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Machine Learning and Science

Machine learning and the ideal world

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

This paradigm may seem compatible with Popper’s view of the scientific method.
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Machine learning and the ideal world

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

This paradigm may seem compatible with Popper’s view of the scientific method.

Karl Popper introduced in the 1930’s the falsifiability
criterion to distinguish scientific statements from other
claims—that is, the ability to submit claims to testing.
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Machine Learning and Science

Machine learning and the ideal world

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

This paradigm may seem compatible with Popper’s view of the scientific method.

Vladimir Vapnik links Popper’s view of the scientific
method with machine learning theory.

Hypothesis classes that are “too large” may be able to
explain anything and lead to unfalsifiable theories.
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Machine Learning and Science

Machine learning and the ideal world

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

This paradigm may seem compatible with Popper’s view of the scientific method.

Is it really compatible?

Is the concept of generalization
error a missing/useful piece in
Popper’s theory?
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Machine Learning and Science: Should we Aim for Simplicity?

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be regarded as a quality of
nature; and accordingly we may infer that it is justifiable to prefer a simple law to a
more complex one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921]. Philosophical Magazine Series.
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Part I: A small tour

into the perfect machine learning world
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Supervised learning and empirical risk minimization

In supervised learning, we learn a prediction function h : X → Y given labeled i.i.d.
training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.
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In supervised learning, we learn a prediction function h : X → Y given labeled i.i.d.
training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

The labels yi are in

{−1,+1} for binary classification.

{1, . . . ,K} for multi-class classification.

R for regression.

Rk for multivariate regression.

any general set for structured prediction.
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Supervised learning and empirical risk minimization

In supervised learning, we learn a prediction function h : X → Y given labeled i.i.d.
training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

Example 1: linear models

assume there exists a linear relation between y in R and features x in Rp.

h(x) = w⊤x+ b is parametrized by w, b in Rp+1.

L is often a convex loss function.

Ω(h) is often the squared ℓ2-norm ∥w∥2.
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Supervised learning and empirical risk minimization

A few examples of linear models with no bias b:

Ridge regression: min
w∈Rp

1

n

n∑
i=1

1

2
(yi − w⊤xi)

2 + λ∥w∥22.

Linear SVM: min
w∈Rp

1

n

n∑
i=1

max(0, 1− yiw
⊤xi) + λ∥w∥22.

Logistic regression: min
w∈Rp

1

n

n∑
i=1

log
(
1 + e−yiw

⊤xi

)
+ λ∥w∥22.

Loss as a function of w⊤x
with y = 1.
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Supervised learning and empirical risk minimization

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
(w,b)∈Rp+1

1

n

n∑
i=1

L(yi, w
⊤xi + b)︸ ︷︷ ︸

empirical risk, data fit

+ λ∥w∥22︸ ︷︷ ︸
regularization

.

Example 1: Why the ℓ2-regularization for linear models h(x) = w⊤x+ b?

Intuition: if x and x′ are similar, so should h(x) and h(x′) be:

|h(x)− h(x′)| ≤ ∥w∥2∥x− x′∥2.

Because we have theory for it (and it works in practice)!
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Supervised learning and empirical risk minimization

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
(w,b)∈Rp+1

1

n

n∑
i=1

L(yi, w
⊤xi + b)︸ ︷︷ ︸

empirical risk, data fit

+ λ∥w∥1︸ ︷︷ ︸
regularization

.

Example 1: Why the ℓ1-regularization for linear models h(x) = w⊤x+ b?

Intuition: induces sparsity, encourages simple models.

Because we have (too much) theory for it!

ℓ1 and its variants lead to composite optimization problems.

[van de Geer, 2010, Wainwright, 2009, Zhao and Yu, 2006, Candes and Tao, 2005, Chen, Donoho, and

Saunders, 1999, Tibshirani, 1996, Olshausen and Field, 1996, Claerbout and Muir, 1973]...
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Interlude: Why does the ℓ1-norm induce sparsity?

ℓ1-ball

‖w‖1 ≤ µ

w2

w1

Projection onto convex sets is “biased” towards singularities.
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Interlude: Why does the ℓ1-norm induce sparsity?

w2

w1ℓ2-ball

‖w‖2 ≤ µ

The ℓ2-ball is isotropic.
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Interlude: Why does the ℓ1-norm induce sparsity?

elastic-net

ball

(1 − γ)‖w‖1 + γ‖w‖2
2 ≤ µ

w2

w1

The Elastic-net penalty interpolates between ℓ2 and ℓ1.
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Interlude: Why does the ℓ1-norm induce sparsity?

ℓ1-ball

‖w‖1 ≤ µ

w2

w1

ℓ1 again: the sparsity-inducing effect is more aggressive.
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Interlude: Why does the ℓ1-norm induce sparsity?

w2

w1
ℓq-ball

‖w‖q ≤ µ with q < 1

the sparsity-inducing effect is even more aggressive with non-convex penalties.
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Interlude: Why does the ℓ1-norm induce sparsity?

w2

w1ℓ∞-ball

‖w‖∞ ≤ µ

The ℓ∞-ball encourages solutions such that |w1| = |w2|.
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Material on sparse estimation (free on arXiv)

long tutorial: http://thoth.inrialpes.fr/people/mairal/resources/pdf/BigOptim.pdf

J. Mairal, F. Bach and J. Ponce. Sparse Modeling for Image and
Vision Processing. Foundations and Trends in Computer Graphics
and Vision. 2014.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization
with sparsity-inducing penalties. Foundations and Trends in
Machine Learning, 4(1). 2012.
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Supervised learning and empirical risk minimization

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ∥h∥2H︸ ︷︷ ︸
regularization

.

Example 2: kernel methods

H is a Hilbert space (called RKHS) of functions;

H and φ are defined implicitly through a positive definite kernel K : X × X → R:
Data points are mapped to the same Hilbert space through φ : X → H;
h(x) = ⟨h, φ(x)⟩H is linear after mapping data to H;
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Supervised learning and empirical risk minimization

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ∥h∥2H︸ ︷︷ ︸
regularization

.

Example 2: kernel methods.

Why and how? This is a 1-slide summary of a 24-hours course on kernel methods:
https://mva-kernel-methods.github.io/course-2023-2024/
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Supervised learning and empirical risk minimization

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
θ

1

n

n∑
i=1

L(yi, hθ(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ∥θ∥2︸ ︷︷ ︸
regularization

.

Example 3: neural networks

we parametrize h by θ = {W1, . . . ,Wk} as follows:

hθ(x) = σk(Wkσk−1(Wk−1 . . . σ1(W1x)).

This simple model is called multilayer perceptron.

Ω is called the “weight decay” parameter.
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Supervised learning and empirical risk minimization

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
θ

1

n

n∑
i=1

L(yi, hθ(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ∥θ∥2︸ ︷︷ ︸
regularization

.

Example 3: neural networks

optimized with variants of the stochastic gradient descent algorithm

θt+1 ← (1− 2ληt)θt − ηt∇L(yit , hθt(xit))

gradient computed by automatic differentiation (clever application of the chain rule).

in practice, use mini-batches of data.
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Statistical learning

Setting

We draw i.i.d. pairs (xi, yi) from some unknown distribution P .

The objective is to minimize over all functions the expected risk:

min
h

{
R(h) = E(x,y)∼P [L(y, h(x))]

}
.

But
1 we do minimize over a class of functions H only.

2 datasets are often finite and we minimize instead the empirical risk:

min
h∈H

{
Rn(h) =

1

n

n∑
i=1

[L(yi, h(xi))]

}
.

3 we minimize approximately.
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Statistical learning

ĥn ∈ argmin
h∈H

Rn(h).

Approximation/Estimation:

R(ĥn)−min
h

R(h) = R(ĥn)−min
h∈H

R(h)︸ ︷︷ ︸
estimation error

+min
h∈H

R(h)−min
h

R(h)︸ ︷︷ ︸
approximation error

Controlled with regularization (bias/variance, over/under-fitting)

ĥn is obtained approximately by optimization:

R(h̃n)−min
h

R(h) = R(h̃n)−R(ĥn)︸ ︷︷ ︸
optimization error

+R(ĥn)−min
h

R(h)

Insight of Bottou and Bousquet (2008): no need to optimize below statistical error!
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R(ĥn)−min
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ĥn is obtained approximately by optimization:

R(h̃n)−min
h

R(h) = R(h̃n)−R(ĥn)︸ ︷︷ ︸
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Statistical learning

Approx. errorEstim. error

Size of H
Illustration of the Approximation/Estimation trade-off without considering optimization
cost, inspired from L. Bottou’s tutorial.

. . . but when optimization comes into play, things become more complicated, especially
when the optimization algorithm influences the approximation error!
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Approx. errorEstim. error

Size of H
Illustration of the Approximation/Estimation trade-off without considering optimization
cost, inspired from L. Bottou’s tutorial.

. . . but when optimization comes into play, things become more complicated, especially
when the optimization algorithm influences the approximation error!
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Statistical learning
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Statistical learning

Gradually increasing the size of the function class in kernel ridge regression:
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Part II: Scientific machine learning
in the real world
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Example 1: Exoplanet detection

Credit: Dmitry Savransky, using data from the NASA Exoplanet Archive.
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β-Pictoris, seen in 2008

Credits: ESO/A.-M. Lagrange et al. 2009.
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Finding a needle in a haystack . . . (contrast ≈ 109 in visible light)

Planck’s law: increase λ to increase contrast.
Rayleigh criterion Θ = 1.22λ/D: decrease λ to improve resolution.
near-infrared improves contrast 109 =⇒ 106.

Image Credit: https://doi.org/10.3390/universe7080276
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A coronograph blocks light emitted by the star.

Contrast improves from 106 to 104.

Image Credit: Nasa
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Adaptive optics to mitigate atmospheric disturbances

Contrast improves from 104 to ≈ 103.

Image credit: Damian Peach and ESO
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Multiple expositions through angular differential imaging (ADI)

Video Credit: Markus Feldt (Max Planck Institute for Astronomy)
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Finally: The Data

DW

during training only

off-axis PSF   
= planetary signal

spatio-temporal slice cuts

zoom near the star on the 
nuisance component    

h

f

N pixels

observations r 
(VLT/SPHERE-IRDIS)

zoom around
known 

faint sources

CNN

observations

temporal mean
centered and (whitened) 

observations
spatial patch
covariances

derotation

detection module characterization module

local update of
pre-processing

detection map collapse patch extraction

step 2: supervised deep learning

step 1: pre-processing by statistical learning

(only for detection)

centered observations

temporal shuffle
(detection & characterization)

source masking 
(characterization only)

common processings

injection of sources

+

CNN

photometry

loss lossloss

(a)

(b)

(c)
pixels

K pixels
K

t=1

t=T

real source

Speckles are temporally quasi-static but spatially non-stationary.
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Example 2: Estimating ground deformation in seismic events

Picture from [Montagnon, Hollingsworth, Pathier, Marchandon, Dalla Mura, Giffard-Roisin, 2022].
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Example 3: Molecular microscopy
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Example 4: Material science and computational biology

Evaluating the properties of materials/drugs (solubility/toxicity. . . )

Generating materials/drugs with desired properties.
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Set of collaborators for the previous scientific applications

. . .
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What could go wrong ?

(not with the collaborators, with the previous examples)
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What could go wrong ?
(not with the collaborators, with the previous examples)
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Issue 1: where is the ground truth data?

Exoplanet detection

DW

during training only

off-axis PSF   
= planetary signal

spatio-temporal slice cuts

zoom near the star on the 
nuisance component    

h

f

N pixels

observations r 
(VLT/SPHERE-IRDIS)

zoom around
known 

faint sources

CNN

observations

temporal mean
centered and (whitened) 

observations
spatial patch
covariances

derotation

detection module characterization module

local update of
pre-processing

detection map collapse patch extraction

step 2: supervised deep learning

step 1: pre-processing by statistical learning

(only for detection)

centered observations

temporal shuffle
(detection & characterization)

source masking 
(characterization only)

common processings

injection of sources

+

CNN

photometry

loss lossloss

(a)

(b)

(c)
pixels

K pixels
K

t=1

t=T

real source

almost no ground truth data. . . , but we know the psf of potential sources and their
apparent trajectory, which allows us to inject synthetic sources in true observations.

we know how to remove existing sources by temporal shuffling. .
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common processings

injection of sources

+

CNN

photometry

loss lossloss
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(b)

(c)
pixels
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real source

almost no ground truth data. . . , but we know the psf of potential sources and their
apparent trajectory, which allows us to inject synthetic sources in true observations.

need to learn with semi-synthetic data.
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Issue 1: where is the ground truth data?

Ground deformation in seismic events

almost no ground truth data (very sparse), but we know how to simulate seismic events
from real satellites imagery. How good is your simulator?

need to learn with semi-synthetic data.
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Issue 1: where is the ground truth data?

Molecular miscoscopy

no ground truth data, but we know how to simulate observations from pseudo
ground-truth data. How good is your simulator?

need to learn with semi-synthetic/synthetic data.
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Issue 1: where is the ground truth data?

Material science

costly approximations through quantum simulations (DFT) of proxy ground truth
variables (electronic band gap).

. . . but DFT is not a good enough approximation according to many chemists.
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Issue 1: where is the ground truth data?

Even for simple image restoration, dealing with real-world degradations is hard.
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Learning with semi-synthetic data for real
scientific applications?
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Learning with semi-synthetic data

Drawing quantitative conclusions on a semi-synthetic benchmark is fine. It may help
calibrating the prediction uncertainty. Extrapolation to real data is questionable,
unless the data generation process is considered very realistic.

Qualitative evaluation on real data is important.

Quantative evaluation on real data is welcome, even on a very sparse dataset.

Making predictions on real data is fine if the corresponding claims can be tested with
further investigations.
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Exoplanet detection: observations of real known sources (HD 95086)

N
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E
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The star with the largest number
of known observed objects.

Candidate sources are observed on
several independent observations.

Sources may be galaxies, stars,
that are very far in the
background, or exoplanets.
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Issue 2: data is imperfect

Do you control the data acquisition process?
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Issue 2: data is imperfect

This is an illustration of Simpsons’s paradox (not that common, but disturbing).

Success Based on Stone Size

Small Stones Large Stones

Treatment A 93% (81/87) 73% (192/263)

Treatment B 87% (234/270) 69% (55/80)

Success Rate (success/total)

Treatment A Treatment B

78% (273/350) 83% (289/350)
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Issue 2: data is imperfect

Non-exhaustive checklist

Do you have potential biases in your data?

Is there missing data? Is the pattern of missing data random? (important example
inspired from a discussion with N. Varoquaux).

Will you deploy the method in a different environment than the training one? Is this
environment changing over time?

Julien Mairal (Deep) Machine Learning for Scientific Applications 47/134



Issue 2: data is imperfect

Non-exhaustive checklist

Do you have potential biases in your data?

Is there missing data? Is the pattern of missing data random? (important example
inspired from a discussion with N. Varoquaux).

Will you deploy the method in a different environment than the training one? Is this
environment changing over time?

Julien Mairal (Deep) Machine Learning for Scientific Applications 47/134



Issue 2: data is imperfect

Non-exhaustive checklist

Do you have potential biases in your data?

Is there missing data? Is the pattern of missing data random? (important example
inspired from a discussion with N. Varoquaux).

Will you deploy the method in a different environment than the training one? Is this
environment changing over time?

Julien Mairal (Deep) Machine Learning for Scientific Applications 47/134



Issue 2: data is imperfect

Non-exhaustive checklist

Do you have potential biases in your data?

Is there missing data? Is the pattern of missing data random? (important example
inspired from a discussion with N. Varoquaux).

Will you deploy the method in a different environment than the training one? Is this
environment changing over time?

Your turn

Julien Mairal (Deep) Machine Learning for Scientific Applications 47/134



Taking physics into account: data generation

Physics can help us in the data generation process: the case of exoplanet detection

DW

during training only

off-axis PSF   
= planetary signal

spatio-temporal slice cuts

zoom near the star on the 
nuisance component    

h

f

N pixels

observations r 
(VLT/SPHERE-IRDIS)

zoom around
known 

faint sources

CNN

observations

temporal mean
centered and (whitened) 

observations
spatial patch
covariances

derotation

detection module characterization module

local update of
pre-processing

detection map collapse patch extraction

step 2: supervised deep learning

step 1: pre-processing by statistical learning

(only for detection)

centered observations

temporal shuffle
(detection & characterization)

source masking 
(characterization only)

common processings

injection of sources

+

CNN

photometry

loss lossloss

(a)

(b)

(c)
pixels

K pixels
K

t=1

t=T

real source

Speckles are temporally quasi-static but spatially correlated.

Sources are punctual with known PSF and known trajectories (due to Earth rotation).

We are looking for few exoplanet/sources.
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Taking physics into account: data generation

DW

during training only

off-axis PSF   
= planetary signal

spatio-temporal slice cuts

zoom near the star on the 
nuisance component    

h

f

N pixels

observations r 
(VLT/SPHERE-IRDIS)
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derotation

detection module characterization module
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detection map collapse patch extraction

step 2: supervised deep learning

step 1: pre-processing by statistical learning

(only for detection)

centered observations

temporal shuffle
(detection & characterization)

source masking 
(characterization only)

common processings

injection of sources

+

CNN

photometry

loss lossloss

(a)

(b)

(c)
pixels

K pixels
K

t=1

t=T

real source

Speckles are temporally quasi-static and sources rotate around the star (apparent
motion thanks to ADI): centering

Speckles are spatially correlated and sources are punctual sources (up to the PSF):
spatial decorrelation by whitening.
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Taking physics into account: data generation

DW

during training only

off-axis PSF   
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step 2: supervised deep learning

step 1: pre-processing by statistical learning

(only for detection)

centered observations

temporal shuffle
(detection & characterization)
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(characterization only)

common processings

injection of sources

+

CNN

photometry

loss lossloss
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(b)

(c)
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real source

Procedure proposed in the PACO method [Flasseur et al., 2020] with a shrinkage
estimator for covariances (good usage of statistics already).

Limitation: close to the star, exoplanets do not move enough and are captured by
centering and patch covariances.
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Taking physics into account: data generation

known real sources: masking.

unknown real sources: temporal shuffling!

good physical models of synthetic planetary PSFs: injection.

known planetary apparent motion: derotation.
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Taking physics into account: invariance

Consider a class of functions H and a group of transformations G. Say you want to
encourage the prediction function to be invariant to G.

Data augmentation

min
h∈H

1

n

n∑
i=1

L(yi, h(xi)) + λΩ(h).
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Taking physics into account: invariance

Consider a class of functions H and a group of transformations G. Say you want to
encourage the prediction function to be invariant to G.

Data augmentation

min
h∈H

1

n

n∑
i=1

Eg[L(yi, h(g.xi))] + λΩ(h).

How?

simple to implement by using SGD: at each step, draw a sample i and a random
transformation g.

nothing to do at test time.

Examples in computer vision: geometric (translations, flips) and color transformations.

resulting model has no invariance guarantee.
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Taking physics into account: invariance

Consider a class of functions H and a group of transformations G. Say you want to
encourage the prediction function to be invariant to G (h(g.x) = h(x) for all g).

Model “layer”

Pooling layer

h̃(x) =

∫
g∈G

h(g.x)

Fourier/harmonic analysis. For instance, for images and G = translations:

h̃(x) = h(|Fx|) modulus of the Fourier transform.
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Taking physics into account: invariance

Consider a class of functions H and a group of transformations G. Say you want to
encourage the prediction function to be equivariant to G.

h(g.x) = g′.h(x).

For instance,

convolutions are equivariant to translations.

Spherical harmonics are equivariant to 3D rotations.
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Taking physics into account: stability (near invariance)

For more complex groups of transformations, invariance may be too much. This may be the
case of deformations in images (group of diffeomorphisms).

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Representation h(·) is stable [Mallat, 2012] if:

∥h(Lτx)− h(x)∥ ≤ (C1∥∇τ∥∞ + C2∥τ∥∞)∥x∥

∥∇τ∥∞ = supu ∥∇τ(u)∥ controls deformation

∥τ∥∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance
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Taking physics into account: stability (near invariance)

For more complex groups of transformations, invariance may be too much. This may be the
case of deformations in images (group of diffeomorphisms).

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Typically achieved by

scattering transform [Mallat, 2012].

multilayer convolutional architectures with local pooling [Bietti and Mairal, 2019].
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Taking physics into account: physics-informed machine learning

Sometimes, we want to enforce additional constraints on the prediction function h.
For instance, we may want D(h) ≈ 0, where D is a differential operator encoding a physical
law. A physics-aware objective could be

min
h∈H

1

n

n∑
i=1

L(yi, h(xi)) + λΩ(h) + µ∥D(h)∥.

Or, we may want h(x) to be the solution of an auxiliary optimization problem:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi)) + λΩ(h) s.t. h(xi) ∈ argmin
z

g(xi, z),

which is called a bilevel optimization problem.
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Taking physics into account: Summary

Take-home message

improves the data quality (e.g., better SNR, fewer confounding factors)

better efficiency: no need to learn what we already know about the problem.

better generalization and robustness: physics law hold across data distributions

This will of course not solve all of potential issues about imperfect data.

but be careful about wrong/simplistic physical models!
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A work on super-resolution based on physics-informed ML
Imagine one moment that you made an assumption about a static scene...
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Ooops
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Solution: better model
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Issue 3: calibration and the need to quantify uncertainty

Identify all sources of randomness in your process.

Learn about statistical testing, bootstrap, confidence intervals. . .

Julien Mairal (Deep) Machine Learning for Scientific Applications 60/134



Issue 3: calibration and the need to quantify uncertainty

Unusual features for (deep) machine learners

only possible to inject a small number of sources in a dataset, but we need thousands
(≈ 10k) to obtain meaningful ROC curves and calibrate the model.

=⇒ repetition of independent evaluations: need to train hundreds/thousands of deep
learning models.

with no manual intervention.
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=⇒ repetition of independent evaluations: need to train hundreds/thousands of deep
learning models with no manual intervention.

Julien Mairal (Deep) Machine Learning for Scientific Applications 61/134



Taking physics into account: knowing physical limits
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Issue 4: sometimes, we need to adjust theory

https://x.com/daniela_witten/status/1292293102103748609
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Issue 4: sometimes, we need to adjust theory
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Issue 4: sometimes, we need to adjust theory

What is going on?

if you do not regularize (enough), when increasing the model size, you start
interpolating the dataset—that is, h(xi) = yi for all i = 1, . . . , n.

then, the problem admits multiple solutions (overparametrized regime). Among these
solutions, your learning algorithm may implicitly select a good one.

Then, a natural formulation to select a solution would be

min
h∈H

Ω(h) s.t. ∀i = 1, . . . , n, h(xi) = yi,

where Ω is a “norm” characterizing good solutions (smooth, robust. . . ).

Wait. . . Increasing the model class H (larger models) potentially yields smaller norm
solutions (smoother, more robust)???
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Are big models good?
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Are big models good?
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Are big models good?

Yes they can be good

This is a trivial statement: what you can do with p parameters, you can do with p+ 1.

Successful stories in computer vision and NLP about “big” models.

Generic robustness requires large models [Bubeck and Selke, 2021].

But

We do not control precisely the previous “norm” Ω; we may even not know what it is
exactly for current deep learning models.

This means that for specific problems, big is not necessarily better than small.

Even when it is better, is it worth it? (diminishing returns).
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An important concept:

knowledge distillation
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An important concept: knowledge distillation

Simple technique introduced by Hinton et al. [2015] to transfer knowledge from a large
“teacher” model to a smaller one (the student).

min
hs∈Hs

1

n

n∑
i=1

L(hs(xi), ht(xi))

hs(x) and ht(x) often represent logits for classification problems.

can leverage large amounts of unlabeled data.
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An important concept: knowledge distillation

From DINOv2 [Oquab et al., 2024]
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Part III: A few deep learning models
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A single neuron

Input data x lives in Rp.

A neuron computes h(x) in R with p parameters:

h(x) = σ(w⊤x+ b).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU
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A simple neural network

Input data x lives in Rp.
A collection of neurons computes h(x) in R:

h(x) = w⊤
2 σ(W1x+ b).

With enough neurons, we can already approximate any continuous function! (up to
mild technical assumptions).
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Multilayer perceptron

Input data x lives in Rp.

We parametrize h by θ = {W1, . . . ,Wk} as follows:
hθ(x) = Wk+1σk(Wkσk−1(Wk−1 . . . σ1(W1x)).

We have simplified the notation by removing the optional biases bis.
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Backpropagation
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Backpropagation
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Convolutional Neural Networks
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Convolutional Neural Networks

Picture from LeCun et al. [1998]

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model local stationarity of images at several scales;

they are state-of-the-art in many fields.
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U-Net

Applications

image restoration (denoising, super-resolution).

semantic segmentation.
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U-Net

Remember the exoplanet detection problem:

input data are semi-synthetic training pairs of observations/detection maps
(≈ 40K injections, max 10 per map).

architecture and loss function adapted to detection: U-net with Dice loss.

two independent models for detection and characterization (flux estimation on
detected sources, no whitening).
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non-local means [Buades et al., 2005].
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From non-local means to attention

Let us decompose an image into patches p1, . . . , pm. Assume they have unit norm.

non-local means denoising

p̃i ←
∑m

j=1 e
− 1

2σ2 ∥pi−pj∥2pj∑m
j=1 e

− 1
2σ2 ∥pi−pj∥2

Call P = [p1, . . . , pm]⊤ the matrix of patches, then

P̃ ← Softmax

(
PP⊤

σ2

)
P.
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Attention layer: building block of the transformer

Let us decompose an image into patches p1, . . . , pm. Call P = [p1, . . . , pm]⊤ the matrix of
patches, then

Attention layer

P̃t ← Softmax

 1√
d
PWQ︸ ︷︷ ︸

Q

(PWK)⊤︸ ︷︷ ︸
K

PWv︸ ︷︷ ︸
V

building block of the transformer (state-of-the-art for LLMs, vision, . . . ).

many variants: multiple heads, residual connections, class tokens, registers.

variants to avoid the naive O(n2) complexity.

positional encoding.
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Vision transformer [Dosovitskiy, 2020]
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Part IV: The success story of

self-supervised learning in computer vision

and some opportunities for molecular representations

Julien Mairal (Deep) Machine Learning for Scientific Applications 89/134



Representation learning for molecules

Input x

Encoder φ(x) ∈ Rp

Representation

Predictor
for Task 2

Predictor
for Task 3

Predictor
for Task 1

Output y2

Output y3

Output y1
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Predictor
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Predictor
for Task 1

Output y2

Output y3

Output y1What is the right class of representations φ?

φ should be generic and perform well across tasks.
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Representation learning for molecules

Input x

Encoder φ(x) ∈ Rp

Representation

Predictor
for Task 2

Predictor
for Task 3

Predictor
for Task 1

Output y2

Output y3

Output y1What is the right class of representations φ?

φ should be generic and perform well across tasks.

How to learn the parameters of these representations?

Annotations are costly. . .
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This part:
1 A story that has been very successful in computer vision to learn generic image

representations φ(x), trained on a large corpus of images with no annotations.
What are the opportunities/difficulties for chemistry?

2 A very short survey of classical graph representations in machine learning.
What are the current challenges?
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What is representation learning?

Input x

Encoder φ(x)

Representation

Predictor Output y
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What is representation learning?

Input x

Encoder φ(x)

Representation

Predictor Output y

Handcrafted representations (encoder is predefined)

traditional representations based on domain knoweldge (e.g., SIFT [Lowe, 2004]).

the predictor is typically linear f(x) = Wφ(x).

φ(x) may be very high-dimensional (reasonable expressiveness).
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What is representation learning?

Input x

Encoder φ(x)

Representation

Predictor Output y

Learned representations with neural networks

the encoder’s architecture is adapted to images (e.g., convolutional neural networks).

the predictor is often simple (linear model or multilayer perceptron).

for more complex tasks, the predictor is also adapted to the output structure (e.g.,
U-Net decoder for semantic segmentation in images).
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What is self-supervised learning?

Input x

Encoder φ(x)

Representation

Predictor Output y

Tentative definition and remarks

learning “good” representations φ(x) with prediction tasks in mind, but. . .

without having access to any label y (unsupervised learning).

achieved by finding supervisory signals within the data and/or with pretext tasks.

Julien Mairal (Deep) Machine Learning for Scientific Applications 93/134



What is self-supervised learning?

Input x

Encoder φ(x)

Representation

Predictor Output y

Multiple purposes

finding representations for learning simple predictors when annotations are scarce.

harnessing information from massive unannotated databases.

finding generic representations that perform well on all visual recognition tasks
(foundation models).
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from SwAV to DINO with self-distillation
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Pretext tasks?

I want to solve task A but I do not have (much) annotated data.

Perhaps a representation φ(x) that is good for task B
will also be good for task A?
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Example: Spatial context prediction
Picture courtesy of Doersch et al. [2015]
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Example: Spatial context prediction
Picture courtesy of Noroozi and Favaro [2016]

Julien Mairal (Deep) Machine Learning for Scientific Applications 97/134



Example: Masked auto-encoders (also context prediction)
Picture courtesy of He et al. [2022]

inspired from masked language modeling [Devlin et al., 2018], revolution in NLP.
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Your turn: which pretext tasks for molecular representations?
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Your turn: which pretext tasks for molecular representations?
Picture courtesy of Hu et al. [2019].

First idea: a good representation φ should be useful for context prediction tasks
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Your turn: which pretext tasks for molecular representations?
Picture courtesy of Rong et al. [2020].

First idea: a good representation φ should be useful for context prediction tasks
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Back to computer vision: Harnessing data augmentation
Picture courtesy of Dosovitskiy et al. [2014]

Use data augmentation to create “classes” around each sample.
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Harnessing data augmentation and contrastive learning
SimCLR, Picture courtesy of Chen et al. [2020]

Second idea: a good representation φ should make augmented views
of the same image closer and push apart different images.

ℓi,j = − log

(
esim(zi,zj)∑
i ̸=k e

sim(zi,zk)

)
.

trained online with large batch sizes.

strong data augmentation.
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Harnessing data augmentation and contrastive learning
SimCLR, Picture courtesy of Chen et al. [2020]
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Uncovering hidden structures in images: DeepCluster
Picture courtesy of Caron et al. [2018]

Third idea: a good representation φ should uncover data clusters.

Julien Mairal (Deep) Machine Learning for Scientific Applications 105/134



Clustering, contrastive learning, and context prediction: SwAV
Picture courtesy of Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin [2020]

Recipe

clustering: prototypes ≈ centroids. Trivial solutions avoided by optimal transport.

contrastive learning with data augmentation but no explicit negative pairs.

context prediction: predicting global crops from local crops (multicrop).
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Clustering, contrastive learning, and context prediction: SwAV
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Clustering, contrastive learning, and context prediction: SwAV
Picture courtesy of Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin [2020]
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A foundation model for images: DINOv2

DINO: a more recent model with self-distillation [Caron et al., 2021];

DINOv2: foundation model trained well-engineered data [Oquab et al., 2024].
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Opportunities/challenges for molecular representation

How to build a foundation model for molecules/materials?

1 Which model architecture? (see second part of this talk).

2 Which learning algorithm? Should we follow the self-supervised computer vision
recipe? How to design data augmentation strategies?

3 What for? What are the downstream tasks of interest?

4 How to engineer a good dataset?
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Part V: A few machine learning models for molecules
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Part V: A few deep learning models for graphs
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Molecular Graphs for Deep Learning Models

Ex: ZINC or OGB datasets

Nodes are atoms, edges are bonds.

Node features can be atom-type, spatial position, . . .

Edge features are bond types (single, double, triple).
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Learning graph representations

Input G

Encoder φ(G) ∈ Rp

Representation

Expressiveness: Find a representation (vector) that is able to discriminate graphs with
different structures (distinguish non-isomorphic graphs as best as possible).

Tractability: The representation should be efficiently computable on modern hardware.

Learnable: One should be able to adapt the representation to the task and to the data.

Taking into account physics: long-range potentials, 3D geometry, symmetries. . .
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Graphs with node attributes

u

G = (V, E , a : V → R3)

a(u) = [0.3, 0.8, 0.5]

We consider graphs G = (V,E, a) where V and E are the sets of vertices and edges,

and a : V → Rp is a function assigning attributes to each node.
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Classical (non-deep) graph representations

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G to a vector φ(G) in Rp, which lends itself to learning tasks.

A large class of graph embeddings can be written in the form

φ(G) :=
∑
u∈V

φbase(ℓG(u)) where φbase embeds some local patterns ℓG(u) to Rp.

[Shervashidze et al., 2011, Lei et al., 2017, Kriege et al., 2019]
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Classical (non-deep) graph representations

Find a high-dimensional representation φ(G) for which we can efficiently compute

K(G,G′) = ⟨φ(G), φ(G′)⟩.

There is a very rich literature about
graph kernels performing (implicitly or
explicitly) substructure enumeration.

subgraphs and path kernels (NP-hard, [Gärtner et al., 2003]).

walk kernels [Kashima et al., 2003, Mahé et al., 2004].

shortest-path kernels [Borgwardt and Kriegel, 2005].

graphlets kernels [Shervashidze et al., 2009].

Weisfeiler-Lehman kernel [Shervashidze et al., 2011].
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Classical (non-deep) graph representations

Find a high-dimensional representation φ(G) for which we can efficiently compute

K(G,G′) = ⟨φ(G), φ(G′)⟩.

There is a very rich literature about
graph kernels performing (implicitly or
explicitly) substructure enumeration.

For a review, see the course material

https://mva-kernel-methods.github.io/course-2023-2024/
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Graph neural networks with message passing

u1

u3

u4u5 u2 u6
m24

m14

m34

A multi-layer representation: for each node u and layer k, we store a vector φk(u).

By increasing k, φk(u) contains information about a larger neighborhood.

Final graph representation is obtained by pooling φ(G) =
∑

u∈V φK(u) ∈ Rp.
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Graph neural networks with message passing

u1

u3

u4u5 u2 u6
m24

m14

m34

Layer k is built from layer k − 1 by message passing

φk(u) = Process(φk−1(u), {φk−1(v) : v ∈ N (u)})
=

∑
v∈N (u)∪u

ReLU(Z⊤
k φk−1(v)) (for example).

There are many, many variants (e.g., GCN [Kipf and Welling, 2017]).
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Graph transformers

u1

u3

u4u5 u2 u6

G. Mialon, D. Chen, M. Selosse, and J. Mairal. GraphiT: Encoding Graph Structure in
Transformers. arXiv:2106.05667. 2021.

R. Menegaux, E. Jehanno, M. Selosse and J. Mairal. Self-Attention in Colors: Another
Take on Encoding Graph Structure in Transformers. TMLR. 2023.
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From GNNs to Graph transformers

An example of GNN layer (GCN, Kipf and Welling, 2017)

φk(u) = ReLU

Z⊤
k

 ∑
v∈N (u)∪u

wuφk−1(v)

 with wu =
1

|N (u)|+ 1
.

The basic transformer layer with self attention

φk(u) = ReLU

(
Z⊤
k

(∑
v∈V

Ak[u, v]φk−1(v)

))
with Ak = Softmax

(
φk−1Q

⊤
k Kkφ

⊤
k−1

)
.

Note that basic details has been removed for simplicity (residual connections).
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From GNNs to Graph transformers

The basic transformer layer with self attention

φk(u) = ReLU

(
Z⊤
k

(∑
v∈V

Ak[u, v]φk−1(v)

))
with Ak = Softmax

(
φk−1Q

⊤
k Kkφ

⊤
k−1

)
.

u1

u3

u4u5 u2 u6
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From GNNs to Graph transformers

The basic transformer layer with self attention

φk(u) = ReLU

(
Z⊤
k

(∑
v∈V

Ak[u, v]φk−1(v)

))
with Ak = Softmax

(
φk−1Q

⊤
k Kkφ

⊤
k−1

)
.

Challenges

How to encode the graph structure? (note that if we multiply elementwise the
attention matrix by the adjacency matrix, we are back to message passing)

How to take into account edge features?
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Graph transformers: recipes

How to take into account edge features?

treat edge features as node features with additional variables Ek(u, v) undergoing
“similar” updates.

Local structure encoding

Enrich input features. A successful feature is based on the diagonals of random walk
kernels

p(u) = [RWuu, . . . , RW p
uu]

where RW p
uu probability for a p-step random walk to loop back to node u:

[Dwivedi and Bresson, 2020, Rampášek et al., 2022, Lim et al., 2022]
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Graph transformers: recipes

Modulate the attention matrix with relative positional encoding

Graphormer computes an average of the dot-products of edge feature and a learnable
embedding along shortest paths

A = Softmax
(
φk−1W

⊤
QWKφ⊤

k−1 +Bshortest-paths
k

)
.

GraphiT weights the attention with a diffusion kernel. This captures both short-range
and long-range graph topology

A = Normalize
(
Exp

(
φk−1W

⊤
QWKφ⊤

k−1

)
◦Kσ

)
.

[Ying et al., 2021, Mialon et al., 2021]
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Graph transformers: recipes

Modulate the attention matrix with relative positional encoding

GraphiT uses a hard-coded kernel and does not include edge features in the attention.

CSA first enriches original edge features with random walks kernels:

Erw
uv = [RWuv, . . . , RW p

uv]

and then learns how to exploit these features to modulate the attention matrix

A = Softmax
(
φk−1W

⊤
QWKφ⊤

k−1 +W⊤
E Ek−1

)
.

Additional tricks

introduce features for structures that are known to be useful (carbon rings).

[Menegaux et al., 2023]
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All of this summarized in a pretty picture
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Visualizing self attention
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Benchmarks
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Benchmarks
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Physics and Geometry

Challenges (not addressed in this presentation)

Is there another structure within the graph? (e.g., chain of amino acids for proteins).

Is the graph part of a larger structure (crystallography)?

Does the representation model the right symmetries and inv/equivariances?

Is the graph construction satisfactory? What about long-range interactions?
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Recap: graph representations with deep learning

Graph neural networks with message passing

multi-layer construction.

sequence of local operations.

limited expressivity [Xu et al., 2019].

u1

u3

u4u5 u2 u6
m24

m14

m34

Graph transformers

non-local operations with attention.

how to encode the graph structure?

u1

u3

u4u5 u2 u6

For a detailed review, see

graph neural networks for 3D atomic systems: [Duval et al., 2023].

survey on graph transformers: [Müller et al., 2023].

course material from Xavier Bresson https://lnkd.in/dZZWay3Z.
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Bonus: Relation between Weisfeler-Lehman
and graph neural networks
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Principles of the Weisfeiler-Lehman kernel

Consider a graph G = (V,E, a) with discrete labels l0(u) = a(u) at each vertex u.

This is a multi-layer construction producing new labels lk(u) for each vertex at layer k.
A label lk(u) represents (lk−1(u), {lk−1(v) : v ∈ N (u)}).
Based on the graph isomorphism test of Weisfeiler and Lehman, 1968.

Pictures courtesy of Shervashidze et al. [2011].
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Principles of the Weisfeiler-Lehman kernel

The final representation is a histogram of label occurences.

Extensions with substructure enumeration.

Pictures courtesy of Shervashidze et al. [2011].
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Principles of the Weisfeiler-Lehman kernel

Given a graph G = (V,E, a) with discrete labels l0(u) = a(u) in A0 for all u in V .

The Weisfeiler-Lehmann kernel representation

Representation at layer k: Label lk(u) ∈ Ak for all u in V .

Construction of layer k (message passing):

lk(u) = Relabel(lk−1(u), {lk−1(v) : v ∈ N (u)}).

Last layer representation with global aggregation:

φWL(G) =
∑
v∈V

one-hot-encoding(lK(u)) ∈ R|A|.
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Principles of graph neural networks with message passing

Given a graph G = (V,E, a) with continous attributes φ0(u) = a(u) in Rp0 for all u in V .

Canonical form of message passing architecture

Representation at layer k: φk(u) ∈ Rpk for all u in V .

Construction of layer k (message passing):

φk(u) = Process(φk−1(u), {φk−1(v) : v ∈ N (u)})
=

∑
v∈N (u)∪u

ReLU(Z⊤
k φk−1(v)) (for example)

Last layer representation with global pooling:

φGNN(G) =
∑
v∈V

φL(u) ∈ RpK .
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