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Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

min
x∈Rd

{

f (x)
△
=

1

n

n
∑

i=1

fi (x) + ψ(x)

}

,

where each fi is L-smooth and convex and ψ is a convex regularization
penalty but not necessarily differentiable.

Motivation

Composite Finite sum Exploit “curvature”

First-order methods ✔

Quasi-Newton

[Nesterov, 2013, Wright et al., 2009, Beck and Teboulle, 2009, Chambolle and
Pock, 2011, Combettes and Wajs, 2005],...
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Expected number of gradients ∇fi to compute to guarantee
f (xk)− f ⋆ ≤ ε, when the objective f is µ-strongly convex:

accelerated proximal gradient: O
(

n
√

Lf
µ
log

(

1
ε

)

)

;

incremental gradient methods: O
((

n + L
µ

)

log
(

1
ε

)

)

.
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Our goal is to

accelerate first-order methods with Quasi-Newton heuristics;

design algorithms that can adapt to composite and finite-sum
structures and that can also exploit curvature information.



QuickeNing: main idea (an old one)

Idea: Smooth the function and then apply Quasi-Newton.

The strategy appears in early work about variable metric bundle
methods. [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin,

1996, Fuentes, Malick, and Lemaréchal, 2012, Burke and Qian, 2000] ...
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The Moreau-Yosida envelope

Given f : Rd → R a convex function, the Moreau-Yosida envelope of f is
the function F : Rd → R defined as

F (x) = min
w∈Rd

{

f (w) +
κ

2
‖w − x‖2

}

.

The proximal operator p(x) is the unique minimizer of the problem.
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The Moreau-Yosida regularization

F (x) = min
w∈Rd

{

f (w) +
κ

2
‖w − x‖2

}

.

Basic properties [see Lemaréchal and Sagastizábal, 1997]

Minimizing f and F is equivalent in the sense that

min
x∈Rd

F (x) = min
x∈Rd

f (x),

and the solution set of the two problems coincide with each other.

F is continuously differentiable even when f is not and

∇F (x) = κ(x − p(x)).

In addition, ∇F is Lipschitz continuous with parameter LF = κ.

If f is µ-strongly convex then F is also strongly convex with
parameter µF = µκ

µ+κ
.
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F enjoys nice properties: smoothness, (strong) convexity and
we can control its condition number 1 + κ/µ.



A fresh look at Catalyst
[Lin et al., 2015]
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A fresh look at the proximal point algorithm

A naive approach consists of minimizing the smoothed objective F
instead of f with a method designed for smooth optimization.

Consider indeed

xk+1 = xk −
1

κ
∇F (xk).

By rewriting the gradient ∇F (xk) as κ(xk − p(xk)), we obtain

xk+1 = p(xk) = argmin
w∈Rp

{

f (w) +
κ

2
‖w − xk‖

2
}

.

This is exactly the proximal point algorithm [Martinet, 1970,
Rockafellar, 1976].
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A fresh look at the accelerated proximal point algorithm

Consider now

xk+1 = yk −
1

κ
∇F (yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

where βk+1 is a Nesterov-like extrapolation parameter. We may now
rewrite the update using the value of ∇F , which gives:

xk+1 = p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)

This is the accelerated proximal point algorithm of Güler [1992].
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κ
∇F (yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

where βk+1 is a Nesterov-like extrapolation parameter. We may now
rewrite the update using the value of ∇F , which gives:

xk+1 = p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)

This is the accelerated proximal point algorithm of Güler [1992].

Remarks

F may be better conditioned than f when 1 + κ/µ ≤ L/µ;

Computing p(yk) has a cost!
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A fresh look at Catalyst [Lin, Mairal, and Harchaoui, 2015]

Catalyst is a particular accelerated proximal point algorithm with
inexact gradients [Güler, 1992].

xk+1 ≈ p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)

The quantity xk+1 is obtained by using an optimization methodM for
approximately solving:

xk+1 ≈ argmin
w∈Rp

{

f (w) +
κ

2
‖w − yk‖

2
}

,

Catalyst provides Nesterov’s acceleration toM with...

restart strategies for solving the sub-problems;

global complexity analysis resulting in theoretical acceleration;

optimal balancing between outer and inner computations.

see also [Frostig et al., 2015]
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Limited-Memory BFGS (L-BFGS)

Pros

one of the largest practical success of smooth optimization.
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Limited-Memory BFGS (L-BFGS)

Pros

one of the largest practical success of smooth optimization.

Cons

worst-case convergence rates for strongly-convex functions are
linear, but much worse than the gradient descent method.

proximal variants typically requires solving many times

min
x∈Rd

1

2
(x − z)Bk(z − z) + ψ(x).

no guarantee of approximating the Hessian.
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QuickeNing

Main recipe

L-BFGS applied to the smoothed objective F with inexact
gradients [see Friedlander and Schmidt, 2012].

inexact gradients are obtained by solving sub-problems using a
first-order optimization methodM;

ideally,M is able to adapt to the problem structure (finite sum,
composite regularization).

replace L-BFGS steps by proximal point steps if no sufficient
decrease is estimated ⇒ no line search on F ;
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Obtaining inexact gradients

Algorithm Procedure ApproxGradient

input Current point x in R
d ; smoothing parameter κ > 0.

1: Compute the approximate mapping using an optimization
methodM:

z ≈ argmin
w∈Rd

{

h(w)
△
= f (w) +

κ

2
‖w − x‖2

}

,

2: Estimate the gradient ∇F (x)

g = κ(x − z).

output approximate gradient estimate g , objective value Fa
△
= h(z),

proximal mapping z .
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Algorithm QuickeNing

input x0 in R
p; number of iterations K ; κ > 0; minimization algorithmM.

1: Initialization: (g0,F0, z0) = ApproxGradient (x0,M); B0 = κI .
2: for k = 0, . . . ,K − 1 do
3: Perform the Quasi-Newton step

xtest = xk − B−1
k gk

(gtest,Ftest, ztest) = ApproxGradient (xtest,M) .

4: if Ftest ≤ Fk −
1
2κ‖gk‖

2, then
5: (xk+1, gk+1,Fk+1, zk+1) = (xtest, gtest,Ftest, ztest).
6: else
7: Update the current iterate with the last proximal mapping:

xk+1 = zk = xk − (1/κ)gk

(gk+1,Fk+1, zk+1) = ApproxGradient (xk+1,M) .

8: end if
9: update Bk+1 = L-BFGS(Bk , xk+1 − xk , gk+1 − gk).

10: end for
output last proximal mapping zK (solution).
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The main characters:

the sequence (xk)k≥0 that minimizes F ;

the sequence (zk)k≥0 produced byM that minimizes f ;

the gradient approximations gk ≈ ∇F (xk);

the function value approximations Fk ≈ F (xk);

an L-BFGS update with inexact gradients;

an approximate sufficient descent condition.



Requirements onM and restarts

MethodM

Say a sub-problem consists of minimizing h; we wantM to produce
a sequence of iterates (wt)t≥0 with linear convergence rate

h(wt)− h⋆ ≤ CM(1− τM)t(h(w0)− h⋆).

Restarts

When f is smooth, we initialize w0 = x when solving

min
w∈Rd

{

f (w) +
κ

2
‖w − x‖2

}

.

When f = f0 + ψ is composite, we use the initialization

w0 = argmin
w∈Rd

{

f0(x) + 〈∇f0(x),w − x〉+
L+ κ

2
‖w − x‖2 + ψ(w)

}

.
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When do we stop the methodM?

Three strategies to balance outer and inner computations

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization
methodM when the approximate proximal mapping is εk -accurate.

(b) define an adaptive stopping criterion that depends on quantities
that are available at iteration k .

(c) use a pre-defined budget TM of iterations of the methodM for
solving each sub-problem.
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Three strategies to balance outer and inner computations

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization
methodM when the approximate proximal mapping is εk -accurate.

(b) define an adaptive stopping criterion that depends on quantities
that are available at iteration k .

(c) use a pre-defined budget TM of iterations of the methodM for
solving each sub-problem.

Remarks

(a) is the less practical strategy.

(b) is simpler to use and conservative (compatible with theory).

(c) requires TM to be large enough in theory. The aggressive
strategy TM = n for an incremental method is extremely simple
to use and effective in practice.
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When do we stop the methodM?

Three strategies for µ-strongly convex objectives f

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization
methodM when the approximate proximal mapping is εk -accurate.

εk =
1

2
C (1− ρ)k+1 with C ≥ f (x0)− f ∗ and ρ =

µ

4(µ+ κ)
.

(b) For minimizing h(w) = f (w) + (κ/2)‖w − x‖2, stop when

h(wt)− h⋆ ≤
κ

36
‖wt − x‖2.

(c) use a pre-defined budget TM of iterations of the methodM for
solving each sub-problem with

TM =
1

τM
log

(

19CM

L+ κ

κ

)

. (be more aggressive in practice)
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Remarks and worst-case global complexity

Composite objectives and sparsity

Consider a composite problem with a sparse solution (e.g., ψ = ℓ1). The
method produces two sequences (xk)k≥0 and (zk)k≥0;

F (xk)→ F ⋆, minimizes the smoothed objective ⇒ no sparsity;

f (zk)→ f ⋆, minimizes the true objective ⇒ the iterates may be
sparse ifM handles composite optimization problems;

Global complexity

The number of iterations ofM to guarantee f (zk)− f ⋆ ≤ ε is at most

Õ( µ+κ

τMµ
log(1/ε)) for µ-strongly convex problems.

Õ( κR2

τMε
) for convex problems.

Julien Mairal QuickeNing 18/28



Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have τM = (µ+ κ)/(L+ κ) and the
complexity for µ > 0 becomes

Õ

(

L+ κ

µ
log(1/ε)

)

.

Example for SVRG for minimizing the sum of n functions

τM = min(1/n, (µ+ κ)/(L+ κ)) and the complexity for µ > 0 is

Õ

(

max

(

µ+ κ

µ
n,

L+ κ

µ

)

log(1/ε)

)

.
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Example for SVRG for minimizing the sum of n functions

τM = min(1/n, (µ+ κ)/(L+ κ)) and the complexity for µ > 0 is

Õ

(

max

(

µ+ κ

µ
n,

L+ κ

µ

)

log(1/ε)

)

.

QuickeNing does not provide any theoretical acceleration, but it
does not degrade significantly the worst-case performance of M
(unlike L-BFGS vs gradient descent).
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Õ

(

L+ κ

µ
log(1/ε)

)

.

Example for SVRG for minimizing the sum of n functions

τM = min(1/n, (µ+ κ)/(L+ κ)) and the complexity for µ > 0 is

Õ
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Then, how to choose κ?
(i) assume that L-BFGS steps do as well as Nesterov.
(ii) choose κ as in Catalyst.



Experiments: formulations

ℓ2-regularized Logistic Regression:

min
x∈Rd

1

n

n
∑

i=1

log
(

1 + exp(−bi a
T
i x)

)

+
µ

2
‖x‖2,

ℓ1-regularized Linear Regression (LASSO):

min
x∈Rd

1

2n

n
∑

i=1

(bi − aTi x)
2 + λ‖x‖1,

ℓ1 − ℓ
2
2-regularized Linear Regression (Elastic-Net):

min
x∈Rd

1

2n

n
∑

i=1

(bi − aTi x)
2 + λ‖x‖1 +

µ

2
‖x‖2,
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Experiments: Datasets

We consider four standard machine learning datasets with different
characteristics in terms of size and dimension

name covtype alpha real-sim rcv1

n 581 012 250 000 72 309 781 265

d 54 500 20 958 47 152

we simulate the ill-conditioned regime µ = 1/(100n);

λ for the Lasso leads to about 10% non-zero coefficients.
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Experiments: QuickeNing-SVRG

We consider the methods

SVRG: the Prox-SVRG algorithm of Xiao and Zhang [2014].

Catalyst-SVRG: Catalyst applied to SVRG;

L-BFGS (for smooth objectives): Mark Schmidt’s implementation.

QuickeNing-SVRG1: QuickeNing with aggressive strategy (c):
one pass over the data in the inner loop.

QuickeNing-SVRG2: strategy (b), compatible with theory.

We produce 12 figures (3 formulations, 4 datasets).
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Experiments: QuickeNing-SVRG (log scale)
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QuickeNing-SVRG1 ≥ SVRG, QuickeNing-SVRG2;

QuickeNing-SVRG2 ≥ SVRG;

QuickeNing-SVRG1 ≥ Catalyst-SVRG in 10/12 cases.
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Experiments: QuickeNing-ISTA

We consider the methods

ISTA: the proximal gradient descent method with line search.

FISTA: the accelerated ISTA of Beck and Teboulle [2009].

L-BFGS (for smooth objectives): Mark Schmidt’s implementation.

QuickeNing-ISTA1: QuickeNing with aggressive strategy (c): one
pass over the data in the inner loop.

QuickeNing-ISTA2: strategy (b), compatible with theory.
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Experiments: QuickeNing-ISTA (log scale)
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L-BFGS (for smooth f ) is slightly better than QuickeNing-ISTA1;

QuickeNing-ISTA ≥ or ≫ FISTA in 11/12 cases.

QuickeNing-ISTA1 ≥ QuickeNing-ISTA2.
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Experiments: Influence of κ
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κ0 is the parameter (same as in Catalyst) used in all experiments;

QuickeNing slows down when using κ > κ0;

here, for SVRG, QuickeNing is robust to small values of κ!
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Experiments: Influence of l
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l = 100 in all previous experiments;

l = 5 seems to be a reasonable choice in many cases, especially for
sparse problems.
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Conclusions and perspectives

A simple generic Quasi-Newton method for composite functions,
with simple sub-problems, and complexity guarantees.

We also have a variant for dual approaches.

Does not solve the gap between theory and practice for L-BFGS.

Perspectives

QuickeNing-BCD, QuickeNing-SAG,SAGA,SDCA...

Other types of smoothing? ⇒ Links with recent Quasi-Newton
methods applied to other envelopes [Stella et al., 2016].
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Outer-loop convergence analysis

Lemma: approximate descent property

F (xk+1) ≤ f (zk) ≤ F (xk)−
1

4κ
‖∇F (xk)‖

2
2 + 2εk .

Then, εk should be smaller than 1
4κ‖∇F (xk)‖

2
2, and indeed

Julien Mairal QuickeNing 29/28



Outer-loop convergence analysis

Lemma: approximate descent property

F (xk+1) ≤ f (zk) ≤ F (xk)−
1

4κ
‖∇F (xk)‖

2
2 + 2εk .

Then, εk should be smaller than 1
4κ‖∇F (xk)‖

2
2, and indeed

Proposition: convergence with impractical εk and µ > 0

If εk ≤
1

16κ‖∇F (xk)‖
2
2, define ρ = µ

4(µ+κ) , then

F (xk+1)− F ∗ ≤ f (zk)− f ∗ ≤ (1− ρ)k+1 (f (x0)− f ∗).

Unfortunately, ‖∇F (xk)‖ is unknown.
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2
2, and indeed

Proposition: convergence with impractical εk and µ > 0

If εk ≤
1

16κ‖∇F (xk)‖
2
2, define ρ = µ

4(µ+κ) , then

F (xk+1)− F ∗ ≤ f (zk)− f ∗ ≤ (1− ρ)k+1 (f (x0)− f ∗).

Unfortunately, ‖∇F (xk)‖ is unknown.

Lemma: convergence with adaptive εk and µ > 0

If εk ≤
1

36κ‖gk‖
2, then εk ≤

1
16‖∇F (xk)‖

2.

This is strategy (b). gk is known and easy to compute.
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Inner-loop complexity analysis

Restart for L-smooth functions

For minimizing h, initialize the methodM with w0 = x . Then,

h(w0)− h∗ ≤
L+ κ

2κ2
‖∇F (x)‖2. (1)

Proof.

We have the optimality condition ∇f (w∗) + κ(w∗ − x) = 0. As a result,

h(w0)−h
∗

= f (x)−
(

f (w∗) +
κ

2
‖w∗ − x‖2

)

≤ f (w∗)+〈∇f (w∗), x−w∗〉+
L

2
‖x−w∗‖2−

(

f (w∗)+
κ

2
‖w∗−x‖2

)

=
L+ κ

2
‖w∗ − x‖2 =

L+ κ

2κ2
‖∇F (x)‖2.
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Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Quasi-Newton methods work with the parameter and gradient
differences between successive iterations:

sk , xk+1 − xk , yk , ∇f (xk+1)−∇f (xk).
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Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Quasi-Newton methods work with the parameter and gradient
differences between successive iterations:

sk , xk+1 − xk , yk , ∇f (xk+1)−∇f (xk).

They start with an initial approximation B0 , σI , and choose Bk+1

to interpolate the gradient difference:

Bk+1sk = yk .

Since Bk+1 is not unique, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method chooses the symmetric matrix whose difference
with Bk is minimal:

Bk+1 = Bk −
BkskskBk

skBksk
+

yky
⊤
k

y⊤k sk
.
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Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Update skipping/damping or a sophisticated line search (Wolfe
conditions) can keep Bk+1 positive-definite.
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Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Update skipping/damping or a sophisticated line search (Wolfe
conditions) can keep Bk+1 positive-definite.

They perform updates of the form

xk+1 ← xk − ηkB
−1
k ∇f (xk).

The BFGS method has a superlinear convergence rate.

But, it still uses a dense p × p matrix Bk .

Instead of storing Bk , the limited-memory BFGS (L-BFGS)
method stores the previous l differences sk and yk .

We can solve a linear system involving these updates when B0 is
diagonal in O(dl) [Nocedal, 1980].
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O. Güler. New proximal point algorithms for convex minimization. SIAM
Journal on Optimization, 2(4):649–664, 1992.

Julien Mairal QuickeNing 35/28



References IV
Jason Lee, Yuekai Sun, and Michael Saunders. Proximal Newton-type methods

for convex optimization. In Advances in Neural Information Processing
Systems (NIPS), 2012.
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Bernard Martinet. Brève communication. régularisation d’inéquations
variationnelles par approximations successives. 4(3):154–158, 1970.

Robert Mifflin. A quasi-second-order proximal bundle algorithm. Mathematical
Programming, 73(1):51–72, 1996.

Julien Mairal QuickeNing 36/28



References V
Y. Nesterov. Gradient methods for minimizing composite functions.

Mathematical Programming, 140(1):125–161, 2013.

Jorge Nocedal. Updating quasi-Newton matrices with limited storage.
Mathematics of Computation, 35(151):773–782, 1980.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm.
SIAM Journal on Control and Optimization, 14(5):877–898, 1976.

Katya Scheinberg and Xiaocheng Tang. Practical inexact proximal
quasi-Newton method with global complexity analysis. Mathematical
Programming, 160(1):495–529, 2016.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the
stochastic average gradient. Mathematical Programming, 160(1):83–112,
2017.

S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent.
arXiv:1211.2717, 2012.

Lorenzo Stella, Andreas Themelis, and Panagiotis Patrinos. Forward-backward
quasi-newton methods for nonsmooth optimization problems. arXiv preprint
arXiv:1604.08096, 2016.

Julien Mairal QuickeNing 37/28



References VI
S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by

separable approximation. IEEE Transactions on Signal Processing, 57(7):
2479–2493, 2009.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive
variance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Jin Yu, SVN Vishwanathan, Simon Günter, and Nicol N Schraudolph. A
quasi-Newton approach to non-smooth convex optimization. In Proceedings
of the International Conferences on Machine Learning (ICML), 2008.

Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for
regularized empirical risk minimization. In Proceedings of the International
Conferences on Machine Learning (ICML), 2015.

Julien Mairal QuickeNing 38/28


