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What this talk is about
Learning efficiently dictionaries (basis set) for sparse
coding.

Solving a large-scale matrix factorization problem.

Making some large-scale image processing problems
tractable.

Proposing an algorithm which extends to NMF, sparse
PCA,. . .
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The Dictionary Learning Problem

y︸︷︷︸
measurements

= xorig︸ ︷︷ ︸
original image

+ w︸︷︷︸
noise



The Dictionary Learning Problem
[Elad & Aharon (’06)]

Solving the denoising problem
Extract all overlapping 8× 8 patches xi .

Solve a matrix factorization problem:

min
αi ,D∈C

n∑
i=1

1
2||xi −Dαi ||22︸ ︷︷ ︸

reconstruction

+λ||αi ||1︸ ︷︷ ︸
sparsity

,

with n > 100, 000

Average the reconstruction of each patch.



The Dictionary Learning Problem
[Mairal, Bach, Ponce, Sapiro & Zisserman (’09)]

Denoising result



The Dictionary Learning Problem
[Mairal, Sapiro & Elad (’08)]

Image completion example



The Dictionary Learning Problem
What does D look like?



The Dictionary Learning Problem

min
α∈Rk×n

D∈C

n∑
i=1

1
2 ||xi −Dαi ||22 + λ||αi ||1

C M= {D ∈ Rm×k s.t. ∀j = 1, . . . , k , ||dj ||2 ≤ 1}.

Classical optimization alternates between D
and α.

Good results, but very slow!
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Online Dictionary Learning

Classical formulation of dictionary learning

min
D∈C

fn(D) = min
D∈C

1
n

n∑
i=1

l(xi ,D),

where

l(x,D) M= min
α∈Rk

1
2||x−Dα||22 + λ||α||1.



Online Dictionary Learning

Which formulation are we interested in?

min
D∈C

[
f (D) M= Ex [l(x,D)] ≈ lim

n→+∞

1
n

n∑
i=1

l(xi ,D)
]



Online Dictionary Learning

Online learning can
handle potentially infinite datasets,
adapt to dynamic training sets,
be dramatically faster than batch
algorithms [Bottou & Bousquet (’08)].



Online Dictionary Learning
Proposed approach

1: for t=1,. . . ,T do
2: Draw xt
3: Sparse Coding

αt ← argmin
α∈Rk

1
2||xt −Dt−1α||22 + λ||α||1,

4: Dictionary Learning

Dt ← argmin
D∈C

1
t

t∑
i=1

(1
2||xi−Dαi ||22+λ||αi ||1

)
,

5: end for



Online Dictionary Learning
Proposed approach

Implementation details
Use LARS for the sparse coding step,

Use a block-coordinate approach for the
dictionary update, with warm restart,

Use a mini-batch.



Online Dictionary Learning
Proposed approach

Which guarantees do we have?
Under a few reasonable assumptions,

we build a surrogate function f̂t of the
expected cost f verifying

lim
t→+∞

f̂t(Dt)− f (Dt) = 0,

Dt is asymptotically close to a stationary
point.



Online Dictionary Learning
Experimental results, batch vs online

m = 8× 8, k = 256
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Online Dictionary Learning
Experimental results, ODL vs SGD

m = 16× 16, k = 1024
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Inpainting a 12-Mpixel photograph



Online Dictionary Learning
Inpainting a 12-Mpixel photograph



Online Dictionary Learning
Inpainting a 12-Mpixel photograph



Online Dictionary Learning
Inpainting a 12-Mpixel photograph



1 The Dictionary Learning Problem

2 Online Dictionary Learning

3 Extensions



Extension to NMF and sparse PCA

NMF extension

min
α∈Rk×n

D∈C

n∑
i=1

1
2||xi −Dαi ||22 s.t. αi ≥ 0, D ≥ 0.

SPCA extension

min
α∈Rk×n

D∈C′

n∑
i=1

1
2||xi −Dαi ||22 + λ||α1||1

C ′ M= {D ∈ Rm×k s.t. ∀j ||dj ||22 + γ||dj ||1 ≤ 1}.



Extension to NMF and sparse PCA
Faces: Extended Yale Database B

(a) PCA (b) NNMF (c) DL



Extension to NMF and sparse PCA
Faces: Extended Yale Database B

(d) SPCA, τ = 70% (e) SPCA, τ = 30% (f) SPCA, τ = 10%



Extension to NMF and sparse PCA
Natural Patches

(a) PCA (b) NNMF (c) DL



Extension to NMF and sparse PCA
Natural Patches

(d) SPCA, τ = 70% (e) SPCA, τ = 30% (f) SPCA, τ = 10%



Conclusion

Take-home message
Online techniques are adapted to the
dictionary learning problem.
Our method makes some large-scale
image processing tasks tractable—. . .
. . .— and extends to various matrix
factorization problems.


