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Practical aspects

Six classes of three hours each.
Assessment: 1/2 project, 1/2 homeworks.

Projects: study article, either methods (implementation), or
theoretical. You are free to suggest articles, or pick one from the
website (more papers coming).

End of November: preliminary report (25% of the grade). January:
final (short) report.

Three homeworks (after lectures 2, 4, and 6), due within three weeks
by email.

Website:

http://lear.inrialpes.fr/people/mairal /teaching/2014-2015/MSIAM
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From classic linear learning problems ...
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... to current practical learning problems
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Main goals of this course
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Extend well understood linear statistical learning techniques to real-world
complicated, structured and high-dimensional data (images, text, time
series, graphs, distributions, permutations, ...)

@ Present basic theory of kernels and statistical learning

@ Develop working knowledge for practical kernel design
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QOutline of this class

O A few examples.
@ Bias/variance trade-off and how to deal with it.

© Statistical learning theory.

* thanks to Laurent Jacob for his slides
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Statistical learning and applications

@ This class is concerned with learning from data. Essentially:
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Statistical learning and applications

@ This class is concerned with learning from data. Essentially:

@ Also: multi-class, regression, unsupervised...
@ We start with a few examples to make things concrete.

@ These examples highlight a general problem which we will discuss right
after.
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Part |

A few examples
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Recommender systems

NETHLIX
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Given a user and the movies he liked, what should he watch next?
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Given a query what are the most relevant webpages?

J. Verbeek Kernel Methods October 7, 2014 10 / 67



Natural language processing

@ Given a text, predict its topic.
o Given an email, predict whether it is a spam.

o Given a text, predict its translation in another language.
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Biological data in high dimension

Modern technologies in molecular biology provide descriptions of individuals
through thousands/millions of descriptors:

o Gene expression (arrays, sequencing),
@ SNPs,

@ Methylations,

o ...

Potential to allow better understanding/prediction of complex phenomena.
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Tumor classification for prognosis

o
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A Gene-Expression Profiling

B St. Gallen Criteria
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@ Given the expression of the genes in a new tumor, predict the
occurrence of a metastasis in the next 5 years.

e Similarly: diagnosis.
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Molecule classification for drug design

Given a candidate molecule, is it active against a therapeutical target?
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Gene expression clustering

Luminal A Luminal B Basal-like HER2-enriched

(from C. Perou's website)

Are there groups of breast tumors with similar gene expression profile?
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Image inpainting

Complete an image with missing parts.
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Image inpainting

Estimation problem: predict each image patch, as a linear combination of
dictionary elements.
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Image inpainting
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Image inpainting
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Image up-scaling

Improve the quality of an image.
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Image up-scaling

Improve the quality of an image.
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Image understanding

Image classification: Person=yes, TV=yes, car=no, ...
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Image understanding

Object category localization: bounding box prediction.
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Image understanding

Semantic image segmentation: label pixels with object classes.
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Video understanding

Event recognition: classify video as being, e.g., a birthday party video.
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Video understanding

Action recognition: locate actions of interest in video.
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Music recognition

MusiclD Analyzing Abo Search Song Info
MusicID Quickstart Y e
s Identity Song Rihanna

Gaod Girl Gone Bad (Rel.

2 Biography
[E) Lyrics

I similar Songs

ﬂ Identify Song Cancel

Guess which tune is being played.
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Music recognition

Fual B O s

n SoundHound /s SoundHound

DAUGHTRY
Listening
> on Break the Spell

H Bookmark <_ share = Buy

Lessons learned, bridges burned
to the ground
And it's too late now
to put out the' LiveLyrics™

Want SoundHound's Latest?

Fo
’ Tour Dates
& (]

History What's Hot Upgrade wi Search YouTube

Guess which tune is being tapped/hummed.
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Learning with high dimensional data

@ Each of these examples involves complex objects/large numbers of
features for a restricted number of samples.

@ Intuitively, observing all these characteristics should allow us to predict
or understand complex mechanisms.

@ We now discuss why this wealth of features can cause trouble in
statistical learning.

@ Understanding this problem should give more perspective to the tools
we will present later.

o Disclaimer: no kernels today, they come later once we have
established the setting. Intuitively: similarity functions to compare
objects that do not live in vector spaces.
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Part |l

Overfitting, bias-variance tradeoff: what is the

problem?
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Short term

@ We start with an informal example.

o We will formalize what we observe later.
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Bias-variance tradeoff: intuition

o We observe 10 couples (x;, y;).
@ We want to estimate y from x.
@ Our first strategy: find f such that f(x;) is close to y;.
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Bias-variance tradeoff: intuition

Find f as a line

i Y — f(X)|I?
f(x)rglar;+bll Xl
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Bias-variance tradeoff: intuition

Find f as a quadratic function

min Y — f(X)|?
f(x):ax2+bx+c|| ( )H
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Bias-variance tradeoff: intuition

Find f as a polynomial of degree 10

min  ||Y — f(X)|]?
F(x)=2"12% ajxJ
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Bias-variance tradeoff: intuition

Which function would you trust to predict y corresponding to x = 0.57
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Bias-variance tradeoff: intuition

e Reminder: we aim at “finding f such that f(x;) is close to y;".
e With the polynomial of degree 10, f(x;) — y; = 0 for all 10 points.

@ There is something wrong with our objective.
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Bias-variance tradeoff: intuition

More precisely:

o If we allow any function f, we can find a lot of perfect solutions for
the training data.

@ Our actual goal is to estimate y for new points x from the same
population :
- 2
min Egx, ) | Y — (X))

J. Verbeek Kernel Methods October 7, 2014 32/ 67



Biais-variance tradeoff: intuition

Even more precisely :

@ We did not take into account the fact that our 10 points are a
subsample from the population.

@ If we sample 10 new points from the same population, the complex
functions are likely to change more than the simple ones.

@ Consequence: these fonctions will probably generalize less well to the
rest of the population.
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Overfitting

Erreur
0.10 0.15 0.20 0.25 0.30
I I I I I
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Degré du polyndme

@ When the degree increases, the error ||y — f(x)||? over the 10
observations always decreases.
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Overfitting

Erreur
0.10 0.15 0.20 0.25 0.30
I I I I I

0.05
I

—— Erreur sur les 10 points observés

—— Erreur sur le reste de la population
T T T T T
2 4 6 8 10

0.00

Degré du polyndme

@ When the degree increases, the error ||y — f(x)||? over the 10
observations always decreases.
@ Over the rest of the population, the error decreases, then increases.
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This suggests the existence of a tradeoff between two types of errors:

@ Sets of functions which are too simple cannot contain functions which
explain the data well enough.
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This suggests the existence of a tradeoff between two types of errors:

@ Sets of functions which are too simple cannot contain functions which
explain the data well enough.

@ Sets of functions which are too rich may contain functions which are
too specific to the observed sample.
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Parenthesis: complexity vs dimension (1/3)

@ Our introductive examples had a large number of descriptors.

@ This case involves increasingly complex functions of a single variable.
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Parenthesis : complexity vs dimension (2/3)

@ In fact, the two notions are related: here in particular, the three
functions are linear in different representations.

@ Reminder (linear regression):
arg mingepe || Y — X012 = (XTX)7IXTY (if XT X is invertible).

@ How can we use this fact to compute
argming =y o |V = F(X)[??
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Parenthesis : complexity vs dimension (3/3)

@ We could have illustrated the same principle using linear functions
involving more and more variables.

o Example : predicting a phenotype using the expression of an increasing
number of genes.

@ We sticked to polynomials, which allow for better visual
representations.

@ Along this class, the notion of complexity of a set of functions will
become more and more precise.

o Complexity is what causes problems for inference, not just dimension.
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Second parenthesis : models

e Until now, we did not need to introduce a model for the data, i.e., a
distribution over X x ) :

e Data could come from any population.

o The functions we used to predict y can be derived from particular
probabilistic models, but this is not necessary (they were in fact
historically introduced without a model).

@ The objective is not to criticize the use of models, but to show that
the tradeoff problem we introduced goes beyond probabilistic models.

@ We now show how using a model can give a better insight into the
problem.

J. Verbeek Kernel Methods October 7, 2014 39 / 67



A little more formally: biais-variance decomposition

@ We now assume that the data follow:
y=f(x)+e, (1)

and E[¢] = 0.
o Without loss of generality, we consider an estimator f of f, which is a
function of training data D = (x;, ¥i)(j=1,....n) sampled i.i.d. from (1)
e Note: f is a random function.

e We consider the mean quadratic error E[(y — f(x))?] incurred when
using f to estimate for a given x the corresponding y sampled from
(1) independently from D.

o Expectation is taken over D used to estimate f, and € = y — f(x).

J. Verbeek Kernel Methods October 7, 2014 40 / 67



A little more formally: biais-variance decomposition

Under the previous hypotheses,

El(y - #0021 = (L1 - 700)* + & | (E1F001 - 7))

+E[(y — f(x))?]

o The first term is the squared bias of f: the difference between its
mean (over the sample of D) and the true f.

@ The second term is the variance of f: how much f varies around its
average when the dataset D changes.

@ The third term is the Bayes error, and does not depend on the
estimator. The actual quantity of interest is the excess of risk

Elly — F(x))’] — Elly — F(x))’].
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Back to our example

Tradeoff between two types of error:

@ Sets of functions which are too simple cannot contain functions which
explain the data well enough:
these sets lead to estimators with a large bias.
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Back to our example

Tradeoff between two types of error:
@ Sets of functions which are too simple cannot contain functions which
explain the data well enough:
these sets lead to estimators with a large bias.
@ Sets of functions which are too rich may contain functions which are
too specific to the observed sample:
these sets lead to estimators with a large variance.
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Biais-variance decomposition: proof

Reminder (Kénig-Huygens)

For any real random variable Z, E [(Z - E[Z])z] = E[Z?] - E[Z]?

E[(y — 7(x))’] =E[y? — 2yf(x) + f(x)?]
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Biais-variance decomposition: proof

Reminder (Kénig-Huygens)

For any real random variable Z, E [(Z - E[Z])Q] = E[Z?] - E[Z]?

E[(y — F(x))’] =Ely* — 2y7 (x) + £ (x)’]
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Biais-variance decomposition: proof

Reminder (Kénig-Huygens)

For any real random variable Z, E [(Z - E[Z])z] = E[Z?] - E[Z]?

El(y — £(x))*] =Ely? — 2y7(x) + f(x)?]
=E[y?] — E[2yf(x)] + E[f(x)?]
=f(x)* + E[(y — f(x))’]
— 2f(x)E[f(x)]
+E[f ()2 + El(f(x) — E[f (x)])?]
=E[(y — ()] + E[(f(x) — E[f(x)])’]

+ (G- £(0)’
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Biais-variance decomposition : perspective

~

Elly - #0021 = (L) - 00) + | (E17G01 - 7))

+E[(y — f(x))?]

@ Using a (rather general) model, we managed to start formalizing the
tradeoff introduced with our example.

@ Decomposition valid for any x, thus also in expectation over
independent x.

@ We now generalize this formalization.
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A little more generally : structural risk minimization

@ We now suppose more generally that the observations are sampled
from a joint distribution P(x, y).

@ This does not necessarily mean that we assume a particular
probabilistic model: given a deterministic set of couples (x,y), P can
be their empirical distribution.

@ We also consider a loss function
L:YxY—RT

L(y,y’) quantifies the cost of the error made by predicting y’ when
the true value is y.

o Special case (our example): L(y,y’) = (y — y')>.

J. Verbeek Kernel Methods October 7, 2014 45 / 67



A little more generally : structural risk minimization

We look for an estimator f : X — ) minimizing
R(F) = /X | L F0)dP = ELLy F() )

R is the risk of f : the average cost of using f to predict y from x over the
joint distribution.
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A little more generally : structural risk minimization

R(F) = /X L) B = ELL(y. () 3)

@ The risk is minimized by the Bayes estimator
f(x) = arg miny fy L(y,9)dP(y|x).
o Generally the associated Bayes risk R* is non-zero.

@ The Bayes estimator is accessible only if P is known.
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A little more generally : structural risk minimization

@ In practice, we cannot compute R(f) because the distribution PP is
unknown (otherwise we would simply use P(y|x) for prediction)

@ We therefore use a training set (D in the previous example) to
estimate R, for example through the empirical risk:

R(f) = ZL yis £(xi)) (4)

@ Empirical risk minimization : choose f minimizing R.

@ We saw in our example that minimizing the empirical risk was not
enough to obtain a low risk R (overfitting)
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A little more generally : structural risk minimization

@ More generally, we can minimize the risk over a function space H
(polynomials of a certain degree in our example).

o If R* is the Bayes risk, we can decompose the Bayes regret :
R(f)— R*=(R(f)— inf R inf R(g)—R*|. 5
(f) (R~ ot /@) ) + (1t Rl0) - 7). (9

@ The second term is the approximation error: the smallest excess of risk
we can reach using a function of H.

@ This is a bias term, which does not depend on the data but only on
the size of H.

@ The first term is the excess of risk of f with respect to the best
function in H.
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A little more generally : structural risk minimization

o We consider f obtained by minimization of the empirical risk over H:

f = argmin R(g)
geH

e We want to bound the excess of risk R(f) — infgez R(g) >0

@ This term (estimation error) can be decomposed:

R(f) - Jnf R(&) ER(F) - R(F)

=R(f) - R(f)
+ R(f) — R(f)
+ R(f) — R(£).
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A little more generally : structural risk minimization

@ Reminder :
o f; minimizes R, the expected risk w.r.t. P, over H.

o The estimator £ minimizs the empirical risk R over 7.
o We therefore estimate at two levels: the function f and the risk R.
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A little more generally : structural risk minimization

R(F) — inf R(g) = R(F)
)

I
=2

@ The first term is the difference between the true risk and the
estimated risk, for our estimator f of f.

@ This is a complex object to study. Statistical learning theory
(Vapnik and Chervonenkis) aims at bounding this quantity as a
function of n and the complexity of H.

@ The second term is nonpositive by construction.

@ The third one is easier to control as it involves a deterministic function
and the law of large numbers applies.
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A little more generally : structural risk minimization

We can however bound the first term:

n

ELL(y. FOON] — - D Ly F ()

i=1

)

R(f) — R(f) < sup
feH

and since this quantity also bounds the third term, we get

R(f) — inf R(g) <2su
(f) Jnf, (g) < fe”ft

ELL(y. FO)] — - D Ly f(x,-))' .

i=1

@ This bound of the estimation error suggests that it corresponds to a
variance term, which increases with the size of H.

@ The more complex #H is, the more likely it is to contain a function for
which the empirical risk and the population risk are very different.
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A little more generally : structural risk minimization

We can make this notion of size more precise by introducing the
Rademacher complexity of H:

Definition

Let €;, i =1,...,ni.id such that P(¢; = 1) = P(¢; = —1) = 1/2,
Zi,i=1,...,niid data and H a space of functions defined over this

data, then
Rn(H) = Eeo zn [sup Ze, (Z)

is the Rademacher complexity of H.

Intuition: PR, measures the capacity of H to provide functions which align
with noise.
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A little more generally : structural risk minimization

We can make this notion of size more precise by introducing the
Rademacher complexity of H:

Definition
Let €, i=1,...,niid such that P(¢; = 1) = P(¢; = —1) = 1/2,
Zi,i=1,...,ni.id data and H a space of functions defined over this
data, then
1 n
= EEn n — ,'f Z,'
0 =Bz S (2

is the Rademacher complexity of #.

This complexity increases with the size of H and decreases with the size n
of the sample.
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A little more generally : structural risk minimization

We can bound the mean estimation error in terms of the Rademacher
complexity of H.

Proposition

E () [L0y, FO))] = = Z L(yi, f(xi))

i=1

E(x y)" Sup S 29%,,(7‘[).

Therefore,

E(ey)n { (F) — ]§ <m|n R(g) — R*> + 4R, (H).

gEeEH
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A little more generally : structural risk minimization

Therefore

Eey)s [R(f) — R*] < <21€i2 R(g) - R*> AR, (H),

@ This result illustrates a little more generally the bias variance tradeoff
for risk minimization.

@ It makes explicit the link between complexity and sample size: lots of
points are needed to estimate in large H (otherwise R, (H) is large).
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ERM consistency and SRM

Therefore

Eey)s [R(f) — R*] < (;nei?rl R(g) - R*) AR (H),

Concretely, this analysis is at the core of two major elements of statistical
learning (Vapnik and Chervonenkis, late 60's):
@ It is used in learning theory to establish consistency of empirical risk
minimization: only families with bounded complexity allow to learn by
ERM (are consistent).

o It also suggests a strategy to design estimators: build small
classes ‘H which we think contain good approximations.
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A little more generally : structural risk minimization

Eng [R) — R7] < (min Rle) — R°) +430,2),

Practical procedure proposed by Vapnik and Chervonenkis: structural risk
minimization:

@ Define nested function sets of increasing complexity.

@ Minimize the empirical risk over each family.

© Choose the solution giving the best generalization guarantees.
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A little more generally : structural risk minimization

Structural risk minimization:
@ Define nested function sets of increasing complexity.
@ Minimize the empirical risk over each family.
© Choose the solution giving the best generalization guarantees.

We will study practical instances of this strategy later in this class.
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A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

E(X,y)’l' sup
feM =1

Epen L0 O = = 3 L f(x,-»‘
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xy)"[ ZLyn i ]_,]:’ZL()/Hf(XI))'
i=1

E(xy)y sup

= E(xy)r sup | B

J. Verbeek Kernel Methods October 7, 2014 60 / 67



A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

Epen L0 FO] - D Ly f(x,-»‘
i=1

xy)"[ ZL%: X] ]_,]:’ZL(Yhf(Xi))'
XY)"[ ZLyI7 )_7ZLyl7f(Xl ]'

E(xy)y sup
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A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

E(xy)y sup

Epen L0 O = = 3 L f(x,-»‘

i=1

L L
= B 90 By | 2 LU f(x;))] 2L f(x,-))‘

= Epopy sup E(x',y')" n Z Lyi: FO)) = Z Lyi» £(xi) ] ‘

= Eqeyy s0p E(X/,y/)n . Z LY, FOD) = L, f(x,-))”
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A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett's slides)

E(xy)y sup

Epen L0 O = = 3 L f(x,-»‘

i=1

L L
= B 90 By | 2 LU f(x;))] 2L f(x,-))‘

= Epopy sup E(x',y')" n Z Lyi: FO)) = Z Lyi» £(xi) ] ‘

= Eqeyy s0p E(X/,y/)n . Z LY, FOD) = L, f(x,-))”

feH

S E(X,y)’fE(x’,y’)’l’ sup |— Z L y” f(X (_y,7 ( ,))u
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A little more generally : structural risk minimization

We now introduce ¢;, i = 1,...,n € {—1,1}. Notice that

Esup |- Ly F(<D) — Ly f(x,'))‘
fen | N
—Esup |~ 36 (LU F()) — Ly, F(x)))]
fen | N

since the data is i.i.d, switching the two terms does not affect the
distribution of the sup.

The equality holds for any choice of ¢;, so we can take the expectation over
a uniform i.i.d choice.
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A little more generally : structural risk minimization

Finally,
1 n
E sup |- e (L(y!, F(x})) — L(y;, f(x;
feﬂn,; (L(yis F(x7)) = Lyi, F(xi)))
n 1 n
< Esup |- eil(y;, f(x))| + E sup Z eiL(yi, f(xi))
e | N fen | N
1 n
= 2E sup eil(yi, f(xi))| = 2Rn(H
feM ”,Z:; e : ‘ (#).

This proof technique is called symmetrization.
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More intuition about the complexity of a set of functions:

VC dimension

@ In practice, we sometimes use VC dimension v(#) of a set of functions
to bound the Rademacher complexity: R,(H) < C\/v(H)/n

@ We restrict ourselves to the sets H of binary valued functions (useful
for classification).

o We say a set Z = (Z1,...,Zy) is shattered by H if
Card {f(Z1),...,f(Zy)|f € H} =2".

@ Interpretation: we can find an f € H assigning 0 to any subset of Z
and 1 to its complement.

e The VC dimension v(#) of H is the largest integer n such that there
exists a set (Z1, ..., Z,) shattered by H.
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More intuition about the complexity of a set of functions:

VC dimension

@ We extend the VC dimension to real valued functions by thresholding
functions at 0.

e Linear functions in p dimensions: H; = {fy(x) = sign(0 " x), 0 € RP}.
@ Includes linear functions and polynomials in our introduction.
e We can show that v(H,) = p.
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More intuition about the complexity of a set of functions:

VC dimension

@ Proof of v(#H,) > p: we build a set of p points in p dimensions
shattered by a function of H,.
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shattered by a function of H,.

@ Let &, be the canonical basis of RP. For any set y € {—1,+1}” and
any i =1,...,n, fy(e;) = yi by choosing 6; = y;.
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More intuition about the complexity of a set of functions:

VC dimension

@ Proof of v(#H,) > p: we build a set of p points in p dimensions
shattered by a function of H,.

@ Let &, be the canonical basis of RP. For any set y € {—1,+1}” and
any i =1,...,n, fy(e;) = yi by choosing 6; = y;.

@ Proof of v(H;) < p+ 1: no set of p+ 1 points in p dimensions can
be shattered by a linear function.
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More intuition about the complexity of a set of functions:

VC dimension

@ Let x1,...,xp11 € RP. One of the points can necessarily be written as
a linear combination of the p others.
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More intuition about the complexity of a set of functions:

VC dimension

@ Let x1,...,xp11 € RP. One of the points can necessarily be written as
a linear combination of the p others.

o Without loss of generality, let us write x,411 = > %_; a;ix; and
fo(Xp1) = D7 i) x;.
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More intuition about the complexity of a set of functions:

VC dimension

@ Let x1,...,xp11 € RP. One of the points can necessarily be written as
a linear combination of the p others.

o Without loss of generality, let us write x,411 = > %_; a;ix; and
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o Let y = (sign(c),...,sign(ap),—1), and assume there exists § € R
such that sign(0"x;) = yi,i =1,...,p.
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More intuition about the complexity of a set of functions:

VC dimension

@ Let x1,...,xp11 € RP. One of the points can necessarily be written as
a linear combination of the p others.

o Without loss of generality, let us write x,411 = > %_; a;ix; and
fo(xp41) = 27y i .

o Let y = (sign(c),...,sign(ap),—1), and assume there exists § € R
such that sign(0"x;) = yi,i =1,...,p.

o Then necessarily sign(6 " xp11) = sign(}-5_; ;0" x;) = 1 since
sign(0" x;) = sign(a;),i=1,...,p.
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More intuition about the complexity of a set of functions:

VC dimension

@ Let x1,...,xp11 € RP. One of the points can necessarily be written as
a linear combination of the p others.

o Without loss of generality, let us write x,411 = > %_; a;ix; and
folxpr1) = 201 il Tx.

o Let y = (sign(c),...,sign(ap),—1), and assume there exists § € R
such that sign(0"x;) = yi,i =1,...,p.

o Then necessarily sign(6 " xp11) = sign(}-5_; ;0" x;) = 1 since
sign(0" x;) = sign(a;),i=1,...,p.

@ y can therefore not be obtained by any function of #,, and no set of
p + 1 vectors in RP is shattered by #,.
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@ We saw how the risk could generally be decomposed as a term of
bias/approximation and a term of variance/estimation.
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@ This decomposition highlights the tradeoff that needs to be dealt with

in inference. This tradeoff is related to the complexity of the set of
functions under consideration:

e Sets too simple lead to a large approximation error.
e Sets too large lead to a large estimation error.
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in inference. This tradeoff is related to the complexity of the set of
functions under consideration:

e Sets too simple lead to a large approximation error.
e Sets too large lead to a large estimation error.

@ We defined this notion of complexity more precisely (Rademacher,
VC), and saw it also depended on the number of samples.
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@ We saw how the risk could generally be decomposed as a term of
bias/approximation and a term of variance/estimation.
@ This decomposition highlights the tradeoff that needs to be dealt with

in inference. This tradeoff is related to the complexity of the set of
functions under consideration:

e Sets too simple lead to a large approximation error.
e Sets too large lead to a large estimation error.

@ We defined this notion of complexity more precisely (Rademacher,
VC), and saw it also depended on the number of samples.

@ These ideas are crucial in modern applications, where we sometimes
have few samples in high dimension.
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