ L1
(
Rd
)

is square integrable, then Parseval’s formula holds:∫
Rd

| f (x) |2 dx =
1

(2π)d

∫
Rd

∣∣∣ f̂ (ω)
∣∣∣2 dω .

Julien Mairal (Inria) 156/431

Translation invariant kernels

Definition

A kernel K : Rd × Rd 7→ R is called translation invariant (t.i.) if it only
depends on the difference between its argument, i.e.:

∀ (x, y) ∈ R2d , K (x, y) = κ (x− y) .

Intuition

If K is t.i. and κ ∈ L1
(
Rd
)
, then

κ (x− y) =
1

(2π)d

∫
Rd

e i(x−y).ωκ̂ (ω) dω

=

∫
Rd

κ̂ (ω)

(2π)d
e iω.xe−iω.ydω .

Julien Mairal (Inria) 157/431

RKHS of translation invariant kernels

Theorem

Let K be a translation invariant p.d. kernel, such that κ is integrable on
Rd as well as its Fourier transform κ̂. The subset HK of L2

(
Rd
)

that
consists of integrable and continuous functions f such that:

‖ f ‖2
K :=

1

(2π)d

∫
Rd

∣∣∣ f̂ (ω)
∣∣∣2

κ̂(ω)
dω < +∞ ,

endowed with the inner product:

〈f , g〉 :=
1

(2π)d

∫
Rd

f̂ (ω)ĝ (ω)∗

κ̂(ω)
dω

is a RKHS with K as r.k.

Julien Mairal (Inria) 158/431

Proof

For x ∈ Rd , Kx(y) = K (x, y) = κ(x− y) therefore:

K̂x(ω) =

∫
e−iω.uκ(u− x)du = e−iω.xκ̂(ω) .

This leads to Kx ∈ H, because:

∫
Rd

∣∣∣ K̂x(ω)
∣∣∣2

κ̂(ω)
≤
∫
Rd

| κ̂(ω) | <∞,

Moreover, if f ∈ H and x ∈ Rd , we have:

〈f ,Kx〉H =
1

(2π)d

∫
Rd

K̂x(ω)f̂ (ω)∗

κ̂(ω)
dω =

1

(2π)d

∫
Rd

f̂ (ω)∗ e−iω.x = f (x) �

Julien Mairal (Inria) 159/431

Application: characterization of p.d. t.i. kernels

Theorem (Bochner)

A real-valued continuous function κ(x− y) on Rd is positive definite if
and only if it is the Fourier-Stieltjes transform of a symmetric, positive,
and finite Borel measure.

Julien Mairal (Inria) 160/431

Example

Gaussian kernel

K (x , y) = e−
(x−y)2

2σ2

corresponds to:

κ̂ (ω) = e−
σ2ω2

2

and

H =

{
f :

∫ ∣∣∣ f̂ (ω)
∣∣∣2 e

σ2ω2

2 dω <∞
}
.

In particular, all functions in H are infinitely differentiable with all
derivatives in L2.

Julien Mairal (Inria) 161/431

Example

Laplace kernel

K (x , y) =
1

2
e−γ| x−y |

corresponds to:

κ̂ (ω) =
γ

γ2 + ω2

and

H =

{
f :

∫ ∣∣∣ f̂ (ω)
∣∣∣2 (γ2 + ω2

)
γ

dω <∞

}
,

the set of functions L2 differentiable with derivatives in L2 (Sobolev
norm).

Julien Mairal (Inria) 162/431

Example

Low-frequency filter

K (x , y) =
sin (Ω(x − y))

π(x − y)

corresponds to:

κ̂ (ω) = U (ω + Ω)− U (ω − Ω)

and

H =

{
f :

∫
|ω |>Ω

∣∣∣ f̂ (ω)
∣∣∣2 dω = 0

}
,

the set of functions whose spectrum is included in [−Ω,Ω].

Julien Mairal (Inria) 163/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels

Shift-invariant kernels
Generalization to semigroups
Mercer kernels
RKHS and Green functions

Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 164/431

Generalization to semigroups (cf Berg et al., 1983)

Definition

A semigroup (S , ◦) is a nonempty set S equipped with an
associative composition ◦ and a neutral element e.

A semigroup with involution (S , ◦, ∗) is a semigroup (S , ◦) together
with a mapping ∗ : S → S called involution satisfying:

1 (s ◦ t)∗ = t∗ ◦ s∗, for s, t ∈ S .
2 (s∗)∗ = s for s ∈ S .

Examples

Any group (G , ◦) is a semigroup with involution when we define
s∗ = s−1.

Any abelian semigroup (S ,+) is a semigroup with involution when
we define s∗ = s, the identical involution.

Julien Mairal (Inria) 165/431

Positive definite functions on semigroups

Definition

Let (S , ◦, ∗) be a semigroup with involution. A function ϕ : S → R is
called positive definite if the function:

∀s, t ∈ S , K (s, t) = ϕ (s∗ ◦ t)

is a p.d. kernel on S .

Example: translation invariant kernels(
Rd ,+,−

)
is an abelian group with involution. A function ϕ : Rd → R

is p.d. if the function
K (x, y) = ϕ(x− y)

is p.d. on Rd (translation invariant kernels).

Julien Mairal (Inria) 166/431

Semicharacters

Definition

A funtion ρ : S → C on an abelian semigroup with involution (S ,+, ∗) is
called a semicharacter if

1 ρ(0) = 1,

2 ρ(s + t) = ρ(s)ρ(t) for s, t ∈ S ,

3 ρ (s∗) = ρ(s) for s ∈ S .

The set of semicharacters on S is denoted by S∗.

Remarks

If ∗ is the identity, a semicharacter is automatically real-valued.

If (S ,+) is an abelian group and s∗ = −s, a semicharacter has its
values in the circle group {z ∈ C | | z | = 1} and is a group
character.

Julien Mairal (Inria) 167/431

Semicharacters are p.d.

Lemma

Every semicharacter is p.d., in the sense that:

K (s, t) = K (t, s),∑n
i ,j=1 ai aj K (xi , xj) ≥ 0.

Proof

Direct from definition, e.g.,

n∑
i ,j=1

ai ajρ
(
xi + x∗j

)
=

n∑
i ,j=1

ai ajρ (xi) ρ (xj) ≥ 0 .

Examples

ϕ(t) = eβt on (R,+, Id).

ϕ(t) = e iωt on (R,+,−).

Julien Mairal (Inria) 168/431

Integral representation of p.d. functions

Definition

An function α : S → R on a semigroup with involution is called an
absolute value if (i) α(e) = 1, (ii)α(s ◦ t) ≤ α(s)α(t), and (iii)
α (s∗) = α(s).

A function f : S → R is called exponentially bounded if there exists an
absolute value α and a constant C > 0 s.t. | f (s) | ≤ Cα(s) for s ∈ S .

Theorem

Let (S ,+, ∗) an abelian semigroup with involution. A function ϕ : S → R is
p.d. and exponentially bounded (resp. bounded) if and only if it has a
representation of the form:

ϕ(s) =

∫
S∗
ρ(s)dµ(ρ) .

where µ is a Radon measure with compact support on S∗ (resp. on Ŝ, the set
of bounded semicharacters).

Julien Mairal (Inria) 169/431

Integral representation of p.d. functions

Definition

An function α : S → R on a semigroup with involution is called an
absolute value if (i) α(e) = 1, (ii)α(s ◦ t) ≤ α(s)α(t), and (iii)
α (s∗) = α(s).

A function f : S → R is called exponentially bounded if there exists an
absolute value α and a constant C > 0 s.t. | f (s) | ≤ Cα(s) for s ∈ S .

Theorem

Let (S ,+, ∗) an abelian semigroup with involution. A function ϕ : S → R is
p.d. and exponentially bounded (resp. bounded) if and only if it has a
representation of the form:

ϕ(s) =

∫
S∗
ρ(s)dµ(ρ) .

where µ is a Radon measure with compact support on S∗ (resp. on Ŝ, the set
of bounded semicharacters).

Julien Mairal (Inria) 169/431

Proof

Sketch (details in Berg et al., 1983, Theorem 4.2.5)

For an absolute value α, the set Pα
1 of α-bounded p.d. functions

that satisfy ϕ(0) = 1 is a compact convex set whose extreme points
are precisely the α-bounded semicharacters.

If ϕ is p.d. and exponentially bounded then there exists an absolute
value α such that ϕ(0)−1ϕ ∈ Pα

1 .

By the Krein-Milman theorem there exits a Radon probability
measure on Pα

1 having ϕ(0)−1ϕ as barycentre.

Remarks

The result is not true without the assumption of exponentially
bounded semicharacters.

In the case of abelian groups with s∗ = −s this reduces to
Bochner’s theorem for discrete abelian groups, cf. Rudin (1962).

Julien Mairal (Inria) 170/431

Example 1: (R+,+, Id)

Semicharacters

S = (R+,+, Id) is an abelian semigroup.

P.d. functions are nonnegative, because ϕ(x) = ϕ
(√

x
)2

.

The set of bounded semicharacters is exactly the set of functions:

s ∈ R+ 7→ ρa(s) = e−as ,

for a ∈ [0,+∞] (left as exercice).

Non-bounded semicharacters are more difficult to characterize; in
fact there exist nonmeasurable solutions of the equation
h(x + y) = h(x)h(y).

Julien Mairal (Inria) 171/431

Example 1: (R+,+, Id) (cont.)

P.d. functions

By the integral representation theorem for bounded semi-characters
we obtain that a function ϕ : R+ → R is p.d. and bounded if and
only if it has the form:

ϕ(s) =

∫ ∞
0

e−asdµ(a) + bρ∞(s)

where µ ∈Mb
+ (R+) and b ≥ 0.

The first term is the Laplace transform of µ. ϕ is p.d., bounded and
continuous iff it is the Laplace transform of a measure in Mb

+ (R).

Julien Mairal (Inria) 172/431

Example 2: Semigroup kernels for finite measures (1/6)

Setting

We assume that data to be processed are “bags-of-points”, i.e., sets
of points (with repeats) of a space U .

Example : a finite-length string as a set of k-mers.

How to define a p.d. kernel between any two bags that only
depends on the union of the bags?

See details and proofs in Cuturi et al. (2005).

Julien Mairal (Inria) 173/431

Example 2: Semigroup kernels for finite measures (2/6)

Semigroup of bounded measures

We can represent any bag-of-point x as a finite measure on U :

x =
∑

i

aiδxi ,

where ai is the number of occurrences on xi in the bag.

The measure that represents the union of two bags is the sum of
the measures that represent each individual bag.

This suggests to look at the semigroup
(
Mb

+ (U) ,+, Id
)

of
bounded Radon measures on U and to search for p.d. functions ϕ
on this semigroup.

Julien Mairal (Inria) 174/431

Example 2: Semigroup kernels for finite measures (3/6)

Semicharacters

For any Borel measurable function f : U → R the function
ρf :Mb

+ (U)→ R defined by:

ρf (µ) = eµ[f]

is a semicharacter on
(
Mb

+ (U) ,+
)
.

Conversely, ρ is continuous semicharacter (for the topology of weak
convergence) if and only if there exists a continuous function
f : U → R such that ρ = ρf .

No such characterization for non-continuous characters, even
bounded.

Julien Mairal (Inria) 175/431

Example 2: Semigroup kernels for finite measures (4/6)

Corollary

Let U be a Hausdorff space. For any Radon measure µ ∈Mc
+ (C (U))

with compact support on the Hausdorff space of continuous real-valued
functions on U endowed with the topology of pointwise convergence, the
following function K is a continuous p.d. kernel on Mb

+ (U) (endowed
with the topology of weak convergence):

K (µ, ν) =

∫
C(X)

eµ[f]+ν[f]dµ(f) .

Remarks
The converse is not true: there exist continuous p.d. kernels that do not have
this integral representation (it might include non-continuous semicharacters)

Julien Mairal (Inria) 176/431

Example 2: Semigroup kernels for finite measures (5/6)

Example : entropy kernel

Let X be the set of probability densities (w.r.t. some reference
measure) on U with finite entropy:

h(x) = −
∫
U

x ln x .

Then the following entropy kernel is a p.d. kernel on X for all
β > 0:

K
(
x, x′

)
= e−βh(x+x

2) .

Remark: only valid for densities (e.g., for a kernel density estimator
from a bag-of-parts)

Julien Mairal (Inria) 177/431

Example 2: Semigroup kernels for finite measures (6/6)

Examples : inverse generalized variance kernel

Let U = Rd and MV
+ (U) be the set of finite measure µ with

second order moment and non-singular variance

Σ(µ) = µ
[
xx>

]
− µ [x]µ [x]> .

Then the following function is a p.d. kernel on MV
+ (U), called the

inverse generalized variance kernel:

K
(
µ, µ′

)
=

1

det Σ
(
µ+µ′

2

) .
Generalization possible with regularization and kernel trick.

Julien Mairal (Inria) 178/431

Application of semigroup kernel

Weighted linear PCA of two different measures, with the first PC shown.
Variances captured by the first and second PC are shown. The
generalized variance kernel is the inverse of the product of the two
values.

Julien Mairal (Inria) 179/431

Kernelization of the IGV kernel

Motivations

Gaussian distributions may be poor models.

The method fails in large dimension

Solution
1 Regularization:

Kλ

(
µ, µ′

)
=

1

det
(

Σ
(
µ+µ′

2

)
+ λId

) .
2 Kernel trick: the non-zero eigenvalues of UU> and U>U are the

same =⇒ replace the covariance matrix by the centered Gram
matrix (technical details in Cuturi et al., 2005).

Julien Mairal (Inria) 180/431

Illustration of kernel IGV kernel

Julien Mairal (Inria) 181/431

Semigroup kernel remarks

Motivations

A very general formalism to exploit an algebric structure of the data.

Kernel IVG kernel has given good results for character recognition
from a subsampled image.

The main motivation is more generally to develop kernels for
complex objects from which simple “patches” can be extracted.

The extension to nonabelian groups (e.g., permutation in the
symmetric group) might find natural applications.

Julien Mairal (Inria) 182/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels

Shift-invariant kernels
Generalization to semigroups
Mercer kernels
RKHS and Green functions

Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 183/431

Mercer kernels

Definition

A kernel K on a set X is called a Mercer kernel if:

1 X is a compact metric space (typically, a closed bounded subset of
Rd).

2 K : X × X → R is a continuous p.d. kernel (w.r.t. the Borel
topology)

Motivations

We can exhibit an explicit and intuitive feature space for a large
class of p.d. kernels

Historically, provided the first proof that a p.d. kernel is an inner
product for non-finite sets X (Mercer, 1905).

Can be thought of as the natural generalization of the factorization
of positive semidefinite matrices over infinite spaces.

Julien Mairal (Inria) 184/431

Sketch of the proof

1 The kernel matrix when X is finite becomes a linear operator when
X is a metric space.

2 The matrix was positive semidefinite in the finite case, the linear
operator is self-adjoint and positive in the metric case.

3 The spectral theorem states that any compact linear operator
admits a complete orthonormal basis of eigenfunctions, with
non-negative eigenvalues (just like positive semidefinite matrices
can be diagonalized with nonnegative eigenvalues).

4 The kernel function can then be expanded over basis of
eigenfunctions as:

K (x, t) =
∞∑

k=1

λkψk (x)ψk (t) ,

where λi ≥ 0 are the non-negative eigenvalues.

Julien Mairal (Inria) 185/431

In case of...

Definition

Let H be a Hilbert space

A linear operator is a continuous linear mapping from H to itself.

A linear operator L is called compact if, for any bounded sequence
{fn}∞n=1, the sequence {Lfn}∞n=1 has a subsequence that converges.

L is called self-adjoint if, for any f , g ∈ H:

〈f , Lg〉 = 〈Lf , g〉 .

L is called positive if it is self-adjoint and, for any f ∈ H:

〈f , Lf 〉 ≥ 0 .

Julien Mairal (Inria) 186/431

An important lemma

The linear operator

Let ν be any Borel measure on X , and Lν2 (X) the Hilbert space of
square integrable functions on X .

For any function K : X 2 7→ R, let the transform:

∀f ∈ Lν2 (X) , (LK f) (x) =

∫
K (x, t) f (t) dν (t) .

Lemma

If K is a Mercer kernel, then LK is a compact and bounded linear
operator over Lν2 (X), self-adjoint and positif.

Julien Mairal (Inria) 187/431

Proof (1/6)

LK is a mapping from Lν2 (X) to Lν2 (X)

For any f ∈ Lν2 (X) and (x1, x1) ∈ X 2:

| LK f (x1)− LK f (x2) | =

∣∣∣∣ ∫ (K (x1, t)− K (x2, t)) f (t) dν (t)

∣∣∣∣
≤ ‖K (x1, ·)− K (x2, ·) ‖‖ f ‖

(Cauchy-Schwarz)

≤
√
ν (X) max

t∈X
|K (x1, t)− K (x2, t) | ‖ f ‖.

K being continuous and X compact, K is uniformly continuous,
therefore LK f is continuous. In particular, LK f ∈ Lν2 (X) (with the slight
abuse of notation C (X) ⊂ Lν2 (X)). �

Julien Mairal (Inria) 188/431

Proof (2/6)

LK is linear and continuous

Linearity is obvious (by definition of LK and linearity of the
integral).

For continuity, we observe that for all f ∈ Lν2 (X) and x ∈ X :

| (LK f) (x) | =

∣∣∣∣ ∫ K (x, t) f (t) dν (t)

∣∣∣∣
≤
√
ν (X) max

t∈X
|K (x, t) | ‖ f ‖

≤
√
ν (X)CK‖ f ‖.

with CK = maxx,t∈X |K (x, t) |. Therefore:

‖ LK f ‖ =

(∫
LK f (t)2 dν (t)

) 1
2

≤ ν (X) CK‖ f ‖. �

Julien Mairal (Inria) 189/431

Proof (3/6)

Criterion for compacity

In order to prove the compacity of LK we need the following criterion.
Let C (X) denote the set of continuous functions on X endowed with
infinite norm ‖ f ‖∞ = maxx∈X | f (x) |.
A set of functions G ⊂ C (X) is called equicontinuous if:

∀ε > 0, ∃δ > 0,∀ (x, y) ∈ X 2,

‖ x− y ‖ < δ =⇒ ∀g ∈ G , | g (x)− g (y) | < ε.

Ascoli Theorem

A part H ⊂ C (X) is relatively compact (i.e., its closure is compact) if
and only if it is uniformly bounded and equicontinuous.

Julien Mairal (Inria) 190/431

Proof (4/6)

LK is compact

Let (fn)n≥0 be a bounded sequence of Lν2 (X) (‖ fn ‖ < M for all n).
The sequence (LK fn)n≥0 is a sequence of continuous functions,
uniformly bounded because:

‖ LK f ‖∞ ≤
√
ν (X)CK‖ f ‖ ≤

√
ν (X)CK M .

It is equicontinuous because:

| LK fn (x1)− LK fn (x2) | ≤
√
ν (X) max

t∈X
|K (x1, t)− K (x2, t) |M .

By Ascoli theorem, we can extract a sequence uniformly convergent in
C (X), and therefore in Lν2 (X). �

Julien Mairal (Inria) 191/431

Proof (5/6)

LK is self-adjoint

K being symmetric, we have for all f , g ∈ H:

〈f , Lg〉 =

∫
f (x) (Lg) (x) ν (dx)

=

∫ ∫
f (x) g (t) K (x, t) ν (dx) ν (dt) (Fubini)

= 〈Lf , g〉 .

Julien Mairal (Inria) 192/431

Proof (6/6)

LK is positif

We can approximate the integral by finite sums:

〈f , Lf 〉 =

∫ ∫
f (x) f (t) K (x, t) ν (dx) ν (dt)

= lim
k→∞

ν (X)

k2

k∑
i ,j=1

K (xi , xj) f (xi) f (xj)

≥ 0 ,

because K is positive definite. �

Julien Mairal (Inria) 193/431

Diagonalization of the operator

We need the following general result:

Spectral theorem

Let L be a compact linear operator on a Hilbert space H. Then there
exists in H a complete orthonormal system (ψ1, ψ2, . . .) of eigenvectors
of L. The eigenvalues (λ1, λ2, . . .) are real if L is self-adjoint, and
non-negative if L is positive.

Remark

This theorem can be applied to LK . In that case the eigenfunctions ϕk

associated to the eigenfunctions λk 6= 0 can be considered as continuous
functions, because:

ψk =
1

λk
LψK .

Julien Mairal (Inria) 194/431

Main result

Mercer Theorem

Let X be a compact metric space, ν a Borel measure on X , and K a
continuous p.d. kernel. Let (λ1, λ2, . . .) denote the nonnegative
eigenvalues of LK and (ψ1, ψ2, . . .) the corresponding eigenfunctions.
Then all ψk are continuous functions, and for any x, t ∈ X :

K (x, t) =
∞∑

k=1

λkψk (x)ψk (t) ,

where the convergence is absolute for each x, t ∈ X , and uniform on
X × X .

Julien Mairal (Inria) 195/431

Mercer kernels as inner products

Corollary

The mapping

Φ : X 7→ l2

x 7→
(√

λkψk (x)
)

k∈N

is well defined, continuous, and satisfies

K (x, t) = 〈Φ (x) ,Φ (t)〉l2 .

Julien Mairal (Inria) 196/431

Proof of the corollary

Proof

By Mercer theorem we see that for all x ∈ X ,
∑
λkψ

2
k (x) converges to

K (x, x) <∞, therefore Φ (x) ∈ l2.
The continuity of Φ results from:

‖Φ (x)− Φ (t) ‖2
l2 =

∞∑
k=1

λk (ψk (x)− ψk (t))2

= K (x, x) + K (t, t)− 2K (x, t)

Julien Mairal (Inria) 197/431

Summary

This proof extends the proof valid when X is finite.

This is a constructive proof, developed by Mercer (1905).

Compacity and continuity are required. For instance, for X = Rd ,
the eigenvalues of: ∫

X
K (x, t)ψ (t) = λψ (t)

are not necessarily countable, Mercer theorem does not hold. Other
tools are thus required such as the Fourier transform for
shift-invariant kernels.

Julien Mairal (Inria) 198/431

RKHS of Mercer kernels

Let X be a compact metric space, and K a Mercer kernel on X
(symmetric, continuous and positive definite).

We have expressed a decomposition of the kernel in terms of the
eigenfunctions of the linear convolution operator.

In some cases this provides an intuitive feature space.

The kernel also has a RKHS, like any p.d. kernel.

Can we get an intuition of the RKHS norm in terms of the
eigenfunctions and eigenvalues of the convolution operator?

Julien Mairal (Inria) 199/431

Reminder: expansion of Mercer kernel

Theorem

Denote by LK the linear operator of Lν2 (X) defined by:

∀f ∈ Lν2 (X) , (LK f) (x) =

∫
K (x, t) f (t) dν (t) .

Let (λ1, λ2, . . .) denote the eigenvalues of LK in decreasing order, and
(ψ1, ψ2, . . .) the corresponding eigenfunctions. Then it holds that for
any x, y ∈ X :

K (x, y) =
∞∑

k=1

λkψk (x)ψk (y) = 〈Φ (x) ,Φ (y)〉l2 ,

with Φ : X 7→ l2 defined par Φ (x) =
(√
λkψk (x)

)
k∈N.

Julien Mairal (Inria) 200/431

RKHS construction

Theorem

Assuming that all eigenvalues are positive, the RKHS is the Hilbert
space:

HK =

{
f ∈ Lν2 (X) : f =

∞∑
i=1

aiψi , with
∞∑

k=1

a2
k

λk
<∞

}

endowed with the inner product:

〈f , g〉K =
∞∑

k=1

ak bk

λk
, for f =

∑
k

akψk , g =
∑

k

bkψk .

Remark
If some eigenvalues are equal to zero, then the result and the proof remain valid
on the subspace spanned by the eigenfunctions with positive eigenvalues.

Julien Mairal (Inria) 201/431

Proof (1/6)

Sketch

In order to show that HK is the RKHS of the kernel K we need to show
that:

1 it is a Hilbert space of functions from X to R,

2 for any x ∈ X , Kx ∈ HK ,

3 for any x ∈ X and f ∈ HK , f (x) = 〈f ,Kx〉HK
.

Julien Mairal (Inria) 202/431

Proof (2/6)

HK is a Hilbert space

Indeed the function:

L
1
2
K :Lν2 (X)→ HK

∞∑
i=1

aiψi 7→
∞∑

i=1

ai

√
λiψi

is an isomorphism, therefore HK is a Hilbert space, like Lν2 (X). �

Julien Mairal (Inria) 203/431

Proof (3/6)

HK is a space of continuous functions

For any f =
∑∞

i=1 aiψi ∈ HK , and x ∈ X , we have (if f (x) makes sense):

| f (x) | =

∣∣∣∣∣
∞∑

i=1

aiψi (x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

i=1

ai√
λi

√
λiψi (x)

∣∣∣∣∣
≤

(∞∑
i=1

a2
i

λi

) 1
2

.

(∞∑
i=1

λiψi (x)2

) 1
2

= ‖ f ‖HK
K (x, x)

1
2

= ‖ f ‖HK

√
CK .

Therefore convergence in ‖ . ‖HK
implies uniform convergence for

functions.

Julien Mairal (Inria) 204/431

Proof (4/6)

HK is a space of continuous functions (cont.)

Let now fn =
∑n

i=1 aiψi ∈ HK . The functions ψi are continuous
functions, therefore fn is also continuous, for all n. The fn’s are
convergent in HK , therefore also in the (complete) space of continuous
functions endowed with the uniform norm.
Let fc the continuous limit function. Then fc ∈ Lν2 (X) and

‖ fn − fc ‖Lν2 (X) →
n→∞

0.

On the other hand,

‖ f − fn ‖Lν2 (X) ≤ λ1‖ f − fn ‖HK
→

n→∞
0,

therefore f = fc . �

Julien Mairal (Inria) 205/431

Proof (5/6)

Kx ∈ HK

For any x ∈ X let, for all i , ai = λiψi (x). We have:

∞∑
i=1

a2
i

λi
=
∞∑

i=1

λiψi (x)2 = K (x, x) <∞,

therefore ϕx :=
∑∞

i=1 aiψi ∈ HK . As seen earlier the convergence in HK

implies pointwise convergence, therefore for any t ∈ X :

ϕx (t) =
∞∑

i=1

aiψi (t) =
∞∑

i=1

λiψi (x)ψi (t) = K (x, t) ,

therefore ϕx = Kx ∈ HK . �

Julien Mairal (Inria) 206/431

Proof (6/6)

f (x) = 〈f ,Kx〉HK

Let f =
∑∞

i=1 aiψi ∈ HK , et x ∈ X . We have seen that:

Kx =
∞∑

i=1

λiψi (x)ψi ,

therefore:

〈f ,Kx〉HK
=
∞∑

i=1

λiψi (x) ai

λi
=
∞∑

i=1

aiψi (x) = f (x) ,

which concludes the proof. �

Julien Mairal (Inria) 207/431

Remarks

Although HK was built from the eigenfunctions of LK , which
depend on the choice of the measure ν (x), we know by unicity of
the RKHS that HK is independant of ν and LK .

Mercer theorem provides a concrete way to build the RKHS, by
taking linear combinations of the eigenfunctions of LK (with
adequately chosen weights).

The eigenfunctions (ψi)i∈N form an orthogonal basis of the RKHS:

〈ψi , ψj〉HK
= 0 si i 6= j , ‖ψi ‖HK

=
1√
λi
.

The RKHS is a well-defined ellipsoid with axes given by the
eigenfunctions.

Julien Mairal (Inria) 208/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels

Shift-invariant kernels
Generalization to semigroups
Mercer kernels
RKHS and Green functions

Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 209/431

Motivations

The RKHS norm is related to the smoothness of functions.

Smoothness of a function is naturally quantified by Sobolev norms
(in particular L2 norms of derivatives).

In this section we make a general link between RKHS and Green
functions defined by differential operators.

Julien Mairal (Inria) 210/431

A simple example

Explicit choice of smoothness

Let

H =
{

f : [0, 1] 7→ R, absolutely continuous, f ′ ∈ L2 ([0, 1]) , f (0) = 0
}
.

endowed with the bilinear form:

∀ (f , g) ∈ F2 〈f , g〉H =

∫ 1

0
f ′ (u) g ′ (u) du .

Note that 〈f , f 〉H measures the smoothness of f :

〈f , f 〉H =

∫ 1

0
f ′ (u)2 du = ‖ f ′ ‖2

L2([0,1]) .

Julien Mairal (Inria) 211/431

The RKHs point of view

Theorem

H is a RKHS with r.k. given by:

∀ (x , y) ∈ [0, 1]2, K (x , y) = min (x , y) .

Remark

Therefore, ‖ f ‖H = ‖ f ′ ‖L2 : the RKHS norm is precisely the smoothness
functional defined in the simple example.

Julien Mairal (Inria) 212/431

Proof (1/3)

Sketch

We need to show that

H is a Hilbert space

∀x ∈ [0, 1], Kx ∈ H,

∀ (x , f) ∈ [0, 1]×H, 〈f ,Kx〉H = f (x).

Julien Mairal (Inria) 213/431

Proof (1/3)

Sketch

We need to show that

H is a Hilbert space

∀x ∈ [0, 1], Kx ∈ H,

∀ (x , f) ∈ [0, 1]×H, 〈f ,Kx〉H = f (x).

Julien Mairal (Inria) 213/431

Proof (2/3)

H is a pre-Hilbert space

f absolutely continuous implies differentiable almost everywhere,
and

∀x ∈ [0, 1], f (x) = f (0) +

∫ x

0
f ′(u)du .

For any f ∈ H, f (0) = 0 implies by Cauchy-Schwarz:

| f (x) | =

∣∣∣∣ ∫ x

0
f ′(u)du

∣∣∣∣ ≤ √x

(∫ 1

0
f ′(u)2du

) 1
2

=
√

x‖ f ‖H .

Therefore, ‖ f ‖H = 0 =⇒ f = 0, showing that 〈., .〉H is an inner
product. H is thus a pre-Hilbert space.

Julien Mairal (Inria) 214/431

Proof (2/3)

H is a Hilbert space

To show that H is complete, let (fn)n∈N a Cauchy sequence in H
(f ′n)n∈N is a Cauchy sequence in L2[0, 1], thus converges to
g ∈ L2[0, 1]

By the previous inequality, (fn(x))n∈N is a Cauchy sequence and
thus converges to a real number f (x), for any x ∈ [0, 1]. Moreover:

f (x) = lim
n

fn(x) = lim
n

∫ x

0
f ′n(u)du =

∫ x

0
g(u)du ,

showing that f is absolutely continuous and f ′ = g almost
everywhere; in particular, f ′ ∈ L2[0, 1].

Finally, f (0) = limn fn(0) = 0, therefore f ∈ H and

lim
n
‖ fn − f ‖H = ‖ f ′ − gn ‖L2[0,1] = 0 .

Julien Mairal (Inria) 215/431

Proof (2/3)

∀x ∈ [0, 1], Kx ∈ H
Let Kx (y) = K (x , y) = min(x , y) sur [0, 1]2:

t
s 1

K(s,t)

Kx is differentiable except at s, has a square integrable derivative, and
Kx (0) = 0, therefore Kx ∈ H for all x ∈ [0, 1]. �

Julien Mairal (Inria) 216/431

Proof (3/3)

For all x , f , 〈f ,Kx〉H = f (x)

For any x ∈ [0, 1] and f ∈ H we have:

〈f ,Kx〉H =

∫ 1

0
f ′(u)K ′x (u)du =

∫ x

0
f ′(u)du = f (x),

which shows that K is the r.k. associated to H. �

Julien Mairal (Inria) 217/431

Generalization

Theorem

Let X = Rd and D a differential operator on a class of functions H such
that, endowed with the inner product:

∀ (f , g) ∈ H2, 〈f , g〉H = 〈Df ,Dg〉L2(X) ,

it is a Hilbert space.
Then H is a RKHS that admits as r.k. the Green function of the
operator D∗D, where D∗ denotes the adjoint operator of D.

Julien Mairal (Inria) 218/431

In case of...

Green functions

Let the differential equation on H:

f = Dg ,

where g is unknown. In order to solve it we can look for g of the form:

g (x) =

∫
X

k (x , y) f (y) dy

for some function k : X 2 7→ R. k must then satisfy, for all x ∈ X ,

f (x) = Dg (x) = 〈Dkx , f 〉L2(X) .

k is called the Green function of the operator D.

Julien Mairal (Inria) 219/431

Proof

Let H be a Hilbert space endowed with the inner product:

〈f , g〉X = 〈Df ,Dg〉L2(X) ,

and K be the Green function of the operator D∗D. For all x ∈ X ,
Kx ∈ H because:

〈DKx ,DKx〉L2(X) = 〈D∗DKx ,Kx〉L2(X) = Kx (x) <∞ .

Moreover, for all f ∈ H and x ∈ X , we have:

f (x) = 〈D∗DKx , f 〉L2(X) = 〈DKx ,Df 〉L2(X) = 〈Kx , f 〉H ,

which shows that H is a RKHS with K as r.k. �

Julien Mairal (Inria) 220/431

Kernel examples: Summary

Many notions of smoothness can be translated as RKHS norms for
particular kernels (eigenvalues convolution operator, Sobolev norms
and Green operators, Fourier transforms...).

There is no “uniformly best kernel”, but rather a large toolbox of
methods and tricks to encode prior knowledge and exploit the
nature or structure of the data.

In the following sections we focus on particular data and
applications to illustrate the process of kernel design.

Julien Mairal (Inria) 221/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 222/431

Motivation

Kernel methods are sometimes criticized for their lack of flexibility: a
large effort is spent in designing by hand the kernel.

Question

How do we design a kernel adapted to the data?

Answer

A successful strategy is given by kernels for generative models, which
are/have been the state of the art in many fields, including image and
sequence representations.

Parametric model

A model is a family of distribution

{Pθ, θ ∈ Θ ⊂ Rm} ⊆ M+
1 (X) .

Julien Mairal (Inria) 223/431

Motivation

Kernel methods are sometimes criticized for their lack of flexibility: a
large effort is spent in designing by hand the kernel.

Question

How do we design a kernel adapted to the data?

Answer

A successful strategy is given by kernels for generative models, which
are/have been the state of the art in many fields, including image and
sequence representations.

Parametric model

A model is a family of distribution

{Pθ, θ ∈ Θ ⊂ Rm} ⊆ M+
1 (X) .

Julien Mairal (Inria) 223/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models

Fisher kernel
Mutual information kernels
Marginalized kernels

Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 224/431

Fisher kernel

Definition

Fix a parameter θ0 ∈ Θ (e.g., by maximum likelihood over a
training set of sequences)

For each sequence x, compute the Fisher score vector:

Φθ0(x) = ∇θ log Pθ(x)|θ=θ0 .

Form the kernel (Jaakkola et al., 2000):

K
(
x, x′

)
= Φθ0(x)>I(θ0)−1Φθ0(x′) ,

where I(θ0) = E
[
Φθ0(x)Φθ0(x)>

]
is the Fisher information matrix.

Julien Mairal (Inria) 225/431

Fisher kernel properties (1/2)

The Fisher score describes how each parameter contributes to the
process of generating a particular example

A kernel classifier employing the Fisher kernel derived from a model
that contains the label as a latent variable is, asymptotically, at
least as good a classifier as the MAP labelling based on the model
(Jaakkola and Haussler, 1999).

A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by
helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).

Julien Mairal (Inria) 226/431

Fisher kernel properties (2/2)

Lemma

The Fisher kernel is invariant under change of parametrization.

Consider indeed different parametrization given by some
diffeomorphism λ = f (θ). The Jacobian matrix relating the

parametrization is denoted by [J]ij =
∂θj

∂λi
.

The gradient of log-likelihood w.r.t. to the new parameters is

Φλ0(x) = ∇λ log Pλ0(x) = J∇θ log Pθ0(x) = JΦθ0(x).

the Fisher information matrix is

I(λ0) = E
[
Φθ0(x)Φθ0(x)>

]
= JI(θ0)J>.

we conclude by noticing that I(λ0)−1 = J−1I(θ0)−1J>−1.

Julien Mairal (Inria) 227/431

Fisher kernel in practice

Φθ0(x) can be computed explicitly for many models (e.g., HMMs),
where the model is first estimated from data.

I(θ0) is often replaced by the identity matrix for simplicity.

Several different models (i.e., different θ0) can be trained and
combined.

The Fisher vectors are defined as ϕθ0(x) = I(θ0)−1/2Φθ0(x). They
are explicitly computed and correspond to an explicit embedding:
K (x, x′) = ϕθ0(x)>ϕθ0(x′).

Julien Mairal (Inria) 228/431

Fisher kernels: example with Gaussian data model (1/2)

Consider a normal distribution N (µ, σ2) and denote by α = 1/σ2 the
inverse variance, i.e., precision parameter. With θ = (µ, α), we have

log Pθ(x) =
1

2
logα− 1

2
log(2π)− 1

2
α(x − µ)2,

and thus

∂ log Pθ(x)

∂µ
= α(x − µ),

∂ log Pθ(x)

∂α
=

(x − µ)2

2α
,

and

I(θ) =

(
α 0
0 (1/2)α−2

)
.

The Fisher vector is then

ϕθ(x) =

(
(x − µ)/σ

(1/
√

2)(1− (x − µ)2/σ2)

)
.

Julien Mairal (Inria) 229/431

Fisher kernels: example with Gaussian data model (2/2)

Now consider an i.i.d. data model over a set of data points x1, . . . , xn all
distributed according to N (µ, σ2):

Pθ(x1, . . . , xn) =
n∏

i=1

Pθ(xi).

Then, the Fisher vector is given by the sum of Fisher vectors of the
points.

Encodes the discrepancy in the first and second order moment of
the data w.r.t. those of the model.

ϕ(x1, . . . , xn) =
n∑

i=1

ϕ(xi) = n

(
(µ̂− µ)/σ

(σ2 − σ̂2)/(
√

2σ2)

)
,

where

µ̂ =
1

n

n∑
i=1

xi and σ̂ =
1

n

n∑
i=1

(xi − µ̂)2.

Julien Mairal (Inria) 230/431

Application: Aggregation of visual words (1/4)

Patch extraction and description stage:
In various contexts, images may be described as a set of
patches x1, . . . , xn computed at interest points. For example, SIFT,
HOG, LBP, color histograms, convolutional features...

Coding stage: The set of patches is then encoded into a single
representation ϕ(xi), typically in a high-dimensional space.

Pooling stage: For example, sum pooling

ϕ(x1, . . . , xn) =
n∑

i=1

ϕ(xi).

Fisher vectors with a Gaussian Mixture Model (GMM) is
considered to be a state-of-the-art aggregation
technique [Perronnin and Dance, 2007].

Julien Mairal (Inria) 231/431

Application: Aggregation of visual words (2/4)

Let θ = (πj ,µj ,Σj)j=1 ldots,k be the parameters of a GMM with k
Gaussian components. Then, the probabilistic model is given by

Pθ(x) =
k∑

j=1

πjN (x;µj ,Σj).

Remarks

Each mixture component corresponds to a visual word, with a
mean, variance, and mixing weight.

Diagonal covariances Σj = diag (σj1, . . . , σjp) = diag (σj) are often
used for simplicity.

This is a richer model than the traditional “bag of words” approach.

The probabilistic model is learned offline beforehand.

Julien Mairal (Inria) 232/431

Application: Aggregation of visual words (3/4)

After a few calculations (exercise), we obtain ϕθ(x1, . . . , xn) =

[ϕπ1(X), . . . , ϕπp (X), ϕµ1
(X)>, . . . , ϕµp

(X)>, ϕσ1(X)>, . . . , ϕσp (X)>]>,

with

ϕµj
(X) =

1

n
√
πj

n∑
i=1

γij (xi − µj)/σj

ϕσj (X) =
1

n
√

2πj

n∑
i=1

γij

[
(xi − µj)

2/σ2
j − 1

]
,

where with an abuse of notation, the division between two vectors is
meant elementwise and the scalars γij can be interpreted as the
soft-assignment of word i to component j :

γij =
πjN (xi ;µj ,σj)∑k
l=1 πlN (xi ;µl ,σl)

.

Julien Mairal (Inria) 233/431

Application: Aggregation of visual words (4/4)

Finally, we also have the following interpretation of encoding first and
second-order statistics:

ϕµj
(X) =

γj√
πj

(µ̂j − µj)/σj

ϕσj (X) =
γj√
2πj

(σ̂2
j − σ2

j)/σ2
j ,

with

γj =
n∑

i=1

γij and µ̂j =
1

γj

n∑
i=1

γij xi and σ̂j =
1

γj

n∑
i=1

γij (xi −µj)
2.

The component ϕπ(X) is often dropped due to its negligible
contribution in practice, and the resulting representation is of
dimension 2kp where p is the dimension of the xi ’s.

Julien Mairal (Inria) 234/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models

Fisher kernel
Mutual information kernels
Marginalized kernels

Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 235/431

Mutual information kernels

Definition

Chose a prior w(dθ) on the measurable set Θ.

Form the kernel (Seeger, 2002):

K
(
x, x′

)
=

∫
θ∈Θ

Pθ(x)Pθ(x′)w(dθ) .

No explicit computation of a finite-dimensional feature vector.

K (x, x′) =< ϕ (x) , ϕ (x′) >L2(w) with

ϕ (x) = (Pθ (x))θ∈Θ .

Julien Mairal (Inria) 236/431

Example: coin toss

Let Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for random
coin toss, with θ ∈ [0, 1].

Let dθ be the Lebesgue measure on [0, 1]

The mutual information kernel between x = 001 and x′ = 1010 is:{
Pθ (x) = θ (1− θ)2 ,

Pθ (x′) = θ2 (1− θ)2 ,

K
(
x, x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ =

3!4!

8!
=

1

280
.

Julien Mairal (Inria) 237/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models

Fisher kernel
Mutual information kernels
Marginalized kernels

Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 238/431

Marginalized kernels

Definition

For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).

Let KZ be a kernel for the complete data z = (x, y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Tsuda et al., 2002):

KX
(
x, x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
=

∫ ∫
KZ
(
(x, y) ,

(
x′, y′

))
Px (dy) Px′

(
dy′
)
.

Julien Mairal (Inria) 239/431

Marginalized kernels: proof of positive definiteness

KZ is p.d. on Z. Therefore there exists a Hilbert space H and
ΦZ : Z → H such that:

KZ
(
z, z′

)
=
〈
ΦZ (z) ,ΦZ

(
z′
)〉
H .

Marginalizing therefore gives:

KX
(
x, x′

)
= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
= EPx(dy)×Px′ (dy′)

〈
ΦZ (z) ,ΦZ

(
z′
)〉
H

=
〈
EPx(dy)ΦZ (z) ,EPx(dy′)ΦZ

(
z′
)〉
H ,

therefore KX is p.d. on X . �

Julien Mairal (Inria) 240/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 241/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 242/431

Short history of genomics

1866 : Laws of heredity (Mendel)
1909 : Morgan and the drosophilists
1944 : DNA supports heredity (Avery)
1953 : Structure of DNA (Crick and Watson)
1966 : Genetic code (Nirenberg)
1960-70 : Genetic engineering
1977 : Method for sequencing (Sanger)
1982 : Creation of Genbank
1990 : Human genome project launched
2003 : Human genome project completed

Julien Mairal (Inria) 243/431

A cell

Julien Mairal (Inria) 244/431

Chromosomes

Julien Mairal (Inria) 245/431

Chromosomes and DNA

Julien Mairal (Inria) 246/431

Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953)

Julien Mairal (Inria) 247/431

The double helix

Julien Mairal (Inria) 248/431

Central dogma

Julien Mairal (Inria) 249/431

Proteins

Julien Mairal (Inria) 250/431

Genetic code

Julien Mairal (Inria) 251/431

Human genome project

Goal : sequence the 3,000,000,000 bases of the human genome

Consortium with 20 labs, 6 countries

Cost : about 3,000,000,000 USD

Julien Mairal (Inria) 252/431

2003: End of genomics era

Findings

About 25,000 genes only (representing 1.2% of the genome).

Automatic gene finding with graphical models.

97% of the genome is considered “junk DNA”.

Superposition of a variety of signals (many to be discovered).

Julien Mairal (Inria) 253/431

Protein sequence

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine

E : Glutamic acid K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine Y : Tyrosine W : Tryptophane

I : Isoleucine S : Serine Q : Glutamine

D : Aspartic acid G : Glycine

Julien Mairal (Inria) 254/431

Challenges with protein sequences

A protein sequences can be seen as a variable-length sequence over
the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

These sequences are produced at a fast rate (result of the
sequencing programs)

Need for algorithms to compare, classify, analyze these sequences

Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...

Julien Mairal (Inria) 255/431

Example: supervised sequence classification

Data (training)

Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...

MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...

MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...

...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...

MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...

MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..

...

Goal

Build a classifier to predict whether new proteins are secreted or not.

Julien Mairal (Inria) 256/431

Supervised classification with vector embedding

The idea

Map each string x ∈ X to a vector Φ(x) ∈ F .

Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic regression,
support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...

Julien Mairal (Inria) 257/431

Kernels for protein sequences

Kernel methods have been widely investigated since Jaakkola et
al.’s seminal paper (1998).

What is a good kernel?

it should be mathematically valid (symmetric, p.d. or c.p.d.)
fast to compute
adapted to the problem (give good performances)

Julien Mairal (Inria) 258/431

Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest

Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model

Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure

Local alignment kernel

Julien Mairal (Inria) 259/431

Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest

Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model

Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure

Local alignment kernel

Julien Mairal (Inria) 259/431

Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest

Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model

Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure

Local alignment kernel

Julien Mairal (Inria) 259/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 260/431

Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rn. How to perform this embedding?

Physico-chemical kernel

Extract relevant features, such as:

length of the sequence

time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑
i=1

hi hi+j

Julien Mairal (Inria) 261/431

Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rn. How to perform this embedding?

Physico-chemical kernel

Extract relevant features, such as:

length of the sequence

time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑
i=1

hi hi+j

Julien Mairal (Inria) 261/431

Substring indexation

The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:

the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)

the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)

the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)

Julien Mairal (Inria) 262/431

Example: spectrum kernel (1/2)

Kernel definition

The 3-spectrum of

x = CGGSLIAMMWFGV

is:

(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k-spectrum kernel is:

K
(
x, x′

)
:=
∑

u∈Ak

Φu (x) Φu

(
x′
)
.

Julien Mairal (Inria) 263/431

Example: spectrum kernel (2/2)

Implementation

The computation of the kernel is formally a sum over |A|k terms,
but at most | x | − k + 1 terms are non-zero in Φ (x) =⇒
Computation in O (| x |+ | x′ |) with pre-indexation of the strings.

Fast classification of a sequence x in O (| x |):

f (x) = w · Φ (x) =
∑

u

wuΦu (x) =

| x |−k+1∑
i=1

wxi ...xi+k−1
.

Remarks

Work with any string (natural language, time series...)

Fast and scalable, a good default method for string classification.

Variants allow matching of k-mers up to m mismatches.

Julien Mairal (Inria) 264/431

Example 2: Substring kernel (1/11)

Definition

For 1 ≤ k ≤ n ∈ N, we denote by I(k, n) the set of sequences of
indices i = (i1, . . . , ik), with 1 ≤ i1 < i2 < . . . < ik ≤ n.

For a string x = x1 . . . xn ∈ X of length n, for a sequence of indices
i ∈ I(k , n), we define a substring as:

x (i) := xi1xi2 . . . xik .

The length of the substring is:

l (i) = ik − i1 + 1.

Julien Mairal (Inria) 265/431

Example 2: Substring kernel (2/11)

Example

ABRACADABRA

i = (3, 4, 7, 8, 10)

x (i) =RADAR

l (i) = 10− 3 + 1 = 8

Julien Mairal (Inria) 266/431

Example 2: Substring kernel (3/11)

The kernel

Let k ∈ N and λ ∈ R+ fixed. For all u ∈ Ak , let Φu : X → R be
defined by:

∀x ∈ X , Φu (x) =
∑

i∈I(k,| x |): x(i)=u

λl(i) .

The substring kernel is the p.d. kernel defined by:

∀
(
x, x′

)
∈ X 2, Kk,λ

(
x, x′

)
=
∑

u∈Ak

Φu (x) Φu

(
x′
)
.

Julien Mairal (Inria) 267/431

Example 2: Substring kernel (4/11)

Example

u ca ct at ba bt cr ar br

Φu(cat) λ2 λ3 λ2 0 0 0 0 0
Φu(car) λ2 0 0 0 0 λ3 λ2 0
Φu(bat) 0 0 λ2 λ2 λ3 0 0 0
Φu(bar) 0 0 0 λ2 0 0 λ2 λ3


K (cat,cat) = K (car,car) = 2λ4 + λ6

K (cat,car) = λ4

K (cat,bar) = 0

Julien Mairal (Inria) 268/431

Example 2: Substring kernel (5/11)

Kernel computation

We need to compute, for any pair x, x′ ∈ X , the kernel:

Kn,λ

(
x, x′

)
=
∑

u∈Ak

Φu (x) Φu

(
x′
)

=
∑

u∈Ak

∑
i:x(i)=u

∑
i′:x′(i′)=u

λl(i)+l(i′) .

Enumerating the substrings is too slow (of order | x |k).

Julien Mairal (Inria) 269/431

Example 2: Substring kernel (6/11)

Kernel computation (cont.)

For u ∈ Ak remember that:

Φu (x) =
∑

i:x(i)=u

λin−i1+1 .

Let now:
Ψu (x) =

∑
i:x(i)=u

λ| x |−i1+1 .

Julien Mairal (Inria) 270/431

Example 2: Substring kernel (7/11)

Kernel computation (cont.)

Let us note x (1, j) = x1 . . . xj . A simple rewriting shows that, if we note
a ∈ A the last letter of u (u = va):

Φva (x) =
∑

j∈[1,| x |]:xj =a

Ψv (x (1, j − 1))λ ,

and
Ψva (x) =

∑
j∈[1,| x |]:xj =a

Ψv (x (1, j − 1))λ| x |−j+1 .

Julien Mairal (Inria) 271/431

Example 2: Substring kernel (8/11)

Kernel computation (cont.)

Moreover we observe that if the string is of the form xa (i.e., the last
letter is a ∈ A), then:

If the last letter of u is not a:{
Φu (xa) = Φu (x) ,

Ψu (xa) = λΨu (x) .

If the last letter of u is a (i.e., u = va with v ∈ An−1):{
Φva (xa) = Φva (x) + λΨv (x) ,

Ψva (xa) = λΨva (x) + λΨv (x) .

Julien Mairal (Inria) 272/431

Example 2: Substring kernel (9/11)

Kernel computation (cont.)

Let us now show how the function:

Bn

(
x, x′

)
:=
∑

u∈An

Ψu (x) Ψu

(
x′
)

and the kernel:
Kn

(
x, x′

)
:=
∑

u∈An

Φu (x) Φu

(
x′
)

can be computed recursively. We note that:{
B0 (x, x′) = K0 (x, x′) = 0 for all x, x′

Bk (x, x′) = Kk (x, x′) = 0 if min (| x | , | x′ |) < k

Julien Mairal (Inria) 273/431

Example 2: Substring kernel (10/11)

Recursive computation of Bn

Bn

(
xa, x′

)
=
∑

u∈An

Ψu (xa) Ψu

(
x′
)

= λ
∑

u∈An

Ψu (x) Ψu

(
x′
)

+ λ
∑

v∈An−1

Ψv (x) Ψva

(
x′
)

= λBn

(
x, x′

)
+

λ
∑

v∈An−1

Ψv (x)

 ∑
j∈[1,| x′ |]:x ′j =a

Ψv

(
x′ (1, j − 1)

)
λ| x
′ |−j+1


= λBn

(
x, x′

)
+

∑
j∈[1,| x′ |]:x ′j =a

Bn−1

(
x, x′ (1, j − 1)

)
λ| x
′ |−j+2

Julien Mairal (Inria) 274/431

Example 2: Substring kernel (10/11)

Recursive computation of Kn

Kn

(
xa, x′

)
=
∑

u∈An

Φu (xa) Φu

(
x′
)

=
∑

u∈An

Φu (x) Φu

(
x′
)

+ λ
∑

v∈An−1

Ψv (x) Φva

(
x′
)

= Kn

(
x, x′

)
+

λ
∑

v∈An−1

Ψv (x)

 ∑
j∈[1,| x′ |]:x ′j =a

Ψv

(
x′ (1, j − 1)

)
λ


= λKn

(
x, x′

)
+ λ2

∑
j∈[1,| x′ |]:x ′j =a

Bn−1

(
x, x′ (1, j − 1)

)

Julien Mairal (Inria) 275/431

Summary: Substring indexation

Implementation in O(|x|+ |x′|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)

Implementation in O(|x| × |x′|) in memory and time for the
substring kernels

The feature space has high dimension (|A|k), so learning requires
regularized methods (such as SVM)

Julien Mairal (Inria) 276/431

Dictionary-based indexation

The approach

Chose a dictionary of sequences D = (x1, x2, . . . , xn)

Chose a measure of similarity s (x, x′)

Define the mapping ΦD (x) = (s (x, xi))xi∈D

Examples

This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function

Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.

Julien Mairal (Inria) 277/431

Dictionary-based indexation

The approach

Chose a dictionary of sequences D = (x1, x2, . . . , xn)

Chose a measure of similarity s (x, x′)

Define the mapping ΦD (x) = (s (x, xi))xi∈D

Examples

This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function

Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.

Julien Mairal (Inria) 277/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 278/431

Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Recall: parametric model

A model is a family of distribution

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X)

Julien Mairal (Inria) 279/431

Context-tree model

Definition

A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree

θ ∈ ΣD is a set of conditional probabilities (multinomials)

Julien Mairal (Inria) 280/431

Context-tree model: example

P(AABACBACC) = P(AAB)θAB(A)θA(C)θC (B)θACB(A)θA(C)θC (A) .

Julien Mairal (Inria) 281/431

The context-tree kernel

Theorem (Cuturi et al., 2005)

For particular choices of priors, the context-tree kernel:

K
(
x, x′

)
=
∑
D

∫
θ∈ΣD

PD,θ(x)PD,θ(x′)w(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.

This is a valid mutual information kernel.

The similarity is related to information-theoretical measure of
mutual information between strings.

Julien Mairal (Inria) 282/431

Marginalized kernels

Recall: Definition

For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).

Let KZ be a kernel for the complete data z = (x, y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Tsuda et al., 2002):

KX
(
x, x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
=

∫ ∫
KZ
(
(x, y) ,

(
x′, y′

))
Px (dy) Px′

(
dy′
)
.

Julien Mairal (Inria) 283/431

Example: HMM for normal/biased coin toss

S

B

0.5

0.5

0.1
0.1

0.05

0.05N

E

0.85

0.85

Normal (N) and biased (B)
coins (not observed)

Observed output are 0/1 with probabilities:{
π(0|N) = 1− π(1|N) = 0.5,

π(0|B) = 1− π(1|B) = 0.8.

Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB

1001011101111010010111001111011

Julien Mairal (Inria) 284/431

1-spectrum kernel on complete data

If both x ∈ A∗ and y ∈ S∗ were observed, we might rather use the
1-spectrum kernel on the complete data z = (x, y):

KZ
(
z, z′

)
=

∑
(a,s)∈A×S

na,s (z) na,s (z) ,

where na,s (x, y) for a = 0, 1 and s = N,B is the number of
occurrences of s in y which emit a in x.

Example:

z =1001011101111010010111001111011,
z′ =0011010110011111011010111101100101,

KZ
(
z, z′

)
= n0 (z) n0

(
z′
)

+ n0 (z) n0

(
z′
)

+ n1 (z) n1

(
z′
)

+ n1 (z) n1

(
z′
)

= 7× 15 + 9× 12 + 13× 6 + 2× 1 = 293.

Julien Mairal (Inria) 285/431

1-spectrum marginalized kernel on observed data

The marginalized kernel for observed data is:

KX
(
x, x′

)
=

∑
y,y′∈S∗

KZ ((x, y) , (x, y)) P (y|x) P
(
y′|x′

)
=

∑
(a,s)∈A×S

Φa,s (x) Φa,s

(
x′
)
,

with
Φa,s (x) =

∑
y∈S∗

P (y|x) na,s (x, y)

Julien Mairal (Inria) 286/431

Computation of the 1-spectrum marginalized kernel

Φa,s (x) =
∑
y∈S∗

P (y|x) na,s (x, y)

=
∑
y∈S∗

P (y|x)

{
n∑

i=1

δ (xi , a) δ (yi , s)

}

=
n∑

i=1

δ (xi , a)

∑
y∈S∗

P (y|x) δ (yi , s)


=

n∑
i=1

δ (xi , a) P (yi = s|x) .

and P (yi = s|x) can be computed efficiently by forward-backward
algorithm!

Julien Mairal (Inria) 287/431

HMM example (DNA)

Julien Mairal (Inria) 288/431

HMM example (protein)

Julien Mairal (Inria) 289/431

SCFG for RNA sequences

SFCG rules

S → SS

S → aSa

S → aS

S → a

Marginalized kernel (Kin et al., 2002)

Feature: number of occurrences of each (base,state) combination

Marginalization using classical inside/outside algorithm

Julien Mairal (Inria) 290/431

Marginalized kernels in practice

Examples

Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)

Kernels for RNA sequences based on SCFG (Kin et al., 2002)

Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)

Kernels for multiple alignments based on phylogenetic models (Vert
et al., 2006)

Julien Mairal (Inria) 291/431

Marginalized kernels: example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using a
kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC (white
circles), Asn-GTT (black
circles) and Cys-GCA (plus
symbols) (from Tsuda et al.,
2002).

Julien Mairal (Inria) 292/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 293/431

Sequence alignment

Motivation

How to compare 2 sequences?

x1 = CGGSLIAMMWFGV

x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM------WFGV

|...|||||....||||

C-----LIVMMNRLMWFGV

Julien Mairal (Inria) 294/431

Alignment score

In order to quantify the relevance of an alignment π, define:

a substitution matrix S ∈ RA×A

a gap penalty function g : N→ R
Any alignment is then scored as follows

CGGSLIAMM------WFGV

|...|||||....||||

C----LIVMMNRLMWFGV

sS ,g (π) = S(C ,C) + S(L, L) + S(I , I) + S(A,V) + 2S(M,M)

+ S(W ,W) + S(F ,F) + S(G ,G) + S(V ,V)− g(3)− g(4)

Julien Mairal (Inria) 295/431

Local alignment kernel

Smith-Waterman score (Smith and Waterman, 1981)

The widely-used Smith-Waterman local alignment score is defined
by:

SWS ,g (x, y) := max
π∈Π(x,y)

sS ,g (π).

It is symmetric, but not positive definite...

LA kernel (Saigo et al., 2004)

The local alignment kernel:

K
(β)
LA (x, y) =

∑
π∈Π(x,y)

exp (βsS ,g (x, y, π)) ,

is symmetric positive definite.

Julien Mairal (Inria) 296/431

Local alignment kernel

Smith-Waterman score (Smith and Waterman, 1981)

The widely-used Smith-Waterman local alignment score is defined
by:

SWS ,g (x, y) := max
π∈Π(x,y)

sS ,g (π).

It is symmetric, but not positive definite...

LA kernel (Saigo et al., 2004)

The local alignment kernel:

K
(β)
LA (x, y) =

∑
π∈Π(x,y)

exp (βsS ,g (x, y, π)) ,

is symmetric positive definite.

Julien Mairal (Inria) 296/431

LA kernel is p.d.: proof (1/11)

Lemma

If K1 and K2 are p.d. kernels, then:

K1 + K2,

K1K2, and

cK1, for c ≥ 0,

are also p.d. kernels

If (Ki)i≥1 is a sequence of p.d. kernels that converges pointwisely
to a function K :

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= lim

n→∞
Ki

(
x, x′

)
,

then K is also a p.d. kernel.

Julien Mairal (Inria) 297/431

LA kernel is p.d.: proof (2/11)

Proof of lemma

Let A and B be n × n positive semidefinite matrices. By diagonalization
of A:

Ai ,j =
n∑

p=1

fp(i)fp(j)

for some vectors f1, . . . , fn. Then, for any α ∈ Rn:

n∑
i ,j=1

αiαj Ai ,j Bi ,j =
n∑

p=1

n∑
i ,j=1

αi fp(i)αj fp(j)Bi ,j ≥ 0.

The matrix Ci ,j = Ai ,j Bi ,j is therefore p.d. Other properties are obvious
from definition. �

Julien Mairal (Inria) 298/431

LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)

Let X = X1 ×X2. Let K1 be a p.d. kernel on X1, and K2 be a p.d.
kernel on X2. Then the following functions are p.d. kernels on X :

the direct sum,

K ((x1, x2) , (y1, y2)) = K1 (x1, y1) + K2 (x2, y2) ,

The direct product:

K ((x1, x2) , (y1, y2)) = K1 (x1, y1) K2 (x2, y2) .

Julien Mairal (Inria) 299/431

LA kernel is p.d.: proof (4/11)

Proof of lemma

If K1 is a p.d. kernel, let Φ1 : X1 7→ H be such that:

K1 (x1, y1) = 〈Φ1 (x1) ,Φ1 (y1)〉H .

Let Φ : X1 ×X2 → H be defined by:

Φ ((x1, x2)) = Φ1 (x1) .

Then for x = (x1, x2) and y = (y1, y2) ∈ X , we get

〈Φ ((x1, x2)) ,Φ ((y1, y2))〉H = K1 (x1, x2) ,

which shows that K (x, y) := K1 (x1, y1) is p.d. on X1 ×X2. The lemma
follows from the properties of sums and products of p.d. kernels. �

Julien Mairal (Inria) 300/431

LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets

Let K be a p.d. kernel on X , and let P (X) be the set of finite subsets
of X . Then the function KP on P (X)× P (X) defined by:

∀A,B ∈ P (X) , KP (A,B) :=
∑
x∈A

∑
y∈B

K (x, y)

is a p.d. kernel on P (X).

Julien Mairal (Inria) 301/431

LA kernel is p.d.: proof (6/11)

Proof of lemma

Let Φ : X 7→ H be such that

K (x, y) = 〈Φ (x) ,Φ (y)〉H .

Then, for A,B ∈ P (X), we get:

KP (A,B) =
∑
x∈A

∑
y∈B

〈Φ (x) ,Φ (y)〉H

=

〈∑
x∈A

Φ (x) ,
∑
y∈B

Φ (y)

〉
H

= 〈ΦP(A),ΦP(B)〉H ,

with ΦP(A) :=
∑

x∈A Φ (x). �

Julien Mairal (Inria) 302/431

LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)

Let K1 and K2 be two p.d. kernels for strings. The convolution of K1

and K2, denoted K1 ? K2, is defined for any x, x′ ∈ X by:

K1 ? K2(x, y) :=
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2).

Lemma

If K1 and K2 are p.d. then K1 ? K2 is p.d..

Julien Mairal (Inria) 303/431

LA kernel is p.d.: proof (8/11)

Proof of lemma

Let X be the set of finite-length strings. For x ∈ X , let

R (x) = {(x1, x2) ∈ X × X : x = x1x2} ⊂ X × X .

We can then write

K1 ? K2(x, y) =
∑

(x1,x2)∈R(x)

∑
(y1,y2)∈R(y)

K1(x1, y1)K2(x2, y2)

which is a p.d. kernel by the previous lemmas. �

Julien Mairal (Inria) 304/431

LA kernel is p.d.: proof (9/11)

3 basic string kernels

The constant kernel:
K0 (x, y) := 1 .

A kernel for letters:

K
(β)
a (x, y) :=

{
0 if | x | 6= 1 where | y | 6= 1 ,
exp (βS(x, y)) otherwise .

A kernel for gaps:

K
(β)
g (x, y) = exp [β (g (| x |) + g (| x |))] .

Julien Mairal (Inria) 305/431

LA kernel is p.d.: proof (10/11)

Remark

S : A2 → R is the similarity function between letters used in the

alignment score. K
(β)
a is only p.d. when the matrix:

(exp (βs(a, b)))(a,b)∈A2

is positive semidefinite (this is true for all β when s is conditionally
p.d..

g is the gap penalty function used in alignment score. The gap
kernel is always p.d. (with no restriction on g) because it can be
written as:

K
(β)
g (x, y) = exp (βg (| x |))× exp (βg (| y |)) .

Julien Mairal (Inria) 306/431

LA kernel is p.d.: proof (11/11)

Lemma

The local alignment kernel is a (limit) of convolution kernel:

K
(β)
LA =

∞∑
n=0

K0 ?
(

K
(β)
a ? K

(β)
g

)(n−1)
? K

(β)
a ? K0.

As such it is p.d..

Proof (sketch)

By induction on n (simple but long to write).

See details in Vert et al. (2004).

Julien Mairal (Inria) 307/431

LA kernel computation

We assume an affine gap penalty:{
g(0) = 0,

g(n) = d + e(n − 1) si n ≥ 1,

The LA kernel can then be computed by dynamic programming by:

K
(β)
LA (x, y) = 1 + X2(|x|, |y|) + Y2(|x|, |y|) + M(|x|, |y|),

where M(i , j),X (i , j),Y (i , j),X2(i , j), and Y2(i , j) for 0 ≤ i ≤ |x|,
and 0 ≤ j ≤ |y| are defined recursively.

Julien Mairal (Inria) 308/431

LA kernel is p.d.: proof (/)

Initialization 

M(i , 0) = M(0, j) = 0,

X (i , 0) = X (0, j) = 0,

Y (i , 0) = Y (0, j) = 0,

X2(i , 0) = X2(0, j) = 0,

Y2(i , 0) = Y2(0, j) = 0,

Julien Mairal (Inria) 309/431

LA kernel is p.d.: proof (/)

Recursion

For i = 1, . . . , |x| and j = 1, . . . , |y|:

M(i , j) = exp(βS(xi , yj))
[
1 + X (i − 1, j − 1)

+Y (i − 1, j − 1) + M(i − 1, j − 1)
]
,

X (i , j) = exp(βd)M(i − 1, j) + exp(βe)X (i − 1, j),

Y (i , j) = exp(βd) [M(i , j − 1) + X (i , j − 1)]

+ exp(βe)Y (i , j − 1),

X2(i , j) = M(i − 1, j) + X2(i − 1, j),

Y2(i , j) = M(i , j − 1) + X2(i , j − 1) + Y2(i , j − 1).

Julien Mairal (Inria) 310/431

LA kernel in practice

Implementation by a finite-state transducer in O(|x| × |x′|)

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)

Julien Mairal (Inria) 311/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 312/431

Remote homology

Sequence similarity

Clo
se

 h
om

olo
gs

Tw
ili

ght z
one

N
on h

om
olo

gs

Homologs have common ancestors

Structures and functions are more conserved than sequences

Remote homologs can not be detected by direct sequence
comparison

Julien Mairal (Inria) 313/431

SCOP database

Remote homologs

Superfamily

Family

SCOP

Close homologs

Fold

Julien Mairal (Inria) 314/431

A benchmark experiment

Goal: recognize directly the superfamily

Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.

Test: predict the superfamily.

Julien Mairal (Inria) 315/431

Difference in performance

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

ROC50

SVM-LA
SVM-pairwise

SVM-Mismatch
SVM-Fisher

Performance on the SCOP superfamily recognition benchmark (from
Saigo et al., 2004).

Julien Mairal (Inria) 316/431

String kernels: Summary

A variety of principles for string kernel design have been proposed.

Good kernel design is important for each data and each task.
Performance is not the only criterion.

Still an art, although principled ways have started to emerge.

Fast implementation with string algorithms is often possible.

Their application goes well beyond computational biology.

Julien Mairal (Inria) 317/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 318/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs

Motivation in biology
Explicit enumeration of features
Graph kernels: challenges
Walk-based kernels
Applications

Kernels on graphs

Julien Mairal (Inria) 319/431

Virtual screening for drug discovery

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).

Julien Mairal (Inria) 320/431

Image retrieval and classification

From Harchaoui and Bach (2007).

Julien Mairal (Inria) 321/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs

Motivation in biology
Explicit enumeration of features
Graph kernels: challenges
Walk-based kernels
Applications

Kernels on graphs

Julien Mairal (Inria) 322/431

Approach through feature enumeration

1 Represent each graph x in X by a vector Φ(x) ∈ H, either explicitly
or implicitly through the kernel

K (x, x′) = Φ(x)>Φ(x′) .

2 Use a linear method for classification in H.

φ
HX

Julien Mairal (Inria) 323/431

Approach through feature enumeration

1 Represent each graph x in X by a vector Φ(x) ∈ H, either explicitly
or implicitly through the kernel

K (x, x′) = Φ(x)>Φ(x′) .

2 Use a linear method for classification in H.

φ
HX

Julien Mairal (Inria) 323/431

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

Julien Mairal (Inria) 324/431

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

Julien Mairal (Inria) 324/431

Example

2D structural keys in chemoinformatics

Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

O

N

O

O

OO

N N N

O O

O

Use a machine learning algorithms such as SVM, NN, PLS, decision
tree, ...

Julien Mairal (Inria) 325/431

Challenge: which descriptors (patterns)?

O

N

O

O

OO

N N N

O O

O

Expressiveness: they should retain as much information as possible
from the graph

Computation : they should be fast to compute

Large dimension of the vector representation: memory storage,
speed, statistical issues

Julien Mairal (Inria) 326/431

Indexing by substructures

O

N

O

O

OO

N N N

O O

O

Often we believe that the presence substructures are important
predictive patterns

Hence it makes sense to represent a graph by features that indicate
the presence (or the number of occurrences) of particular
substructures

However, detecting the presence of particular substructures may be
computationally challenging...

Julien Mairal (Inria) 327/431

Subgraphs

Definition

A subgraph of a graph (V ,E) is a connected graph (V ′,E ′) with
V ′ ⊂ V and E ′ ⊂ E .

Julien Mairal (Inria) 328/431

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path

The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Julien Mairal (Inria) 329/431

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path

The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Julien Mairal (Inria) 329/431

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path

The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Julien Mairal (Inria) 329/431

Paths

Definition

A path of a graph (V ,E) is sequence of distinct vertices
v1, . . . , vn ∈ V (i 6= j =⇒ vi 6= vj) such that (vi , vi+1) ∈ E for
i = 1, . . . , n − 1.

Equivalently the paths are the linear subgraphs.

Julien Mairal (Inria) 330/431

Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem

Computing all path occurrences is NP-hard.

Proof.

Same as for subgraphs.

Julien Mairal (Inria) 331/431

Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem

Computing all path occurrences is NP-hard.

Proof.

Same as for subgraphs.

Julien Mairal (Inria) 331/431

Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem

Computing all path occurrences is NP-hard.

Proof.

Same as for subgraphs.

Julien Mairal (Inria) 331/431

Indexing by what?

Substructure selection

We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)

all path up to length k (Openeye fingerprint, Nicholls 2005)

all shortest paths (Borgwardt and Kriegel, 2005)

all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)

all frequent subgraphs in the database (Helma et al., 2004)

Julien Mairal (Inria) 332/431

Example : Indexing by all shortest paths

(0,...,0,2,0,...,0,1,0,...)

B

A
B

A
A A A B

A B A B

A A

A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.

The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.

Julien Mairal (Inria) 333/431

Example : Indexing by all shortest paths

(0,...,0,2,0,...,0,1,0,...)

B

A
B

A
A A A B

A B A B

A A

A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.

The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.

Julien Mairal (Inria) 333/431

Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk).

Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.

Randomly sample subgraphs if enumeration is infeasible.

Julien Mairal (Inria) 334/431

Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk).

Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.

Randomly sample subgraphs if enumeration is infeasible.

Julien Mairal (Inria) 334/431

Summary

Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraph, paths)

Several ideas to reduce the set of substructures considered

In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered.

Julien Mairal (Inria) 335/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs

Motivation in biology
Explicit enumeration of features
Graph kernels: challenges
Walk-based kernels
Applications

Kernels on graphs

Julien Mairal (Inria) 336/431

The idea

1 Represent implicitly each graph x in X by a vector Φ(x) ∈ H
through the kernel

K (x, x′) = Φ(x)>Φ(x′) .

2 Use a kernel method for classification in H.

φ
HX

Julien Mairal (Inria) 337/431

The idea

1 Represent implicitly each graph x in X by a vector Φ(x) ∈ H
through the kernel

K (x, x′) = Φ(x)>Φ(x′) .

2 Use a kernel method for classification in H.

φ
HX

Julien Mairal (Inria) 337/431

Expressiveness vs Complexity

Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

∀G1,G2 ∈ X , dK (G1,G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G1) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off

If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.

On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical applications.

Can we define tractable and expressive graph kernels?

Julien Mairal (Inria) 338/431

Expressiveness vs Complexity

Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

∀G1,G2 ∈ X , dK (G1,G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G1) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off

If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.

On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical applications.

Can we define tractable and expressive graph kernels?

Julien Mairal (Inria) 338/431

Complexity of complete kernels

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof

For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1,G2)2 = K (G1,G1) + K (G2,G2)− 2K (G1,G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1,G2) = 0 iff G1 ' G2). �

Julien Mairal (Inria) 339/431

Complexity of complete kernels

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof

For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1,G2)2 = K (G1,G1) + K (G2,G2)− 2K (G1,G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1,G2) = 0 iff G1 ' G2). �

Julien Mairal (Inria) 339/431

Subgraph kernel

Definition

Let (λG)G∈X a set or nonnegative real-valued weights

For any graph G ∈ X , let

∀H ∈ X , ΦH(G) =
∣∣ {G ′ is a subgraph of G : G ′ ' H

} ∣∣ .
The subgraph kernel between any two graphs G1 and G2 ∈ X is
defined by:

Ksubgraph(G1,G2) =
∑
H∈X

λHΦH(G1)ΦH(G2) .

Julien Mairal (Inria) 340/431

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (1/2)

Let Pn be the path graph with n vertices.

Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . .+ ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αi Φ(Pi) ,

where the coefficients αi can be found in polynomial time (solving a
n × n triangular system).

Julien Mairal (Inria) 341/431

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (1/2)

Let Pn be the path graph with n vertices.

Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . .+ ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αi Φ(Pi) ,

where the coefficients αi can be found in polynomial time (solving a
n × n triangular system).

Julien Mairal (Inria) 341/431

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (2/2)

If G is a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if Φ(G)>en > 0,
i.e.,

Φ(G)>

(
n∑

i=1

αi Φ(Pi)

)
=

n∑
i=1

αi Ksubgraph(G ,Pi) > 0 .

The decision problem whether a graph has a Hamiltonian path is
NP-complete. �

Julien Mairal (Inria) 342/431

Path kernel

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1,G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)

Computing the path kernel is NP-hard.

Julien Mairal (Inria) 343/431

Path kernel

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1,G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)

Computing the path kernel is NP-hard.

Julien Mairal (Inria) 343/431

Summary

Expressiveness vs Complexity trade-off

It is intractable to compute complete graph kernels.

It is intractable to compute the subgraph kernels.

Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.

One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic to
subgraphs, e.g., to consider walks instead of paths.

Julien Mairal (Inria) 344/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs

Motivation in biology
Explicit enumeration of features
Graph kernels: challenges
Walk-based kernels
Applications

Kernels on graphs

Julien Mairal (Inria) 345/431

Walks

Definition

A walk of a graph (V ,E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . , n − 1.

We note Wn(G) the set of walks with n vertices of the graph G ,
and W(G) the set of all walks.

etc...

Julien Mairal (Inria) 346/431

Walks 6= paths

Julien Mairal (Inria) 347/431

Walk kernel

Definition

Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.

For any graph X let a weight λG (w) be associated to each walk
w ∈ W(G).

Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG (w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk(G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .

Julien Mairal (Inria) 348/431

Walk kernel

Definition

Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.

For any graph X let a weight λG (w) be associated to each walk
w ∈ W(G).

Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG (w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk(G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .

Julien Mairal (Inria) 348/431

Walk kernel examples

Examples

The nth-order walk kernel is the walk kernel with λG (w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

The random walk kernel is obtained with λG (w) = PG (w), where
PG is a Markov random walk on G . In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).

The geometric walk kernel is obtained (when it converges) with
λG (w) = βlength(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Julien Mairal (Inria) 349/431

Walk kernel examples

Examples

The nth-order walk kernel is the walk kernel with λG (w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

The random walk kernel is obtained with λG (w) = PG (w), where
PG is a Markov random walk on G . In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).

The geometric walk kernel is obtained (when it converges) with
λG (w) = βlength(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Julien Mairal (Inria) 349/431

Walk kernel examples

Examples

The nth-order walk kernel is the walk kernel with λG (w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

The random walk kernel is obtained with λG (w) = PG (w), where
PG is a Markov random walk on G . In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).

The geometric walk kernel is obtained (when it converges) with
λG (w) = βlength(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Julien Mairal (Inria) 349/431

Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels) can
be computed efficiently in polynomial time.

Julien Mairal (Inria) 350/431

Product graph

Definition

Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled vertices.
The product graph G = G1 × G2 is the graph G = (V ,E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,

2 E =
{((v1, v2), (v ′1, v

′
2)) ∈ V × V : (v1, v

′
1) ∈ E1 and (v2, v

′
2) ∈ E2}.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b

Julien Mairal (Inria) 351/431

Walk kernel and product graph

Lemma

There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 × G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .

Julien Mairal (Inria) 352/431

Walk kernel and product graph

Lemma

There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 × G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .

Julien Mairal (Inria) 352/431

Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.

Therefore:
Knth−order (G1,G2) =

∑
w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 × G2. Then we get:

Knth−order (G1,G2) =
∑
i ,j

[An]i ,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum degree
of Gi .

Julien Mairal (Inria) 353/431

Computation of random and geometric walk kernels

In both cases λG (w) for a walk w = v1 . . . vn can be decomposed
as:

λG (v1 . . . vn) = λi (v1)
n∏

i=2

λt(vi−1, vi) .

Let Λi be the vector of λi (v) and Λt be the matrix of λt(v , v ′):

Kwalk(G1,G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi (v1)
n∏

i=2

λt(vi−1, vi)

=
∞∑

n=0

Λi Λ
n
t 1

= Λi (I − Λt)−1 1

Computation in O(|G1|3|G2|3)

Julien Mairal (Inria) 354/431

Extensions 1: label enrichment

Atom relabebling with the Morgan index (Mahé et al., 2004)

Order 2 indices

N

O

O

1

1

1

1

1

1

1

1

1

N

O

O

2

2

2

3

2

3

1

1

2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys features.

Other relabeling schemes are possible (graph coloring).

Faster computation with more labels (less matches implies a smaller
product graph).

Julien Mairal (Inria) 355/431

Extension 2: Non-tottering walk kernel

Tottering walks

A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications

Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).

Julien Mairal (Inria) 356/431

Computation of the non-tottering walk kernel (Mahé et
al., 2005)

Second-order Markov random walk to prevent tottering walks

Written as a first-order Markov random walk on an augmented
graph

Normal walk kernel on the augmented graph (which is always a
directed graph).

Julien Mairal (Inria) 357/431

Extension 3: Subtree kernels

Julien Mairal (Inria) 358/431

Example: Tree-like fragments of molecules

.

.

.

.

.

.

.

.

.
N

N

C

CO

C

.

.

. C

O

C

N

C

N O

C

N CN C C

N

N

Julien Mairal (Inria) 359/431

Computation of the subtree kernel (Ramon and Gärtner,
2003; Mahé and Vert, 2009)

Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.

Recursion: if T (v , n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v , n + 1) =
∑

R⊂N (v)

∏
v ′∈R

λt(v , v ′)T (v ′, n) ,

where N (v) is the set of neighbors of v .

Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.

Julien Mairal (Inria) 360/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs

Motivation in biology
Explicit enumeration of features
Graph kernels: challenges
Walk-based kernels
Applications

Kernels on graphs

Julien Mairal (Inria) 361/431

Application in chemoinformatics (Mahé et al., 2005)

MUTAG dataset

aromatic/hetero-aromatic compounds

high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

188 compouunds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method Accuracy

Progol1 81.4%
2D kernel 91.2%

Julien Mairal (Inria) 362/431

2D Subtree vs walk kernels

70
72

74
76

78
80

A
U

C
Walks
Subtrees

C
C

R
F

−
C

E
M

H
L−

60
(T

B
)

K
−

56
2

M
O

LT
−

4
R

P
M

I−
82

26 S
R

A
54

9/
A

T
C

C
E

K
V

X
H

O
P

−
62

H
O

P
−

92
N

C
I−

H
22

6
N

C
I−

H
23

N
C

I−
H

32
2M

N
C

I−
H

46
0

N
C

I−
H

52
2

C
O

LO
_2

05
H

C
C

−
29

98
H

C
T

−
11

6
H

C
T

−
15

H
T

29
K

M
12

S
W

−
62

0
S

F
−

26
8

S
F

−
29

5
S

F
−

53
9

S
N

B
−

19
S

N
B

−
75

U
25

1
LO

X
_I

M
V

I
M

A
LM

E
−

3M M
14

S
K

−
M

E
L−

2
S

K
−

M
E

L−
28

S
K

−
M

E
L−

5
U

A
C

C
−

25
7

U
A

C
C

−
62

IG
R

−
O

V
1

O
V

C
A

R
−

3
O

V
C

A
R

−
4

O
V

C
A

R
−

5
O

V
C

A
R

−
8

S
K

−
O

V
−

3
78

6−
0

A
49

8
A

C
H

N
C

A
K

I−
1

R
X

F
_3

93
S

N
12

C
T

K
−

10
U

O
−

31
P

C
−

3
D

U
−

14
5

M
C

F
7

N
C

I/A
D

R
−

R
E

S
M

D
A

−
M

B
−

23
1/

A
T

C
C

H
S

_5
78

T
M

D
A

−
M

B
−

43
5

M
D

A
−

N
B

T
−

54
9

T
−

47
D

Screening of inhibitors for 60 cancer cell lines.

Julien Mairal (Inria) 363/431

Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

1400 natural images in 14 classes

Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

H W TW wTW M

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

T
es

t e
rr

or

Kernels

Performance comparison on Corel14

Julien Mairal (Inria) 364/431

Summary: graph kernels

What we saw

Kernels do not allow to overcome the NP-hardness of subgraph
patterns

They allow to work with approximate subgraphs (walks, subtrees),
in infinite dimension, thanks to the kernel trick

However: using kernels makes it difficult to come back to patterns
after the learning stage

Julien Mairal (Inria) 365/431

Outline

1 Kernels and RKHS

2 Kernels Methods: Supervised Learning

3 Kernels Methods: Unsupervised Learning

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 366/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 367/431

Graphs

Motivation

Many data come in the form of nodes in a graph for different reasons:

by definition (interaction network, internet...)

by discretization / sampling of a continuous domain

by convenience (e.g., if only a similarity function if available)

Julien Mairal (Inria) 368/431

Example: web

Julien Mairal (Inria) 369/431

Example: social network

Julien Mairal (Inria) 370/431

Example: protein-protein interaction

Julien Mairal (Inria) 371/431

Kernel on a graph

φ

We need a kernel K (x, x′) between nodes of the graph.

Example: predict gene protein functions from high-throughput
protein-protein interaction data.

Julien Mairal (Inria) 372/431

General remarks

Strategies to make a kernel on a graph

X being finite, any symmetric semi-definite matrix K defines a valid
p.d. kernel on X .

How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj are
“close” to each other on the graph?
Functional approach: ‖ f ‖K should be “small” when f is “smooth”
on the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussien kernel on the graph (e.g., limit by fine discretization)?

Julien Mairal (Inria) 373/431

General remarks

Strategies to make a kernel on a graph

X being finite, any symmetric semi-definite matrix K defines a valid
p.d. kernel on X .

How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj are
“close” to each other on the graph?
Functional approach: ‖ f ‖K should be “small” when f is “smooth”
on the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussien kernel on the graph (e.g., limit by fine discretization)?

Julien Mairal (Inria) 373/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 374/431

Conditionally p.d. kernels

Hilbert distance

Any p.d. kernels is an inner product in a Hilbert space

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

It defines a Hilbert distance:

dK

(
x, x′

)2
= K (x, x) + K

(
x′, x′

)
− 2K

(
x, x′

)
−d2

K is conditionally positive definite (c.p.d.), i.e.:

∀t > 0 , exp
(
−tdK

(
x, x′

)2
)

is p.d.

Julien Mairal (Inria) 375/431

Example

A direct approach

For X = Rn, the inner product is p.d.:

K (x, x′) = x>x′ .

The corresponding Hilbert distance is the Euclidean distance:

dK

(
x, x′

)2
= x>x + x′>x− 2x>x′ = ||x− x′||2 .

−d2
K is conditionally positive definite (c.p.d.), i.e.:

∀t > 0 , exp
(
−t||x− x′||2

)
is p.d.

Julien Mairal (Inria) 376/431

Graph distance

Graph embedding in a Hilbert space

Given a graph G = (V ,E), the graph distance dG (x , x ′) between
any two vertices is the length of the shortest path between x and x ′.

We say that the graph G = (V ,E) can be embedded (exactly) in a
Hilbert space if −d2

G is c.p.d., which implies in particular that
exp(−tdG (x , x ′)) is p.d. for all t > 0.

Lemma

In general graphs can not be embedded exactly in Hilbert spaces.

In some cases exact embeddings exists, e.g.:

trees can be embedded exactly,
closed chains can be embedded exactly.

Julien Mairal (Inria) 377/431

Graph distance

Graph embedding in a Hilbert space

Given a graph G = (V ,E), the graph distance dG (x , x ′) between
any two vertices is the length of the shortest path between x and x ′.

We say that the graph G = (V ,E) can be embedded (exactly) in a
Hilbert space if −d2

G is c.p.d., which implies in particular that
exp(−tdG (x , x ′)) is p.d. for all t > 0.

Lemma

In general graphs can not be embedded exactly in Hilbert spaces.

In some cases exact embeddings exists, e.g.:

trees can be embedded exactly,
closed chains can be embedded exactly.

Julien Mairal (Inria) 377/431

Example: non-c.p.d. graph distance

1 5

2

3
4

dG =


0 1 1 1 2
1 0 2 2 1
1 2 0 2 1
1 2 2 0 1
2 1 1 1 0


λmin

([
e(−0.2dG (i ,j))

])
= −0.028 < 0 .

Julien Mairal (Inria) 378/431

Graph distance on trees are c.p.d.

Proof

Let G = (V ,E) a tree

Fix a root x0 ∈ V

Represent any vertex x ∈ V by a vector Φ(x) ∈ R|E |, where
Φ(x)i = 1 is the i-th edge is in the (unique) path between x and x0,
0 otherwise.

Then:
dG (x , x ′) = ‖Φ(x)− Φ(x ′) ‖2 ,

and therefore −dG is c.p.d., in particular exp(−tdG (x , x ′)) is p.d.
for all t > 0.

Julien Mairal (Inria) 379/431

Example

1

2

3

4

5

[
e−dG (i ,j)

]
=


1 0.14 0.37 0.14 0.05

0.14 1 0.37 0.14 0.05
0.37 0.37 1 0.37 0.14
0.14 0.14 0.37 1 0.37
0.05 0.05 0.14 0.37 1



Julien Mairal (Inria) 380/431

Graph distance on closed chains are c.p.d.

Proof: case |V | = 2p

Let G = (V ,E) a cycle with an even number of vertices |V | = 2p

Fix a root x0 ∈ V , number the 2p edges from x0 to x0.

Map the 2p edges in Rp to (e1, . . . , ep,−e1, . . . ,−ep)

Map a vertex v to the sum of the edges in the shortest path
between x0 and v .

Julien Mairal (Inria) 381/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 382/431

Functional approach

Motivation

How to make p.d. kernel on general graphs?

Making a kernel is equivalent to defining a RKHS.

There are intuitive notions of smoothness on a graph

Idea

Define a priori a smoothness functional on the functions f : X → R.

Show that it defines a RKHS and identify the corresponding kernel

Julien Mairal (Inria) 383/431

Notations

X = (x1, . . . , xm) is finite.

For x, x′ ∈ X , we note x ∼ x′ to indicate the existence of an edge
between x and x′

We assume that there is no self-loop x ∼ x, and that there is a
single connected component.

The adjacency matrix is A ∈ Rm×m:

Ai ,j =

{
1 if i ∼ j ,

0 otherwise.

D is the diagonal matrix where Di ,i is the number of neighbors of xi

(Di ,i =
∑m

i=1 Ai ,j).

Julien Mairal (Inria) 384/431

Example

1

2

3

4

5

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =


1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1



Julien Mairal (Inria) 385/431

Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1



Julien Mairal (Inria) 386/431

Properties of the Laplacian

Lemma

Let L = D − A be the Laplacian of a connected graph:

For any f : X → R,

Ω(f) :=
∑
i∼j

(f (xi)− f (xj))2 = f >Lf

L is a symmetric positive semi-definite matrix

0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1, . . . , 1)

The image of L is

Im(L) =

{
f ∈ Rm :

m∑
i=1

fi = 0

}

Julien Mairal (Inria) 387/431

Proof: link between Ω(f) and L

Ω (f) =
∑
i∼j

(f (xi)− f (xj))2

=
∑
i∼j

(
f (xi)

2 + f (xj)
2 − 2f (xi) f (xj)

)
=

m∑
i=1

Di ,i f (xi)
2 − 2

∑
i∼j

f (xi) f (xj)

= f >Df − f >Af

= f >Lf

Julien Mairal (Inria) 388/431

Proof: eigenstructure of L

L is symmetric because A and D are symmetric.

For any f ∈ Rm, f >Lf = Ω(f) ≥ 0, therefore the (real-valued)
eigenvalues of L are ≥ 0 : L is therefore positive semi-definite.

f is an eigenvector associated to eigenvalue 0
iff f >Lf = 0
iff
∑

i∼j (f (xi)− f (xj))2 = 0 ,
iff f (xi) = f (xj) when i ∼ j ,
iff f is constant (because the graph is connected).

L being symmetric, Im(L) is the orthogonal supplement of Ker(L),
that is, the set of functions orthogonal to 1. �

Julien Mairal (Inria) 389/431

Our first graph kernel

Theorem

The set H = {f ∈ Rm :
∑m

i=1 fi = 0} endowed with the norm:

Ω (f) =
∑
i∼j

(f (xi)− f (xj))2

is a RKHS whose reproducing kernel is L∗, the pseudo-inverse of the
graph Laplacian.

Julien Mairal (Inria) 390/431

In case of...

Pseudo-inverse of L

Remember the pseudo-inverse L∗ of L is the linear application that is
equal to:

0 on Ker(L)

L−1 on Im(L), that is, if we write:

L =
m∑

i=1

λi ui u
>
i

the eigendecomposition of L:

L∗ =
∑
λi 6=0

(λi)
−1 ui u

>
i .

In particular it holds that L∗L = LL∗ = ΠH, the projection onto
Im(L) = H.

Julien Mairal (Inria) 391/431

Proof (1/2)

Resticted to H, the symmetric bilinear form:

〈f , g〉 = f >Lg

is positive definite (because L is positive semi-definite, and
H = Im(L)). It is therefore a scalar product, making of H a Hilbert
space (in fact Euclidean).

The norm in this Hilbert space H is:

‖ f ‖2 = 〈f , f 〉 = f >Lf = Ω(f) .

Julien Mairal (Inria) 392/431

Proof (2/2)

To check that H is a RKHS with reproducing kernel K = L∗, it suffices
to show that: {

∀x ∈ X , Kx ∈ H ,

∀ (x, f) ∈ X ×H, 〈f ,Kx〉 = f (x) .

Ker(K) = Ker (L∗) = Ker (L), implying K1 = 0. Therefore, each
row/column of K is in H.

For any f ∈ H, if we note gi = 〈K (i , ·), f 〉 we get:

g = KLf = L∗Lf = ΠH(f) = f .

As a conclusion K = L∗ is the reproducing kernel of H. �

Julien Mairal (Inria) 393/431

Example

1

2

3

4

5

L∗ =


0.88 −0.12 0.08 −0.32 −0.52
−0.12 0.88 0.08 −0.32 −0.52

0.08 0.08 0.28 −0.12 −0.32
−0.32 −0.32 −0.12 0.48 0.28
−0.52 −0.52 −0.32 0.28 1.08



Julien Mairal (Inria) 394/431

Interpretation of the Laplacian

dx

f

i−1 i i+1

∆f (x) = f ′′(x)

∼ f ′(x + dx/2)− f ′(x − dx/2)

dx

∼ f (x + dx)− f (x)− f (x) + f (x − dx)

dx2

=
fi−1 + fi+1 − 2f (x)

dx2

= −Lf (i)

dx2
.

Julien Mairal (Inria) 395/431

Interpretation of regularization

For f = [0, 1]→ R and xi = i/m, we have:

Ω(f) =
m∑

i=1

(
f

(
i + 1

m

)
− f

(
i

m

))2

∼
m∑

i=1

(
1

m
× f ′

(
i

m

))2

=
1

m
× 1

m

m∑
i=1

f ′
(

i

m

)2

∼ 1

m

∫ 1

0
f ′(t)2dt.

Julien Mairal (Inria) 396/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 397/431

Motivation

Consider the normalized Gaussian kernel on Rd :

Kt

(
x, x′

)
=

1

(4πt)
d
2

exp

(
−‖ x− x′ ‖2

4t

)
.

In order to transpose it to the graph, replacing the Euclidean
distant by the shortest-path distance does not work.

In this section we provide a characterization of the Gaussian kernel
as the solution of a partial differential equation involving the
Laplacian, which we can transpose to the graph: the diffusion
equation.

The solution of the discrete diffusion equation will be called the
diffusion kernel or heat kernel.

Julien Mairal (Inria) 398/431

The diffusion equation

Lemma

For any x0 ∈ Rd , the function:

Kx0 (x, t) = Kt (x0, x) =
1

(4πt)
d
2

exp

(
−‖ x− x0 ‖2

4t

)
.

is solution of the diffusion equation:

∂

∂t
Kx0 (x, t) = ∆Kx0 (x, t) .

with initial condition Kx0 (x, 0) = δx0(x)

(proof = direct computation).

Julien Mairal (Inria) 399/431

Discrete diffusion equation

For finite-dimensional ft ∈ Rm, the diffusion equation becomes:

∂

∂t
ft = −Lft

which admits the following solution:

ft = f0e−tL

with

etL = I − tL +
t2

2!
L2 − t3

3!
L3 + . . .

Julien Mairal (Inria) 400/431

Diffusion kernel (Kondor and Lafferty, 2002)

This suggest to consider:
K = e−tL

which is indeed symmetric positive semi-definite because if we write:

L =
m∑

i=1

λi ui u
>
i (λi ≥ 0)

we obtain:

K = e−tL =
m∑

i=1

e−tλi ui u
>
i

Julien Mairal (Inria) 401/431

Example: complete graph

Ki ,j =

{
1+(m−1)e−tm

m for i = j ,
1−e−tm

m for i 6= j .

Julien Mairal (Inria) 402/431

Example: closed chain

Ki ,j =
1

m

m−1∑
ν=0

exp

[
−2t

(
1− cos

2πν

m

)]
cos

2πν(i − j)

m
.

Julien Mairal (Inria) 403/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 404/431

Motivation

In this section we show that the diffusion and Laplace kernels can
be interpreted in the frequency domain of functions

This shows that our strategy to design kernels on graphs was based
on (discrete) harmonic analysis on the graph

This follows the approach we developed for semigroup kernels!

Julien Mairal (Inria) 405/431

Spectrum of the diffusion kernel

Let 0 = λ1 < λ2 ≤ . . . ≤ λm be the eigenvalues of the Laplacian:

L =
m∑

i=1

λi ui u
>
i (λi ≥ 0)

The diffusion kernel Kt is an invertible matrix because its
eigenvalues are strictly positive:

Kt =
m∑

i=1

e−tλi ui u
>
i

Julien Mairal (Inria) 406/431

Norm in the diffusion RKHS

Any function f ∈ Rm can be written as f = K
(
K−1f

)
, therefore its

norm in the diffusion RKHS is:

‖ f ‖2
Kt

=
(

f >K−1
)

K
(
K−1f

)
= f >K−1f .

For i = 1, . . . ,m, let:
f̂i = u>i f

be the projection of f onto the eigenbasis of K .

We then have:

‖ f ‖2
Kt

= f >K−1f =
m∑

i=1

etλi f̂ 2
i .

This looks similar to
∫ ∣∣∣ f̂ (ω)

∣∣∣2 eσ
2ω2

dω ...

Julien Mairal (Inria) 407/431

Discrete Fourier transform

Definition

The vector f̂ =
(

f̂1, . . . , f̂m

)>
is called the discrete Fourier transform of

f ∈ Rn

The eigenvectors of the Laplacian are the discrete equivalent to the
sine/cosine Fourier basis on Rn.

The eigenvalues λi are the equivalent to the frequencies ω2

Successive eigenvectors “oscillate” increasingly as eigenvalues get
more and more negative.

Julien Mairal (Inria) 408/431

Example: eigenvectors of the Laplacian

Julien Mairal (Inria) 409/431

Generalization

This observation suggests to define a whole family of kernels:

Kr =
m∑

i=1

r(λi)ui u
>
i

associated with the following RKHS norms:

‖ f ‖2
Kr

=
m∑

i=1

f̂ 2
i

r(λi)

where r : R+ → R+
∗ is a non-increasing function.

Julien Mairal (Inria) 410/431

Example : regularized Laplacian

r(λ) =
1

λ+ ε
, ε > 0

K =
m∑

i=1

1

λi + ε
ui u
>
i = (L + εI)−1

‖ f ‖2
K = f >K−1f =

∑
i∼j

(f (xi)− f (xj))2 + ε

m∑
i=1

f (xi)
2 .

Julien Mairal (Inria) 411/431

Example

1

2

3

4

5

(L + I)−1 =


0.60 0.10 0.19 0.08 0.04
0.10 0.60 0.19 0.08 0.04
0.19 0.19 0.38 0.15 0.08
0.08 0.08 0.15 0.46 0.23
0.04 0.04 0.08 0.23 0.62



Julien Mairal (Inria) 412/431

Outline

4 The Kernel Jungle
Mercer kernels and shift-invariant kernels
Kernels for generative models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 413/431

Applications 1: graph partitioning

A classical relaxation of graph partitioning is:

min
f ∈RX

∑
i∼j

(fi − fj)
2 s.t.

∑
i

f 2
i = 1

This can be rewritten

max
f

∑
i

f 2
i s.t. ‖ f ‖H ≤ 1

This is principal component analysis in the RKHS (“kernel PCA”)

PC1PC2

Julien Mairal (Inria) 414/431

Applications 2: search on a graph

Let x1, . . . , xq a set of q nodes (the query). How to find “similar”
nodes (and rank them)?

One solution:

min
f
‖ f ‖H s.t. f (xi) ≥ 1 for i = 1, . . . , q.

Julien Mairal (Inria) 415/431

Application 3: Semi-supervised learning

Julien Mairal (Inria) 416/431

Application 3: Semi-supervised learning

Julien Mairal (Inria) 417/431

Application 4: Tumor classification from microarray data
(Rapaport et al., 2006)

Data available

Gene expression measures for more than 10k genes

Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal

Design a classifier to automatically assign a class to future samples
from their expression profile

Interpret biologically the differences between the classes

Julien Mairal (Inria) 418/431

Application 4: Tumor classification from microarray data
(Rapaport et al., 2006)

Data available

Gene expression measures for more than 10k genes

Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal

Design a classifier to automatically assign a class to future samples
from their expression profile

Interpret biologically the differences between the classes

Julien Mairal (Inria) 418/431

Linear classifiers

The approach

Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes

Classification: given the set of labeled sample, learn a linear
decision function:

f (x) =

p∑
i=1

βi xi + β0 ,

that is positive for one class, negative for the other

Interpretation: the weight βi quantifies the influence of gene i for
the classification

Julien Mairal (Inria) 419/431

Linear classifiers

Pitfalls

No robust estimation procedure exist for 100 samples in 105

dimensions!

It is necessary to reduce the complexity of the problem with prior
knowledge.

Julien Mairal (Inria) 420/431

Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the norm of β, e.g.:

Euclidean norm (support vector machines, ridge regression):
‖β ‖2 =

∑p
i=1 β

2
i

L1-norm (lasso regression) : ‖β ‖1 =
∑p

i=1 |βi |

Pros

Good performance in
classification

Cons

Limited interpretation
(small weights)

No prior biological
knowledge

Julien Mairal (Inria) 421/431

Example 2: Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 20) whose
expression are enough for classification. Interpretation is then about the
selected genes.

Pros

Good performance in
classification

Useful for biomarker
selection

Apparently easy
interpretation

Cons

The gene selection
process is usually not
robust

Wrong interpretation is
the rule (too much
correlation between
genes)

Julien Mairal (Inria) 422/431

Pathway interpretation

Motivation

Basic biological functions are usually expressed in terms of
pathways and not of single genes (metabolic, signaling, regulatory)

Many pathways are already known

How to use this prior knowledge to constrain the weights to have an
interpretation at the level of pathways?

Solution (Rapaport et al., 2006)

Constrain the diffusion RKHS norm of β

Relevant if the true decision function is indeed smooth w.r.t. the
biological network

Julien Mairal (Inria) 423/431

Pathway interpretation

N

-

Glycan
biosynthesis

Protein
kinases

DNA
and
RNA
polymerase
subunits

Glycolysis /
Gluconeogenesis

Sulfur
metabolism

Porphyrin
and
chlorophyll
metabolism

Riboflavin metabolism

Folate
biosynthesis

Biosynthesis of steroids,
ergosterol metabolism

Lysine
biosynthesis

Phenylalanine, tyrosine and
tryptophan biosynthesis Purine

metabolism

Oxidative
phosphorylation,
TCA cycle

Nitrogen,
asparagine
metabolism

Bad example

The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)

We project the classifier
weight learned by a SVM

Good classification
accuracy, but no possible
interpretation!

Julien Mairal (Inria) 424/431

Pathway interpretation

Good example

The graph is the complete
known metabolic network
of the budding yeast
(from KEGG database)

We project the classifier
weight learned by a
spectral SVM

Good classification
accuracy, and good
interpretation!

Julien Mairal (Inria) 425/431

References I

N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337 – 404, 1950.
URL http://www.jstor.org/stable/1990404.

C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic analysis on semigroups.
Springer-Verlag, New-York, 1984.

K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In ICDM ’05:
Proceedings of the Fifth IEEE International Conference on Data Mining, pages 74–81,
Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2278-5. doi:
http://dx.doi.org/10.1109/ICDM.2005.132.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York,
NY, USA, 2004. ISBN 0521833787.

M. Cuturi and J.-P. Vert. The context-tree kernel for strings. Neural Network., 18(4):
1111–1123, 2005. doi: 10.1016/j.neunet.2005.07.010. URL
http://dx.doi.org/10.1016/j.neunet.2005.07.010.

M. Cuturi, K. Fukumizu, and J.-P. Vert. Semigroup kernels on measures. J. Mach. Learn.
Res., 6:1169–1198, 2005. URL
http://jmlr.csail.mit.edu/papers/v6/cuturi05a.html.

Julien Mairal (Inria) 426/431

http://www.jstor.org/stable/1990404
http://dx.doi.org/10.1016/j.neunet.2005.07.010
http://jmlr.csail.mit.edu/papers/v6/cuturi05a.html

References II
T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: hardness results and efficient

alternatives. In B. Schölkopf and M. Warmuth, editors, Proceedings of the Sixteenth
Annual Conference on Computational Learning Theory and the Seventh Annual Workshop
on Kernel Machines, volume 2777 of Lecture Notes in Computer Science, pages 129–143,
Heidelberg, 2003. Springer. doi: 10.1007/b12006. URL
http://dx.doi.org/10.1007/b12006.

Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels. In 2007
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
2007), pages 1–8. IEEE Computer Society, 2007. doi: 10.1109/CVPR.2007.383049. URL
http://dx.doi.org/10.1109/CVPR.2007.383049.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10,
UC Santa Cruz, 1999.

C. Helma, T. Cramer, S. Kramer, and L. De Raedt. Data mining and machine learning
techniques for the identification of mutagenicity inducing substructures and structure
activity relationships of noncongeneric compounds. J. Chem. Inf. Comput. Sci., 44(4):
1402–11, 2004. doi: 10.1021/ci034254q. URL http://dx.doi.org/10.1021/ci034254q.

T. Jaakkola, M. Diekhans, and D. Haussler. A Discriminative Framework for Detecting
Remote Protein Homologies. J. Comput. Biol., 7(1,2):95–114, 2000. URL
http://www.cse.ucsc.edu/research/compbio/discriminative/Jaakola2-1998.ps.

Julien Mairal (Inria) 427/431

http://dx.doi.org/10.1007/b12006
http://dx.doi.org/10.1109/CVPR.2007.383049
http://dx.doi.org/10.1021/ci034254q
http://www.cse.ucsc.edu/research/compbio/discriminative/Jaakola2-1998.ps

References III
T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In

Proc. of Tenth Conference on Advances in Neural Information Processing Systems, 1999.
URL http://www.cse.ucsc.edu/research/ml/papers/Jaakola.ps.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In
T. Faucett and N. Mishra, editors, Proceedings of the Twentieth International Conference
on Machine Learning, pages 321–328, New York, NY, USA, 2003. AAAI Press.

T. Kin, K. Tsuda, and K. Asai. Marginalized kernels for RNA sequence data analysis. In
R. Lathtop, K. Nakai, S. Miyano, T. Takagi, and M. Kanehisa, editors, Genome
Informatics 2002, pages 112–122. Universal Academic Press, 2002. URL
http://www.jsbi.org/journal/GIW02/GIW02F012.html.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input. In
Proceedings of the Nineteenth International Conference on Machine Learning, pages
315–322, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences. J.
Mach. Learn. Res., 5:1435–1455, 2004.

C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for SVM protein
classification. In R. B. Altman, A. K. Dunker, L. Hunter, K. Lauerdale, and T. E. Klein,
editors, Proceedings of the Pacific Symposium on Biocomputing 2002, pages 564–575,
Singapore, 2002. World Scientific.

Julien Mairal (Inria) 428/431

http://www.cse.ucsc.edu/research/ml/papers/Jaakola.ps
http://www.jsbi.org/journal/GIW02/GIW02F012.html

References IV
L. Liao and W. Noble. Combining Pairwise Sequence Similarity and Support Vector Machines

for Detecting Remote Protein Evolutionary and Structural Relationships. J. Comput. Biol.,
10(6):857–868, 2003. URL
http://www.liebertonline.com/doi/abs/10.1089/106652703322756113.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. n. p. v. d. d. r. Watkins. Text
classification using string kernels. J. Mach. Learn. Res., 2:419–444, 2002. URL
http://www.ai.mit.edu/projects/jmlr/papers/volume2/lodhi02a/abstract.html.

B. Logan, P. Moreno, B. Suzek, Z. Weng, and S. Kasif. A Study of Remote Homology
Detection. Technical Report CRL 2001/05, Compaq Cambridge Research laboratory, June
2001.

P. Mahé and J. P. Vert. Graph kernels based on tree patterns for molecules. Mach. Learn., 75
(1):3–35, 2009. doi: 10.1007/s10994-008-5086-2. URL
http://dx.doi.org/10.1007/s10994-008-5086-2.

P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of marginalized graph
kernels. In R. Greiner and D. Schuurmans, editors, Proceedings of the Twenty-First
International Conference on Machine Learning (ICML 2004), pages 552–559. ACM Press,
2004.

P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Graph kernels for molecular
structure-activity relationship analysis with support vector machines. J. Chem. Inf. Model.,
45(4):939–51, 2005. doi: 10.1021/ci050039t. URL
http://dx.doi.org/10.1021/ci050039t.

Julien Mairal (Inria) 429/431

http://www.liebertonline.com/doi/abs/10.1089/106652703322756113
http://www.ai.mit.edu/projects/jmlr/papers/volume2/lodhi02a/abstract.html
http://dx.doi.org/10.1007/s10994-008-5086-2
http://dx.doi.org/10.1021/ci050039t

References V
A. Nicholls. Oechem, version 1.3.4, openeye scientific software. website, 2005.

F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. In T. Washio and
L. De Raedt, editors, Proceedings of the First International Workshop on Mining Graphs,
Trees and Sequences, pages 65–74, 2003.

F. Rapaport, A. Zynoviev, M. Dutreix, E. Barillot, and J.-P. Vert. Classification of microarray
data using gene networks. BMC Bioinformatics, 8:35, 2007. doi:
10.1186/1471-2105-8-35. URL http://dx.doi.org/10.1186/1471-2105-8-35.

H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using string
alignment kernels. Bioinformatics, 20(11):1682–1689, 2004. URL
http://bioinformatics.oupjournals.org/cgi/content/abstract/20/11/1682.

M. Seeger. Covariance Kernels from Bayesian Generative Models. In Adv. Neural Inform.
Process. Syst., volume 14, pages 905–912, 2002.

J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge
University Press, 2004.

N. Sherashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient
graphlet kernels for large graph comparison. In 12th International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 488–495, Clearwater Beach, Florida USA,
2009. Society for Artificial Intelligence and Statistics.

Julien Mairal (Inria) 430/431

http://dx.doi.org/10.1186/1471-2105-8-35
http://bioinformatics.oupjournals.org/cgi/content/abstract/20/11/1682

References VI
T. Smith and M. Waterman. Identification of common molecular subsequences. J. Mol. Biol.,

147:195–197, 1981.

K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R. Müller. A new discriminative
kernel from probabilistic models. Neural Computation, 14(10):2397–2414, 2002a. doi:
10.1162/08997660260293274. URL http://dx.doi.org/10.1162/08997660260293274.

K. Tsuda, T. Kin, and K. Asai. Marginalized Kernels for Biological Sequences.
Bioinformatics, 18:S268–S275, 2002b.

J.-P. Vert, H. Saigo, and T. Akutsu. Local alignment kernels for biological sequences. In
B. Schölkopf, K. Tsuda, and J. Vert, editors, Kernel Methods in Computational Biology,
pages 131–154. MIT Press, The MIT Press, Cambridge, Massachussetts, 2004.

J.-P. Vert, R. Thurman, and W. S. Noble. Kernels for gene regulatory regions. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Adv. Neural. Inform. Process Syst., volume 18, pages
1401–1408, Cambridge, MA, 2006. MIT Press.

Julien Mairal (Inria) 431/431

http://dx.doi.org/10.1162/08997660260293274

	Kernels and RKHS
	Kernels
	Reproducing Kernel Hilbert Spaces (RKHS)
	My first kernels
	Smoothness functional
	The kernel trick

	Kernels Methods: Supervised Learning
	The representer theorem
	Kernel ridge regression
	Classification with empirical risk minimization
	A (tiny) bit of learning theory
	Support vector machines

	Kernels Methods: Unsupervised Learning
	Kernel K-means and spectral clustering
	Kernel PCA
	A quick note on kernel CCA

	The Kernel Jungle
	Mercer kernels and shift-invariant kernels
	Kernels for generative models
	Kernels for biological sequences
	Kernels for graphs
	Kernels on graphs

