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Practical Organization

 6 lectures of 3h each, 8h15 – 11h15, Room H204

 Homework
► Theoretical exercises covering material from lectures 1 to 4 
► To be handed in on January 21, 2016 (lecture 5)
► Electronic format or printed

 Practical project
► Solve a classification/prediction task with method of choice
► 2 page report, code, and results
► To be handed-in after exam period, exact date to be decided

 Students receiving 3 credits for the course choose to do either only 
homework, or only practical project



Course content

 Lecture 1 
► Introduction
► Linear classification
► Non-linear classification with kernels
► Kernel-trick more generally
► Bias-variance decomposition

 Lectures 2,3,4 (Julien Mairal)
► Theory on kernels

 Lectures 5,6 (Jakob Verbeek)
► Fisher kernel
► Convolutional and recurrent neural networks 



Course content

 From classic linear learning problems



Course content

 To current practical learning problems



Course content

 Extend well understood linear statistical learning techniques to real-
world complicated, structured and high-dimensional data (images, 
text, time series, graphs, distributions, permutations, …)

 Kernels: basic theory and kernel design
 Neural networks: learning convolutional and recurrent architectures



Learning predictive models from data

 Given training data labeled for two or more classes



Learning predictive models from data

 Given training data labeled for two or more classes

 Determine a decision surface that separates those classes



Learning predictive models from data

 Given training data labeled for two or more classes

 Determine a decision surface that separates those classes

 Use that surface to predict the class membership of new data



Recommender systems

 Given a dataset of users and the movies they liked

 Predict which other movies a given user would also like



Recommender systems

 Given a dataset of queries and click-through data

 Predict which are the most relevant pages for a given query 



Natural Language Processing

 Given a text, predict its topic

 Given an email, predict whether it is spam

 Given a text, predict its translation in another language

 Etc.



Tumor classification for prognosis

 Given the expression of genes in a new tumor, predict the development over 
the next 5 years



Molecule classification for drug design

 Given a candidate molecule, predict whether it is active against a certain 
condition



Gene expression clustering

 Are there groups of breast tumors with similar gene expression profile?



Audio understaning

 Given an audio stream, predict which song is played



Image Inpainting

 Complete an image with missing parts

 predict each image patch, as a linear combination of dictionary elements



Image Inpainting

 Complete an image with missing parts

 predict each image patch, as a linear combination of dictionary elements



Image Inpainting



Image super resolution

 Given an image, predict a high-resolution version of it

 Predictions per-patch, ensure spatial consistency



Classification examples in category-level recognition

 Given an image, predict if labels are relevant or not 
 For example: Person = yes, TV = yes, car = no, ...



Classification examples in category-level recognition

 Category localization: predict bounding box coordinates for each object 



Classification examples in category-level recognition

 Semantic segmentation: classify pixels to categories (multi-class)
 Impose spatial smoothness by Markov random field models.



Video understanding

 Given a video: predict the type of event that is shown: birthday party



Video understanding

 Given a video: predict spatio-temporal location of an action, eg drinking



Image captioning

 Given an image: predict a natural language description



Advanced learning models

 Each of these examples involves complex objects/large numbers of features 
for a restricted number of samples

 Intuitively, observing all these characteristics should allow us to predict or 
understand complex mechanisms

 But it also means that we should use very rich model classes that can 
capture a wealth of complex dependencies

 Introduces a risk of overfitting: modeling co-incidental structure in the data

 However, this wealth of features can cause trouble in statistical learning

 This course
► Modeling complex data structures with kernels and neural networks
► Regularization to avoid overfitting



Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition



Binary linear classifier

 Decision function is linear in the features:
 Classification based on the sign of f(x)

 Decision surface is (d-1) dimensional 

hyper-plane orthogonal to w 
 Offset from origin is determined by b

 We drop offset b, absorb it in x and w

 We will now consider the two most commonly used linear classifiers
► Logistic discriminant
► Support vector machines

f(x)=0

w

f (x)=wT x+b

x←(xT 1)
T

w←(wT b)T



Common loss functions for classification

 Assign class label using
► Zero-One loss:
► Hinge loss:
► Logistic loss:

L( y i , f (x i))=[ y i f (xi)≤0 ]
L( y i , f (x i))=max (0,1− y i f (xi))
L( y i , f (x i))=log2 (1+e−yi f ( xi))

y=sign (f (x))



Common loss functions for classification

 Assign class label using
► Zero-One loss:
► Hinge loss:
► Logistic loss:

 The zero-one loss counts the number of misclassifications, which is 
the “ideal” empirical loss.
► Discontinuity at zero makes optimization intractable.

 Hinge and logistic loss provide continuous and convex upperbounds

 Combined with convex penalties to prevent overfitting this leads to 
convex objective functions, for which global optima can be found.

L( y i , f (x i))=[ y i f (xi)≤0 ]
L( y i , f (x i))=max (0,1− y i f (xi))
L( y i , f (x i))=log2 (1+e−yi f ( xi))

y=sign (f (x))



Logistic discriminant classifier

 Map linear score function to class probabilities with sigmoid 

 For binary classification problem, we have by definition

► Exercise: show that 

σ(z)=
1

1+ exp(−z)

p( y=+1∣x)=σ (wT x)

p( y=−1∣x)=1−p ( y=+ 1∣x)

p( y=−1∣x)=σ(−wT x)



Logistic discriminant classifier

 Map linear score function to class probabilities with sigmoid.
 The class boundary at f(x)=0, or equivalently p(y|x)=1/2.
 Soft transition between class assignment along decision boundary.

w

p(y|x)=1/2

f(x)=-5

f(x)=+5



Logistic discriminant classifier

 Probability of class y given by sigmoid of score function times label

 Log-likelihood of correct classification of i.i.d. data in training set

 We have obtained the logistic loss as negative log-likelihood 

p( y∣x)=σ( ywT x)

log∏i=1

n
p( y i∣x i)=∑i=1

n
log p( yi∣x i)

=∑i=1

n
log σ( yi w

T xi)

=−∑i=1

n
log (1+exp(− yi wT xi))

=−∑i=1

n
Llogistic( yi , wT xi)



Logistic discriminant estimation

 Estimate classifier from data by minimizing, e.g. L2, penalized loss:
► Penalty reduces risk of overfitting 

 Exercise 1: derive the gradient of the loss

 Exercise 2: Show that this is a convex optimization problem

minw∑i=1

n
L( y i , wT x i)+λ

1
2

wT w

=minw∑i=1

n
log (1+exp(−y i wT xi))+λ

1
2

wT w

∂ L( y i , wT xi)

∂w
=−y i(1−p( y i∣xi))x i



Logistic discriminant estimation

 Estimate classifier from data by minimizing, e.g. L2, penalized loss:

 Exercise: Show that this is a convex optimization problem
► Calculate gradient of loss w.r.t. w

► Calculate Hessian of Loss w.r.t. w

minw∑i=1

n
L( y i , wT x i)+λ

1
2

wT w

=minw∑i=1

n
log (1+exp(−y i wT x i))+λ

1
2

wT w

∂ L( y , wT x)

∂w
=−yx 1

1+exp( y wT x)

H (L)= yx ( 1
1+exp( y wT x))

2

exp( ywT x) yxT

=σ( ywT x)σ (− ywT x) xxT



Logistic discriminant estimation

 Consider arbitrary w with non-zero norm

 Hessian is semi-positive definite, thus L is convex in w.
 Squared L2 norm also convex in w.

wT H (L)w=wT (σ( ywT x)σ(−ywT x)xxT ) w

=σ( ywT x)σ (− ywT x)(wT x)2≥0



Logistic discriminant estimation

 Solve objective function using first or second order methods

► E.g. using gradient descent, conjugate gradient descent,...
► Stochastic gradient descent for large-scale problems

 Recall the gradient

 Consider gradient descent, starting from w=0
► Each step we add to w a linear combination of the data points
► Magnitude of weight given by probability of misclassification
► Sign of weight given by the label

 The optimal w is a linear combination of the data samples
► L2 regularization term does not change this property

minw∑i=1

n
log (1+exp(−y iw

T x i))+λ
1
2

wT w

∂ L( y i , wT xi)

∂w
=−y i(1−p( y i∣xi))x i



Support Vector Machines

 Find linear function to separate positive and negative examples
 Which function best separates the samples ?

► Function inducing the largest margin

y i=+1 : wT x i+b>0

y i=−1 : wT xi+b<0



Support vector machines

 Without loss of generality, define function value at margin as +/- 1 
 Now constrain w to that all points fall on correct side of the margin:

 By construction we have that the “support vectors”, the ones that define the 
margin, have function values

 Express the size of the margin

in terms of w.

Margin
Support vectors

y i(wT x i+b)≥1

wT x i+b=y i

f(x)=+1

f(x)=0

f(x)=-1



Support vector machines

 Let's consider a support vector x from the positive class
 Let z be its projection on the decision plane

► Since w is normal vector to the decision plane, we have
► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f ( x)=wT x+ b=1

z=x−α w

f (z)=wT
(x−αw)+b=0

∥x−z∥2=∥x−(x−α w)∥2

∥α w∥2=α∥w∥2

∥w∥2

∥w∥2
2=

1
∥w∥2

wT
(x−α w)+b=0

wT x+b−α wT w=0
α wT w=1

α=
1

∥w∥2
2



Support vector machines

 To find the maximum-margin separating hyperplane, we 
► Maximize the margin, while ensuring correct classification
► Minimize the norm of w, s.t.

 Solve using quadratic program with linear inequality constraints over 
p+1 variables

Margin
Support vectors

∀ i : y i(wT x i+b)≥1

f(x)=+1

f(x)=0

f(x)=-1

argminw ,b
1
2

wT w

subject to y i(wT xi+b)≥1



Support vector machines: inseperable classes

 For non-separable classes we incorporate hinge-loss 

 Recall: convex and piecewise linear upper bound on zero/one loss.
► Zero if point on the correct side of the margin
► Otherwise given by absolute difference from score at margin

L( y i , f (x i))=max (0,1− y i f (xi))



Support vector machines: inseperable classes

 Minimize penalized loss function

► Quadratic function, plus piecewise linear functions.

 Can again be transformed to a quadratic program
► Define “slack variables” that measure the loss for each data point
► Should be non-negative, and at least as large as the loss

minw ,b λ
1
2

wT w + ∑i
max (0,1− yi(wT xi+b))

minw , b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to ∀i : ξi≥0  and ξi≥1− yi(wT x i+b)



Support vector machines: solution

 Minimize penalized loss function

 Solution for w will be a linear combination of the input data
► Split w into a part inside and outside the span of the data 

► Only norm of w depends on part of w outside the data span
► Note that

► Therefore optimal w is a linear combination of the data

 This is a special case of the more general “representer theorem”

minw , b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to ∀i : ξi≥0  and ξi≥1− yi(wT x i+b)

w=w p+wo ∀ i : wo
T xi=0 w p=∑i

αi xi

wT w=w p
T w p+w o

T w o≥w p
T w p



Dealing with more than two classes

 So far, we have only considered the, useful, case for two classes
► E.g., is this email spam or not ?

 Many practical problems have more classes
► E.g., which fruit is placed on the supermarket weight scale: apple, 

orange, or banana ?
 First idea: construction from multiple binary classifiers

► Learn binary “base” classifiers independently

 One vs rest approach:
► Train: 1 vs (2 & 3),  2 vs (1 & 3), 3 vs (1 & 2)

 Issue: regions claimed by several classes



Dealing with more than two classes

 One vs one approach: 
► Train:  1 vs 2, and 1 vs 3, and 2 vs 3

 Issue: conflicts in some regions



Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value 

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points 

assigned to a class is convex
► If two points are assigned to a class, then all points on connecting line 

are also assigned to that class.

f k (x)=wk
T x

y=arg maxk f k (x )



Multi-class logistic discriminant classifier

 Map score functions to class probabilities with “soft-max” 

► The class probability estimates are non-negative, and sum to one.

 Relative probability of classes changes exponentially with the 
difference in the linear score functions

 For any given pair of classes, they are equally 

likely on a hyperplane in the feature space

p( y=c∣x)=
exp( f c (x))

∑k=1

K
exp( f k( x))

f k (x)=wk
T x

p( y=c∣x)

p ( y=k∣x)
=

exp( f c (x))

exp ( f k (x))
=exp( f c( x)−f k (x ))



Multi-class logistic discriminant: estimation

 Consider the likelihood of correct classification of i.i.d. data in training set

 As before, we define loss function as negative log-likelihood

 Estimate model by means of penalized empirical risk

minw∑i=1

n
L( y i , {f k (x i)})+λ

1
2
∑k=1

K
wk

T w k

log∏i=1

n
p( y i∣x i)=∑i=1

n
log p( y i∣x i)

=∑i=1

n

( f yi
(xi)−log∑k=1

K
exp(f k (xi)))

L( y , {f k (x)})=−f y(x)+ log∑k=1

K
exp(f k (x))



Multi-class logistic discriminant: estimation

 Derivative of loss function has an intuitive interpretation
► Focus on points with poor classification, w is linear combination of x's

 Gradient is zero when 

► If x also contains the constant 1 as last element then empirical count of each 
class matches expected count.

► Therefore, for each class 1st order moment matches for empirical distribution 
and the model's class conditional distribution.

∂ L
∂ wk

=∑i=1

n

([ yi=k ]− p( yi=k∣xi)) xi

L=∑i=1

n
L( y i ,{f k (xi)})

∑i=1

n
[ yi=k ]xi

∑i=1

n
[ yi=k ]

=
∑i=1

n
p( y i=k∣xi)xi

∑i=1

n
p( yi=k∣xi)

∑i=1

n
[ y i=k ]=∑i=1

n
p( yi=k∣xi)

∑i=1

n
[ y i=k ]xi=∑i=1

n
p( yi=k∣xi) xi



Summary of linear classifiers

 Two most widely used binary linear classifiers:
► Logistic discriminant, also considered the extension to >2 classes.
► Support vector machines, similar multi-class extensions exist.

 Both minimize convex upper bounds on the 0/1 loss
 In both cases the optimal weight vector w is a linear combination of 

the data points

 Therefore, we only need the inner-products between data 
points to use linear classifiers. This also holds for the 
optimization of w.

w=∑i=1

n
αi xi

f (x)=wT x+b

=∑i=1

n
αi ( xi

T x )+b



Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition



Nonlinear Classification

 So far we just considered linear classifiers.
 Obviously limits the problems that can be addressed.
 What to do it the data is not linearly separable?

 Similar to what we considered last week for regression with higher-
order polynomials, we can do linear classification on non-linear 
features. For example augment map the data to R2 by adding x2.

0 x

x2

0 x
Slide credit: Andrew Moore



Φ:  x → φ(x)

Non-linear feature mappings for classification

 Map the original input space to some higher-dimensional feature 
space where the training set is separable

 Data occupies a (non-linear) subspace of dimension equal to the 
original space.

 Which features could separate this 2dimensional data linearly ?

Slide credit: Andrew Moore



Non-linear feature mappings for classification

 Remember that for classification we only need dot-products.
 Let's calculate the dot-product explicitly for our example.

► New dot-product easily computed from the original one.

Φ:  x → φ(x)

ϕ(x)=(
x1

2

x2
2

√2 x1 x2
)

k (x , z)=ϕ(x)
T
ϕ(z)=?

=x1
2 z1

2
+x2

2 z2
2
+2x1 x2 z1 z2

=( x1 z1+x2 z2)
2

=( xT z )
2



Non-linear feature mappings for classification

 Suppose we also want to keep the original features to still be able to 
implement linear functions
► Again efficient computation in 6d, roughly at cost of 2d dot-product

Φ:  x → φ(x)

ϕ(x )=(
1

√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k ( x , y)=ϕ( x)

T
ϕ( y )=?

=1+ 2xT y+ ( xT y )
2

=( xT y+ 1)
2

0 x
Slide credit: Andrew Moore

0 x
Slide credit: Andrew Moore



Non-linear feature mappings for classification

 What happens if we do the same for higher dimensional data
► Which feature vector            corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features ! 
► But computed as efficiently as dot-product in original space

( xT y )
2
=( x1 y1+ ...+ xD yD)

2

k ( x , y)=( xT y+ 1 )
2
=1+ 2xT y+ ( xT y )

2

=∑d=1

D
(xd yd)

2+2∑d=1

D−1

∑i=d+1

D
(xd yd)(xi y i)

=∑d=1

D
xd

2 yd
2+2∑d=1

D−1

∑i=d+1

D
(xd x i)( yd yi)

ϕ(x )=(1 ,√2 x1 ,√2 x2, ... , √2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... , √2 x1 xD , ... ,√2 xD−1 xD )

T

Original features Squares Products of two distinct elements

ϕ(x )



Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature 
transformation φ(x), define a kernel function K such that

       K(xi , xj) = φ(xi ) · φ(xj)

 This allows us to obtain nonlinear classification in the original space:

f (x) = b+wT ϕ(x)

= b+∑i
αi ϕ(x)

T
ϕ(xi)

= b+∑i
αi k (x , xi)

= b+αT k (x ,.)

wT w=∑i ∑ j
αi α j ϕ(xi)

T
ϕ(x j)

=∑i ∑ j
αi α j k (xi , x j)

=α
T K α



Summary of classification

 Linear classifiers learned by minimizing convex cost functions
► Logistic loss: smooth objective, minimized using gradient descent, etc.
► Hinge loss: piecewise linear objective, quadratic programming
► Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new 
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-

dimensional spaces, can even be infinite dimensional.

 Using kernel functions non-linear classification has drawbacks
► Requires storing the data with non-zero weights, memory cost 
► Kernel evaluations for test point may be computationally expensive 



Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition



Representation by pairwise comparisons

 We can think of a kernel function as a pairwise comparison function

 Represent a set of n data points by the n x n matrix

 Always an n x n matrix, whatever the nature of the data
► Same algorithms will work for any type of data: images, text...

 Modularity between the choice of K and the choice of algorithms.

 Poor scalability with respect to the data size (squared in n).

 We will restrict attention to a specific class of kernels.

K : X× X → R

[K ]ij=K (xi , x j)



Positive definite kernels

 Definition: A positive definite kernel on the set X is a function 

which is symmetric: 

and which satisfies

 Equivalently, a kernel K is positive definite if and only if, for any n 
and any set of n points, the similarity matrix K is positive 
semidefinite:

K : X× X → R

∀(x , x ')∈X 2: K (x , x ' )=K (x ' , x)

∀ n∈N
∀(x1, ... , xn)∈Rn  and (a1,... , an)∈Rn

∑i=1

n

∑ j=1

n
ai a j K (xi , x j)≥0

aT K a≥0



The simplest positive definite kernel

 Lemma: The kernel function defined by the inner product over 
vectors is a positive definite kernel.
► This kernel is known as the “linear kernel”

 Proof
► Symmetry: 

► Positive definiteness:

K : X× X → R
∀(x , x ')∈X 2: K (x , x ' )=xT x '

∑i=1

n

∑ j=1

n

ai a j K (xi , x j)=∑i=1

n

∑ j=1

n

ai a j xi
T x j=∥∑i=1

n

ai xi∥2
2
≥0

K (x , x ')=xT x '=(x ')T x=K (x ' , x)



More generally: for any embedding function

 Lemma: The kernel function defined by the inner product over data 
points embedded in a vector space by a function φ is a positive 
definite kernel.

 Proof
► Symmetry: 

► Positive definiteness:

K : X× X → R
∀(x , x ')∈X 2: K (x , x ' )=⟨ϕ(x),ϕ(x ')⟩H

∑i=1

n

∑ j=1

n
ai a j K (xi , x j)=∑i=1

n

∑ j=1

n
ai a j ⟨ϕ(xi) ,ϕ(x j)⟩H=∥∑i=1

n
aiϕ(xi)∥H

2 ≥0

K (x , x ' )=⟨ϕ(x) ,ϕ(x ')⟩H=⟨ϕ(x ') ,ϕ(x)⟩H=K (x ' , x)



Conversely: Kernels as inner products

 Theorem (Aronszajn,1950)

K is a positive definite kernel on the set X if and only if there exists a 
Hilbert space H and a mapping

such that for any x and x' in X

 Establishes the correspondence between kernels and 
representations.

Φ : X →H

K (x , x ' )=⟨ϕ(x) ,ϕ(x ')⟩H



The kernel trick

 Choosing a p.d. kernel K on a set X amounts to embedding the data 
in a Hilbert space: there exists a Hilbert space H and a mapping

such that for all x and x' in X

 This mapping might not be explicitly given, nor convenient to work 
with in practice, e.g. for very large or even infinite dimensions.

 The “trick” is to work implicitly in the feature space H by means of 
kernel evaluations.

k (x , x ' )=〈ϕ(x) ,ϕ(x ')〉H.

Φ : X→H



The kernel trick

 Any algorithm to process finite dimensional vectors that can be 
expressed only in terms of pairwise inner products can be applied to 
potentially infinite-dimensional vectors in the feature space of a p.d. 
kernel by replacing each inner product evaluation by a kernel 
evaluation.

 This statement is trivially true, since the kernel computes the inner 
product in the associated RKHS.

 The practical implications of this “trick” are important.

 Vectors in the feature space are only manipulated implicitly, through 
pairwise inner products, there is no need to explicitly represent any 
data in the feature space.



Example 1: computing distances in the feature space

 
d k (x , x ')2=∥ϕ(x)−ϕ(x ' )∥H

2

=〈ϕ(x)−ϕ(x ' ) ,ϕ(x)−ϕ(x ' )〉H

=〈ϕ(x) ,ϕ(x)〉H+〈ϕ(x ') ,ϕ(x ' )〉H−2 〈ϕ(x) ,ϕ(x ')〉H

=k (x , x)+k (x ' , x ' )−2k (x , x ' )



Distance for the Gaussian kernel

 
 The Gaussian kernel with bandwidth 

sigma is given by

 In the feature space, all points are 
embedded on the unit sphere since

 The distance in the feature space 
between x and x' is given by

k (x , x ' )=exp (−∥x−x '∥2 /(2σ
2
))

d k (x , x ')=√2 [1−exp (−∥x−x '∥2 /(2σ2))]

k (x , x)=∥ϕ(x)∥H
2
=1



Example 2: distance between a point and a set

 
 Let S be a finite set of points in X: 

 How to define and compute the similarity between any point x in X and 
the set S?

 The following is a simple approach:

► Map all points to the feature space 

► Summarize S by the barycenter of the points

► Define the distance between x and S as

d k (x , S)=∥ϕ(x)−m∥H

m=
1
n
∑i=1

n
ϕ(x i)

S=(x1, ... , xn)



Example 2: distance between a point and a set

=∥ϕ(x)−
1
n
∑i=1

n
ϕ(x i)∥H

=√k (x , x)−
2
n ∑i=1

n

k (x , x i)+
1
n2 ∑i , j=1

n

k (xi , x j)

d k (x , S)=∥ϕ(x)−m∥H



Uni-dimensional illustration

 
 Let S = {2,3}, plot f(x) = d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2



2D illustration

 
 Let S = { (1,1)', (1,2)', (2,2)' }, plot f(x) = d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2



Application to discrimination

 
 Consider a set of points from positive class P = { (1,1)', (1,2)' }
 And a set of points from the negative class N={ (1,3)', (2,2)' }
 Plot 

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2

=∥ϕ(x)−mP∥H
2 −∥ϕ(x)−mN∥H

2

=
2
n ∑xi∈N

k (x , xi)−
2
n ∑xi∈P

k (x , x i)+constant

f (x)=dk (x , P)2−d k (x , N )2



Example 3: centering data in feature space

 
 Let S be a set of n points in X.
 Let K be the kernel matrix generated by the p.d. kernel k(.,.).
 Let m be the barycenter in the feature space of the points in S.
 How to compute the kernel matrix when the points are centered on m?

h(x , x ' )=〈ϕ(x)−m ,ϕ(x ' )−m〉H



Example 3: centering data in feature space

 
 Substitution of the barycenter gives

 Or, in matrix notation we get

where for all i,j: 

h(x i , x j)=〈ϕ(x i)−m ,ϕ(x j)−m〉H

=〈ϕ(x i) ,ϕ(x j)〉H−〈m ,ϕ(x i)+ϕ(x j)〉H+〈m , m〉H

=k (x i , x j)−
1
n
∑k=1

n

(k (xi , xk )+k (xk , x j))+
1

n2 ∑k , l=1

n
k (xk , x l)

H=K−KU −UK +UKU =(I−U )K ( I−U )

U i , j=1 /n



Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition
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