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Common paradigm: optimization for machine learning

Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸

empirical risk, data fit

+ λΩ(f)
︸ ︷︷ ︸

regularization

.

[Vapnik, 1995, Bottou, Curtis, and Nocedal, 2016]...
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Paradigm 3: The sparsity principle

Let us consider again the classical scientific paradigm:
1 observe the world (gather data);
2 propose models of the world (design and learn);
3 test on new data (estimate the generalization error).

[Corfield et al., 2009].
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Paradigm 3: The sparsity principle

Let us consider again the classical scientific paradigm:
1 observe the world (gather data);
2 propose models of the world (design and learn);
3 test on new data (estimate the generalization error).

But...

it is not always possible to distinguish the generalization error of
various models based on available data.

when a complex model A performs slightly better than a simple
model B, should we prefer A or B?

generalization error requires a predictive task: what about
unsupervised learning? which measure should we use?

we are also leaving aside the problem of non i.i.d. train/test data,
biased data, testing with counterfactual reasoning...

[Corfield et al., 2009, Bottou et al., 2013, Schölkopf et al., 2012].
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Paradigm 3: The sparsity principle

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be
regarded as a quality of nature; and accordingly we may infer
that it is justifiable to prefer a simple law to a more complex
one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921].
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Paradigm 3: The sparsity principle

Remarks: sparsity is...

appealing for experimental sciences for model interpretation;

(too-)well understood in some mathematical contexts:

min
w∈Rp

1

n

n∑

i=1

L
(

yi, w
⊤xi

)

︸ ︷︷ ︸

empirical risk, data fit

+ λ‖w‖1
︸ ︷︷ ︸

regularization

.

extremely powerful for unsupervised learning in the context of
matrix factorization, and simple to use.

[Olshausen and Field, 1996, Chen, Donoho, and Saunders, 1999, Tibshirani, 1996]...
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Paradigm 3: The sparsity principle

Remarks: sparsity is...

appealing for experimental sciences for model interpretation;

(too-)well understood in some mathematical contexts:

min
w∈Rp

1

n

n∑

i=1

L
(

yi, w
⊤xi

)

︸ ︷︷ ︸

empirical risk, data fit

+ λ‖w‖1
︸ ︷︷ ︸

regularization

.

extremely powerful for unsupervised learning in the context of
matrix factorization, and simple to use.

Today’s challenges

Develop sparse and stable (and invariant?) models.

Go beyond clustering / low-rank / union of subspaces.

[Olshausen and Field, 1996, Chen, Donoho, and Saunders, 1999, Tibshirani, 1996]...
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Some references

On kernel methods

B. Schölkopf and A. J. Smola. Learning with kernels: support
vector machines, regularization, optimization, and beyond. 2002.

J. Shawe-Taylor and N. Cristianini. An introduction to support
vector machines and other kernel-based learning methods. 2004.

635 slides:
http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/course/2018mva/

On sparse estimation

M. Elad. Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. 2010.

J. Mairal, F. Bach, and J. Ponce. Sparse Modeling for Image and
Vision Processing. 2014. free online.
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Some references

On large-scale optimization

L. Bottou, F. E. Curtis and J. Nocedal. Optimization methods for
large-scale machine learning, preprint arXiv:1606.04838, 2016.

Y. Nesterov. Introductory lectures on convex optimization: A basic
course. Springer .2013.

S. Bubeck. Convex optimization: Algorithms and complexity.
Foundations and Trends in Machine Learning. 2015.

387 slides by F. Bach:
http://www.di.ens.fr/~fbach/fbach_frejus_2017.pdf.
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Material on sparse estimation (freely available on arXiv)

J. Mairal, F. Bach and J. Ponce. Sparse Modeling
for Image and Vision Processing. Foundations and
Trends in Computer Graphics and Vision. 2014.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski.
Optimization with sparsity-inducing penalties.
Foundations and Trends in Machine Learning, 4(1).
2012.
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Part I: Large-scale optimization
for machine learning
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Focus of this part

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

min
x∈Rd

{

f(x)
△

=
1

n

n∑

i=1

fi(x) + ψ(x)

}

,

where each fi is L-smooth and convex and ψ is a convex
regularization penalty but not necessarily differentiable.
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Focus of this part

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

min
x∈Rd

{

f(x)
△

=
1

n

n∑

i=1

fi(x) + ψ(x)

}

,

where each fi is L-smooth and convex and ψ is a convex
regularization penalty but not necessarily differentiable.

Why this setting?

convexity makes it easy to obtain complexity bounds.

convex optimization is often effective for non-convex problems.

What we will not cover

performance of approaches in terms of test error.
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Introduction of a few optimization principles
Convex Functions

Why do we care about convexity?

x

f(x)
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Introduction of a few optimization principles
Convex Functions

Local observations give information about the global optimum

x

f(x)

x⋆
b

b

b

∇f(x) = 0 is a necessary and sufficient optimality condition for
differentiable convex functions;

it is often easy to upper-bound f(x)− f⋆.
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Introduction of a few optimization principles
An important inequality for L-smooth convex functions

If f is convex and smooth

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≥ f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

;

if f is non-smooth, a similar inequality holds for subgradients.
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Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

+L
2 ‖x− x0‖22;
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Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

+L
2 ‖x− x0‖22;

g(x) = Cx0
+ L

2 ‖x0 − (1/L)∇f(x0)− x‖22.
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Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

+L
2 ‖x− x0‖22;

x1 = x0 − 1
L∇f(x0). (gradient descent step).
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Introduction of a few optimization principles
Gradient Descent Algorithm

Assume that f is convex and L-smooth (∇f is L-Lipschitz).

Theorem

Consider the algorithm

xt ← xt−1 − 1
L∇f(xt−1).

Then,

f(xt)− f⋆ ≤
L‖x0 − x⋆‖22

2t
.
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Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)⊤(x− z) +
L

2
‖x− z‖22.
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Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)⊤(x− z) +
L

2
‖x− z‖22.

By using Taylor’s theorem with integral form,

f(x)− f(z) =

∫

1

0

∇f(tx+ (1− t)z)⊤(x− z)dt.

Then,

f(x)−f(z)−∇f(z)⊤(x−z) ≤
∫

1

0

(∇f(tx+(1−t)z)−∇f(z))⊤(x−z)dt

≤
∫

1

0

|(∇f(tx+(1−t)z)−∇f(z))⊤(x−z)|dt

≤
∫

1

0

‖∇f(tx+(1−t)z)−∇f(z)‖2‖x−z‖2dt (C.-S.)

≤
∫

1

0

Lt‖x−z‖22dt =
L

2
‖x−z‖22.
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Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
⊤(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

f(xt) ≤ gt(xt) = gt(x
⋆)− L

2
‖x⋆ − xt‖22

= f(xt−1) +∇f(xt−1)
⊤(x⋆ − xt−1) +

L

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22

≤ f
⋆ +

L

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22.

By summing from t = 1 to T , we have a telescopic sum

T (f(xT )− f
⋆) ≤

T
∑

t=1

f(xt)− f
⋆ ≤ L

2
‖x⋆ − x

0‖22 −
L

2
‖x⋆ − xT ‖22.
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Introduction of a few optimization principles
An important inequality for smooth and µ-strongly convex functions

If ∇f is L-Lipschitz continuous and f µ-strongly convex

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≤ f(x0) +∇f(x0)⊤(x− x0) + L
2 ‖x− x0‖22;

f(x) ≥ f(x0) +∇f(x0)⊤(x− x0) + µ
2‖x− x0‖22;
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Introduction of a few optimization principles

Proposition

When f is µ-strongly convex and L-smooth, the gradient descent
algorithm with step-size 1/L produces iterates such that

f(xt)− f⋆ ≤
(

1− µ

L

)t L‖x0 − x⋆‖22
2

.

We call that a linear convergence rate.

Remarks

if f is twice differentiable, L and µ represent the larget and smallest
eigenvalues of the Hessian, respectively.

L/µ is called the condition number.
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Proof

We start from an inequality from the previous proof

f(xt) ≤ f(xt−1) +∇f(xt−1)
⊤(x⋆ − xt−1) +

L

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22

≤ f
⋆ +

L− µ

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22.

In addition, we have that f(xt) ≥ f⋆ + µ

2
‖xt − x⋆‖22, and thus

‖x⋆ − xt‖22 ≤ L− µ

L+ µ
‖x⋆ − xt−1‖22

≤
(

1− µ

L

)

‖x⋆ − xt−1‖22.

Finally,

f(xt)− f
⋆ ≤ L

2
‖xt − x

⋆‖22

≤
(

1− µ

L

)t L‖x⋆ − x0‖22
2

Julien Mairal Optim for large-scale ML and sparse estimation 19/71



Introduction of a few optimization principles

Remark: with stepsize 1/L, gradient descent may be interpreted as a
majorization-minimization algorithm:

f(x)
gy(x)

b

b

y = xold

xnew f(x) ≤ gy(x)

Figure: At each step, we update x ∈ argmin
x∈Rp gy(x)
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The proximal gradient method
An important inequality for composite functions

If ∇f0 is L-Lipschitz continuous

x⋆

x

f(x) = f0(x) + ψ(x)g(x)

b

b

bb

b

x0x1

f0(x) + ψ(x) ≤ f0(x0) +∇f0(x0)⊤(x− x0) + L
2 ‖x− x0‖22 + ψ(x);

x1 minimizes g.
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The proximal gradient method

Gradient descent for minimizing f consists of

xt ← argmin
x∈Rp

gt(x) ⇐⇒ xt ← xt−1 −
1

L
∇f(xt−1).

The proximal gradient method for minimizing f = f0 + ψ consists of

xt ← argmin
x∈Rp

gt(x),

which is equivalent to

xt ← argmin
x∈Rp

1

2

∥
∥
∥
∥
xt−1 −

1

L
∇f0(xt−1)− x

∥
∥
∥
∥

2

2

+
1

L
ψ(x).

It requires computing efficiently the proximal operator of ψ.

y 7→ argmin
x∈Rp

1

2
‖y − x‖22 + ψ(x).
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The proximal gradient method

Remarks

also known as forward-backward algorithm;

has similar convergence rates as the gradient descent method (the
proof is nearly identical).

there exists line search schemes to automatically tune L;

The case of ℓ1
The proximal operator of λ‖.‖1 is the soft-thresholding operator

x[j] = sign(y[j])(|y[j]| − λ)+.

The resulting algorithm is called iterative soft-thresholding.

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs,
2006, Beck and Teboulle, 2009, Wright et al., 2009, Nesterov, 2013]...
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The proximal gradient method

The proximal operator for the group Lasso penalty

min
x∈Rp

1

2
‖y − x‖22 + λ

∑

g∈G
‖x[g]‖q.

For q = 2,

x[g] =
y[g]

‖y[g]‖2
(‖y[g]‖2 − λ)+, ∀g ∈ G.

For q =∞,
x[g] = y[g]−Π‖.‖1≤λ[y[g]], ∀g ∈ G.

These formula generalize soft-thresholding to groups of variables.
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The proximal gradient method

A few proximal operators:

ℓ0-penalty: hard-thresholding;

ℓ1-norm: soft-thresholding;

group-Lasso: group soft-thresholding;

fused-lasso (1D total variation): [Hoefling, 2010];

total variation: [Chambolle and Darbon, 2009];

hierarchical norms: [Jenatton et al., 2011], O(p) complexity;

overlapping group Lasso with ℓ∞-norm: [Mairal et al., 2010];
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Accelerated gradient descent methods

Nesterov introduced in the 80’s an acceleration scheme for the gradient
descent algorithm. It was generalized later to the composite setting.

FISTA

xt ← argmin
x∈Rp

1

2

∥
∥
∥
∥
x−

(

yt−1 −
1

L
∇f0(yt−1)

)∥
∥
∥
∥

2

2

+
1

L
ψ(x);

Find αt > 0 s.t. α2
t = (1− αt)α

2
t−1 +

µ

L
αt;

yt ← xt + βt(xt − xt−1) with βt =
αt−1(1− αt−1)

α2
t−1 + αt

.

f(xt)− f⋆ = O(1/t2) for convex problems;

f(xt)− f⋆ = O((1−
√

µ/L)t) for µ-strongly convex problems;

Acceleration works in many practical cases.

see [Beck and Teboulle, 2009, Nesterov, 1983, 2004, 2013]

Julien Mairal Optim for large-scale ML and sparse estimation 26/71



What do we mean by “acceleration”?

Complexity analysis for large finite sums

Since f is a sum of n functions, computing ∇f requires computing n
gradients ∇fi. The complexity to reach an ε−solution is given below

µ > 0 µ = 0

ISTA O
(

nL
µ log

(
1
ε

))

O
(
nL
ε

)

FISTA O
(

n
√

L
µ log

(
1
ε

))

O

(

n
√

L
ε

)

Remarks

ε-solution means here f(xt)− f⋆ ≤ ε.
For n = 1, the rates of FISTA are optimal for a “first-order local
black box” [Nesterov, 2004].

For L = 1 and µ = 1/n, scales at best in n3/2.
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How does “acceleration” work?

Unfortunately, the literature does not provide any simple geometric
explanation...
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How does “acceleration” work?

Unfortunately, the literature does not provide any simple geometric
explanation... but they are a few obvious facts and a mechanism
introduced by Nesterov, called “estimate sequence”.

Obvious fact

Simple gradient descent steps are “blind” to the past iterates, and
are based on a purely local model of the objective.

Accelerated methods usually involve an extrapolation step
yt = xt + βt(xt − xt−1) with βt in (0, 1).

Nesterov interprets acceleration as relying on a better model of the
objective called estimate sequence.
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How does “acceleration” work?

Definition of estimate sequence [Nesterov].

A pair of sequences (ϕt)t≥0 and (λt)t≥0, with λt ≥ 0 and ϕt : R
p → R,

is called an estimate sequence of function f if λt → 0 and

for any x ∈ R
p and all t ≥ 0, ϕt(x)− f(x) ≤ λt(ϕ0(x)− f(x)).

In addition, if for some sequence (xt)t≥0 we have

f(xt) ≤ ϕ⋆
t

△

= min
x∈Rp

ϕt(x),

then
f(xt)− F ⋆ ≤ λt(ϕ0(x

⋆)− f⋆),
where x⋆ is a minimizer of f .
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How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ⋆
t

△

= minx∈Rp ϕt(x).

Remarks

ϕt is neither an upper-bound, nor a lower-bound;

Finding the right estimate sequence is often nontrivial.
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How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ⋆
t

△

= minx∈Rp ϕt(x).

How to build an estimate sequence?

Define ϕt recursively

ϕt(x)
△

= (1− αt)ϕt−1(x) + αtdt(x),

where dt is a lower-bound, e.g., if F is smooth,

dt(x)
△

= F (yt) +∇F (yt)⊤(x− yt) +
µ

2
‖x− yt‖22,

Then, work hard to choose αt as large as possible, and yt and xt such
that property 2 holds. Subsequently, λt =

∏t
t=1(1− αt).
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The stochastic (sub)gradient descent algorithm

Consider now the minimization of an expectation

min
x∈Rp

f(x) = Ez[ℓ(x, z)],

To simplify, we assume that for all z, x 7→ ℓ(x, z) is differentiable.

Algorithm

At iteration t,

Randomly draw one example zt from the training set;

Update the current iterate

xt ← xt−1 − ηt∇ft(xt−1) with ft(x) = ℓ(x, zt).

Perform online averaging of the iterates (optional)

x̃t ← (1− γt)x̃t−1 + γtxt.
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The stochastic (sub)gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes),
and averaging strategies. Depending on the problem assumptions and
choice of ηt, γt, classical convergence rates may be obtained:

f(x̃t)− f⋆ = O(1/
√
t) for convex problems;

f(x̃t)− f⋆ = O(1/t) for strongly-convex ones;

Remarks

The convergence rates are not great, but the complexity
per-iteration is small (1 gradient evaluation for minimizing an
empirical risk versus n for the batch algorithm).

When the amount of data is infinite, the method minimizes the
expected risk (which is what we want).

Choosing a good learning rate automatically is an open problem.
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Proof of an O(1/
√
t) rate for the convex case

Inspired by (aka, stolen from) F. Bach’s slides

Assumptions

The solution lies in a bounded domain C = {‖x‖ ≤ D}.
The sub-gradients are bounded on C: ‖∇ft(x)‖ ≤ B.

Fix in advance the number of iterations T and choose ηt =
2D

B
√
T
.

Choose Polyak-Ruppert averaging x̃T = (1/T )
∑T−1

t=0 xt.

Perform updates with projections

xt ← ΠC [xt−1 − ηt∇ft(xt−1)].

Proposition

E[f (x̃t)− f⋆] ≤
2DB√
T
.
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Proof of an O(1/
√
t) rate for the convex case

Inspired by (aka, stolen from) F. Bach’s slides

Ft: information up to time t.

‖x‖ ≤ D and ‖∇ft(x)‖ ≤ B. Besides E[∇ft(x)|Ft−1] = ∇f(x).

‖xt − x
⋆‖2 ≤ ‖xt−1 − ηt∇ft(xt−1)− x

⋆‖2

≤ ‖xt−1 − x
⋆‖2 +B

2
η
2

t − 2ηt(xt−1 − x
⋆)⊤∇ft(xt−1).

Take now conditional expectations

E[‖xt − x
⋆‖2|Ft−1] ≤ ‖xt−1 − x

⋆‖2 +B
2
η
2

t − 2ηt(xt−1 − x
⋆)⊤∇f(xt−1)

≤ ‖xt−1 − x
⋆‖2 +B

2
η
2

t − 2ηt(f(xt−1)− f
⋆).

Take now full expectations

E[‖xt − x
⋆‖2] ≤ E[‖xt−1 − x

⋆‖2] +B
2
η
2

t − 2ηtE[f(xt−1)− f
⋆],

and, after reorganizing the terms

E[f(xt−1)− f
⋆] ≤ B2η2

t

2
+

1

2ηt

(

E[‖xt−1 − x
⋆‖2]− E[‖xt − x

⋆‖2]
)

.
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Proof of an O(1/
√
t) rate for the convex case

Inspired by (aka, stolen from) F. Bach’s slides

We start again from

E[f(xt−1)− f
⋆] ≤ B2η2

t

2
+

1

2ηt

(

E[‖xt−1 − x
⋆‖2]− E[‖xt − x

⋆‖2]
)

.

and we exploit the telescopic sum

T
∑

t=1

E[f(xt−1)− f
⋆] ≤

T
∑

t=1

B2η2

t

2
+

T
∑

t=1

1

2ηt

(

E[‖xt−1 − x
⋆‖2]− E[‖xt − x

⋆‖2]
)

≤ T
B2η2

2
+

4D2

2η
≤ 2DB

√
T with γ =

2D

B
√
T
.

Finally, we conclude by using a convexity inequality

Ef

(

1

T

T−1
∑

t=0

)

− f
⋆ ≤ 2DB√

T
.
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Back to finite sums

Consider now the case of interest for us today:

min
x∈Rp

1

n

n∑

i=1

fi(x),

Question

Can we do as well as SGD in terms of cost per iteration, while enjoying a
fast (linear) convergence rate like (accelerated or not) gradient descent?

For n = 1, no!

The rates are optimal for a “first-order local black box” [Nesterov, 2004].

For n ≥ 1, yes! We need to design algorithms

whose per-iteration computational complexity is smaller than n;

whose convergence rate may be worse than FISTA....

...but with a better expected computational complexity.
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Incremental gradient descent methods

min
x∈Rp

{

f(x) =
1

n

n∑

i=1

fi(x)

}

.

Several randomized algorithms are designed with one ∇fi computed per
iteration, with fast convergence rates, e.g., SAG [Schmidt et al., 2013]:

xk ← xk−1 −
γ

Ln

n∑

i=1

yki with yki =







∇fi(xk−1) if i = ik

yk−1
i otherwise

.
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Incremental gradient descent methods

min
x∈Rp

{

f(x) =
1

n

n∑

i=1

fi(x)

}

.

Several randomized algorithms are designed with one ∇fi computed per
iteration, with fast convergence rates, e.g., SAG [Schmidt et al., 2013]:

xk ← xk−1 −
γ

Ln

n∑

i=1

yki with yki =







∇fi(xk−1) if i = ik

yk−1
i otherwise

.

See also SVRG, SAGA, SDCA, MISO, Finito...
Some of these algorithms perform updates of the form

xk ← xk−1 − ηkgk with E[gk] = ∇f(xk−1),

but gk has lower variance than in SGD.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b,
Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]
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Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f(xk)− f⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))
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Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f(xk)− f⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))

Main features vs. stochastic gradient descent

Same complexity per-iteration (but higher memory footprint).

Faster convergence (exploit the finite-sum structure).

Less parameter tuning than SGD.

Some variants are compatible with a composite term ψ.
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Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f(xk)− f⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))

Important remarks

When fi(x) = ℓ(z⊤i x), the memory footprint is O(n) otherwise
O(dn), except for SVRG (O(d)).

Some algorithms require an estimate of µ;

L̄ is the average (or max) of the Lipschitz constants of the ∇fi’s.
The L for fista is the Lipschitz constant of ∇f : L ≤ L̄.
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Incremental gradient descent methods

stealing again a bit from F. Bach’s slides.

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y ].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y )− 2cov(X,Y ).

The variance of Z may be smaller if X and Y are positively correlated.
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Incremental gradient descent methods

stealing again a bit from F. Bach’s slides.

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y ].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y )− 2cov(X,Y ).

The variance of Z may be smaller if X and Y are positively correlated.

Why is it useful for stochatic optimization?

step-sizes for SGD have to decrease to ensure convergence.

with variance reduction, one may use constant step-sizes.
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Incremental gradient descent methods

SVRG

xt = xt−1 − γ (∇fit(xt−1)−∇fit(y) +∇f(y)) ,
where y is updated every epoch and E[∇fit(y)|Ft−1] = ∇f(y).

SAGA

xt = xt−1 − γ
(
∇fit(xt−1)− yt−1

it
+ 1

n

∑n
i=1 y

t−1
i

)
,

where E[yt−1
it
|Ft−1] =

1
n

∑n
i=1 y

t−1
i and yti =







∇fi(xt−1) if i = it

yt−1
i otherwise.

MISO/Finito: for n ≥ L/µ, same form as SAGA but

1
n

∑n
i=1 y

t−1
i = −µxt−1 and yti =







∇fi(xt−1)− µxt−1 if i = it

yt−1
i otherwise.
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Can we do even better for large finite sums?

Without vs with acceleration

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))

Accelerated versions Õ
(

max
(

n,
√

n L̄
µ

)

log
(
1
ε

))

Acceleration for specific algorithms [Shalev-Shwartz and Zhang,
2014, Lan, 2015, Allen-Zhu, 2016].

Generic acceleration: Catalyst [Lin et al., 2015].

see [Agarwal and Bottou, 2015] for discussions about optimality.
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What we have not (or should have) covered

Import approaches and concepts

distributed optimization.

proximal splitting / ADMM.

Quasi-Newton approaches.
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What we have not (or should have) covered

Import approaches and concepts

distributed optimization.

proximal splitting / ADMM.

Quasi-Newton approaches.

The question

Should we care that much about minimizing finite sums when all we
want is minimizing an expectation?
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Part II: Sparse estimation
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Chronological overview of parsimony

14th century: Ockham’s razor;

1921: Wrinch and Jeffreys’ simplicity principle;

1952: Markowitz’s portfolio selection;

60 and 70’s: best subset selection in statistics;

70’s: use of the ℓ1-norm for signal recovery in geophysics;

90’s: wavelet thresholding in signal processing;

1996: Olshausen and Field’s dictionary learning;

1996–1999: Lasso (statistics) and basis pursuit (signal processing);

2006: compressed sensing (signal processing) and Lasso consistency
(statistics);

2006–now: applications of dictionary learning in various scientific
fields such as image processing and computer vision.
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Sparsity in the statistics literature from the 60’s and 70’s

How to choose k?

Mallows’s Cp statistics [Mallows, 1964, 1966];

Akaike information criterion (AIC) [Akaike, 1973];

Bayesian information critertion (BIC) [Schwarz, 1978];

Minimum description length (MDL) [Rissanen, 1978].

These approaches lead to penalized problems

min
θ∈Rp

L(θ) + λ‖θ‖0,

with different choices of λ depending on the chosen criterion.
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Sparsity in the statistics literature from the 60’s and 70’s

How to solve the best k-subset selection problem?

Unfortunately...

...the problem is NP-hard [Natarajan, 1995].

Two strategies

combinatorial exploration with branch-and-bound
techniques [Furnival and Wilson, 1974] → leaps and bounds,
exact algorithm but exponential complexity;

greedy approach: forward selection [Efroymson, 1960] (originally
developed for observing intermediate solutions),
already contains all the ideas of matching pursuit algorithms.

Important reference: [Hocking, 1976]. The analysis and selection of
variables in linear regression. Biometrics.
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Wavelet thresholding in signal processing from the 90’s

Wavelets where the topic of a long quest for representing natural images

2D-Gabors [Daugman, 1985];
steerable wavelets [Simoncelli et al., 1992];
curvelets [Candès and Donoho, 2002];
countourlets [Do and Vertterli, 2003];
bandlets [Le Pennec and Mallat, 2005];
⋆-lets (joke).

(a) 2D Gabor filter. (b) With shifted phase. (c) With rotation.
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Wavelet thresholding in signal processing from 90’s

The theory of wavelets is well developed for continuous signals, e.g.,
in L2(R), but also for discrete signals x in R

n.
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Wavelet thresholding in signal processing from 90’s

Given an orthogonal wavelet basis D = [d1, . . . ,dn] in R
n×n, the

wavelet decomposition of x in R
n is simply

β = D
⊤
x and we have x = Dβ.

The k-sparse approximation problem

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖0 ≤ k,

is not NP-hard here: since D is orthogonal, it is equivalent to

min
α∈Rp

1

2
‖β −α‖22 s.t. ‖α‖0 ≤ k.
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Wavelet thresholding in signal processing from 90’s

Given an orthogonal wavelet basis D = [d1, . . . ,dn] in R
n×n, the

wavelet decomposition of x in R
n is simply

β = D
⊤
x and we have x = Dβ.

The k-sparse approximation problem

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖0 ≤ k,

The solution is obtained by hard-thresholding:

αht[j] = δ|β[j]|≥µβ[j] =







β[j] if |β[j]| ≥ µ
0 otherwise

,

where µ the k-th largest value among the set {|β[1]|, . . . , |β[p]|}.
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Wavelet thresholding in signal processing, 90’s

Another key operator is the soft-thresholding operator [see Donoho
and Johnstone, 1994] :

αst[j]
△

= sign(β[j])max(|β[j]| − λ, 0) =







β[j]− λ if β[j] ≥ λ
β[j] + λ if β[j] ≤ −λ
0 otherwise

,

where λ is a parameter playing the same role as µ previously.

With β
△

= D
⊤
x and D orthogonal, it provides the solution of the

following sparse reconstruction problem:

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1,

which will be of high importance later.

Julien Mairal Optim for large-scale ML and sparse estimation 50/71



Wavelet thresholding in signal processing, 90’s

β

αst

λ

−λ

(d) Soft-thresholding operator,
αst = sign(β)max(|β| − λ, 0).

β

αht

µ

−µ

(e) Hard-thresholding operator
αht = δ|β|≥µβ.

Figure: Soft- and hard-thresholding operators, which are commonly used for
signal estimation with orthogonal wavelet basis.
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The modern parsimony and the ℓ1-norm
Sparse linear models in signal processing

Let x in R
n be a signal.

Let D = [d1, . . . ,dp] ∈ R
n×p be a set of

elementary signals.
We call it dictionary.

D is “adapted” to x if it can represent it with a few elements—that is,
there exists a sparse vector α in R

p such that x ≈ Dα. We call α the
sparse code.





x







︸ ︷︷ ︸

x∈Rn

≈





 d1 d2 · · · dp







︸ ︷︷ ︸

D∈Rn×p










α[1]

α[2]
...

α[p]










︸ ︷︷ ︸

α∈Rp,sparseJulien Mairal Optim for large-scale ML and sparse estimation 52/71



The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

A few examples:

Ridge regression: min
β∈Rp

1

n

n∑

i=1

1

2
(yi − β⊤

xi)
2 + λ‖β‖22.

Linear SVM: min
β∈Rp

1

n

n∑

i=1

max(0, 1− yiβ⊤
xi) + λ‖β‖22.

Logistic regression: min
β∈Rp

1

n

n∑

i=1

log
(

1 + e−yiβ
⊤
xi

)

+ λ‖β‖22.
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The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

A few examples:

Ridge regression: min
β∈Rp

1

n

n∑

i=1

1

2
(yi − β⊤

xi)
2 + λ‖β‖22.

Linear SVM: min
β∈Rp

1

n

n∑

i=1

max(0, 1− yiβ⊤
xi) + λ‖β‖22.

Logistic regression: min
β∈Rp

1

n

n∑

i=1

log
(

1 + e−yiβ
⊤
xi

)

+ λ‖β‖22.

The squared ℓ2-norm induces “smoothness” in β. When one knows in
advance that β should be sparse, one should use a sparsity-inducing
regularization such as the ℓ1-norm. [Chen et al., 1999, Tibshirani, 1996]
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The modern parsimony and the ℓ1-norm

Why does the ℓ1-norm induce sparsity?

Can we get some intuition from the simplest isotropic case?

α̂(λ) = argmin
α∈Rp

1

2
‖x−α‖22 + λ‖α‖1,

or equivalently the Euclidean projection onto the ℓ1-ball?

α̃(µ) = argmin
α∈Rp

1

2
‖x−α‖22 s.t. ‖α‖1 ≤ µ.

“equivalent” means that for all λ > 0, there exists µ ≥ 0 such that
α̃(µ) = α̂(λ).
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The modern parsimony and the ℓ1-norm

Why does the ℓ1-norm induce sparsity?

Can we get some intuition from the simplest isotropic case?

α̂(λ) = argmin
α∈Rp

1

2
‖x−α‖22 + λ‖α‖1,

or equivalently the Euclidean projection onto the ℓ1-ball?

α̃(µ) = argmin
α∈Rp

1

2
‖x−α‖22 s.t. ‖α‖1 ≤ µ.

“equivalent” means that for all λ > 0, there exists µ ≥ 0 such that
α̃(µ) = α̂(λ).
The relation between µ and λ is unknown a priori.
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Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ1-norm

ℓ1-ball

‖α‖1 ≤ µ

α[2]

α[1]

The projection onto a convex set is “biased” towards singularities.
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Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ2-norm

α[2]

α[1]
ℓ2-ball

‖α‖2 ≤ µ

The ℓ2-norm is isotropic.
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Why does the ℓ1-norm induce sparsity?
In 3D. (images produced by G. Obozinski)
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Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ∞-norm

α[2]

α[1]
ℓ∞-ball

‖α‖∞ ≤ µ

The ℓ∞-norm encourages |α[1]| = |α[2]|.
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Why does the ℓ1-norm induce sparsity?
Analytical point of view: 1D case

min
α∈R

1

2
(x− α)2 + λ|α|

Piecewise quadratic function with a kink at zero.

Derivative at 0+: g+ = −x+ λ and 0−: g− = −x− λ.

Optimality conditions. α is optimal iff:

|α| > 0 and (x− α) + λ sign(α) = 0

α = 0 and g+ ≥ 0 and g− ≤ 0

The solution is a soft-thresholding:

α⋆ = sign(x)(|x| − λ)+.
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Why does the ℓ1-norm induce sparsity?
Comparison with ℓ2-regularization in 1D

ψ(α) = α2

ψ′(α) = 2α

ψ(α) = |α|

ψ′
−(α) = −1, ψ′

+(α) = 1

The gradient of the ℓ2-penalty vanishes when α get close to 0. On its
differentiable part, the norm of the gradient of the ℓ1-norm is constant.
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 = 0 E1 = 0

x
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 =
k1
2 (x− α)2

E2 =
k2
2 α

2 α

α

E1 =
k1
2 (x− α)2

E2 = mgα
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 =
k1
2 (x− α)2

E2 =
k2
2 α

2 α

α = 0 !!

E1 =
k1
2 (x− α)2

E2 = mgα
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Why does the ℓ1-norm induce sparsity?
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Figure: The regularization path of the Lasso.

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1.

Julien Mairal Optim for large-scale ML and sparse estimation 63/71



Non-convex sparsity-inducing penalties

Exploiting concave functions with a kink at zero

ψ(α) =
∑p

j=1 ϕ(|α[j]|).
ℓq-penalty, with 0 < q < 1: ψ(α)

△

=
∑p

j=1 |α[j]|q, [Frank and
Friedman, 1993];

log penalty, ψ(α)
△

=
∑p

j=1 log(|α[j]|+ ε).

ϕ is any function that looks like this:

α

ϕ(|α|)
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Non-convex sparsity-inducing penalties

(a) ℓ0.5-ball, 2-D (b) ℓ1-ball, 2-D (c) ℓ2-ball, 2-D

Figure: Open balls in 2-D corresponding to several ℓq-norms and pseudo-norms.
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Non-convex sparsity-inducing penalties

α[2]

α[1]
ℓq-ball

‖α‖q ≤ µ with q < 1
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Elastic-net

The elastic net introduced by [Zou and Hastie, 2005]

ψ(α) = ‖α‖1 + γ‖α‖22,

The penalty provides more stable (but less sparse) solutions.

(a) ℓ1-ball, 2-D (b) elastic-net, 2-D (c) ℓ2-ball, 2-D
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The elastic-net
vs other penalties

α[2]

α[1]
ℓq-ball

‖α‖q ≤ µ with q < 1
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The elastic-net
vs other penalties

ℓ1-ball

‖α‖1 ≤ µ

α[2]

α[1]
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The elastic-net
vs other penalties

elastic-net

ball

(1− γ)‖α‖1 + γ‖α‖22 ≤ µ

α[2]

α[1]
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The elastic-net
vs other penalties

α[2]

α[1]
ℓ2-ball

‖α‖22 ≤ µ
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Structured sparsity
images produced by G. Obozinski
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Structured sparsity
images produced by G. Obozinski
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Mark the date! July 2-6th, Grenoble

Along with Naver Labs, Inria is organizing a summer school in Grenoble
on artificial intelligence. Visit https://project.inria.fr/paiss/.

Among the distinguished speakers

Lourdes Agapito (UCL)

Kyunghyun Cho (NYU/Facebook)

Emmanuel Dupoux (EHESS)

Martial Hebert (CMU)

Hugo Larochelle (Google Brain)

Yann LeCun (Facebook/NYU)

Jean Ponce (Inria)

Cordelia Schmid (Inria)

Andrew Zisserman (Oxford/Google DeepMind).

...
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